
A New Approach to Computing Maximum Flows using
Electrical Flows

Yin Tat Lee
MIT

yintat@mit.edu

Satish Rao
UC Berkeley

satishr@cs.berkeley.edu

Nikhil Srivastava
Microsoft Research, India
niksri@microsoft.com

ABSTRACT
We give an algorithm which computes a (1−ε)-approximately
maximum st−flow in an undirected uncapacitated graph in
time O(1

ε

√
m
F
·m log2 n) where F is the flow value. By trad-

ing this off against the Karger-Levine algorithm for undi-
rected graphs which takes Õ(m + nF) time, we obtain a

running time of Õ(mn1/3/ε2/3) for uncapacitated graphs,
improving the previous best dependence on ε by a factor of
O(1/ε3). Like the algorithm of Christiano, Kelner, Madry,
Spielman and Teng, our algorithm reduces the problem to
electrical flow computations which are carried out in linear
time using fast Laplacian solvers. However, in contrast to
previous work, our algorithm does not reweight the edges
of the graph in any way, and instead uses local (i.e., non
s− t) electrical flows to reroute the flow on congested edges.
The algorithm is simple and may be viewed as trying to
find a point at the intersection of two convex sets (the affine
subspace of st-flows of value F and the `∞ ball) by an accel-
erated version of the method of alternating projections due
to Nesterov.

By combining this with Ford and Fulkerson’s augmenting
paths algorithm, we obtain an exact algorithm with running
time Õ(m5/4F 1/4) for uncapacitated undirected graphs, im-

proving the previous best running time of Õ(m+min(nF,m3/2)).
We give a related algorithm with the same running time

for approximate minimum cut, based on minimizing a smoothed
version of the `1 norm inside the cut space of the input
graph. We show that the minimizer of this norm is related
to an approximate blocking flow and use this to give an al-
gorithm for computing a length k approximately blocking
flow in time Õ(m

√
k).

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms]: General

Keywords
Maximum flow, minimum cut, electrical flow, Nesterov

1. INTRODUCTION
The st−maximum flow problem and its dual, the st−minimum

cut problem, are central in combinatorial optimization and
have a wide range of applications. Several decades of work
on these problems have yielded a host of combinatorial al-
gorithms for solving them exactly and approximately, the
fastest of which run in time O(n3/2) on an n−vertex graph
with O(n) edges. Recently, the breakthrough work of Chris-
tiano et al. [CKM+11] improved this bound significantly
by giving a (1 − ε)-approximation algorithm for maximum

flow which runs in time O(̃mn1/3ε−11/3)) on an undirected
graph with m edges. Their algorithm uses the multiplica-
tive weights framework [AHK12] to reduce the maximum
flow computation to a series of electrical flow computations,

which are solved in O(̃m) time using fast Laplacian solvers.
In this paper, we present an alternate approach to these

problems which also relies on electrical flows, but does not
use multiplicative weights. Consider the following procedure
for finding a feasible st-flow in a unit capacity undirected
graph G. Identify G with a resistor network in which all
edges have resistance 1Ω. Route F units of current from s
to t. For each edge e = (u, v) with too much flow f(u, v) > 1,
create a current source at u of with value equal to the excess
flow, f(u, v)− 1, and a current sink at v of the same value.
Route this flow electrically. Repeat.

We observe that this rather simple algorithm corresponds
to gradient descent in a certain space, and computes a (1+ε)-
approximately feasible flow (if there is one) in O(m

ε2
) itera-

tions. Moreover, it can be accelerated using the optimal

gradient method of Nesterov [Nes05] to run in O(
√
m
ε

) itera-
tions. If we are willing to settle for a cruder flow which is not
approximately feasible but merely has small total flow vol-
ume violating the edge capacities, then this may be further
reduced to O(1

ε

√
m
F

) iterations; the crude flow can then be
fixed using a (nearly-linear time) combinatorial procedure
to obtain a feasible (1− ε)-approximately maximum flow.

Together, these observations reduce the (1−ε)-approximately
maximum flow computation to 1

ε

√
m
F

electrical flow com-
puations. We use the linear time Laplacian linear system
solvers of Koutis, Miller and Peng [KMP11] to compute
these electrical flows and trade off our procedure with the

O(̃m + nF) algorithm of Karger and Levine [KL02], which
is fast for small F , to give a (1− ε)-approximate maximum
flow algorithm for unit capacity graphs with a worst case

runtime of Õ(mn
1/3

ε2/3
). Thus, our algorithm is faster than

that of [CKM+11] for unit capacity graphs by a factor of

755

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’13, June 1-4, 2013, Palo Alto, California, USA.
Copyright 2013 ACM 978-1-4503-2029-0/13/06 ...$15.00.

O(1/ε3), and asymptotically faster in the input size for large
flow values.

The method described above is quite intuitive, but proving
its correctness is based on understanding the flow problem
geometrically. In particular, the simple algorithm and the
acceleration method can be viewed as alternately projecting
a flow of value F onto the `∞ ball (which may violate con-
servation constraints) and then back into the affine subspace
of st−flows. Each alternation step amounts to a projected
gradient step in the space of flows, which in turn corresponds
to electrically rerouting excess flow on congested edges.

In contrast, the algorithm of [CKM+11] routes an st−electrical
flow, penalizes congested edges by increasing their resis-
tances (and occasionally through removal), and repeats. Even-
tally, the average of the flows computed is output. The
error dependence of at least 1/ε2 is fundamental in this ap-
proach as any use of multiplicative weights has this type of
behavior [KY99]. On the other hand, this method works
for graphs with arbitrary capacities, whereas our method is

significantly slower with iteration count 1
ε

√
W
F

for a graph

of total capacity W . This type of polynomial dependence
on weights is normally the case for methods that are based
purely on gradients, eg. [BI04].

In addition, we show how the resulting approximate flow
can be quickly rounded to an integral flow and corrected by
the Ford-Fulkerson algorithm [FF56]. This gives an exact

maximum flow algorithm with running time Õ(m5/4F 1/4),
which is the fastest known for simple undirected uncapaci-
tated graphs whenever n4F 3 > m5.

We also present an algorithm for finding minimum cuts.
As in the case of our flow algorithm, the workhorse of our
method is Nesterov’s accelerated gradient method, which
combines gradients that correspond to certain electrical flows,
this time with nonzero excesses at the vertices, to arrive at
a (non s− t) electrical flow whose potential differences give
a good embedding of the vertices into R. This embedding is
then swept to obtain a (1+ε)-minimum cut. Unlike the flow
algorithm, this procedure does not have an alternating pro-
jections interpretation and amounts to minimizing a certain
smoothing of the `1 norm. We show that the vector of poten-
tial differences of the minimizer is an approximate maximum
flow; this is surprising because it is not known how to find a
maximum flow from a minimum cut. Finally, we show that
the flow computed in this manner has the property that ev-
ery sufficiently short flow path contains an almost saturated
edge; we thus call it an approximate blocking flow.

While the multiplicative weights framework has been widely
applied in computer science [AHK12], the methods of Nes-
terov [Nes05] have received only modest attention. We be-
lieve that it deserves more attention in light of its generality
and improved dependence on ε. A particularly interesting
direction is to combine the mild dependence of multiplica-
tive weights on capacities with the ε-dependence of Nesterov.
We discuss this possibility at length in the conclusion,

We believe that the main contribution of this work is the
flexible yet structured geometric viewpoint that we use to
derive and analyze our algorithms. The use of affine sub-
spaces to represent cuts and flows, which is classical in al-
gebraic graph theory, interacts naturally with the recently
developed fast Laplacian solvers. We hope that this view-
point provides useful tools towards designing a nearly linear
time algorithm.

1.1 Related Work
Maximum flow algorithms have a long history dating from

Ford and Fulkerson’s result establishing the maximum flow
minimum cut theorem and giving an O(Fm) algorithm for
finding a flow of value F . A recent survey can be found in
[Gol98]. The currently fastest known algorithm [GR98] runs

in Õ(mmin(n2/3,
√
m)) time. Karger [Kar98] introduced a

graph smoothing method that can be used in conjuction

with [GR98] to give an Õ(m
√
n

ε
) time 1 + ε approximation

algorithm for maximum flow on undirected graph. Karger
and Levine [KL02] gave a method to apply random sam-
pling in residual graphs of undirected graphs and it leads
to an Õ(m+nF) time algorithm for capacitated undirected
graphs, normalized so that the minimum capacity is 1.

Prior to [CKM+11], Daitch and Spielman [DS08] used
Laplacian solvers to provide a maximum flow algorithm along
with improved algorithms for minimum cost flow and gen-
eralized flow. The running time of their flow algorithm was
Õ(m3/2).

The previously mentioned algorithm in [CKM+11] com-

bined with techniques of Karger [Kar98], yieldsO(mn1/3/ε11/3)
time approximation algorithm for capacitated undirected
graphs. This is faster than our approach for graphs with
large capacities.

2. PRELIMINARIES AND NOTATION

2.1 Cuts and Flows
Let G = (V,E) be an undirected connected graph with n

vertices and m edges. Orient the edges arbitrarily so that
each edge has a head and a tail. Given a distinguished source
s ∈ V and sink t ∈ V , an s − t flow is a vector f : E → R
satisfying the flow conservation constraints∑

e:head(e)=v

f(e)−
∑

e:tail(e)=v

f(e) = 0

at all v ∈ V \ {s, t}. The total flow out of the source s is
called the value of f . In a unit capacity graph, we call any
edge e with |f(e)| > 1 congested, and we refer to |f(e)|−1 as
the overflow on e. A flow in which no edges are congested,
i.e., ‖f‖∞ ≤ 1, is called feasible.

The maximum st−flow problem consists of finding a feasi-
ble st-flow of maximum value. An st−cut is a subset S ⊂ V
with s ∈ V and t /∈ V . The value of a cut is the total capac-
ity of the edges crossing it. The minimum st-cut problem
seeks to find the st−cut of minimum value. It is the dual of
the maximum st−flow problem, i.e., the value of the mini-
mum st−cut is equal to the value of the maximum st−flow
[FF56].

Given an st−flow f , the δ−approximate residual graph
Gf,δ is defined by deleting all edges of G with |f(e)| > 1−δ.
We say that f is an approximate (k, δ) blocking flow if the
distance between s and t in Gf,δ is at least k.

2.2 The Incidence Matrix, The Laplacian, and
Fast Laplacian Solvers

Given an arbitrary orientation of the edges, we define the
signed edge-vertex incidence matrix Bm×n as:

B(e, v) =

 1 if v is e’s head
−1 if v is e’s tail
0 otherwise

756

Thus the rows of B are the signed incidence vectors χu−χv
of edges uv ∈ E, where χu ∈ Rn is the canonical basis vector
with a 1 in coordinate u.

The Laplacian matrix of G is the n×n symmetric matrix

L := BTB =
∑
uv∈E

(χu − χv)(χu − χv)T .

It is easy to see that for a connected graph, im(L) = im(BT) =
im(1)⊥. We will frequently use the pseudoinverse of the
Laplacian, which is the unique matrix L+ satisfying

LL+x = L+Lx = x ∀x ⊥ 1.

The incidence matrix B splits Rm into two important
subspaces which we will use extensively: the cut space im(B)
and its orthogonal complement the cycle space im(B)⊥ =
ker(BT). It is classical in algebraic graph theory that the
cut space is the span of the signed incidence vectors of cuts
in G and the flow space is the span of the signed incidence
vectors of cycles. The orthogonal projection onto the cut
space is given by

Π = BL+BT

and the projection onto the cycle space is

Π⊥ = I −BL+BT .

We will crucially use the fact that linear equations in
Laplacian matrices Lx = b can be solved to high precision
in nearly-linear time. Specifically, we will use the following
theorem of Koutis-Miller-Peng [KMP11]:

Theorem 1 (Fast Laplacian Solver [KMP11]). There
is an algorithm LSolve which on input a Laplacian matrix
L ∈ Rn×n, a vector b ∈ Rn, and a parameter ε > 0 outputs
a vector x̃ ∈ Rn satisfying

‖x̃− L+b‖L ≤ ε‖L+b‖L, (1)

where ‖v‖L =
√
vTLv is the L−norm. The algorithm runs

in time O (m logn log(1/ε)) where m is the number of nonzero
entries in L.

We will mainly use LSolve to approximately compute the
projections Πy = BL+BT y and Π⊥y for various y. For
technical reasons, it will be convenient to require that the
approximate projections we compute lie exactly in im(Π)
and im(Π⊥), respectively. This additional requirement can
be easily met in nearly linear time by applying a simple post-
processing procedure which was described in [CKM+11] (Ap-
pendix A). We encapsulate this fact below; the notation
poly(n) denotes a sufficiently large polynomial nc in n, whose
exact value does not matter as it goes under the logarithm.

Corollary 1. There is an algorithm which on input B ∈
Rm×n with 2m nonzeros and a vector y ∈ Rm with ‖y‖2 =
O(poly(n)) outputs a vector q ∈ Rm satisfying

‖Π⊥y − q‖2 ≤ 1/poly(n) and Π⊥q = q

in time O(m log2 n). As Πy = (I − Π⊥)y, the same kind of
guarantee is immediate for Πy.

It is well known (see for instance the monograph [Vis])
that solving a Laplacian system corresponds to solving an
electrical flow problem. Specifically, for a vector b ⊥ 1 of
injected currents, L+b ∈ Rn gives the induced potential dif-
ferences at the vertices, and BL+b ∈ Rm gives the induced
potential differences across the edges.

2.3 Nesterov’s Gradient Method
Consider the unconstrained minimization problem

min
y∈Rm

f(y)

where f is convex and differentiable. Such problems can
be solved to arbitrary precision in polynomial time by first-
order methods; the convergence rates of these methods can
be quantified in terms of the initial distance to the optimum,
the Lipschitz constant of the gradient ∇f and the strong
convexity parameter. The Lipschitz constant of the gradient
∇f is defined as the least cL for which

‖∇f(y)−∇f(z)‖2 ≤ cL‖y − z‖2 ∀y, z ∈ Rm.

The strong convexity parameter is defined as the largest csc
for which

〈∇f(y)−∇f(z), y − z〉 ≥ csc
2
‖y − z‖22 ∀y, z ∈ Rm.

The simplest first-order scheme is the gradient descent
method, which is defined by the fixed step size iteration

yk+1 = yk −
1

cL
∇f(yk).

Let y∗ be an optimal point. Then it is well known that given
a starting point y0, a point yT with error f(yT)− f(y∗) ≤ ε
is obtained in at most T =

2cL‖y0−y∗‖22
ε

iterations. A re-
markable thirty year old result of Yu. Nesterov shows that
it is possible to obtain a much faster rate of convergence
by taking the last two iterates into account. We encapsu-
late Nesterov’s method and its convergence rate below; as is
generally the case with gradient methods, the rate of conver-
gence is logarithmic when f is strongly convex, i.e., csc > 0.

Theorem 2 (Nesterov). Let f : Rm → R be convex
with cL−Lipschitz gradient and strong convexity parameter
csc ≥ 0, and let y∗ ∈ Rm be any vector. Given an initial
vector y0 ∈ Rm, the algorithm Nesterov produces in

T = min

(
2

√
cL
ε
· ‖y0 − y∗‖2,

√
cL
csc

ln

(
4‖y0 − y∗‖2

ε

))
(2)

iterations a vector yT with objective

f(yT)− f(y∗) ≤ ε. (3)

Each iteration requires a single gradient evaluation ∇f(y).

Algorithm Nesterov
Input: gradient oracle ∇f(y), Lipschitz constant cL of
∇f , strong convexity parameter csc, starting point y0,
iteration count T

Set z1 = y0, a1 = 1. For k = 1 . . . T :

• Set yk = zk − 1
cL
∇f(zk) (descent step).

• If csc = 0, Then set ak+1 = (1 +
√

4a2k + 1)/2 and

zk+1 = yk +
ak − 1

ak+1
(yk − yk−1) (momentum step).

• Otherwise, set

zk+1 = yk+

√
cL −

√
csc√

cL +
√
csc

(yk−yk−1) (momentum step).

Output yT .

757

Remark 1. Unravelling the two-term recurrence which
defines zk+1 reveals that in each momentum step the algo-
rithm moves in the direction of a certain weighted average
of the last few gradients. This has the effect of cancelling
the characteristic ‘zig zagging’ behavior which makes gradi-
ent descent slow. The use of the last two iterates and the

√
·

improvement over gradient descent are reminiscent of the
Chebyshev method for solving linear equations; indeed, an
appropriate analysis [Pol87] of Nesterov can be used to re-

cover the best known bound of
√
λmax(A)/λmin(A) log(1/ε)

iterations for solving a linear system Ax = b.

In the present paper we will be interested in minimizing
convex functions over affine subspaces which correspond to
cuts and flows in a graph, specifically in problems of the
form

min
y∈S

f(y)

where f is convex and S = {y : Py = b} is an affine subspace

for some projection P . Since S is itself a copy of Rrank(P),
such problems can easily be reduced to the unconstrainted
case due to the following well known fact.

Fact 1. The restriction fS : S → R of f to S = {y :
Px = b} is also convex and its gradients are given by

∇fS(y) = P⊥∇f(y) for y ∈ S,

where P⊥ is the orthogonal projection with P + P⊥ = I.

Thus we can reduce constrained minimization of f over
S ⊂ Rn to unconstrained minimization of fS overRrank(P) ∼=
S, and the convergence properties of Nesterov continue to
hold in the affine-constrained setting as long as we use the
projected gradients ∇fS(y) = P⊥∇f(x).

Corollary 2. Let S = {y : Py = b} ⊂ Rm be an affine
subspace for some projection P : Rm → Rm, let f : Rm →
R be convex, and let y∗ ∈ S. Given a starting point y0 ∈ S
and gradient oracle P⊥∇f(y), Nesterov produces a vector
yT ∈ S satisfying f(yT)− f(y∗) ≤ ε in

T = min

(
2

√
cL
ε
· ‖y0 − y∗‖2,

√
cL
csc

ln

(
4‖y0 − y∗‖2

ε

))
iterations, where cL is the Lipschitz constant of P⊥f(y) and
csc is the strong convexity parameter of P⊥f(y).

Next, we recall a result of d’Aspremont which states that
Nesterov works essentially just as well if we use approximate
gradients rather than exact ones. This will be necessary in
order to handle the error introduced by the Laplacian solver.

Theorem 3 (d’Aspremont [d’A08], Theorem 2.2).
1 Suppose all the iterates generated by Nesterov are guaran-
teed to lie in a Euclidean ball of radius R. If we replace the
exact gradient oracle ∇f by an approximate gradient oracle
∇̃f satisfying:

‖∇f(y)− ∇̃f(y)‖2 ≤
δ

3R
,

1The original statment of the theorem is adapted to suit
our setup. In particular: (i) The ball of radius R here corre-
sponds to the compact feasible set Q in [d’A08]. (ii) We have
presented Nesterov using a two term recurrence, whereas in
[d’A08] it is written as an unravelled sum over previous gra-
dients. These formulations are equivalent; see [Nes05] for
details.

then the last iterate yT with T as in (2) has objective value
bounded by:

f(yT)− f(y∗) ≤ ε+ δ.

Finally, we record some standard facts about projections
onto convex sets, which will be useful in reasoning about the
functions we will minimize.

ProjK(x) = argminy∈K‖x− y‖2.
Lemma 1 (Projections onto Convex Sets). Let K

be convex. Then (i) ProjK is 1−Lipschitz, i.e.,

‖ProjK(x)− ProjK(y)‖2 ≤ ‖x− y‖2 ∀x, y ∈ Rn.

(ii) The function

f(x) :=
1

2
‖x− ProjK(x)‖22

is convex and has 1−Lipschitz gradient

∇f(x) = x− ProjK(x).

3. THE FLOW ALGORITHM
In this section we present our 1

ε

√
m
F

iteration algorithm
for approximately maximum st-flow. The algorithm has two
phases: a numerical phase which uses Nesterov to obtain a
flow with small total overflow, and a combinatorial phase
which removes this overflow by subtracting congested flow-
paths using a fast implementation of depth first search. The
numerical phase begins by computing the s−t electrical flow
of value F , and its gradient steps correspond to rerouting
overflow on congested edges using local (non s − t) electri-
cal flows, which are computed in nearly linear time using
LSolve. Crucially, we only run Nesterov until the total over-
flow is about εF , so that the number of iterations required
varies inversely with F – this gives the

√
m
F

dependence ad-
vertised above. When the overflow is subtracted out in the
second phase (whose running time is nearly linear, indepen-
dent of F) we are left with a flow of value F −εF = (1−ε)F ,
as desired.

We now describe the convex program used in the first
phase. Given a source and sink s, t ∈ V , the set of st-flows
of value F is an affine subspace of Rm which may be written
succinctly as:

Fst,F := {y : BT y = F (χs − χt)},

indicating excesses of F and −F at s and t and flow con-
servation at all other vertices. Observe that since BL+ is
invertible on im(BT), we have

BT y = F (χs − χt) ⇐⇒ BL+BT y = F ·BL+(χs − χt)
⇐⇒ Πy = Fyst,

where we define

yst := BL+(χs − χt)

to be the standard electrical flow between s and t with one
unit of current. Thus we may write

Fst,F = {y : Πy = Fyst} = Fyst + {y : Πy = 0},

revealing that Fst,F is a translation of the cycle space {y :
Πy = 0} by the electrical flow Fyst, which thus is the mini-
mum length vector (and therefore minimum energy flow) in
Fst,F :

Fyst = ProjFst,F
(0). (4)

758

∇Φ(y)
Π⊥∇Φ(y)

Figure 1: In each step, the point is alternately projected

onto the `∞ ball and then back into the cycle space. This

is equal to the gradient in Fst,F .

Finding a feasible flow is equivalent to finding a point in
Fst,F ∩ Bm∞. Such a point may be obtained by minimizing
‖y‖∞ inside Fst,F ; this is the standard linear program for
max flow, which cannot be solved by using gradients since
‖ · ‖∞ is not differentiable. Thus, we choose instead to min-
imize the squared Euclidean distance to Bm∞:

Φ(y) :=
1

2
‖y − ProjBm

∞
(y)‖22 (5)

inside Fst,F . Since projection onto Bm∞ amounts to truncat-
ing the coordinates of y to have absolute value at most 1, we
have Φ(y) = 1

2
‖over(y)‖2 where over(y) := y−ProjBm

∞
(y) is

defined to be the vector of signed overflows on the edges of
G.

By Lemma 1, the function Φ is convex with 1−Lipschitz
gradient ∇Φ(y) = y − ProjBm

∞
(y) = over(y). We will use

Nesterov to minimize Φ over Fst,F . Constrained to Fst,F ,
the projected gradient is given by

∇ΦFst,F (y) = Π⊥∇Φ(y) = (I −BL+BT)over(y).

Thus each gradient step taken by Nesterov,

y − (I −BL+BT)over(y) = (y − over(y)) +BL+BT over(y),

corresponds cleanly to replacing the overflows over(y) by the
electrical flows obtained by routing the excesses defined by
them2.

After reaching a flow yT with sufficiently small Φ(yT) in
the first phase, we use a combinatorial procedure in the sec-
ond phase to obtain a feasible flow with sufficiently large
value. The procedure Drain promised below crucially uses
Sleator and Tarjan’s dynamic trees data structure to quickly
remove flowpaths which contribute to the overflow.

Lemma 2 (Overflow Drainage). Suppose f is a (not
necessarily feasible) st-flow of value F in G. Then there is
a feasible st−flow f ′ of value at least F −

∑
e∈E |over(y)(e)|.

Moreover, there is an algorithm Drain which finds such an
f ′ in time O(m logn).

We now state the algorithm in its entirety and prove its
correctness.

2The projected gradient step inside Fst,F may also be seen
as the projection of the unconstrained step onto Fst,F :

y −Π⊥ProjBm
∞

(y) = ProjFst,F
((y − ProjBm

∞
(y)),

hence the name ‘alternating projections’.

Algorithm Maxflow
Input: Graph G, flow value F , error parameter ε > 0

1. Compute the st−electrical flow with F units of cur-
rent

y0 = F ·BL+(χs − χt).

2. Run Nesterov with starting point y0, gradients

Π⊥∇Φ(y) = (I −BL+BT)(y − ProjBm
∞

(y)),

Lipschitz constant cL = 1 and strong convexity pa-
rameter csc = 0 for T = 2

ε

√
m
F

iterations. Let
yT ∈ Fst,F be the last point obtained.

3. Apply the Drain procedure from Lemma 2 to the
rescaled flow yT

1+ε
to obtain a feasible st-flow f . Out-

put f .

Theorem 4. If there is a feasible st-flow of value F , then
Maxflow outputs a feasible st−flow f of value at least (1 −
4ε)F . Its total running time is at most

O

(
1

ε

√
m

F
·m log2 n

)
.

Proof. Assume for the moment that the initial electrical
flow y0 and projections Π⊥Φ(y) are computed exactly; we
will handle the actual situation with 1/poly(n) error later
on.

Let y∗ be a feasible flow of value F . The initial point
y0 = Fyst satisfies:

‖Fyst − y∗‖2 = ‖ProjFst,F
(0)− ProjFst,F

(y∗)‖2 by (4)

(6)

≤ ‖0− y∗‖2 by Lemma 1

≤
√
m‖y∗‖∞ by Cauchy-Schwartz

≤
√
m since y∗ is feasible.

Since ∇Φ is 1−Lipschitz, the projected gradient Π⊥∇Φ in-
side Fst,F is also 1−Lipschitz. Therefore by Corollary 2,
after T = 2

ε
√
F

√
m iterations, at the end of step (2) we have

an st-flow yT ∈ Fst,F with

Φ(yT)− Φ(y∗) =
1

2
‖yT − ProjBm

∞
(yT)‖22 − 0

=
1

2

∑
e

over(yT)(e)2

≤ ε2F.

Setting aside the edges with large overflow, we find that

ε
∑

e:over(yT)(e)>ε

|over(yT)(e)| ≤
∑
e

over(yT)(e)2 ≤ 2ε2F,

from which we conclude that the total capacity of the set
of severely congested edges D = {e : over(yT)(e) > ε} is at
most 2εF . This is also true for the rescaled flow ỹT = yT

1+ε
,

which satisfies all capacity constraints outside D. Since it
has value at least F

1+ε
, applying Lemma 2 to ỹT yields a

feasible st−flow f ′ of value at least

F

1 + ε
− 2εF = (1− 3ε)F,

as desired.

759

The bound on the running time is immediate since each
iteration involves one trivial gradient computation ∇Φ(x)
and one application of Π⊥ up to 1/poly(n) error, which takes

O(̃m log2 n) time by Corollary 1. By Lemma 2 the drainage
step also takes nearly linear time.

It remains to show that it is sufficient to compute the
starting point y0 and projections Π⊥∇Φ(y) upto 1/poly(n)
error. We will achieve this by appealing to Corollary 1 and
Theorem 3, which both require an a priori bound on the
Euclidean norms of the iterates yk, zk produced by Nesterov
when it is supplied with exact y0 and gradients Π⊥∇Φ(y).

We proceed to derive such a bound. Applying (2) and (3)
from Theorem 2, we find that the iterates yk satisfy

1

2
‖yk − ProjBm

∞
(yk)‖22 = Φ(yk)− Φ(y∗)

≤ 2‖y0 − y∗‖22
k2

≤ 2‖Fyst − y∗‖22
≤ 2m from (6).

By the triangle inequality this implies that

‖yk‖2 ≤ 2m+
√

2‖ProjBm
∞

(yk)‖2 = O(
√
m).

Applying the triangle inequality to the definition of the aux-
illiary iterates zk, we obtain

‖zk‖2 ≤
(

1 +
ak − 1

ak+1

)
‖yk‖2 + ‖yk−1‖2

≤ 2‖yk‖2 + ‖yk‖2 = O(
√
m).

Thus all vectors produced have length at mostpoly(n).
We can thus use the procedure of Corollary 1 to compute

projections, guaranteeing that y0 ∈ Fst,F and that all the
approximate Π⊥∇Φ(y) lie exactly in im(Π⊥). This in turn
means that all iterates produced during the course of the
algorithm are exactly inside Fst,F . We can now appeal to
Corollary 2 and take R = O(

√
m) in Theorem 3, which tells

us that computing the projected gradients Π⊥∇Φ(y) upto
1/poly(n) error adds at most 1/poly(n) to our final error,
yielding the final bound of (1− 4ε)F , as advertised.

We now furnish the details of the Drain procedure used to
remove the overflows. We remark that this procedure works
in exactly the same way for capacitated graphs, but we have
chosen to present the unit capacity version for clarity.

Proof of Lemma 2. Orient all the edges in G in the
direction of flow to obtain a directed graph. Let D =
{(s1, t1), . . . , (sk, tk)} be the set of congested edges. Cre-
ate a new distinguished vertex d, and for each (si, ti) ∈ D
add a path of length 2 consisting of two edges (si, d), (d, ti)
of capacity over(f)(si, ti)) passing through d. Call this aug-

mented graph G̃, and define a modified st−flow f̃ in G̃ in
which the overflow on each (si, ti) is rerouted through the
newly added path, so that the original edges in G are no
longer congested.

We will now drain the total flow from s to d and d to t,
yielding a feasible flow f ′ in G. This is very easy when f
is integral: simply trace edges backwards from d to s and
forwards from d to t to obtain an st−flow path, subtract it
from f , and repeat until d is isolated. Since no edge is used
by more than one path the total running time is linear.

In our setting the flow f is fractional. However, the above
idea can be implemented almost as quickly using Sleator and
Tarjan’s dynamic trees data structure, described below.

Dynamic Trees (Sleator-Tarjan [ST83]). There is a data
structure which maintains set of disjoint rooted real edge-
weighted trees on a vertex set V , initially a singleton tree
for every vertex, and supports the following operations in
O(logn) time:

• root(v). Returns the root of the tree containing v.

• link(v, u, c). Makes v the child of u, connected by an
edge of weight c.

• cut(v). Cuts the edge between v and its parent, cre-
ating a new tree rooted at v.

• mincost(v). Returns the last edge of minimum cost
on the path v −→ root(v).

• update(v, c) Adds c (which may be negative) to every
edge on the path v −→ root(v).

We will use this to perform a sped-up depth first search
to find and remove flow paths from d to t and update the
flow accordingly while maintaining conservation. Initialize
the data structure with single-vertex trees for every v ∈ V .
Maintain a vector r ∈ Rm of residual flows r(e) for every
edge e ∈ E, initially r = f . Repeat the following loop
starting with v = d:

Let w = root(v).

• If w = t, then let q = mincost(d) be the child of the
smallest edge on the path d −→ t. Now update(d,−r(q)),
cut(q), and set v = q, charging the cost of all of these
operations to the deleted edge.

• If w 6= t then find an outgoing edge (w, z) in G̃ with
positive residual flow r(w, z) > 0. If no such edge ex-
ists and w = d then terminate. Otherwise such an edge
must exist since we have maintained a nonzero flow
path from d to w and flow conservation is satisfied at
all vertices on this path. In this case, link(w, z, r(w, z)),
set v = z, and charge the cost of all operations, includ-
ing the root(v), to the newly linked edge.

It is easy to check that the above correctly implements depth
first search and that the update step preserves conservation
and capacity constraints at all nodes other than d and t,
since it subtracts entire d −→ t flowpaths. The total number
of iterations of the loop is at most 2m since each iteration
either links or cuts an edge and every edge can be linked
at most once and cut at most once. Thus the total running
time is O(m logn).

After draining the flow from d to t we repeat the same
procedure with edges reversed from d to s. The final result
is a flow which respects all capacities in G. The total amount
of flow removed is exactly∑

i≤k

f̃(si, d) =
∑
i≤k

over(f)(si, ti)

so the output f ′ has value at least

F −
∑
i≤k

over(f)(si, ti),

as desired.

To obtain the worst-case running time of Õ(mn1/3/ε2/3),
we trade off the above procedure against the Karger-Levine

760

[KL02] algorithm which takes time Õ(m+nF) on uncapac-
itated graphs: we simply use that algorithm for small flow
values F ≤ m/(nε)2/3, and our algorithm Maxflow other-
wise.

Remark 2. It is also possible to obtain the results in this
section by minimizing over Fst,F a certain smoothing of the
following ‘relaxed’ `∞ norm:

‖y‖∞,F = max
z∈Bm

1 ∩
1
F
Bm
∞

〈z, y〉.

Remark 3. The following example shows that the
√

m
F

dependence in Theorem 4 is tight for Maxflow. Let s and
t be connected by F/2 single edges and F/2 parallel paths
of length 2m/F , for a total of O(m) edges. As the ratio
of the resistance of a long path to that of a short (single
edge) path is m/F : 1, the initial electrical flow of value F
sends about 2F/m flow on each long path and 2(1 − F/m)
flow on each short path, causing overflows of 1 − 2F/m on
the short edges. In each gradient step, rerouting this over-
flow amounts to computing another st-electrical flow of value
F/2(1− 2F/m), which again puts O(F/m) flow on the long
paths. Thus, in order to route Ω(1) flow along the long paths

we need Ω(m/F) rerouting steps; this becomes
√
m/F when

we factor in the the momentum steps taken by Nesterov.

Remark 4. Essentially the same proof shows that a vari-
ant of the above algorithm computes a (1− ε)-approximately

maximum flow in a capacitated graph in O(1
ε

√
W
F

) itera-

tions, where W is the total capacity.

4. THE EXACT FLOW ALGORITHM
In this section, we discuss how to obtain an exact flow

algorithm from our approximate flow algorithm. The idea
is to use Maxflow to find a (1− ε)−approximate flow, round
this fractional flow into an integral flow, and apply the Ford-
Fulkerson algorithm [FF56] to route the remaining εF flow.

We prove below that can round the fractional flow in Õ(m);
assuming this result, the total running time is given by

Õ

(
m

ε

√
m

F
+ εmF

)
= Õ

(
m5/4F 1/4

)
, for ε =

m1/4

F 3/4
.

The following rounding algorithm and its proof are due to
Lau and Kwok (personal communication).

Theorem 5. Given a fractional st-flow f with flow value
F on an integer capacitated graph, an integral st-flow with
flow value bF c can be found in O(m logm) time.

Proof (sketch). This algorithm is inspired by [GKK10].
In this algorithm, we keep a partial integral solution and a
new directed graph. Initially, the partial integral solution
is empty and the directed graph G̃ is created by adding a
new vertex s̃ to the original graph. For any edge e in the
original graph, we set the weight on G̃ to be f(e). Add

directed edges ts̃ and s̃s to G̃ with both weights F . Note
that all edges in G̃ are directed because the flow sends in
only one direction on any edge. Our target is to find a cycle
in G̃ from s̃ to s̃ using the random walk according to the
weights. After we pick a path P from s̃ to s̃ using random
walk, we add it to our partial integral solution as an aug-
menting path. Then, we reduce the edge weight along the
path P by 1. If the edge weight is negative, we reverse its
direction and the sign of the weight. Initially, the indegree

and the outdegree on every edge are same because the frac-
tional flow f satisfies the flow conservation law. And the
reweighting process maintains this property. Also, the inde-
gree of s̃ is F − k+ 1 at step k. Following the same analysis
of the random walk in [GKK10], the hitting time from s̃ to
s̃ is at least m/(F − k + 1) at step k. Hence, this algo-
rithm finds a integral flow with flow value bF c in at most
m(1 + 1/2 + · · ·+ 1/m) = O(m logm) time.

5. THE CUT ALGORITHM
In this section we present a 1

ε

√
m
F

iteration algorithm for
finding an approximately minimum st-cut. The algorithm
is even simpler than Maxflow, and consists of approximately
minimizing a smoothed version of the `1 norm over the affine
subspace of Rm spanned by the incidence vectors of st−cuts.
The vector of potential differences thus obtained yields to an
embedding of the vertices into R, which is then swept in the
standard way to obtain a cut of small value.

We begin by writing the standard linear program for min-
imum st−cut as `1 minimization over a subspace of Rm:

min
x:xs−xt=1

∑
ij∈E

|xi − xj | (LP)

= min
x:〈x,χs−χt〉=1

‖Bx‖1

= min
x:〈x,BTBL+(χs−χt)〉=1

‖Bx‖1

since χs − χt ∈ im(BT) (7)

= min
x:〈Bx,BL+(χs−χt)〉=1

‖Bx‖1

= min
y∈Cst

‖y‖1

where

Cst := im(B) ∩ {〈y, yst〉 = 1}

is the n − 2 dimensional affine subspace of Rm spanned by
the incidence vectors bS = BχS of cuts S ⊂ V separating
s and t. It will be convenient to write Cst in the standard
form Px = b for

projection P = Π⊥ +
ysty

T
st

‖yst‖2
and b =

yst
‖yst‖2

,

which also tells us that
yst
‖yst‖2

= ProjCst
(0). (8)

As before, the `1 objective is non-differentiable, so we con-
sider the smoothed optimization problem

min
y∈Cst

`µ(y)

where `µ is the following smoothing of the `1 norm:

`µ(y) :=
∑
e∈E

√
y2(e) + µ2.

We choose this particular smoothing of `1 because it is sim-
ple to manipulate and because it is easy to see that

∂

∂y

√
y2 + µ2 =

y√
y2 + µ2

=

(
1 +

µ2

y2

)−1/2

(9)

and
∂

∂y

(
1 +

µ2

y2

)−1/2

=
µ2

(y2 + µ2)3/2

761

whence the gradient ∇`µ(y) can be computed in O(m) time
and has Lipschitz constant cL = 1/µ.

We are now in a position to present our algorithm.

Algorithm Mincut
Input: Graph G, flow value F , error ε > 0.

1. Compute the st−electrical flow with unit potential
difference between s and t:

y0 =
yst
‖yst‖22

=
BL+(χs − χt)
‖BL+(χs − χt)‖2

.

2. Set µ = εF/m. Run Nesterov with starting point
y0, Lipschitz constant cL = 1/µ, strong convexity
parameter csc = 0, and gradients

P⊥∇`µ(y) =

(
Π− ysty

T
st

‖yst‖22

)
∇`µ(y)

for T = 4
ε

√
2m
F

iterations. Let yT be the last iterate.

3. Let xT = L+BT yT ∈ Rn be the embedding of the
vertices corresponding to yT . Output the best sweep
cut

S = {i : xT (i) ≥ ρ}

over all thresholds ρ ∈ (xT (s), xT (t)).

Theorem 6. If G has an st−cut of value at most F , then
Mincut outputs a cut of value at most (1 + ε)F . Moreover,
its running time is bounded by

O

(
1

ε

√
m

F
·m log2 n

)
.

Proof. Suppose there is a minimum cut S of value F .
The signed incidence vector y∗ = BχS of this cut lies in Cst
and has

`µ(y∗) ≤ ‖y∗‖1 + µm = F + µm. (10)

Moreover, its `2 distance to the initial point y0 may be
bounded as

‖y0 − y∗‖2 = ‖ProjCst
(0)− ProjCst

(y∗)‖2
≤ ‖0− y∗‖2 =

√
F , (11)

since y∗ has exactly F entries that are all ±13 .
There are two sources of error in our setup: a smoothing

error in approximating ‖y‖1 by `µ(y), and an optimization
error in attempting to minimize `µ(y) by a finite number of
iterations of Nesterov. In order to obtain a total error of at
most εF , we may set the smoothing parameter µ according
to

µm = εF/2⇒ µ = εF/2m,

and run Nesterov with target error εF/2. Plugging these
parameters and the bound (11) into Corollary 2, we see that
the required number of iterations of Nesterov is

T = 2

√
2m

εF · εF/2 ·
√
F ≤ 4

ε

√
2m

F
,

3This last bound uses the structure of Cst and is a major
improvement over the trivial inequality ‖y∗‖2 ≤ ‖y‖1 = F .

It is the reason we get a
√
m/F iteration algorithm rather

than a
√
m iteration one, which is the best one can hope for

for minimization over a general affine subspace.

as prescribed in Mincut. After this many iterations, yT sat-
isfies

‖yT ‖1 ≤ `µ(yT) ≤ `µ(y∗) + εF/2

≤ (1 + ε)F by (10).

Since yT ∈ Cst there exists a vector of potentials xT ∈ Rn

with yT = BxT . Solving this system of linear equations, we
see that xT may be written as

xT = L+BT y.

Moreover, we have xT (s)−xT (t) = 1. If we choose a thresh-
old ρ uniformly at random in [xs, xt], then a standard cal-
culation reveals that the expected number of edges cut by
the random sweep cut S = {i : xi ≥ ρ} is exactly∑

ij∈E

|xT (i)− xT (j)| = ‖Bx‖1 ≤ (1 + ε)F,

as desired.
Each iteration involves a trivial gradient calculation∇`µ(y),

a projection Π⊥, and two vector-vector operations. As the
projections may be computed approximately upto 1/poly(n)
error in time O(m log2 n) using Corollary 1, the total run-
ning time is as stated.

The argument for why everything works when we use ap-
proximate projections and gradients is completely analogous
to the one for Maxflow, and we omit it.

As before, by trading this off against Karger-Levine algo-
rithm, we obtain a worst-case running time of Õ(mn1/3/ε2/3).

Remark 5. In the previous proof, we used a crude bound
of µm on the smoothing error of `µ. It is possible to improve
this bound by relating it to the s − t distance in G: assign
each edge of G a unit cost and let L be the corresponding
min-cost st−maxflow value. Then, It can be shown that

F − 3µL+ µm ≤ `µ(y) ≤ ||y||1 + µm.

Using this improved bound, we can obtain a minimum cut /

maximum flow algorithm with a running time of Õ(1
ε

√
L
F

)

iterations. The quantity L
F

can be understood as the aver-
age flow length and is hence always bounded by n. This
approach yields a polynomial time algorithm in the general
case of graphs with arbitrary capacities, whereas the näıve

generalization of our proof gives a bound of O(1
ε

√
W
F

) iter-

ations, where W is the total capacity of G.

Remark 6. It is possible to obtain an algorithm with the
same running time by minimizing

ψ(y) :=
1

2
‖y − F · ProjF ·Bm

1
(y)‖22,

instead of `µ(y) over Cst, where F ·Bm1 is the scaled `1 ball.
This leads to an alternating projections scheme similar to
Maxflow. We have chosen to present the smoothing version
because this setup can also be used to produce an approx-
imately blocking flow by duality, as discussed in the next
section.

6. THE APPROXIMATE BLOCKING FLOW
ALGORITHM

In this section, we present an approximate blocking flow
algorithm based on the energy `µ proposed in the cut algo-
rithm. The algorithm is remarkable in two ways: it obtains

762

a flow from the dual of a convex program for minimum cut,
and it is almost purely numerical — in particular, it has a
very simple drainage step which does not require any data
structures like the previous algorithm.

Let us begin by studying the properties of the minimizer
yµ of `µ over Cst. Let xµ = L+BT yµ be the embedding of
vertices corresponding to yµ. Note that xµ is a minimizer of

min
x:〈x,χs−χt〉=1

∑
e∈E

√
(Bx(e))2 + µ2. (12)

Taking derivatives as in (9), we find that

∇`µ(yµ) = BT
(

(Bxµ)(e)√
(Bxµ)(e)2 + µ2

)
e

= c · (χs − χt)

for some constant c. Hence, the vector of rescaled potential
differences,

fµ(e) :=
(Bxµ)(e)√

(Bxµ)(e)2 + µ2

is a flow from s to t. Since x drops 1 unit from source to
sink, it must drop non-negligibly on some edges on any path
from s to t. Therefore, if µ is sufficient small, the flow fµ
must be almost 1 on some edges on any path from s to t. In
other words, any path from s to t has been almost blocked
several times.

Thus, solving (12) exactly would allow us to exploit first-
order optimality conditions and obtain a blocking flow, for
sufficiently small µ. It is not possible to do this quickly
because `µ is not strongly convex; however, we can make it
strongly convex by adding a quadratic term as follows:

`µ,η(y) := `µ(y) +
η

2
‖y‖2,

after which we will have the optimality condition BT fµ,η =
c · (χs − χt) for

fµ,η(e) := fµ(e) + ηyµ(e).

Moreover, function `µ,η has strong convexity parameter csc =
η and can therefore be solved to 1/poly(n) accuracy in

O(
√

1
µη

poly logn) iterations by Theorem 2.

It turns out that the above is sufficient to obtain an ap-
proximately blocking flow. We now state the algorithm and
prove its correctness.

Algorithm ApproxBlockingFlow
Input: Graph G, distance k, error δ.

1. Compute the st−electrical flow y0 with unit potential
difference between s and t.

2. Set µ =
√
δ
k

and η = δ
3
. Run Nesterov with starting

point y0, Lipschitz constant cL = 1/µ+η, strong con-
vexity parameter csc = η and gradients P⊥∇`µ,η(y)

for T = 30 k
1/2

δ3/4
log(m

δ
) iterations. Let yT be the last

iterate.

3. Let

z(e) :=
yT (e)

1 + η

(
1√

yT (e)2 + µ2
+ η

)
.

Take any spanning tree of G and drain the non-
terminal excesses of z along it to satisfy conservation.
Output this flow.

Theorem 7. ApproxBlockingFlow outputs an approximate
(k, δ) blocking flow (as defined in section 2.1) with flow value

at least (1 − 2δ
3

)F −
√
δ
k
m. Moreover, its running time is

bounded by

O

(
m
k1/2

δ3/4
log(

m

δ
) log2 n

)
.

Proof. Let yµ,η be the output of Nesterov and xµ,η =
L+BT yµ,η be the embedding of vertices corresponding to
yµ,η. We have chosen T large enough so that

`µ,η(Bxµ,η) ≤ min
x:xs−xt=1

`µ,η(Bx) +
µη2

8m4
. (13)

Noting that cL = 1/µ for `µ,η, examining the gradient step
y = xµ,η − µ

4
BT `′µ,η(Bxµ,η) gives:

`µ,η(y) ≤ `µ,η(Bxµ,η)− µ

8
||Proj⊥χs−χt)

(BT `′µ,η(Bxµ,η))||2.

Together with the bound (13) , this implies the following `2
bound on the excess at the vertices:

||BT `′µ,η(Bxµ,η)− c · (χs − χt)||2 ≤
η2

m4
.

Thus, the vector `′µ,η(Bxµ,η) violates the conservation con-
straints by at most η

m2 at each vertex i 6= s, t. It is also easy
to check that ‖`′µ,η(Bxµ,η)‖∞ ≤ 1 + η. Thus, we can obtain
a valid flow z by scaling down by a 1+η factor to satisfy ca-
pacity constraints, and then draining the excesses at i 6= s, t
along any spanning tree of G to satisfy conservation.

The flow value of f can be found by considering the amount
of flow leaving a random level set Ct := {xµ,η > t}:

Flow value of z

=

∫ 1

0

∑
e∈E(Ct,C

c
t)

z(e)dt

≥ (1− η)

∫ 1

0

∑
e∈E(Ct,C

c
t)

(
`′µ,η(Bxµ,η)(e)− η

m

)
dt

≥ (1− η) ·∑
e∈E(Ct,C

c
t)

∫ 1

0

(
(Bxµ,η)(e)√

(Bxµ,η)(e)2 + µ2
+ η(Bxµ,η)(e)

)
dt− η

= (1− η)
∑
e∈E

(
(Bxµ,η)(e)2√

(Bxµ,η)(e)2 + µ2
+ η(Bxµ,η)(e)2

)
− η

≥ (1− η)
∑
e∈E

(√
(Bxµ,η)(e)2 + µ2 − µ2√

(Bxµ,η)(e)2 + µ2

)
− η

≥ (1− η)
∑
e∈E

√
(Bxµ,η)(e)2 + µ2 − µm− η

≥ (1− 2η)F − µm.

where the third line accounts for the effect of modifying the
flow.

To prove the blocking flow property, note that∣∣∣∣∣ (Bxµ,η)(e)√
(Bxµ,η(e))2 + µ2

+ η(Bxµ,η)(e)

∣∣∣∣∣ ≥ 1− η

whenever |(Bxµ,η)(e)| > µ√
3η

. Since the corrected flow z is

different from x by at most a 1 + 2η factor, we have |z(e)| ≥
1 − 3η as long as |(Bxµ,η)(e)| > µ√

3η
. This means that

763

if the potential xµ,η drops a little bit on an edge e, the
corresponding flow z is almost congested. Consider any path

from s to t with length at least
√
3η
µ

. Since xµ,η drops 1
unit from s to t, there is at least one edge e which drops
more than µ√

3η
, and hence |z(e)| ≥ 1 − 3η. Since this is

true for all paths, z is an approximate
(√

3η
µ
, 3η
)

blocking

flow. The theorem follows by setting µ =
√
δ
k

, η = δ
3

and

T = 30 k
1/2

δ3/4
log(m

δ
).

Remark 7. We can use ApproxBlockingFlow to get an
approximate blocking flow, round it to an integral flow by
Theorem 5, and route the remaining flow in Gf,δ by the
Ford-Fulkerson algorithm. This gives a (1−δ)-approximately
maximum flow because Gf,δ differs from G only on (1− δ)-
congested edges. A simple tradeoff gives a running time
of Õ(m4/3/

√
δ), which is the fastest approximate maximum

flow algorithm for sparse undirected uncapacitated graphs.

7. DISCUSSION AND CONCLUSION
We conclude by discussing the possibility of speeding up

our algorithms by preconditioning, by which we mean broadly
any change of variables or scaling of the coordinates which
speeds up the convergence of Nesterov. This is a common
method of speeding up gradient-based iterations, especially
for solving linear equations, since gradients are not affine-
invariant and their quality can be improved by applying an
appropriate linear transformation.

In fact, our algorithm Mincut already uses the change of
variables y = Bx in (7) in a crucial way. This transformation

provides the improved distance bound of ‖y0 − y∗‖2 ≤
√
F

and yields a faster rate of convergence than if we just ap-
plied Nesterov to minimize (a smoothing of) ‖Bx‖1 in the
untransformed coordinates x ∈ Rn. We are hopeful that
more general transformations, for instance of type y = CBx
for some diagonal scaling matrix C, can be used to obtain
even better convergence. As such transformations map the
cut space im(B) to the cut space of a weighted graph, we
can still use fast Laplacian solvers to compute projections
in the transformed spaces quickly.

Another example of this phenomenon is the following.
The initial point y0 in Maxflow is obtained by projecting 0
onto Fst,F in the standard `2 norm. If we use the weighted
`2 norm ‖y‖C = (

∑
e C(e)y(e)2)1/2 for some edge weights

C(e) ≥ 0 instead, then the initial projection

y0 = argminz∈Fst,F
‖0− z‖C

corresponds to the electrical flow in G with conductances of
C(e) Ω−1 on the edges. It is easy to show that when there
is a feasible st−flow of value f , then there exists a setting
of conductances C(e) for which ‖y0‖∞ ≤ 1, i.e., the process
converges to the optimal point in one iteration. This is not
very useful, since we do not know of any way to compute
C(e) other than solving the original flow problem. However,
the multiplicative weights method approach of [CKM+11]
may be seen as attempting to find a good C(e) by iteratively
reducing the conductance (i.e., increasing the resistance) on
edges which are congested by the current flow.

We are optimistic that combining multiplicative update
techniques as well as combinatorial insights with the tech-
niques in this paper will yield nontrivial preconditioners and
faster algorithms.

8. ACKNOWLEDGEMENTS
Our thanks to Lap Chi Lau and Tsz Chiu Kwok for the

suggestion of the rounding algorithm (Theorem 5). We
also thank Jittat Fakcharoenphol, Jon Kelner, and Nisheeth
Vishnoi for helpful discussions.

9. REFERENCES
[AHK12] S. Arora, E. Hazan, and S. Kale. The multiplicative

weights update method: A meta-algorithm and
applications. Theory OF Computing, 8:121–164,
2012.

[BI04] D. Bienstock and G. Iyengar. Solving fractional
packing problems in o ast (1/ε) iterations. In
Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 146–155.
ACM, 2004.

[CKM+11] P. Christiano, J.A. Kelner, A. Madry, D.A.
Spielman, and S.H. Teng. Electrical flows, laplacian
systems, and faster approximation of maximum flow
in undirected graphs. In STOC 2011, pages
273–282. ACM, 2011.

[d’A08] A. d’Aspremont. Smooth optimization with
approximate gradient. SIAM Journal on
Optimization, 19(3):1171–1183, 2008.

[DS08] S.I. Daitch and D.A. Spielman. Faster approximate
lossy generalized flow via interior point algorithms.
In Proceedings of the 40th annual ACM symposium
on Theory of computing, pages 451–460. ACM, 2008.

[FF56] L.R. Ford and D.R. Fulkerson. Maximal flow
through a network. Canadian Journal of
Mathematics, 8(3):399–404, 1956.

[GKK10] A. Goel, M. Kapralov, S. Khanna. Perfect matchings
in o (n log n) time in regular bipartite graphs In
Proceedings of the 42th annual ACM symposium on
Theory of computing, pages 39–46. ACM, 2010.

[Gol98] A. Goldberg. Recent developments in maximum flow

algorithms. Algorithm TheoryâĂŤSWAT’98, pages
1–10, 1998.

[GR98] Andrew V. Goldberg and Satish Rao. Beyond the
flow decomposition barrier. J. ACM, 45(5):783–797,
1998.

[Kar98] David R. Karger. Better random sampling
algorithms for flows in undirected graphs. In SODA,
pages 490–499, 1998.

[KL02] David R. Karger and Matthew S. Levine. Random
sampling in residual graphs. In STOC 2002, pages
63–66. ACM, 2002.

[KMP11] I. Koutis, G.L. Miller, and R. Peng. A nearly-m log
n time solver for sdd linear systems. In Foundations
of Computer Science (FOCS), 2011 IEEE 52nd
Annual Symposium on, pages 590–598. IEEE, 2011.

[KY99] P. Klein and N. Young. On the number of iterations
for dantzig-wolfe optimization and packing-covering
approximation algorithms. Integer Programming and
Combinatorial Optimization, pages 320–327, 1999.

[Nes05] Y. Nesterov. Smooth minimization of non-smooth
functions. Mathematical Programming,
103(1):127–152, 2005.

[Pol87] B.T. Poljak. Introduction to optimization.
Optimization Software, 1987.

[ST83] D.D. Sleator and R. Endre Tarjan. A data structure
for dynamic trees. Journal of computer and system
sciences, 26(3):362–391, 1983.

[Vis] Nisheeth Vishnoi. Lx = b, book manuscript.

764

