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Abstract

In this thesis, we revisit three algorithmic techniques: sparsification, cutting and collapsing. We use
them to obtain the following results on convex and combinatorial optimization:

∙ Linear Programming: We obtain the first improvement to the running time for linear pro-
gramming in 25 years. The convergence rate of this randomized algorithm nearly matches the
universal barrier for interior point methods. As a corollary, we obtain the first �̃�(𝑚

√
𝑛) time

randomized algorithm for solving the maximum flow problem on directed graphs with 𝑚 edges
and 𝑛 vertices. This improves upon the previous fastest running time of �̃�(𝑚min(𝑛2/3,𝑚1/2)),
achieved over 15 years ago by Goldberg and Rao.

∙ Maximum Flow Problem: We obtain one of the first almost-linear time randomized algo-
rithms for approximating the maximum flow in undirected graphs. As a corollary, we improve
the running time of a wide range of algorithms that use the computation of maximum flows as
a subroutine.

∙ Non-Smooth Convex Optimization: We obtain the first nearly-cubic time randomized algo-
rithm for convex problems under the black box model. As a corollary, this implies a polynomially
faster algorithm for three fundamental problems in computer science: submodular function min-
imization, matroid intersection, and semidefinite programming.

∙ Graph Sparsification: We obtain the first almost-linear time randomized algorithm for spec-
trally approximating any graph by one with just a linear number of edges. This sparse graph
approximately preserves all cut values of the original graph and is useful for solving a wide range
of combinatorial problems. This algorithm improves all previous linear-sized constructions, which
required at least quadratic time.

∙ Numerical Linear Algebra: Multigrid is an efficient method for solving large-scale linear
systems which arise from graphs in low dimensions. It has been used extensively for 30 years
in scientific computing. Unlike the previous approaches that make assumptions on the graphs,
we give the first generalization of the multigrid that provably solves Laplacian systems of any
graphs in nearly-linear expected time.

Thesis Supervisor: Jonathan A. Kelner
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Chapter 1

Introduction

Convex optimization has been studied extensively and is a prominent tool used in various areas such as
combinatorial optimization, data analysis, operations research, and scientific computing. Each field has
developed specialized tools including data structures, sampling methods, and dimension reduction. In
this thesis, we combine and improve the optimization techniques from different fields to design provably
faster optimization algorithms for several important problems, including linear programming, general
non-smooth convex minimization, and maximum flow problems.

1.1 Techniques

The techniques used in this thesis can be categorized into three types: sparsification, cutting and
collapsing. Here, we explain these three techniques and highlight their applications to convex opti-
mization and combinatorial optimization.

1.1.1 Sparsification

Sparsification techniques originated from graph theory, and it refers to the task of approximating dense
graphs by sparse graphs. There are different types of sparsifiers specifically designed for different graph
problems, such as spanners for distance-related problems [49], cut sparsifiers for cut-related problems
[33], spectral sparsifiers for spectral related problems [243, 242]. For instance, if we want to compute
a minimum 𝑠-𝑡 cut on a given dense graph, instead of running our favorite 𝑠-t cut algorithm on the
original graph, we can first compute a cut sparsifier of the original graph, then run the 𝑠-t cut algorithm
on the sparsifier. These sparsifiers allow us to speed up graph algorithms for many problems on dense
graphs by paying some error introduced by the sparsifiers.

Beyond graph related problems, this notion of spectral sparsifier has been generalized and applied
to solve different matrix-related problems [76, 170, 56]. In the linear regression problem, we are given
a matrix 𝐴 and a vector 𝑏, and we want to minimize ‖𝐴𝑥 − 𝑏‖2 over all 𝑥 ∈ R𝑛. The sparsification
concept allows us to compress a tall matrix 𝐴 into an almost square matrix. This is useful in various
contexts such as statistics problems with much more samples than variables. However, how can we
find those sparsifiers in the first place without solving a dense problem? How sparse of a matrix can
we effectively attain? How general is the idea of sparsification? In Part I, we answer these questions.
In particular, we show how to solve overdetermined systems faster, how to find linear-sized sparsifiers
of graphs in almost-linear time, and how to find geometric medians of point clouds in nearly-linear
time. In one of the key results of this part, we extend the idea of sparsification to linear programming
and give the first improvement to the running time for linear programming in 25 years.
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1.1.2 Cutting

Cutting refers to the task of iteratively refining a region that contains the solution. This technique
is particularly useful for minimizing convex functions. In combinatorial optimization, Khachiyan’s
seminal result in 1980 [142] proved that the ellipsoid method, a cutting plane method1, solves linear
programs in polynomial time. Since then, cutting plane methods have been crucial to solving discrete
problems in polynomial time [110]. In continuous optimization, cutting plane methods have long
played a critical role in convex optimization, where they are fundamental to the theory of non-smooth
optimization [102].

Despite the key role that cutting plane methods have played historically in both combinatorial and
convex optimization, over the past two decades, the theoretical running time of cutting plane methods
for convex optimization has not been improved since the breakthrough result by Vaidya in 1989 [253,
253]. Moreover, for many of the key combinatorial applications of cutting plane methods, such as
submodular minimization, matroid intersection, and submodular flow, the running time improvements
over the past two decades have been primarily combinatorial; that is they have been achieved by
discrete algorithms that do not use numerical machinery such as cutting plane methods.

In Part II, we make progress towards cutting plane methods on multiple directions. Firstly, we
show how to improve on the running time of cutting plane methods. Secondly, we provide several
frameworks for applying the cutting plane methods and illustrate the efficacy of these frameworks by
obtaining faster running times for semidefinite programming, matroid intersection, and submodular
flow. Thirdly, we show how to couple our approach with the problem-specific structure and obtain
faster weakly and strongly polynomial running times for submodular function minimization, a problem
of tremendous importance in combinatorial optimization. In both cases, our algorithms are faster than
the previous best running times by a factor of roughly Ω(𝑛2). Finally, we give some variants of cutting
plane methods that is suitable for large-scale problems and demonstrate empirically that our new
methods compare favorably with the state-of-the-art algorithms.

1.1.3 Collapsing

Collapsing refers to the task of removing variables from problems while (approximately) preserving
solutions. There are different collapsings for different situations, such as mathematical induction for
proofs, Gaussian elimination and Schur complement for matrices, and Fourier–Motzkin elimination for
linear programs. Since collapsing often increases the density of the problems, it often does not lead to
efficient algorithms.

In a seminal work of Spielman and Teng, they showed that this density issue can be avoided for
graph Laplacians via sparsification. In Part III, we generalize this idea and show how to combine
collapsing and sparsification for the maximum flow problem and various linear systems. As a result,
we obtain the first almost-linear time algorithms for approximating the maximum flow in undirected
graphs2 and the first nearly-linear-time algorithms for solving systems of equations in connection
Laplacians, a generalization of Laplacian matrices that arises in many problems in image and signal
processing.

In general, we assume 𝑇 (𝑚,𝑛) to be the time needed to solve a certain graph problem on a graph
with𝑚 edges and 𝑛 vertices. Suppose that we know 𝒯 (𝑚,𝑛) = 𝑂(𝑚)+𝑂(𝒯 (𝑂(𝑛), 𝑛)) by sparsification
and 𝒯 (𝑚,𝑛) = 𝑂(𝑚) +𝑂(𝑇 (𝑂(𝑚), 𝑛/2)) by collapsing, then it is easy to show that 𝒯 (𝑚,𝑛) = 𝑂(𝑚)

1Throughout this thesis, our focus is on algorithms for polynomial time solvable convex optimization problems given
access to a linear separation oracle. Our usage of the term cutting plane methods, should not be confused with work on
integer programming.

2We also note that independently, Jonah Sherman produced an almost-linear time algorithm for maximum flow.
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by alternatively sparsifying and collapsing. Although we do not know how to do sparsifying and
collapsing in general, we believe that the concept of combining sparsifying and collapsing is a powerful
technique that it will provide a foundation of future works.

1.2 Results

By applying and improving the three techniques mentioned above, we have substantially advanced
the state-of-the-art algorithms for solving many fundamental problems in computer science. Here, we
describe three of the key results in this thesis.

1.2.1 Convex Programming

Many optimization problems in theoretical computer science are shown to be polynomial-time-solvable
by reducing to one of the following two general problems:

∙ The Feasibility Problem: Given a set 𝐾 ⊂ R𝑛 and a separation oracle that, given a point
𝑥, either outputs that 𝑥 is in 𝐾 or outputs a separating hyperplane. The problem is to find a
point in 𝐾 or prove that 𝐾 is almost empty.

∙ The Intersection Problem: Given two sets 𝐾1,𝐾2 ⊂ R𝑛, any vector 𝑑 and an optimization
oracle that, given a vector 𝑐, outputs an 𝑥1 that maximizes 𝑐⊤𝑥1 over 𝐾1 and 𝑥2 that maximizes
𝑐⊤𝑥2 over 𝐾2. The problem is to find a point 𝑥 nearly inside 𝐾1∩𝐾2 such that it approximately
maximizes 𝑑⊤𝑥.

For many problems, this reduction is either the best or the only known approach. Therefore, it is
important to find an efficient algorithm for these two general problems. Since a breakthrough of
Vaidya in 1989 [253], the feasibility problem can be solved in ̃︀𝑂(𝑛𝑇 + 𝑛𝜔+1) time (Table 1.1), where
𝑇 is the cost of the oracle and 𝜔 ∼ 2.373. Furthermore, using the seminal works of Grötschel, Lovász,
Schrijver and independently, Karp and Papadimitriou in 1981 and 1982 [110, 138], the intersection
problem can be solved by solving 𝑛 feasibility problems. In this thesis, we show that both problems
can be solved in ̃︀𝑂(𝑛𝑇 + 𝑛3) expected time3, the first improvement for both problems over 25 years.

As a corollary of these two theorems, we obtained polynomial improvements for many important
problems, such as submodular function minimization (Table 1.2), matroid intersection (Table 1.3, 1.4),
submodular flow (Table 1.5), and semidefinite programming (Table 1.6).

Year Algorithm Complexity

1979 Ellipsoid Method [236, 274, 142] ̃︀𝑂(𝑛2𝑇 + 𝑛4)

1988 Inscribed Ellipsoid [144, 213] ̃︀𝑂(𝑛𝑇 + 𝑛4.5)

1989 Volumetric Center [253] ̃︀𝑂(𝑛𝑇 + 𝑛𝜔+1)

1995 Analytic Center [20] ̃︀𝑂(𝑛𝑇 + 𝑛𝜔+1)

2004 Random Walk [36] → ̃︀𝑂(𝑛𝑇 + 𝑛7)

- Chapter 8 ̃︀𝑂(𝑛𝑇 + 𝑛3)

Table 1.1: Algorithms for the Feasibility Problem. The arrow, →, indicates that it solves a more general
problem where only a membership oracle is given.

3In this thesis, nearly all algorithms are randomized and nearly all time are expected running time.
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Year Author Complexity

1981,1988 Grötschel, Lovász, Schrijver [110, 109] ̃︀𝑂(𝑛5 · EO+ 𝑛7) [189]

1985 Cunningham [61] 𝑂(𝑀𝑛6 log(𝑛𝑀) · EO)

2000 Schrijver [231] 𝑂(𝑛8 · EO+ 𝑛9)

2000 Iwata, Fleischer, Fujishige [121]
𝑂(𝑛5 · EO log𝑀)
𝑂(𝑛7 log 𝑛 · EO)

2000 Iwata, Fleischer [87] 𝑂(𝑛7 · EO+ 𝑛8)

2003 Iwata [118]
𝑂((𝑛4 · EO+ 𝑛5) log𝑀)
𝑂((𝑛6 · EO+ 𝑛7) log 𝑛)

2003 Vygen [264] 𝑂(𝑛7 · EO+ 𝑛8)

2007 Orlin [216] 𝑂(𝑛5 · EO+ 𝑛6)

2009 Iwata, Orlin [125]
𝑂((𝑛4 · EO+ 𝑛5) log(𝑛𝑀))
𝑂((𝑛5 · EO+ 𝑛6) log 𝑛)

- Chapter 9
𝑂(𝑛2 log(𝑛𝑀) · EO+ 𝑛3 log𝑂(1)(𝑛𝑀))

𝑂(𝑛3 log2 𝑛 · EO+ 𝑛4 log𝑂(1) 𝑛)

Table 1.2: Algorithms for submodular function minimization. EO is the time for evaluation oracle of the
submodular function and 𝑀 is the maximum absolute function value.

Year Author Complexity

1968 Edmonds [81] not stated
1971 Aigner, Dowling [6] 𝑂(𝑛3𝒯ind)
1975 Lawler [157] 𝑂(𝑛3𝒯ind)
1986 Cunningham [60] 𝑂(𝑛2.5𝒯ind)
- Chapter 9 ̃︀𝑂(𝑛2𝒯ind + 𝑛3)

Table 1.3: Algorithms for (unweighted) matroid intersection. 𝑛 is the size of the ground set and 𝒯ind is the
time to check if a set is independent.

Year Author Complexity

1978 Fujishige [92] not stated
1981 Grotschel, Lovasz, Schrijver[110] weakly polynomial
1987 Frank, Tardos [91] strongly polynomial
1993 McCormick, Ervolina [190] 𝑂(𝑛7ℎ* log(𝑛𝐶𝑈))

1994 Wallacher, Zimmermann [266] 𝑂(𝑛8ℎ log(𝑛𝐶𝑈))

1997 Iwata [117] 𝑂(𝑛7ℎ log𝑈)

1998 Iwata, McCormick, Shigeno [123] 𝑂
(︀
𝑛4ℎmin

{︀
log(𝑛𝐶), 𝑛2 log 𝑛

}︀)︀
1999 Iwata, McCormick, Shigeno [124] 𝑂

(︀
𝑛6ℎmin

{︀
log(𝑛𝑈), 𝑛2 log 𝑛

}︀)︀
1999 Fleischer, Iwata, McCormick[89] 𝑂

(︀
𝑛4ℎmin

{︀
log𝑈, 𝑛2 log 𝑛

}︀)︀
1999 Iwata, McCormick, Shigeno [122] 𝑂

(︀
𝑛4ℎmin

{︀
log𝐶, 𝑛2 log 𝑛

}︀)︀
2000 Fleischer, Iwata [88] 𝑂(𝑚𝑛5 log(𝑛𝑈) · EO)

- Chapter 9 𝑂(𝑛2 log(𝑛𝐶𝑈) · EO+ 𝑛3 log𝑂(1)(𝑛𝐶𝑈))

Table 1.5: Algorithms for minimum cost submodular flow with 𝑛 vertices, maximum cost 𝐶 and maximum
capacity 𝑈 . The factor ℎ is the time for an exchange capacity oracle, ℎ* is the time for a more complicated
exchange capacity oracle, and EO is the time for evaluation oracle.
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Year Author Complexity

1968 Edmonds [81] not stated
1975 Lawler [157] 𝑂(𝑛3𝒯ind + 𝑛4)

1981 Frank [90] 𝑂(𝑛3(𝒯circuit + 𝑛))

1986 Brezovec, Cornuéjols, Glover[39] 𝑂(𝑛2(𝒯circuit + 𝑛))

1995 Fujishige, Zhang [96] 𝑂(𝑛2.5 log(𝑛𝑀) · 𝒯ind)
1995 Shigeno, Iwata [234] 𝑂((𝑛+ 𝒯circuit)𝑛1.5 log(𝑛𝑀))

- Chapter 9 𝑂(𝑛2 log(𝑛𝑀)𝒯ind + 𝑛3 log𝑂(1)(𝑛𝑀))

Table 1.4: Algorithms for weighted matroid intersection. In addition to the notation in Table 1.3, 𝒯circuit is
the time needed to find a fundamental circuit and 𝑀 is the maximum weight.

Year Author Complexity

1992 Nesterov, Nemirovsky[210] �̃�(
√
𝑚(𝑛𝑚𝜔 + 𝑛𝜔−1𝑚2))

2000 Anstreicher [13] �̃�((𝑚𝑛)1/4(𝑛𝑚𝜔 + 𝑛𝜔−1𝑚2))

2003 Krishnan, Mitchell [152] �̃�(𝑛(𝑛𝜔 +𝑚𝜔 + 𝑆)) (dual SDP)
- Chapter 9 �̃�(𝑛(𝑛2 +𝑚𝜔 + 𝑆))

Table 1.6: Algorithms for solving a 𝑚×𝑚 SDP with 𝑛 constraints and 𝑆 non-zero entries

1.2.2 Linear Programming

For an arbitrary linear program min𝑥 s.t 𝐴𝑥≥𝑏 𝑐
⊤𝑥 with 𝑛 variables and 𝑚 constraints, the fastest

algorithm required either solving ̃︀𝑂(
√
𝑚) linear systems or inverting ̃︀𝑂((𝑚𝑛)1/4) dense matrices [227,

253]. However, since a breakthrough of Nesterov and Nemirovski in 1994 [211], it has been known that̃︀𝑂(
√
𝑛) iterations in fact suffice. Unfortunately, each iteration of their algorithm requires computing

the center of gravity of a polytope, which is a problem that is harder than linear programming. In
this thesis, we resolved this 25-year-old computational question and developed an efficient algorithm
that requires solving only ̃︀𝑂(

√
𝑛) linear systems (Table 1.7).

1.2.3 Maximum Flow Problem

The maximum flow problem has been studied extensively for more than 60 years; it has a wide range
of theoretical and practical applications and is widely used as a key subroutine in other algorithms.
Until 5 years ago, work on the maximum flow and the more general problems of linear programming
and first order convex optimization was typically performed independently. Nevertheless, all known

Year Author Number of Iterations Nature of iterations

1984 Karmarkar [136] ̃︀𝑂(𝑚) Linear system solve
1986 Renegar [227] ̃︀𝑂(

√
𝑚) Linear system solve

1989 Vaidya [253] ̃︀𝑂((𝑚𝑛)1/4) Expensive linear algebra
1994 Nesterov and Nemirovskii [211] ̃︀𝑂(

√
𝑛) Volume computation

- Chapter 6 ̃︀𝑂(
√
𝑛) ̃︀𝑂(1) Linear system solves

Table 1.7: Algorithms for linear programs with 𝑛 variables and 𝑚 constraints
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Year Author Complexity Directed Weighted

1998 Goldberg & Rao [104] ̃︀𝑂 (︀𝑚min
(︀
𝑚1/2, 𝑛2/3

)︀)︀
Yes Yes

1998 Karger [134] ̃︀𝑂 (︀𝑚√𝑛𝜀−1
)︀

No Yes
2002 Karger & Levine [135] ̃︀𝑂 (𝑛𝐹 ) No Yes
2011 Christiano et al. [51] ̃︀𝑂 (︀𝑚𝑛1/3𝜀−11/3

)︀
No Yes

2012 Lee, Rao & Srivastava [161] ̃︀𝑂 (︀𝑚𝑛1/3𝜀−2/3
)︀

No No

2013
Chapter 12 ̃︀𝑂 (︀𝑚1+𝑜(1)𝜀−2

)︀
No Yes

Sherman [233]
2013 Mądry [183] ̃︀𝑂 (︀𝑚10/7

)︀
Yes No

- Chapter 6 ̃︀𝑂 (𝑚
√
𝑛) Yes Yes

Table 1.8: Algorithms for maximum flow problem with 𝑛 vertices, 𝑚 edges and maximum flow value 𝐹 . Results
before 1998 are omitted for brevity.

techniques, whether combinatorial or numerical, achieved essentially the same (or worse) running time,̃︀𝑂(𝑚1.5) or ̃︀𝑂(𝑚𝑛2/3) for solving the maximum flow on a weighted graph with 𝑛 vertices and 𝑚 edges.
Consequently, the maximum flow problem poses a problem for testing the state-of-the-art methods in
both convex and combinatorial optimization.

In this thesis, we obtain the first ̃︀𝑂(𝑚
√
𝑛) time algorithm for solving the maximum flow problem

on directed graphs with 𝑚 edges and 𝑛 vertices. This is an improvement over the previous fastest
running time of ̃︀𝑂(𝑚min{

√
𝑚,𝑛2/3}) achieved over 15 years ago by Goldberg and Rao [104] and the

previous fastest running times for solving dense directed unit capacity graphs of 𝑂(𝑚min{
√
𝑚,𝑛2/3})

achieved by Even and Tarjan [85] over 35 years ago and of ̃︀𝑂(𝑚10/7) achieved recently by Mądry
[183]. For undirected graphs, we give one of the first algorithm with running time 𝑂(𝑚1+𝑜(1)/𝜀2) for
approximating maximum flow.

1.2.4 Philosophical Contributions

Besides the improvements on running time in many classical problems in computer science, the sec-
ondary goal of this thesis is to further promote the interaction between continuous optimization and
discrete optimization.

For many decades, continuous optimization and discrete (combinatorial) optimization have been
studied separately. In continuous optimization, researchers have developed optimal iterative methods
under various black-box models, and in discrete optimization, researchers have developed various
randomization techniques and data structures. Despite the different approaches, convex problems
in both fields in fact share some common difficulties. In this thesis, we identify three important
components from both fields and demonstrate the combination of both techniques is indeed useful for
solving many fundamental problems in optimization.

Despite decades of research on convex optimization and combinatorial optimization, we still do
not have nearly optimal time algorithm for the majority of non-trivial convex problems. We strongly
believe that the combination of both fields will help advance future research in this area.



Chapter 2

Preliminaries and Thesis Structure

In this chapter, we first describe the problems we encounter throughout this thesis, then we discuss
the structure of this thesis. At the end, we list some linear algebraic notations and some facts we
commonly used throughout this thesis.

2.1 Problems

2.1.1 Black-Box Problems

We say that a set 𝐾 ⊆ R𝑛 is convex if for all 𝑥,𝑦 ∈ R𝑛 and all 𝑡 ∈ [0, 1] it holds that 𝑡𝑥+(1− 𝑡)𝑦 ∈ 𝐾.
We say that a function 𝑓 : 𝐾 → R is convex if 𝐾 is convex and for all 𝑥,𝑦 ∈ 𝐾 and all 𝑡 ∈ [0, 1] it
holds that 𝑓(𝑡𝑥+ (1− 𝑡)𝑦) ≤ 𝑡 · 𝑓(𝑥) + (1− 𝑡) · 𝑓(𝑦). In this thesis, we are interested in the following
minimization problem

min
x∈𝐾

𝑓(x )

where both 𝑓 and 𝐾 are convex and we call this a convex problem. There are two types of convex
problems, black-box and structural problems, depending on if we have full information about the
problem.

In black-box problems, the function 𝑓 and/or the set 𝐾 are unknown and one can only access them
through queries to an oracle. Here, we give a list of black-box problems we are interested in. All of
these problems below are very general and cover a wide range of problems in computer science.

∙ Convex Minimization: Given a convex function 𝑓 and a (sub)gradient oracle that computes
∇𝑓(x ) at any point x . The problem is to find a point that minimizes 𝑓 over x ∈ R𝑛.

∙ The Feasibility Problem: Given a convex set 𝐾 ⊂ R𝑛 and a separation oracle that, given a
point x , either outputs that x is in 𝐾 or outputs a hyperplane separates x and 𝐾. The problem
is to find a point in 𝐾 or prove that 𝐾 is almost empty.

∙ The Intersection Problem: Given two convex sets 𝐾1,𝐾2 ⊂ R𝑛 and an optimization oracle
that, given a vector c, outputs a vector x 1 that maximizes c⊤x 1 over 𝐾1 and x 2 that maximizes
c⊤x 2 over 𝐾2. For any vector d , the problem is to find a point x nearly inside 𝐾1 ∩𝐾2 such
that it approximately maximizes d⊤x .

∙ Submodular Minimization: Given an integer-valued function 𝑓 defined on all subsets of 𝑛
elements. 𝑓 is submodular if it satisfies the diminishing returns, i.e.

𝑓(𝑋 ∪ {x})− 𝑓(𝑋) ≥ 𝑓(𝑌 ∪ {x})− 𝑓(𝑌 )

for any 𝑋, 𝑌 such that 𝑋 ⊂ 𝑌 and any x /∈ 𝑌 . We are given an evaluation oracle that computes
𝑓(𝑆) for any subset 𝑆. The problem is to find a subset 𝑆 that minimizes 𝑓 .

15
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2.1.2 Structural Problems

In structural problems, the function 𝑓 and the set 𝐾 are given directly by explicit formulas. In this
and the next section, we list some structure problems we are interested in this thesis.

∙ ℓ𝑝 regression: Given a matrix 𝐴 ∈ R𝑚×𝑛 and a vector 𝑏 ∈ R𝑚, the ℓ𝑝 regression problem
requires us to find the minimizer of

min
x
‖𝐴𝑥− 𝑏‖𝑝.

We are particularly interested in the case 𝑝 = 2 because many optimization algorithms need to
solve a linear system per iteration. As we will see, techniques for solving ℓ2 regression problems
can be sometimes used or generalized to general convex problems.

∙ Linear Programming: Given a matrix 𝐴 ∈ R𝑚×𝑛 and vectors b ∈ R𝑚, c ∈ R𝑛, linear
programming requires us to find the minimizer of

min
𝐴𝑥≥b

c⊤x .

This is one of the key problems in computer science. In both theory and practice, many problems
can be reformulated as linear programs to take advantage of fast algorithms.

∙ Semidefinite Programming: Given a symmetric matrices C ∈ R𝑚×𝑚, 𝐴𝑖 ∈ R𝑚×𝑚 for
𝑖 = 1, · · · , 𝑛, the semidefinite program requires us to find the minimizer of

max
𝑋⪰0

𝐶 ∙𝑋 s.t. 𝐴𝑖 ∙𝑋 = 𝑏𝑖.

This is a generalization of linear programming and has a lot of applications in control theory,
polynomial minimization, and approximation algorithms.

∙ Geometric Median (Fermat-Weber problem): Given 𝑛 points {𝑎𝑖}𝑚𝑖=1 in R𝑛, the geometric
median problem requires us to find the minimizer of

min
𝑥

𝑚∑︁
𝑖=1

‖𝑎𝑖 − 𝑥‖2.

This is one of the oldest problems in computation geometry and has numerous applications such
as facility location, clustering and statistics.

2.1.3 Graph-Related Problems

Here, we define some graph-related problems that are used throughout in this thesis.
We let 𝐺 = (𝑉,𝐸) denote a graph with 𝑛 = |𝑉 | vertices, 𝑚 = |𝐸| edges. We let 𝑤𝑒 ≥ 0 denote the

weight of an edge. For all undirected graphs in this thesis, we assume an arbitrary orientation of the
edges to clarify the meaning of vectors 𝑓 ∈ R𝐸 .

Let 𝑊 ∈ R𝐸×𝐸 denote the diagonal matrices associated with the weights and 𝐵 ∈ R𝐸×𝑉 denote
the graphs incidence matrix where for all 𝑒 = (𝑎, 𝑏) ∈ 𝐸 we have 𝐵⊤1𝑒 = 1𝑎 − 1𝑏. Let ℒ ∈ R𝑉×𝑉

denote the graph Laplacian, i.e. ℒ def
= 𝐵⊤W𝐵. It is easy to see that

x⊤ℒx =
∑︁
𝑢∼𝑣

𝑤𝑢,𝑣(𝑥𝑢 − 𝑥𝑣)2 (2.1)

for any x ∈ R𝑛. Here are three important graph related problems:
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Shortest Path Problem: The shortest path problem requires us to find a path f between two
vertices that minimizes the sum of the lengths 𝑙 on its constituent edges. Let 𝑠 be the starting point
and 𝑡 be the ending point. This problem can be written as

min
𝐵⊤f=𝜒

∑︁
𝑒

w−1
𝑒 |f 𝑒|

where 𝜒 = 1𝑠 − 1𝑡 and w 𝑒 = 1/𝑙𝑒. We say 𝑓 ∈ R𝐸 meets the demands 𝜒 if 𝐵⊤𝑓 = 𝜒.
Laplacian Systems: Given a graph with weights w and a vector 𝜒 ∈ R𝐸 with

∑︀
𝑒𝜒𝑒 = 0, our

goal is to find x such that ℒx = 𝜒. Setting f = WBx , this problem can be written as

min
𝐵⊤f=𝜒

∑︁
𝑒

w−1
𝑒 f 2

𝑒.

Undirected Maximum Flow Problem: Given a graph with capacities w , the maximum flow
problem requires us to find a flow 𝑓 that routes as much flow as possible from a source vertex 𝑠 to a
sink vertex 𝑡 while sending at most w 𝑒 units of flow over each edge 𝑒. Rescaling f , this problem can
be written as

min
𝐵⊤f=𝜒

max
𝑒

w−1
𝑒 |f 𝑒|

where 𝜒 = 1𝑠 − 1𝑡.
Interestingly, these three problems respectively require us to find a flow that satisfies a certain

demand and minimizes ℓ1, ℓ2, or ℓ∞ norm.

2.2 Thesis Organization

This thesis presents a thorough study of convex optimization and their applications to combinatorial
optimization. In figure 2-1, we show the relationship between the chapters. Although the ideas used
and the questions addressed in each chapter are all directly or indirectly related, we present the results
in each chapter in a modular way so that they may be read in any order. We now discuss the results
of each chapter in further details.

2.2.1 Part I: Sparsification

In this part, we study several structural convex problems where the convex functions involve some tall
matrices 𝐴. Our goal is to find general techniques to reduce problems involve tall-and-skinny matrices
𝐴 to problems involve only square matrices.

2.2.1.1 Chapter 3: ℓ2 Regression In Input Sparsity Time

In this chapter, we study the ℓ2 regression problem minx ‖𝐴x − b‖2 for tall matrices A ∈ R𝑚×𝑛.
In general, a small, manageable set of rows of A can be randomly selected to approximate a tall-
and-skinny data matrix, improving processing time significantly. In particular, if we sample each
row with probability proportional to its importance (called leverage score), 𝑂(𝑛 log 𝑛) rows suffices to
approximate A⊤A (Lemma 2.3.3). Unfortunately, the previous best approach to compute leverage
scores involves solving some linear systems of the form A⊤A (Lemma 2.3.4) and hence this is as
difficult as the original problem. A simple alternative is to sample rows uniformly at random. While
this often works, uniform sampling will eliminate critical row information for many natural instances.

We consider uniform sampling from a new persepective by examining what information it does
preserve. Specifically, we show that uniform sampling yields a matrix that, in some sense, well ap-
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3. ℓ2 Regression 4. Linear-Sized Sparsifier

6. Linear Programming 13. Connection Laplacian

8. Convex Minimization

9. Application of Cutting 10. Submodular Minimization

12. Undirected MaxFlow

5. ℓ𝑝 Regression

7. Geometric Median

14. Sampling

11. First Order Method

Figure 2-1: This flow chart shows how the chapters are related between each other. A solid arrow indicates a
direct usage of the result and a dotted arrow indicates a vague relation. The gray box indicates the key results
in this thesis.
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proximates a large fraction of the original matrix. While this weak form of approximation is not
enough to solve linear regression directly, it is enough to compute a better approximation. This ob-
servation leads to simple iterative row sampling algorithms for matrix approximation that preserves
row structure and sparsity at all intermediate steps. If it takes 𝒯 (𝑚,𝑛) time to solve a ℓ2 regression
problem with 𝑚 rows and 𝑛 columns, our result can be viewed as a reduction showing that

𝒯 (𝑚,𝑛) = ̃︀𝑂(nnz(𝐴)) + ̃︀𝑂 (𝒯 (𝑂(𝑛 log 𝑛), 𝑛)) .

2.2.1.2 Chapter 4: Linear-Sized Sparsifier In Almost-Linear Time

Naturally, one may ask if Ω(𝑛 log 𝑛) rows is necessary for spectral approximations. In a seminal work
of Batson, Spielman, Srivastava, they showed that

Theorem 2.2.1 ([31]). For any matrix 𝐴 ∈ R𝑚×𝑛, there is a diagonal matrix D with 𝑂(𝑛/𝜀2)
non-zeros such that

(1− 𝜀)𝐴⊤𝐴 ⪯ 𝐴⊤𝐷𝐴 ⪯ (1 + 𝜀)𝐴⊤𝐴.

However, all previous constructions of linear-sized spectral sparsification require solving ̃︀Ω(𝑛) linear
systems. In comparison, the sampling approaches use 𝑂(𝑛 log 𝑛/𝜀2) rows, but the construction only
requires solving ̃︀𝑂(1) linear systems. In this chapter, we give a much better trade-off for getting
linear-sized spectral sparsifiers. For any integer 𝜌, we present an algorithm that uses 𝑂(𝜌𝑛/𝜀2) rows
via solving �̃�(𝑛1/𝜌) linear systems. Hence, this gives a smooth trade off between sparsity and running
time. A key component in our algorithm is a novel combination of two techniques used in literature for
constructing spectral sparsification: random sampling by leverage scores and adaptive constructions
based on barrier functions. Similar to the previous chapter, one can view this result as a reduction
showing that

𝒯 (𝑚,𝑛) = 𝑂(nnz(𝐴)𝑛𝑜(1)) + 𝒯 (𝑂(𝑛), 𝑛).

We believe the term 𝑛𝑜(1) can be improved to log𝑂(1) 𝑛 and we left it as an open problem.

2.2.1.3 Chapter 4: ℓ𝑝 Regression and John Ellipsoid

Similar to the ℓ2 regression, it is known that if we sample each row with certain probability (called
ℓ𝑝 Lewis weight), one can construct a matrix ̃︀𝐴 such that, for any x , ‖̃︀𝐴x‖𝑝 ≈ ‖Ax‖𝑝. This is
a useful primitive for solving ℓ𝑝 regression problem. For 1 ≤ 𝑝 < 4, Cohen and Peng showed how
to compute ℓ𝑝 Lewis weight by solving ̃︀𝑂(1) linear systems [56] and they used it to construct an
efficient approximation algorithm for ℓ𝑝 regression. However, for 𝑝 ≥ 4, the current best algorithm for
computing ℓ𝑝 Lewis weight involves applying a general algorithm for convex problems.

In this chapter, we give a simple algorithm for ℓ𝑝 Lewis weight for 𝑝 ≥ 2. Similar to [56], the
running time of our algorithm is dominated by solving ̃︀𝑂(1) linear systems. Then, we discuss the
relation between ℓ∞ Lewis weight and John ellipsoid, the largest volume ellipsoid inside a given convex
set. Finally, we show how to approximate John ellipsoid of symmetric polytopes by solving ̃︀𝑂(1) linear
systems again.

2.2.1.4 Chapter 6: Faster Linear Programming

In this chapter, we show how to use leverage score and John ellipsoid to solve linear programs using
only ̃︀𝑂(

√
𝑛𝐿) iterations where 𝐴 is the constraint matrix of a linear program with 𝑚 constraints, 𝑛

variables, and bit complexity 𝐿. Each iteration of our method consists of solving ̃︀𝑂(1) linear systems
and additional nearly-linear time computation. Our method improves upon the previous best iteration
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bounds by a factor of ̃︀Ω((𝑚/𝑛)1/4) for methods with polynomial time computable iterations [253] and
by a factor of ̃︀Ω((𝑚/𝑛)1/2) for methods which solve at most ̃︀𝑂(1) linear systems in each iteration
achieved over 20 years ago [227]. This result shows that one can “sparsify” the linear program via
John ellipsoid and make sure that the complexity of solving a linear program mainly depends on the
number of variables 𝑛 instead of the number of constraints 𝑚.

Applying our techniques to the maximum flow yields an ̃︀𝑂(𝑚
√
𝑛 log2 𝑈) time algorithm for solving

the maximum flow problem on directed graphs with 𝑚 edges, 𝑛 vertices, and capacity ratio 𝑈 . This
improves upon the previous fastest running time of 𝑂(𝑚min{𝑚1/2, 𝑛2/3} log

(︀
𝑛2/𝑚

)︀
log(𝑈)) achieved

over 15 years ago by Goldberg and Rao [104] and improves upon the previous best running times for
solving dense directed unit capacity graphs of 𝑂(𝑚min{𝑚1/2, 𝑛2/3}) achieved by Even and Tarjan [85]
over 35 years ago and a running time of ̃︀𝑂(𝑚10/7) achieved recently by Mądry [183].

2.2.1.5 Chapter 7: Geometric Median In Nearly-Linear Time

From the results above, we see that a wide range of problems can be sparsified and the running time
of solving a convex optimization problem mainly depends on the number of variables. In this chapter,
we would like to argue it sometimes depends on the number of true “dimensions”, which can be much
smaller. For example, linear programs can be solved efficiently when the constraint matrix 𝐴 is an
identity matrix. Then, it is natural to ask if we can solve a linear program faster if the constraint
matrix of the linear program can be divided into different blocks and all blocks are identity matrices.
Unfortunately, we do not have such result yet.

In this chapter, we illustrate this belief via the geometric median problem: given 𝑛 points in R𝑑
compute a point that minimizes the sum of Euclidean distances to the points. This is one of the oldest
non-trivial problems in computational geometry yet despite an abundance of research the previous
fastest algorithms for computing a (1 + 𝜀)-approximate geometric median were 𝑂(𝑑 · 𝑛4/3𝜀−8/3) by
Chin et. al [50], �̃�

(︀
𝑑 exp

(︀
𝜀−4 log 𝜀−1

)︀)︀
by Badoiu et. al [25], 𝑂(𝑛𝑑 + poly(𝑑, 𝜀−1) by Feldman and

Langberg [86], and 𝑂((𝑛𝑑)𝑂(1) log 1
𝜀 ) by Parrilo and Sturmfels [222] and Xue and Ye [271].

Different from all previous approaches, we rely on the fact that the Hessian of the objective
function can be approximated by an identity matrix minus a rank 1 matrix, namely, the number of
true “dimensions” of this problem is 2. This allows us to develop a non-standard interior point method
that computes a (1+𝜀)-approximate geometric median in time 𝑂(𝑛𝑑 log3 𝑛𝜀 ).

1 Our result is one of very
few cases we are aware of outperforming traditional interior point theory and the only we are aware
of using interior point methods to obtain a nearly linear time algorithm for a canonical optimization
problem that traditionally requires superlinear time.

2.2.2 Part II: Cutting

In this part, we give a faster cutting plane method and show how to apply this cutting plane method
efficiently in various problems.

2.2.2.1 Chapter 8: Convex Minimization In Nearly-Cubic Time

The central problem we consider in this chapter is the feasibility problem. We are promised that a
set 𝐾 is contained a box of radius 𝑅 and a separation oracle, that given a point 𝑥 in time SO, either
outputs that 𝑥 is in 𝐾 or outputs a separating hyperplane. We wish to either find a point in 𝐾 or
prove that 𝐾 does not contain a ball of radius 𝜀.

1We also show how to compute a (1 + 𝜀)-approximate geometric median in sub-linear time 𝑂(𝑑𝜀−2).
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We show how to solve this problem in 𝑂(𝑛SO log(𝑛𝑅/𝜀) + 𝑛3 log𝑂(1)(𝑛𝑅/𝜀)) time. This is an
improvement over the previous best running time of𝑂(𝑛SO log(𝑛𝑅/𝜀)+𝑛𝜔+1 log(𝑛𝑅/𝜀)) for the current
best known bound of 𝜔 ∼ 2.37 [99]. Our key idea for achieving this running time improvement is a
new straightforward technique for providing low variance unbiased estimates for changes in leverage
scores that we hope will be of independent interest (See Section 8.4.1). We show how to use this
technique along with ideas from [20, 257] and Chapter 6 to decrease the ̃︀𝑂(𝑛𝜔+1 log(𝑛𝑅/𝜀)) overhead
in the previous fastest algorithm [253].

2.2.2.2 Chapter 9: Effective Use of Cutting Plane Method

In this chapter, we provide two techniques for applying our cutting plane method (and cutting plane
methods in general) to optimization problems and provide several applications of these techniques.

The first technique concerns reducing the number of dimensions through duality. For many prob-
lems, their dual is significantly simpler than itself (primal). We use semidefinite programming as a
concrete example to show how to improve upon the running time for finding both primal and dual
solution by using the cutting planes maintained by our cutting plane method.

The second technique concerns how to minimize a linear function over the intersection of convex
sets using optimization oracle. We analyze a simple potential function which allows us to bypass the
typical reduction between separation and optimization to achieve faster running times. This reduction
provides an improvement over the reductions used previously in [110]. Moreover, we show how this
technique allows us to achieve improved running times for matroid intersection and minimum cost
submodular flow.

2.2.2.3 Chapter 10: Submodular Minimization In Nearly-Cubic Time

In this chapter, we consider the problem of submodular minimization – a fundamental problem in
combinatorial optimization with many diverse applications in theoretical computer science, operations
research, machine learning and economics. We show that by considering the interplay between the
guarantees of our cutting plane algorithm and the primal-dual structure of submodular minimization,
we can achieve improved running times in various settings.

First, we show that a direct application of our method yields an improved weakly polynomial
time algorithm for submodular minimization. Then, we present a simple geometric argument that
submodular function can be solved with 𝑂(𝑛3 log 𝑛) oracle calls but with exponential running time.
Finally, we show that by further studying the combinatorial structure of submodular minimization
and a modification to our cutting plane algorithm we can obtain a fully improved strongly polynomial
time algorithm for submodular minimization.

2.2.2.4 Chapter 11: First Order Method vs Cutting Plane Method

Cutting plane methods are often regarded as inefficient in practice because each iteration of these
methods is costly and their convergence rate are sometimes independent of how simple the problem
is. In this chapter, we obtain a cutting plane method enjoys the following properties

1. Each iteration takes only linear time for simple problems.

2. It converges faster for simpler problems.

3. It is a polynomial time algorithm in the worst case.
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We first propose a new method, a combination of gradient descent and the ellipsoid method, that
satisfies both properties 1 and 2. This method attains the optimal rate of convergence of Nesterov’s
accelerated gradient descent [203] and each iteration of this method takes exactly linear time. However,
this method is not a polynomial time algorithm if the function is not smooth.

Then, we propose a new framework which leverages several concepts from convex optimization,
from standard first-order methods to cutting plane methods. We show how to use our framework
to derive a method that satisfies all three properties. We also demonstrate empirically that our new
technique compares favorably with state of the art algorithms (such as accelerated gradient descent
and BFGS). Therefore, this suggests that cutting plane methods can be as aggressive as first order
methods if designed properly.

2.2.3 Part III: Collapsing

In this part, we show how to collapse vertices in the maximum flow problem and the connection
Laplacian problem.

2.2.3.1 Chapter 12: Undirected MaxFlow In Almost-Linear Time

Flow problems on trees are simple because we often know how to collapse the leaves on trees while
maintaining the solution. Using this fact and various routing and optimization techniques, we intro-
duce a new framework for approximately solving flow problems in capacitated, undirected graphs and
apply it to provide asymptotically faster algorithms for the maximum 𝑠-𝑡 flow and maximum con-
current multicommodity flow problems. For graphs with 𝑛 vertices and 𝑚 edges, it allows us to find
an 𝜀-approximate maximum 𝑠-𝑡 flow in time 𝑂(𝑚1+𝑜(1)𝜀−2)2, improving the previous best bound of̃︀𝑂(𝑚𝑛1/3poly(1/𝜀)). Applying the same framework in the multicommodity setting solves a maximum
concurrent multicommodity flow problem with 𝑘 commodities in 𝑂(𝑚1+𝑜(1)𝜀−2𝑘2) time, improving the
existing bound of ̃︀𝑂(𝑚4/3poly(𝑘, 𝜀−1)).

Our algorithms utilize several new technical tools that we believe may be of independent interest:

∙ We show how to reduce approximate maximum flow and maximum concurrent flow to oblivious
routing.

∙ We define and provide an efficient construction of a new type of flow sparsifier that allowing one
to transfer flows from the sparse graph back to the original graph.

∙ We give the first almost-linear-time construction of an 𝑂(𝑚𝑜(1))-competitive oblivious routing
scheme. No previous such algorithms ran in time better than ̃︀Ω(𝑚𝑛). By reducing the running
time to almost-linear, our work provides a powerful new primitive for constructing very fast
graph algorithms.

2.2.3.2 Chapter 13: Connection Laplacian In Nearly-Linear Time

The idea of collapsing can be extended to general convex problems as follows: Given a convex function
𝑓 : R𝑛 → R. For any x ∈ R𝑛, we write x = (y , z ) where y is the first 𝑛/2 variables and z is the last
𝑛/2 variables. We define the collapse of 𝑓 by

𝑔(y) = min
z∈R𝑛/2

𝑓(x , z ).

2We also note that independently, Jonah Sherman produced an almost-linear time algorithm for maximum flow.
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Figure 2-2: Connections between interior point methods, cutting plane methods, first-order methods, learning
algorithms for bandit problems, and sampling algorithms for convex sets.

In general, a convex function is difficult to minimize if some variables are intimately related to each
other. If not, we can simply solve the problem coordinate-wise. However, if some variables are related
and if we can solve the half of the these coordinates, the minimization problem often becomes trivial.
Therefore, if we pick half of the variables in random as y , 𝑔 should be easy to compute and this
effectively reduce the dimension by half.

In this chapter, we show this is indeed true for connection Laplacian. As a result, we give the
first nearly-linear time algorithms for solving systems of equations in connection Laplacians — a
generalization of Laplacian matrices that arise in many problems in image and signal processing.

We also prove that every connection Laplacian has a linear sized approximate inverse. This is a LU
factorization with a linear number of non-zero entries that is a spectral approximation of the original
matrix. Using such a factorization, one can solve systems of equations in a connection Laplacian in
linear time. Such a factorization was unknown even for ordinary graph Laplacians.

2.2.4 Part IV: Geometry

In the end of this thesis, we would like to point out a large set of connections between interior point
methods, cutting plane methods, first-order methods, learning algorithms for bandit problems, and
sampling algorithms for convex sets as they relate to important problems across computer science,
operation research, convex optimization and machine learning; see Figure 2-2 for a diagram of work
that suggests this relation. One key technique spans all these algorithms is the geometry of convex
set. Since these algorithms are widely used across various disciplines, we believe these connections can
lead to breakthroughs in different areas. As an example, we only give an application to the sampling
problem.
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2.2.4.1 Chapter 13: Sampling In Sub-Quadratic Steps

The problems of sampling random points in convex set and computing volume of convex sets is a
central problem in Markov chain Monte Carlo and leads to developments in geometric random walks.
This problem has been studied for twenty years and the best algorithms take �̃�(𝑛𝑚) iterations for
explicit polytopes. We introduce the geodesic walk for sampling Riemannian manifolds and apply
it to the problem of generating uniform random points from polytopes. The walk is a discrete-time
simulation of a stochastic differential equation (SDE) on the Riemannian manifold equipped with the
metric induced by the Hessian of a convex function used for solving linear programming; each step is
the solution of an ordinary differential equation (ODE). The resulting sampling algorithm for polytopes
mixes in �̃�(𝑚𝑛

3
4 ) steps. This is the first walk that breaks the quadratic barrier for mixing in high

dimension. We also show that each step of the geodesic walk (solving an ODE) can be implemented
efficiently, thus obtaining the current fastest complexity for sampling polytopes.

Advances in algorithms often come from insights from different areas; I believe these new connec-
tions will make multifaceted impacts on computation.

2.3 Notation

Here, we define some notations that are used throughout in this thesis.
Variables: We use bold lowercase, e.g 𝑥, to denote a vector and bold uppercase, e.g. 𝐴, to denote

a matrix. For integers 𝑧 ∈ Z we use [𝑧] ⊆ Z to denote the set of integers from 1 to 𝑧. We let 1𝑖 denote
the vector that has value 1 in coordinate 𝑖 and is 0 elsewhere. We let 1 denote the vector that has
value 1 in all coordinates. We use nnz(𝑥) or nnz(𝐴) to denote the number of nonzero entries in a
vector or a matrix respectively. For a vector, 𝑥, we let ‖𝑥‖𝑀

def
=
√
𝑥⊤𝑀𝑥. We use R𝑚>0 to denote the

vectors in R𝑚 where each coordinate is positive.

Vector Operations: We frequently apply scalar operations to vectors with the interpretation
that these operations should be applied coordinate-wise. For example, for vectors 𝑥,𝑦 ∈ R𝑛 we let
𝑥/𝑦 ∈ R𝑛 with [𝑥/𝑦]𝑖

def
= (𝑥𝑖/𝑦𝑖) and log(𝑥) ∈ R𝑛 with [log(𝑥)]𝑖 = log(𝑥𝑖) for all 𝑖 ∈ [𝑛] .

Spectral Approximations: We call a symmetric matrix 𝐴 ∈ R𝑛×𝑛 positive semidefinite (PSD)
if 𝑥⊤𝐴𝑥 ≥ 0 for all 𝑥 ∈ R𝑛 and we call 𝐴 positive definite (PD) if 𝑥⊤𝐴𝑥 > 0 for all 𝑥 ∈ R𝑛. For
symmetric matrices 𝑁 ,𝑀 ∈ R𝑛×𝑛, we write 𝑁 ⪯𝑀 to denote that 𝑥⊤𝑁𝑥 ≤ 𝑥⊤𝑀𝑥 for all 𝑥 ∈ R𝑛,
and we define 𝑁 ⪰𝑀 , 𝑁 ≺𝑀 and 𝑁 ≻𝑀 analogously. For symmetric matrices, we call 𝐵 is a
𝜀-spectral approximation of 𝐴 if (1−𝜀)𝐴 ⪯ 𝐵 ⪯ (1+𝜀)𝐴. We denote this by A ≈𝜀 B . In chapter 13,
we instead define it as 𝑒−𝜀𝐴 ⪯ 𝐵 ⪯ 𝑒𝜀𝐴 for computational simplicity. For nonsymmetric matrices,
we call B is a 𝜀-spectral approximation of 𝐴 if B⊤B is a 𝜀-spectral approximation of A⊤A.

Matrix Operations: For 𝐴,𝐵 ∈ R𝑛×𝑚, we let 𝐴 ∘𝐵 denote the Schur product, i.e. [𝐴 ∘𝐵]𝑖𝑗
def
=

𝐴𝑖𝑗 ·𝐵𝑖𝑗 for all 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚], and we let 𝐴(2) def
= 𝐴 ∘𝐴. For any norm ‖ · ‖ and matrix 𝑀 , the

operator norm of 𝑀 is defined by ‖𝑀‖ = sup‖𝑥‖=1 ‖𝑀𝑥‖. For any two matrices 𝐴 and 𝐵 of equal
dimensions, let the dot product of 𝐴 and 𝐵 defined by 𝐴 ∙𝐵 = Tr

(︀
𝐴⊤𝐵

)︀
. For any matrix 𝑀 , the

Frobenius norm of 𝑀 is defined by ‖𝑀‖𝐹 =
√︁∑︀

𝑖,𝑗𝑀
2
𝑖𝑗 =
√
𝑀 ∙𝑀 .

Spectral Theory: For 𝐴 ∈ R𝑚×𝑛 with rank 𝑟, the singular value decomposition 𝐴 is given by
𝑈Σ𝑉 ⊤ where 𝑈 ∈ R𝑚×𝑟 and 𝑉 ∈ R𝑛×𝑟 have orthonormal columns and Σ ∈ R𝑟×𝑟 is diagonal. We
let (𝐴⊤𝐴)+ denote the Moore-Penrose pseudoinverse of 𝐴⊤𝐴, namely, (𝐴⊤𝐴)+ = 𝑉 (Σ−1)2𝑉 ⊤. For
symmetric 𝐴, the singular value decomposition 𝐴 becomes 𝑈Σ𝑈⊤ where the diagonal entries of Σ
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are the eigenvalues of 𝐴. We let 𝜆max(A) and 𝜆min(A) be the maximum and minimum eigenvalues of
𝐴. The condition number of matrix 𝐴 is defined by 𝜆max(𝐴)/𝜆min(𝐴).

Diagonal Matrices: For𝐴 ∈ R𝑛×𝑛 we let 𝑑𝑖𝑎𝑔(𝐴) ∈ R𝑛 denote the vector such that 𝑑𝑖𝑎𝑔(𝐴)𝑖 =
𝐴𝑖𝑖 for all 𝑖 ∈ [𝑛]. For 𝑥 ∈ R𝑛 we let𝐷𝑖𝑎𝑔(𝑥) ∈ R𝑛×𝑛 be the diagonal matrix such that 𝑑𝑖𝑎𝑔(𝐷𝑖𝑎𝑔(𝑥)) =
𝑥. For 𝐴 ∈ R𝑛×𝑛 we let 𝐷𝑖𝑎𝑔(𝐴) be the diagonal matrix such that 𝑑𝑖𝑎𝑔(𝐷𝑖𝑎𝑔(𝐴)) = 𝑑𝑖𝑎𝑔(𝐴).
For 𝑥 ∈ R𝑛 when the meaning is clear from context we let 𝑋 ∈ R𝑛×𝑛 denote 𝑋 def

= 𝐷𝑖𝑎𝑔(𝑥).

Calculus: For 𝑓 : R𝑛 → R differentiable at 𝑥 ∈ R𝑛, we let ∇𝑓(𝑥) ∈ R𝑛 denote the gradient of
𝑓 at 𝑥, i.e. [∇𝑓(𝑥)]𝑖 = 𝜕

𝜕𝑥𝑖
𝑓(𝑥) for all 𝑖 ∈ [𝑛]. For 𝑓 ∈ R𝑛 → R twice differentiable at x ∈ R𝑛, we

let ∇2𝑓(𝑥) denote the Hessian of 𝑓 at x , i.e. [∇𝑓(𝑥)]𝑖𝑗 = 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑓(𝑥) for all 𝑖, 𝑗 ∈ [𝑛]. Sometimes, we

will consider functions of two vectors, 𝑔 : R𝑛1×𝑛2 → R, and wish to compute the gradient and Hessian
of 𝑔 restricted to one of the two vectors. For 𝑥 ∈ R𝑛1 and 𝑦 ∈ R𝑛2 we let ∇𝑥𝑔(𝑎, 𝑏) ∈ R𝑛1 denote
the gradient of 𝑔 for fixed 𝑦 at point (𝑎, 𝑏) ∈ R𝑛1×𝑛2 . We define ∇𝑦, ∇2

𝑥𝑥, and ∇2
𝑦𝑦 similarly. For

ℎ : R𝑛 → R𝑚 differentiable at 𝑥 ∈ R𝑛 we let 𝐽(ℎ(𝑥)) ∈ R𝑚×𝑛 denote the Jacobian of ℎ at 𝑥 where
for all 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛] we let [𝐽(ℎ(𝑥))]𝑖𝑗

def
= 𝜕

𝜕𝑥𝑗
ℎ(𝑥)𝑖. For functions of multiple vectors we use

subscripts, e.g. 𝐽𝑥, to denote the Jacobian of the function restricted to the 𝑥 variable.

Sets: We call a set 𝑈 is symmetric if 𝑥 ∈ R𝑛 ⇔ −𝑥 ∈ R𝑛. For any 𝛼 > 0 and set 𝑈 ⊆ R𝑛 we let
𝛼𝑈

def
= {𝑥 ∈ R𝑛|𝛼−1𝑥 ∈ 𝑈}. For any 𝑝 ∈ [1,∞] and 𝑟 > 0 we refer to the set 𝐵𝑝(𝑟)

def
= {𝑥 ∈ R𝑛|‖𝑥‖𝑝 ≤

𝑟} as the ℓ𝑝 ball of radius 𝑟. For brevity, we refer to 𝐵2(𝑟) as a ball of radius 𝑟 and 𝐵∞(𝑟) as a box of
radius 𝑟.

Matrix Multiplication Constant: We let 𝜔 < 2.3728639 [100] denote the matrix multiplication
constant. It is known that the product a 𝑚 × 𝑛 matrix with a 𝑛 × 𝑟 matrix can be computed in
𝑚𝑛𝑟min(𝑚,𝑛, 𝑟)𝜔−3+𝑜(1) time and the inverse of a 𝑛×𝑛 matrix can be computed in 𝑛𝜔+𝑜(1) time. For
simplicity, we always write 𝜔 + 𝑜(1) as 𝜔.

Running Time: Unless mentioned specifically, we will disregard the issue of rounding error if
the algorithm is obviously stable. Most of the algorithms we proposed are randomized algorithms
that succeeds with high probability and the running time is often the expected running time. For any
function 𝑓 , we write ̃︀𝑂(𝑓) , 𝑂(𝑓 · log𝑂(1) 𝑓). Suppose 𝑚 is the length of the input and 𝑛 is the number
of variables, we ssay that an algorithm runs in nearly-linear time if its running time is ̃︀𝑂(𝑚), runs in
almost linear time if its running time is 𝑚1+𝑜(1), and runs in input sparsity time if its running time is̃︀𝑂(𝑚+ 𝑛𝑂(1)).

2.3.1 Sparsification and Leverage Score

In this section, we define spectral approximation and leverage score. They are two key concepts in this
thesis, especially in Part I. First, we define leverage score which is a measure of importance. Given a
matrix A ∈ R𝑚×𝑛. The leverage score of the 𝑖th row 𝑎𝑖 of 𝐴 is:

𝜎𝑖(𝐴)
def
= 𝑎⊤𝑖 (𝐴

⊤𝐴)+𝑎𝑖.

We also define the related cross leverage score as 𝜎𝑖𝑗(𝐴)
def
= 𝑎⊤𝑖 (𝐴

⊤𝐴)+𝑎𝑗 . Let 𝜎(𝐴) be a vector
containing 𝐴’s 𝑚 leverage scores. 𝜎(𝐴) is the diagonal of 𝐴(𝐴⊤𝐴)+𝐴⊤, which is a projection
matrix. Thus, 𝜎𝑖(𝐴) = 1⊤𝑖 𝐴(𝐴⊤𝐴)+𝐴⊤1𝑖 ≤ 1. Furthermore, since 𝐴(𝐴⊤𝐴)+𝐴⊤ is a projection
matrix, the sum of 𝐴’s leverage scores is equal to the matrix’s rank:

𝑚∑︁
𝑖=1

𝜎𝑖(𝐴) = Tr(𝐴(𝐴⊤𝐴)+𝐴⊤) = rank(𝐴(𝐴⊤𝐴)+𝐴⊤) = rank(𝐴) ≤ 𝑛. (2.2)
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A row’s leverage score measures how important it is in composing the row space of 𝐴. If a row has
a component orthogonal to all other rows, its leverage score is 1. Removing it would decrease the rank
of 𝐴, completely changing its row space. The coherence of 𝐴 is ‖𝜎(𝐴)‖∞. If 𝐴 has low coherence,
no particular row is especially important. If 𝐴 has high coherence, it contains at least one row whose
removal would significantly affect the composition of 𝐴’s row space. Two characterizations that helps
with this intuition follows:

Lemma 2.3.1. For all 𝐴 ∈ R𝑚×𝑛 and 𝑖 ∈ [𝑚] we have that

𝜎𝑖(𝐴) = min
𝐴⊤𝑥=𝑎𝑖

‖𝑥‖22

where 𝑎𝑖 is the 𝑖𝑡ℎ row of 𝐴. Let 𝑥𝑖 denote the optimal 𝑥 for 𝑎𝑖. The 𝑗th entry of 𝑥𝑖 is given by
𝜎𝑖𝑗(𝐴).

Lemma 2.3.2. For all 𝐴 ∈ R𝑚×𝑛 and 𝑖 ∈ [𝑚], we have that 𝜎𝑖(𝐴) is the smallest 𝑡 such that

𝑎𝑖𝑎
⊤
𝑖 ⪯ 𝑡 ·A⊤A. (2.3)

Sampling rows from 𝐴 according to their exact leverage scores gives a spectral approximation for
𝐴 with high probability. Sampling by leverage score overestimates also suffices. The following lemma
is a corollary of matrix concentration result [251, Cor 5.2] and the inequality (2.3).

Lemma 2.3.3. Given an error parameter 0 < 𝜀 < 1 and a vector 𝑢 of leverage score overestimates,
i.e., 𝜎𝑖(𝐴) ≤ 𝑢𝑖 for all 𝑖. For any large enough universal constant 𝑐, we define a probability distribution
𝑝𝑖 = min{1, 𝑐𝜀−2𝑢𝑖 log 𝑛}. Let 𝑆 be the diagonal matrix with independently chosen entries. 𝑆𝑖𝑖 =

1√
𝑝𝑖

with probability p𝑖 and 0 otherwise. Then, with probability at least 1− 𝑛−Θ(𝑐), we have

(1− 𝜀)𝐴⊤𝐴 ⪯ 𝐴⊤𝑆2𝐴 ⪯ (1 + 𝜀)𝐴⊤𝐴.

Although (2.2) shows that ‖𝜎‖1 is small, computing 𝜎 exactly is too expensive for many pur-
poses. In [242], they showed that we can compute leverage scores, 𝜎, approximately by solving only
polylogarithmically many regression problems. This result uses the fact that

𝜎𝑖(𝐴) = ‖𝐴(A⊤A)+𝐴⊤1𝑖‖2
and that by the Johnson-Lindenstrauss Lemma these lengths are persevered up to multiplicative error
if we project these vectors onto certain random low dimensional subspaces.

Lemma 2.3.4 ([242]). Let 𝒯 be the time to apply (A⊤A)+ to an arbitrary vector. Then, for any
0 < 𝜃 < 1, it is possible to compute an estimate of 𝜎(𝐴), 𝜎(𝑎𝑝𝑥), in time 𝑂(𝜃−1(𝒯 + nnz(𝐴))) such
that w.h.p. in 𝑛, for all 𝑖 ,

𝑑−max(
√
𝜃/ log𝑛,𝜃)𝜎𝑖(𝐴) ≤ 𝜎(𝑎𝑝𝑥)

𝑖 ≤ 𝑑max(
√
𝜃/ log𝑛,𝜃)𝜎𝑖(𝐴).

Setting 𝜃 = 𝜀2

log𝑛 gives (1 + 𝜀) factor leverage score approximations in ̃︀𝑂((𝒯 + nnz(𝐴))/𝜀2) time.

Therefore, approximating leverage scores is as simple as solving ̃︀𝑂(1) linear systems.

2.3.2 Separation Oracle

In this section, we define separation oracles. They are the key concepts in Part II. Our definitions are
possibly non-standard and chosen to handle the different settings that occur in this part.
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Definition 2.3.5 (Separation Oracle for a Set). Given a set 𝐾 ⊂ R𝑛 and 𝛿 ≥ 0, a 𝛿-separation oracle
for 𝐾 is a function on R𝑛 such that for any input 𝑥 ∈ R𝑛, it either outputs “successful” or a half space
of the form 𝐻 = {𝑧 : 𝑐𝑇𝑧 ≤ 𝑐𝑇𝑥 + 𝑏} ⊇ 𝐾 with 𝑏 ≤ 𝛿‖𝑐‖2 and 𝑐 ̸= 0. We let SO𝛿(𝐾) be the time
complexity of this oracle.

The parameter 𝛿 indicates the accuracy of the oracle. For brevity we refer to a 0-separation oracle
for a set as just a separation oracle.

Note that in Definition 2.3.5 we do not assume that 𝐾 is convex. However, we remark that there
is a separation oracle for a set if and only if it is convex and that there is a 𝛿 separation oracle if and
only if the set is close to convex in some sense.

Definition 2.3.6 (Separation Oracle for a Function). For any function 𝑓 , 𝜂 ≥ 0 and 𝛿 ≥ 0, a (𝜂, 𝛿)-
separation oracle on a set Γ for 𝑓 is a function on R𝑛 such that for any input 𝑥 ∈ Γ, it either asserts
𝑓(𝑥) ≤ min𝑦∈Γ 𝑓(𝑦) + 𝜂 or outputs a half space 𝐻 such that

{𝑧 ∈ Γ : 𝑓(𝑧) ≤ 𝑓(𝑥)} ⊂ 𝐻 def
= {𝑧 : 𝑐𝑇𝑧 ≤ 𝑐𝑇𝑥+ 𝑏} (2.4)

with 𝑏 ≤ 𝛿‖𝑐‖ and 𝑐 ̸= 0. We let SO𝜂,𝛿(𝑓) be the time complexity of this oracle.

2.3.3 Other Basic Facts

Here, we state some lemmas that are used throughout this thesis.

Lemma 2.3.7 (Sherman-Morrison Formula, [193, Thm 3]). Let 𝐴 ∈ R𝑛×𝑛, and 𝑢, v ⊥ ker(𝐴).
Suppose that 1 + v⊤𝐴+𝑢 ̸= 0. Then, it holds that

(𝐴+ 𝑢v⊤)+ = 𝐴+ − 𝐴+𝑢v𝑇𝐴+

1 + v𝑇𝐴+𝑢
.

Lemma 2.3.8. Let 𝐵𝑡 be a differentiable family of invertible matrix. Then, we have

1. 𝑑
𝑑𝑡 ln det(𝐵𝑡) = Tr

(︀
𝐵−1
𝑡

𝑑
𝑑𝑡𝐵𝑡

)︀
.

2. 𝑑
𝑑𝑡𝐵

−1
𝑡 = −𝐵−1

𝑡

(︀
𝑑
𝑑𝑡𝐵𝑡

)︀
𝐵−1
𝑡 .

Lemma 2.3.9. Let f : R𝑛+𝑚 → R𝑚 be a continuously differentiable function. Suppose that 𝑓(x ,y) =
0 for some x ∈ R𝑚 and y ∈ R𝑛 and that 𝜕f𝜕y (x ,y) is invertible. Then, there is an open set 𝑈 containing
x , an open set 𝑉 containing y , and a unique continuously differentiable function 𝑔 : 𝑈 → 𝑉 such that
𝑓(x , 𝑔(x )) = 0. Also, we have that

𝜕𝑔

𝜕x
(x ) = −

(︂
𝜕f

𝜕y
(x , 𝑔(x ))

)︂−1 𝜕f

𝜕x
(x , 𝑔(x )).

Lemma 2.3.10 (Matrix Chernoff Bound, [251, Cor 5.2]). Let {𝑋𝑘} be a finite sequence of independent,
random, and self-adjoint matrices with dimension 𝑛. Assume that each random matrix satisfies 𝑋𝑘 ⪰
0, and 𝜆max(𝑋𝑘) ≤ 𝑅. Let 𝜇max ≥ 𝜆max (

∑︀
𝑘 E𝑋𝑘) and 𝜇min ≤ 𝜆min (

∑︀
𝑘 E𝑋𝑘). Then, it holds that

Pr

[︃
𝜆max

(︃∑︁
𝑘

𝑋𝑘

)︃
≥ (1 + 𝛿)𝜇max

]︃
≤ 𝑛 ·

(︂
𝑒𝛿

(1 + 𝛿)1+𝛿

)︂𝜇max/𝑅

for any 𝛿 ≥ 0, and

Pr

[︃
𝜆min

(︃∑︁
𝑘

𝑋𝑘

)︃
≤ (1− 𝛿)𝜇min

]︃
≤ 𝑛 ·

(︂
𝑒−𝛿

(1− 𝛿)1−𝛿

)︂𝜇min/𝑅

for any 𝛿 ∈ [0, 1]
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Lemma 2.3.11 (Lieb Thirring Inequality, [171]). Let 𝐴 and 𝐵 be positive definite matrices and 𝑞 ≥ 1.
Then it holds that

Tr(𝐵𝐴𝐵)𝑞 ≤ Tr(𝐵𝑞𝐴𝑞𝐵𝑞).

Theorem 2.3.12 (Simple Constrained Minimization for Twice Differentiable Function [206]). Let 𝐻
be a positive definite matrix, 𝐾 be a convex set and 𝐿 ≥ 𝜇 ≥ 0. Let 𝑓(𝑥) : 𝐾 → R be a twice
differentiable function such that 𝜇𝐻 ⪯ ∇2𝑓(𝑥) ⪯ 𝐿𝐻 for all 𝑥 ∈ 𝐾. If for some 𝑥(0) ∈ 𝐾 and all
𝑘 ≥ 0, we apply the update rule

𝑥(𝑘+1) = argmin
𝑥∈𝐾

⟨
∇𝑓(𝑥(𝑘)),𝑥− 𝑥(𝑘)

⟩
+
𝐿

2
‖𝑥− 𝑥(𝑘)‖2𝐻

then for all 𝑘 ≥ 0 we have

‖𝑥(𝑘) − 𝑥*‖2𝐻 ≤
(︁
1− 𝜇

𝐿

)︁𝑘
‖𝑥(0) − 𝑥*‖2𝐻 .



Part I

Sparsification
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Chapter 3

ℓ2 Regression In Input Sparsity Time

3.1 Introduction

Many convex optimization problems can be written in the form of

min
x∈R𝑛

𝑚∑︁
𝑖=1

𝑓𝑖(𝑎
⊤
𝑖 x )

where 𝑓𝑖 are 1 dimension convex functions and 𝑎𝑖 ∈ R𝑛. The goal of this part is to show that the
running time for solving this type of problems, in general, should depends on 𝑚 linearly.

In this chapter, we first study the simplest case, 𝑓𝑖 being quadratic functions. In this case, the
problem becomes the ℓ2 regression problem minx ‖Ax −b‖. Currently, there are two types of methods
on this problem for the case 𝑚≫ 𝑛.

The first type of methods rely on spectral approximation. For a tall, narrow data matrix 𝐴, these
methods find a shorter approximate data matrix, ̃︀𝐴, such that, for all vectors 𝑥, ‖̃︀𝐴𝑥‖2 ≈ ‖𝐴𝑥‖2. All
of which rely on variations of Johnson-Lindenstrauss random projections for constructing ̃︀𝐴 [53, 185,
200, 170]. Such random projections do not maintain sparsity and row structure of A. The second type
of methods rely on uniform (or non-adaptive) sampling, such as stochastic descent. These methods
works only for low coherence data and hence are less useful for theory development.

By re-examining uniform sampling, we give spectral approximation algorithms that avoid random
projection entirely. Our methods are the first to match state-of-the-art runtimes while preserving row
structure and sparsity in all matrix operations. Since it preserves row structure, this allows us to take
advantage of the problem structure. Let 𝒯 (𝑚,𝑛) be the time needed to solve a ℓ2 regression problem
‖𝐴x−b‖ where A is a 𝑚×𝑛 matrix and each rows of A comes from a certain row dictionary. Roughly
speaking, our method shows that

𝒯 (𝑚,𝑛) = ̃︀𝑂(nnz(𝐴)) + ̃︀𝑂(𝒯 ( ̃︀𝑂(𝑛), 𝑛)).

This powerful reduction allows us to develop the first nearly linear time algorithm for connection
Laplacian (Chapter 13). In comparison, the random projection methods only shows that 𝒯 (𝑚,𝑛) =̃︀𝑂(nnz(𝐴) + 𝑛𝜔).

As we explained in Section 2.3.1, it is known that for a data matrix 𝐴 ∈ R𝑚×𝑛, a spectral
approximation can be obtained by sampling 𝑂(𝑛 log 𝑛) rows, each with probability proportional to
its statistical leverage score. Recall that the leverage score of 𝐴’s 𝑖th row, 𝑎𝑖, is 𝜎𝑖 = 𝑎⊤𝑖 (𝐴

⊤𝐴)+𝑎𝑖,
where𝑀+ denotes the Moore-Penrose pseudoinverse of𝑀 . A higher leverage score indicates that 𝑎𝑖
is more important in composing the spectrum of 𝐴.

Unfortunately, leverage scores are difficult to calculate – finding them involves computing the
pseudoinverse (𝐴⊤𝐴)+, which is as slow as solving our regression problem in the first place. In
practice, data is often assumed to have low coherence [195], in which case simply selecting rows
uniformly at random works [22, 156]. However, uniform sampling could be disastrous — if 𝐴 contains



32 CHAPTER 3. ℓ2 REGRESSION IN INPUT SPARSITY TIME

a row with some component orthogonal to all other rows, removing it will reduce the rank of 𝐴 and
thus we cannot possibly preserve all vector products (‖̃︀𝐴𝑥‖2 will start sending some vectors to 0).
Any uniform sampling scheme is likely to drop any such single row. On the other hand, when leverage
score sampling, such a row would have the highest possible leverage score of 1.

Possible fixes include randomly “mixing” data points to avoid degeneracies [22]. However, this
approach sacrifices sparsity and structure in our data matrix, increasing storage and runtime costs. Is
there a more elegant fix? First note that sampling 𝐴 by approximate leverage scores is fine, but we
may need to select more than the optimal 𝑂(𝑛 log 𝑛) rows. With that in mind, consider the following
straightforward algorithm for iterative sampling, inspired by [170]:

1. Reduce 𝐴 significantly by sampling rows uniformly.

2. Use the smaller matrix to approximate (𝐴⊤𝐴)+ and leverage scores for 𝐴.

3. Resample rows of 𝐴 using these estimates to obtain a spectral approximation ̃︀𝐴.
While intuitive, this scheme was not previously known to work. Our main result is proving that it
does. This process will quickly converge on a small spectral approximation to 𝐴, i.e. with 𝑂(𝑛 log 𝑛)
rows.

A few results come close to an analysis of such a routine – in particular, two iterative sampling
schemes are analyzed in [170]. However, the first ultimately requires Johnson-Lindenstrauss projections
that mix rows, something we were hoping to avoid. The second almost maintains sparsity and row
structure (except for possibly including rows of the identity in ̃︀𝐴), but its convergence rate depends
on the condition number of 𝐴.

More importantly, both of these results are similar in that they rely on the primitive that a (possibly
poor) spectral approximation to 𝐴 is sufficient for approximately computing leverage scores, which
are in turn good enough for obtaining an even better spectral approximation. As mentioned, uniform
sampling will not in general give a spectral approximation – it does not preserve information about all
singular values. Our key contribution is a better understanding of what information uniform sampling
does preserve. It turns out that, although weaker than a spectral approximation, the matrix obtained
from uniform sampling can nonetheless give leverage score estimates that are good enough to obtain
increasingly better approximations to 𝐴.

3.1.1 Our Approach

Suppose we compute a set of leverage score estimates, {�̃�𝑖}, using (̃︀𝐴⊤ ̃︀𝐴)+ in place of (𝐴⊤𝐴)+ for
some already obtained matrix approximation ̃︀𝐴. As long as our leverage score approximations are
upper bounds on the true scores (�̃�𝑖 ≥ 𝜎𝑖) we can use them for sampling and still obtain a spectral
approximation to 𝐴. The number of samples we take will be

𝑐 · log 𝑛 ·
𝑚∑︁
𝑖=1

�̃�𝑖

where 𝑐 is some fixed constant. When sampling by exact leverage scores, it can be shown that∑︀
𝑖 𝜎𝑖 ≤ 𝑛 so we take 𝑐 · 𝑛 log 𝑛 rows.
Thus, to prove that our proposed iterative algorithm works, we need to show that, if we uniformly

sample a relatively small number of rows from 𝐴 (Step 1) and estimate leverage scores using these
rows (Step 2), then the sum of our estimates will be small. Then, when we sample by these estimated
leverage scores in Step 3, we can sufficiently reduce the size of 𝐴.
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In prior work, the sum of overestimates was bounded by estimating each leverage score to within a
multiplicative factor. This requires a spectral approximation, which is why previous iterative sampling
schemes could only boost poor spectral approximations to better spectral approximations. Of course,
a “for each” statement is not required, and we will not get one through uniform sampling. Thus, our
core result avoids this technique. Specifically, we show,

Theorem 3.1.1. For any 𝑘, we can select 𝑘 rows uniformly at random from 𝐴 to obtain ̃︀𝐴. Let {�̃�𝑖}
be a set of leverage score estimates for 𝐴 computed using ̃︀𝐴1. Then, we have that �̃�𝑖 ≥ 𝜎𝑖 for all 𝑖
and

E

[︃
𝑚∑︁
𝑖=1

�̃�𝑖

]︃
≤ 𝑚𝑛

𝑘
.

The validity of our proposed iterative sampling scheme immediately follows from Theorem 3.1.1.
For example, if we uniformly sample 𝑘 = 𝑚/2 rows then 𝑐 log 𝑛

∑︀
�̃�𝑖 ≤ 𝑂(𝑛 log 𝑛), so we can cut our

matrix down to 𝑂(𝑛 log 𝑛) rows. There is a convenient tradeoff – the more rows uniformly sampled
in Step 1, the more we can cut 𝐴 down by in Step 3. This tradeoff leads to natural recursive and
iterative algorithms for row sampling.

We give a proof of Theorem 3.1.1 using a simple expectation argument that bounds E
∑︀
�̃�𝑖. We

also prove alternative versions of Theorem 3.1.1 with slightly different guarantees (Theorems 3.6.1)
using a technique that we believe is of independent interest. It is well known that, if 𝐴 has low
coherence – that is, has a low maximum leverage score – then uniform sampling from the matrix is
actually sufficient for obtaining a full spectral approximation. The uniform rate will upper bound the
leverage score rate for every row. With this in mind, we show a powerful fact: while many matrices
do not have low coherence, for any 𝐴, we can decrease the weight on a small subset of rows to make
the matrix have low coherence. Specifically,

Lemma 3.1.2 (Coherence Reducing Reweighting). For any 𝐴 ∈ R𝑚×𝑛 and any coherence upper
bound 𝛼 > 0, there exists a diagonal reweighting matrix 𝑊 ∈ R𝑚×𝑚 with all entries in [0, 1] and just
(𝑛/𝛼) entries not equal to 1, such that:

∀𝑖, 𝜎𝑖(𝑊𝐴) ≤ 𝛼.

Intuitively, this lemma shows that uniform sampling gives a matrix that spectrally approximates a
large sub-matrix of the original data. It follows from our more general Theorem 3.5.1, which describes
exactly how leverage scores of 𝐴 can be manipulated through row reweighting.

We never actually find𝑊 explicitly – simply its existence implies our uniform sampling theorems.
As explained, since𝑊𝐴 has low coherence, uniform sampling would give a spectral approximation to
the reweighted matrix and thus a multiplicatively good approximation to each leverage score. Thus,
the sum of estimated leverage scores for 𝑊𝐴 will be low, i.e. < 𝑂(𝑛). It can be shown that, for
any row that is not reweighted, the leverage score in 𝐴 computed using a uniformly sampled ̃︀𝐴, is
never greater than the corresponding leverage score in 𝑊𝐴 computed using a uniformly sampled̃︂𝑊𝐴. Thus, the sum of approximate leverage scores for rows in 𝐴 that are not reweighted is small by
comparison to their corresponding leverage scores in 𝑊𝐴. How about the rows that are reweighted
in 𝑊𝐴? Lemma 3.1.2 claims there are not too many of these – we can trivially bound their leverage
score estimates by 1 and even then the total sum of estimated leverage scores will be small.

This argument gives the result we need: even if a uniformly sampled ̃︀𝐴 cannot be used to obtain
good per row leverage score upper bounds, it is sufficient for ensuring that the sum of all leverage
score estimates is not too high.

1We decribe exactly how each �̃�𝑖 is computed when we prove Theorem 3.1.1 in Section 3.4.
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3.2 Previous Work

3.2.1 Randomized Numerical Linear Algebra

In the past decade, fast randomized algorithms for matrix problems have risen to prominence. Nu-
merous results give improved running times for matrix multiplication, linear regression, and low rank
approximation – helpful surveys of this work include [184] and [112]. In addition to asymptotic run-
time gains, randomized alternatives to standard linear algebra tools tend to offer significant gains in
terms of data access patterns and required working memory.

Algorithms for randomized linear algebra often work by generically reducing problem size – large
matrices are compressed (using randomness) to smaller approximations which are processed determin-
istically via standard linear algebraic methods. Methods for matrix reduction divide roughly into two
categories – random projection methods [54, 53, 185, 200, 229] and sampling methods [70, 71, 72, 74,
73, 170].

Random projection methods recombine rows or columns from a large matrix to form a much
smaller problem that approximates the original. Descending from the Johnson-Lindenstrauss Lemma
[130] and related results, these algorithms are impressive for their simplicity and speed – reducing a
large matrix simply requires multiplication by an appropriately chosen random matrix.

Sampling methods, on the other hand, seek to approximate large matrices by judiciously selecting
(and reweighting) few rows or columns. Sampling itself is even simpler and faster than random
projection – the challenge becomes efficiently computing the correct measure of “importance” for rows
or columns. More important rows or columns are selected with higher probability.

3.2.2 Approximate Linear Regression

We focus on linear regression, i.e. solving overdetermined systems, which requires our matrix reduction
step to produce a spectral approximation ̃︀𝐴 to the data matrix 𝐴. One possibility is to obtain a 𝜀-
approximation with 𝑂(𝑛 log 𝑛/𝜀2) rows and to solve regression on the smaller problem to give an
approximate solution. To improve stability and achieve log(1/𝜀) dependence, randomized schemes
can be combined with known iterative regression algorithms. These methods only require a constant
factor spectral approximation with 𝑂(𝑛 log 𝑛) rows [22, 55, 53, 192, 228].

When random projections are used, ̃︀𝐴 = Π𝐴 for some randomly generated matrix Π which is
known as a subspace embedding. Recent progress has significantly sped up the process of computing
Π𝐴, leading to the first input-sparsity time algorithms for linear regression (or nearly input-sparsity
time if iterative methods are employed) [53, 185, 200].

3.2.3 Row Sampling

An alternative route to spectral approximation is importance sampling. Specifically, 𝑂(𝑛 log 𝑛/𝜀2)
rows can be sampled with probability proportional to their leverage scores [75, 76, 242]. In [242],
Spielman and Srivastava specifically focus on spectral approximations for the edge-vertex incidence
matrix of a graph. This is more commonly referred to as spectral graph sparsification, a primitive
that has become important in research on graph algorithms. Each row in a graph’s (potentially tall)
edge-vertex incident matrix corresponds to an edge and the row’s leverage score is exactly the edge’s
weighted effective resistance, which is used as the sampling probability in [242].

This application illustrates an important point: for spectral sparsification, it is critical that 𝐴
is compressed via sampling instead of random projection. Sampling ensures that ̃︀𝐴 contains only
reweighted rows from 𝐴, so it remains an edge-vertex incidence matrix. In general, sampling is
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interesting because it preserves row structure. Even if that structure is just a certain level of sparsity,
it can reduce memory requirements and accelerate matrix operations.

While leverage scores for the edge-vertex incidence matrix of a graph can be computed quickly
[147, 243], in general, computing leverage scores requires evaluating (𝐴⊤𝐴)+, which is as difficult as
solving regression in the first place. Li, Miller, and Peng address this issue with methods for iteratively
computing good row samples [170]. Their algorithms achieve input-sparsity time regression, but are
fairly involved and rely on intermediate operations that ultimately require Johnson-Lindenstrauss
projections, mixing rows and necessitating dense matrix operations. An alternative approach from
[170] does preserve row structure (except for possible additions of rows from the identity to intermediate
matrices) but converges in a number of steps that depends on 𝐴’s condition number.

3.3 Generalized Leverage Score

We often approximate the leverage scores of 𝐴 by computing them with respect to some other matrix
𝐵 ∈ R𝑚′×𝑛. We define the generalized leverage score:

𝜎𝐵𝑖 (𝐴)
def
=

{︃
𝐴⊤
𝑖 (B

⊤B)+𝐴𝑖 if 𝐴𝑖 ⊥ ker(𝐵),

∞ otherwise.
(3.1)

If 𝐴𝑖 has an component in ker(𝐵), we set its generalized leverage score to ∞, since it might be
the only row in 𝐴 pointing in this direction. Thus, when sampling rows, we cannot remove it. We
could set the generalized leverage score to 1, but using ∞ simplifies notation in some of our proofs.
If 𝐵 is a spectral approximation for 𝐴, then every generalized leverage score is a good multiplicative
approximation to its corresponding true leverage score:

Lemma 3.3.1 ([170, Lem 4.3]). If 1
𝜆A

⊤A ⪯ B⊤B ⪯ A⊤A, then 𝜎𝑖(𝐴) ≤ 𝜎𝐵𝑖 (𝐴) ≤ 𝜆 · 𝜎𝑖(𝐴).

3.4 Expectation Bound on Leverage Score Estimation

In this section, we use a simple expectation argument to prove Theorem 3.1.1, which is restated in full
below:

Theorem 3.1.1 (Full Statement). Given any 𝐴 ∈ R𝑚×𝑛. Let 𝑆 denote a uniformly random sample of
𝑘 rows from 𝐴 and let 𝑆 ∈ R𝑚×𝑚 be its diagonal indicator matrix (i.e. 𝑆𝑖𝑖 = 1 for 𝑖 ∈ 𝑆, 𝑆𝑖𝑖 = 0
otherwise). Define

�̃�𝑖
def
=

⎧⎨⎩𝜎
𝑆𝐴
𝑖 (𝐴) if 𝑖 ∈ 𝑆,

1
1+ 1

𝜎𝑆𝐴
𝑖

(𝐴)

otherwise.

Then, �̃�𝑖 ≥ 𝜎𝑖(𝐴) for all 𝑖 and

E

[︃
𝑚∑︁
𝑖=1

�̃�𝑖

]︃
≤ 𝑚𝑛

𝑘
.

Proof. First we show that our estimates are valid leverage score upper bounds, i.e. �̃�𝑖 ≥ 𝜎𝑖(𝐴). Let
𝑆(𝑖) be the diagonal indicator matrix for 𝑆 ∪ {𝑖}. We claim that, for all 𝑖,

�̃�𝑖 = 𝜎
𝑆(𝑖)𝐴
𝑖 (𝐴) . (3.2)

This is proved case-by-case:



36 CHAPTER 3. ℓ2 REGRESSION IN INPUT SPARSITY TIME

When 𝑖 ∈ 𝑆, 𝑆 = 𝑆(𝑖) so it holds trivially.
When 𝑖 /∈ 𝑆 and 𝑎𝑖 ̸⊥ ker(𝑆𝐴), then by definition, 𝜎𝑆𝐴𝑖 (𝐴) =∞ and �̃�𝑖 = 1

1+ 1
∞

= 1 = 𝜎𝑆
(𝑖)𝐴

𝑖 (𝐴).

When 𝑖 /∈ 𝑆 and 𝑎𝑖 ⊥ ker(𝑆𝐴) then by the Sherman-Morrison formula (Lemma 2.3.7),

𝜎𝑆
(𝑖)𝐴

𝑖 (𝐴) = 𝑎⊤𝑖

(︁
𝐴⊤𝑆2𝐴+ 𝑎𝑖𝑎

⊤
𝑖

)︁+
𝑎𝑖

= 𝑎⊤𝑖

(︃(︁
𝐴⊤𝑆2𝐴

)︁+
−
(︀
𝐴⊤𝑆2𝐴

)︀+
𝑎𝑖𝑎

⊤
𝑖

(︀
𝐴⊤𝑆2𝐴

)︀+
1 + 𝑎⊤𝑖

(︀
𝐴⊤𝑆2𝐴

)︀+
𝑎𝑖

)︃
𝑎𝑖

= 𝜎𝑆𝐴𝑖 (𝐴)− 𝜎𝑆𝐴𝑖 (𝐴)2

1 + 𝜎𝑆𝐴𝑖 (𝐴)
=

1

1 + 1
𝜎𝑆𝐴
𝑖 (𝐴)

= �̃�𝑖.

By (3.2) and the fact that𝐴⊤𝑆(𝑖)2𝐴 ⪯ 𝐴⊤A (see Lemma 3.3.1), we have �̃�𝑖 = 𝜎𝑆
(𝑖)𝐴

𝑖 (𝐴) ≥ 𝜎𝑖(𝐴),
so our estimates are upper bounds as desired. It remains to upper bound the expected sum of �̃�𝑖. We
can break down the sum as:

𝑚∑︁
𝑖=1

�̃�𝑖 =
∑︁
𝑖∈𝑆

�̃�𝑖 +
∑︁
𝑖 ̸∈𝑆

�̃�𝑖.

The first term is simply the sum of 𝑆𝐴’s leverage scores, so it is equal to rank(𝑆𝐴) ≤ 𝑛 by (2.2). To
bound the second term, consider a random process that first selects 𝑆, then selects a random row 𝑖
̸∈ 𝑆 and returns �̃�𝑖. There are always exactly 𝑚− 𝑘 rows ̸∈ 𝑆, so the value returned by this random
process is, in expectation, exactly equal to 1

𝑚−𝑘 ·E
∑︀

𝑖 ̸∈𝑆 �̃�𝑖.
This random process is also equivalent to randomly selecting a set 𝑆′ of 𝑘+1 rows, then randomly

choosing a row 𝑖 ∈ 𝑆′ and returning its leverage score! In expectation it is therefore equal to the
average leverage score in 𝑆′𝐴. 𝑆′𝐴 has 𝑘 + 1 rows and its leverage scores sum to its rank, so we can
bound its average leverage score by 𝑛

𝑘+1 . Overall:

E

[︃
𝑚∑︁
𝑖=1

�̃�𝑖

]︃
≤ 𝑛+ (𝑚− 𝑘) · 𝑛

𝑘 + 1
≤ 𝑛(𝑚+ 1)

𝑘 + 1
≤ 𝑚𝑛

𝑘
.

3.5 Coherence-Reducing Weighting

In this section, we prove Theorem 3.5.1, which shows that we can reweight a small number of rows in
any matrix 𝐴 to make it have low coherence. This structural result may be of independent interest.
It is also fundamental in proving Theorem 3.6.1, a slightly stronger version of Theorem 3.1.1 that we
will prove in Section 3.6.

Actually, for Theorem 3.5.1 we prove a more general statement, studying how to select a diagonal
row reweighting matrix 𝑊 to arbitrarily control the leverage scores of 𝑊𝐴. One simple conjecture
would be that, given a vector 𝑢, there always exists a𝑊 such that 𝜎𝑖(𝑊𝐴) = 𝑢𝑖. This conjecture is
unfortunately not true - if 𝐴 is the identity matrix, then 𝜎𝑖(𝑊𝐴) = 0 if 𝑊 𝑖𝑖 = 0 and 𝜎𝑖(𝑊𝐴) = 1
otherwise. Instead, we show the following:

Theorem 3.5.1. For any 𝐴 ∈ R𝑚×𝑛 and any vector 𝑢 ∈ R𝑚 with u 𝑖 > 0 for all 𝑖, there exists a
diagonal matrix 𝑊 ∈ R𝑚×𝑚 with 0 ⪯𝑊 ⪯ 𝐼 such that:

∀𝑖, 𝜎𝑖 (𝑊𝐴) ≤ u 𝑖, (3.3)
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and ∑︁
𝑖:𝑊 𝑖𝑖 ̸=1

u 𝑖 ≤ 𝑛. (3.4)

Note that (3.3) is easy to satisfy – it holds if we set 𝑊 = 0. Hence, the main result is the second
claim . Not only does a𝑊 exist that gives the desired leverage score bounds, but it is only necessary
to reweight rows in 𝐴 with a low total weight in terms of 𝑢.

For any incoherence parameter 𝛼, if we set u 𝑖 = 𝛼 for all 𝑖, then this theorem shows the existence
of a reweighting that reduces coherence to 𝛼. Such a reweighting has

∑︀
𝑖:𝑊 𝑖𝑖 ̸=1 𝛼 ≤ 𝑛 and therefore

|{𝑖 :𝑊 𝑖𝑖 ̸= 1}| ≤ 𝑛
𝛼 . So, we see that Lemma 3.1.2 follows as a special case of Theorem 3.5.1.

In order to prove Theorem 3.5.1, we first give two technical lemmas which are proved Section 3.8.
Lemma 3.5.2 describes how the leverage scores of 𝐴 evolve when a single row of 𝐴 is reweighted. We
show that, when we decrease the weight of a row, that row’s leverage score decreases and the leverage
score of all other rows increases.

Lemma 3.5.2 (Leverage Score Changes Under Rank 1 Updates). Given any 𝐴 ∈ R𝑚×𝑛, 𝛾 ∈ (0, 1),
and 𝑖 ∈ [𝑚], let 𝑊 be a diagonal matrix such that 𝑊 𝑖𝑖 =

√
1− 𝛾 and 𝑊 𝑗𝑗 = 1 for all 𝑗 ̸= 𝑖. Then,

𝜎𝑖 (𝑊𝐴) =
(1− 𝛾)𝜎𝑖 (𝐴)

1− 𝛾𝜎𝑖 (𝐴)
≤ 𝜎𝑖 (𝐴) ,

and for all 𝑗 ̸= 𝑖,

𝜎𝑗 (𝑊𝐴) = 𝜎𝑗 (𝐴) +
𝛾𝜎𝑖𝑗 (𝐴)2

1− 𝛾𝜎𝑖 (𝐴)
≥ 𝜎𝑗 (𝐴) .

Next we claim that, with respect to weightings of 𝐴’s rows, leverage scores are lower semi-
continuous.

Lemma 3.5.3 (Leverage Scores are Lower Semi-continuous). 𝜎(𝑊𝐴) is lower semi-continuous in

the diagonal matrix 𝑊 , i.e. for any sequence 𝑊 (𝑘) →𝑊 with 𝑊
(𝑘)
𝑖𝑖 ≥ 0 for all 𝑘 and 𝑖, we have

𝜎𝑖
(︀
𝑊𝐴

)︀
≤ lim inf

𝑘→∞
𝜎𝑖

(︁
𝑊 (𝑘)𝐴

)︁
.

With Lemmas 3.5.2 and 3.5.3 in place, we are ready to prove the main reweighting theorem.

Proof of Theorem 3.5.1. We prove the existence of the required 𝑊 by considering the limit of the
Algorithm 1 for computing a reweighting matrix.

For all 𝑘 ≥ 0, let 𝑊 (𝑘) be the value of 𝑊 after the 𝑘th update to the weight. We show that
𝑊 = lim𝑘→∞𝑊

(𝑘) meets the conditions of Theorem 3.5.1. First note that Algorithm 1 is well defined
and that all entries of 𝑊 (𝑘) are non-negative for all 𝑘 ≥ 0. To see this, suppose we need to decrease
𝑊

(𝑘)
𝑖𝑖 so that 𝜎𝑖(𝑊 (𝑘+1)𝐴) = u 𝑖. Note that the condition 𝜎𝑖(𝑊 (𝑘)𝐴) < 1 gives

lim
𝛾→1

(1− 𝛾)𝜎𝑖
(︁
𝑊 (𝑘)𝐴

)︁
1− 𝛾𝜎𝑖

(︁
𝑊 (𝑘)𝐴

)︁ = 0.

Therefore, Lemma 3.5.2 shows that we can make 𝜎𝑖(𝑊 (𝑘+1)𝐴) arbitrary small by setting 𝛾 close
enough to 1. Since the leverage score for row 𝑖 is continuous, this implies that 𝑊 (𝑘+1) exists as
desired.
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Algorithm 1: ComputeReweighting (a.k.a the whack-a-mole algorithm)
Initialize 𝑊 = 𝐼.
while true do

for 𝑖 = 1 to 𝑛 do
if 𝜎𝑖(𝑊𝐴) ≥ u 𝑖 then

if 𝜎𝑖(𝑊𝐴) < 1 then
Decrease 𝑊 𝑖𝑖 so that 𝜎𝑖(𝑊𝐴) = u 𝑖.

else
Set 𝑊 𝑖𝑖 = 0.

end

end

end

end

Output:𝑊 .

Since, the entries of 𝑊 (𝑘) are non-negative and decrease monotonically by construction, clearly
𝑊 exists. Furthermore, since setting 𝑊 𝑖𝑖 = 0 makes 𝜎𝑖(𝑊𝐴) = 0, we see that, by construction,

lim inf
𝑘→∞

𝜎𝑖

(︁
𝑊 (𝑘)𝐴

)︁
≤ u 𝑖 for all 𝑖 ∈ [𝑛].

Therefore, by Lemma 3.5.3 we have that 𝜎𝑖(𝑊𝐴) ≤ 𝑢𝑖.
It only remains to show that

∑︀
𝑖:𝑊 𝑖𝑖 ̸=1 u 𝑖 ≤ 𝑛. Let 𝑘 be the first iteration such that 𝑊 (𝑘)

𝑖𝑖 ̸= 1 for

any 𝑖 such that 𝑊 𝑖𝑖 ̸= 1. Let 𝑆 ⊆ [𝑚] be the set of rows such that 𝑊 (𝑘)
𝑖𝑖 = 0 and let 𝑇 = {𝑖 :𝑊 𝑖𝑖 ̸=

1}−𝑆. Since decreasing the weight of one row increases the leverage scores of all other rows, we have∑︁
𝑖∈𝑇∪𝑆

u 𝑖 ≤
∑︁
𝑖∈𝑇

𝜎𝑖

(︁
𝑊 (𝑘)𝐴

)︁
+
∑︁
𝑖∈𝑆

1

≤ rank
(︁
𝑊 (𝑘)𝐴

)︁
+ |𝑆| .

When we set 𝑊 𝑖𝑖 = 0, it must be the case that 𝜎𝑖(𝑊𝐴) = 1. In this case, removing the 𝑖th row
decreases the rank of 𝑊𝐴 by 1 and hence rank(𝑊 (𝑘)𝐴) ≤ 𝑛− |𝑆|. Therefore,∑︁

𝑖:𝑊 𝑖𝑖 ̸=1

u 𝑖 =
∑︁
𝑖∈𝑇∪𝑆

u 𝑖 ≤ 𝑛.

3.6 High Probability Bound on Leverage Score Estimation

Theorem 3.1.1 alone is enough to prove that a variety of iterative methods for spectral approxima-
tion work. In particular, we can use Lemma 2.3.3 to show that sampling each row with probability
Θ(min{1, �̃�𝑖 log 𝑛}) independently with suitable reweighting gives a spectral approximation of the
original matrix. Since �̃�𝑖 is a constant approximation of min{1,𝜎𝑆𝐴𝑖 (𝐴)}, the total number of rows
it takes is Θ

(︀∑︀
𝑖min{1,𝜎𝑆𝐴𝑖 (𝐴) log 𝑛}

)︀
which can be bounded by the

∑︀
𝑖min{1,𝜎𝑆𝐴𝑖 (𝐴)} bound

proved in Theorem 3.1.1.
In this section, we bound

∑︀
𝑖min{1,𝜎𝑆𝐴𝑖 (𝐴) log 𝑛} directly and it allows us to bound the quantity

with a high probability instead of merely in expectation. The proof relies on Theorem 3.5.1, which
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intuitively shows that a large fraction of our matrix 𝐴 has low coherence. Sampling rows uniformly
will give a spectral approximation for this portion of our matrix. Then, since few rows are reweighted
in𝑊𝐴, even loose upper bounds on the leverage scores for those rows will allow us to bound the total
sum of estimated leverage scores when we sample uniformly.

Theorem 3.6.1. Given any 𝐴 ∈ R𝑚×𝑛. Let 𝑆 denote a uniformly random sample of 𝑘 rows from 𝐴
and let 𝑆 ∈ R𝑚×𝑚 be its diagonal indicator matrix (i.e. 𝑆𝑖𝑖 = 1 for 𝑖 ∈ 𝑆, 𝑆𝑖𝑖 = 0 otherwise). With
high probability in 𝑛, we have that

𝑛∑︁
𝑖=1

min
{︀
1,𝜎𝑆𝐴𝑖 (𝐴) log 𝑛

}︀
≤ 𝑂

(︂
𝑚𝑛 log 𝑛

𝑘

)︂
.

Resampling from 𝐴 by these estimates will, with high probability, return a 𝜀-spectral approximation to

𝐴 with at most 𝑂
(︁
𝑚𝑛 log𝑛
𝑘𝜀2

)︁
rows.

Proof. Let 𝑐 be the constant 𝑐 in Lemma 2.3.3. By Theorem 3.5.1, there is a diagonal matrix𝑊 ⪯ 𝐼
such that 𝜎𝑖(𝑊𝐴) ≤ 𝑘

𝑐𝑚 log𝑛 for all 𝑖 and
∑︀

𝑖:𝑊 𝑖𝑖 ̸=1
𝑘

𝑐𝑚 log𝑛 ≤ 𝑛. For this 𝑊 , we have

𝑛∑︁
𝑖=1

min
{︀
1,𝜎𝑆𝐴𝑖 (𝐴) log 𝑛

}︀
≤

∑︁
𝑖:𝑊 𝑖𝑖 ̸=1

1 + log 𝑛
∑︁

𝑖:𝑊 𝑖𝑖=1

𝜎𝑆𝐴𝑖 (𝐴)

≤ 𝑐𝑚𝑛 log 𝑛

𝑘
+ log 𝑛

∑︁
𝑖:𝑊 𝑖𝑖=1

𝜎𝑆𝐴𝑖 (𝐴)

=
𝑐𝑚𝑛 log 𝑛

𝑘
+ log 𝑛

∑︁
𝑖:𝑊 𝑖𝑖=1

𝜎𝑆𝐴𝑖 (𝑊𝐴). (3.5)

Since 𝜎𝑖(𝑊𝐴) ≤ 𝑘
𝑐𝑚 log𝑛 and 𝑆 is a uniformly random sample of 𝑘 rows, Lemma 2.3.3 shows that

1

2
𝐴⊤𝑊 2𝐴 ⪯ 𝑚

𝑘
𝐴⊤𝑊𝑆2𝑊𝐴. (3.6)

Hence (3.6) along with Lemma 3.3.1 shows that

𝜎𝑆𝐴𝑖 (𝑊𝐴) ≤ 2𝑚

𝑘
𝜎𝑖(𝑊𝐴).

Combining with (3.5), we have

𝑛∑︁
𝑖=1

min
{︀
1,𝜎𝑆𝐴𝑖 (𝐴) log 𝑛

}︀
≤ 𝑐𝑚𝑛 log 𝑛

𝑘
+

2𝑚 log 𝑛

𝑘

∑︁
𝑖:𝑊 𝑖𝑖=1

𝜎𝑖(𝑊𝐴)

≤ 𝑐𝑚𝑛 log 𝑛

𝑘
+

2𝑚𝑛 log 𝑛

𝑘
= 𝑂

(︂
𝑚𝑛 log 𝑛

𝑘

)︂
.

The last statement follows from Lemma 3.3.1 with sampling probabilitiesmin
{︁
1,

𝑐𝜎𝑆𝐴
𝑖 (𝐴) log𝑛

𝜀2

}︁
.

3.7 Main Result

As discussed in the introduction, Theorems 3.1.1 and 3.6.1 immediately yield new, extremely simple
algorithms for spectral matrix approximation. For clarity, we initially present versions running in
nearly input-sparsity time. However, we later explain how our first algorithm can be modified with
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standard techniques to remove log factors, achieving input-sparsity time and thus matching state-of-
the-art results [53, 185, 200]. Our algorithms rely solely on row sampling, which preserves matrix
sparsity and structure, possibly improving space usage and runtime for intermediate system solves.

3.7.1 Repeated Halving

The algorithm we present, RepeatedHalving, is a simple recursive procedure. We uniformly sample
𝑚
2 rows from 𝐴 to obtain 𝐴′. By Theorems 3.1.1 and 3.6.1, estimating leverage scores of 𝐴 with
respect to this sample allows us to immediately find a spectral approximation to 𝐴 with 𝑂(𝑛 log 𝑛)
rows. Of course, 𝐴′ is still large, so computing these estimates would be slow. Thus, we recursively
find a spectral approximation of 𝐴′ and use this to compute the estimated leverage scores.

Algorithm 2: RepeatedHalving

Input: 𝑚× 𝑛 matrix 𝐴
Output: spectral approximation ̃︀𝐴 consisting of 𝑂(𝑛 log 𝑛) rescaled rows of 𝐴
Uniformly sample 𝑚

2 rows of 𝐴 to form 𝐴′.

If 𝐴′ has > 𝑂(𝑛 log 𝑛) rows, recursively compute a spectral approximation ̃︀𝐴′
of 𝐴′.

Compute approximate generalized leverage scores of 𝐴 w.r.t. ̃︀𝐴′

Use these estimates to sample rows of 𝐴 to form ̃︀𝐴.
Output ̃︀𝐴.
In analyzing the runtimes of these algorithms, we assume 𝑚 = 𝑂(poly(𝑛)), which is a reasonable

assumption for any practical regression problem.2 Furthermore, we use the fact that a 𝑛 × 𝑛 system
can be solved in time 𝑛𝜔, where 𝜔 is the matrix multiplication exponent. However, we emphasize that,
depending on the structure and sparsity of 𝐴, alternative system solving methods may yield faster
results or runtimes with different trade offs. For example, if the rows of 𝐴 are sparse, solving a system
in ̃︀𝐴, where ̃︀𝐴 consists of 𝑂(𝑛 log 𝑛) rescaled rows from 𝐴 may be accelerated by using iterative
conjugate gradient, or other Krylov subspace methods (which can also avoid explicitly computing̃︀𝐴⊤ ̃︀𝐴). It is best to think of 𝑛𝜔 as the runtime of the fastest available system solver in your domain,
and the quoted runtimes as general guidelines that will change somewhat depending on exactly how
the above algorithms are implemented.

First, we give an important primitive showing that estimates of generalized leverage scores can be
computed efficiently. Computing exact generalized leverage scores is slow and we only need constant
factor approximations, which will only increase our sampling rates and hence number of rows sampled
by a constant factor.

Lemma 3.7.1. Given 𝐵 containing 𝑂(𝑛 log 𝑛) rescaled rows of 𝐴, for any 1 > 𝜃 > 0, it is possible
to compute an estimate of 𝜎𝐵(𝐴), �̃�, in 𝑂(𝑛𝜔𝜃−1 + nnz(A)𝜃−1) time such that, w.h.p. in 𝑛, for all
𝑖, �̃�𝑖 ≥ 𝜎𝐵𝑖 (𝐴) and �̃�𝑖 ≤ 𝑂(𝑛𝜃)𝜎𝐵𝑖 (𝐴).

Setting 𝜃 = 𝑂( 1
log𝑛) gives a constant factor approximation to generalized leverage score in𝑂(𝑛𝜔 log 𝑛+

nnz(𝐴) log 𝑛) time.

Proof. The proof is basically same as Lemma 2.3.4 except that we use fast matrix multiplication to
solve the corresponding linear systems and that we need to handle the case 𝑎𝑖 ̸⊥ ker(𝐵). When
𝑎𝑖 ̸⊥ ker(𝐵), its generalized leverage score should be ∞ – see (3.1). So, we need to check whether
each 𝑎𝑖 has a component in the null-space of 𝐵. This can be done in a variety of ways. For example,
we can choose a random gaussian vector 𝑔 and compute 𝑔 − B(B⊤B)+𝐵⊤𝑔, which is the same as

2A simple method for handling even larger values of 𝑛 is outlined in [170].



3.7. Main Result 41

𝑔− (B⊤B)+B⊤B𝑔. This gives a random vector in the null space of 𝐵, so computing its dot product
with any row 𝑎𝑖 will tell us (with probability 1) whether 𝑎𝑖 is orthogonal to the null space or not.

With Lemma 3.7.1 in place, we can analyze the runtime of our algorithms. For simplicity, we
give runtimes for computing a constant factor spectral approximation to 𝐴, which can be used as a
preconditioner in iterative regression algorithms [22, 53, 228] or used to compute leverage scores of 𝐴
up to a constant factor. We could sample 𝑂(𝑛 log 𝑛𝜀−2) rows to directly obtain a 𝜀-approximation.
By Lemma 3.7.1 the runtime of this final refinement is just 𝑂(nnz(𝐴) log 𝑛+ 𝑛𝜔 log 𝑛).

Lemma 3.7.2. RepeatedHalving (Algorithm 2) runs in time 𝑂(nnz(𝐴) log 𝑛 + 𝑛𝜔 log(𝑚/𝑛) log 𝑛),

outputting a matrix with ̃︀𝐴 with 𝑂(𝑛 log 𝑛) rows such that ̃︀𝐴⊤ ̃︀𝐴 ≈2 𝐴
⊤𝐴.

Proof. The proof is by induction – it suffices to show that the work at the top level is 𝑂(nnz(𝐴) log 𝑛+
𝑛𝜔 log 𝑛). At each of the 𝑂(log(𝑚/𝑛)) levels of recursion, we cut our matrix in half uniformly so nnz(𝐴)
will also be cut approximately in half with high probability.

By Theorem 3.6.1, sampling by 𝜎𝐴
′

𝑖 (𝐴) allows us to obtain ̃︀𝐴 with 𝑂(𝑛 log 𝑛) rows. If we instead

use ̃︀𝐴′
, our estimated leverage scores increase by at most a constant factor (since ̃︀𝐴′

is a constant factor
spectral approximation to 𝐴′). Furthermore, using Lemma 3.7.1 to approximate generalized leverage
scores increases our estimates by another constant factor at most. Overall, ̃︀𝐴 will have 𝑂(𝑛 log 𝑛)
rows as desired and our runtime at the top level is just the runtime of estimating leverage scores from
Lemma 3.7.1 – 𝑂(nnz(𝐴) log 𝑛+ 𝑛𝜔 log 𝑛).

3.7.2 Achieving Input Sparsity Time

We briefly note that, using techniques from [170], it is possible to remove the log 𝑛 factor on the
nnz(𝐴) term to achieve true input-sparsity time with RepeatedHalving. Instead of using Lemma
3.7.1 to estimate generalized leverage scores from up to a constant factor using 𝐴′, we only estimate
them up to a 𝑂(𝑛𝜃) factor for some constant 0 < 𝜃 < 𝜔−2. Using these rough estimates, we obtain ̃︀𝐴
with 𝑂(𝑛1+𝜃 log 𝑛) rows. Then, for the rows in ̃︀𝐴, we can again compute generalized leverage scores
with respect to 𝐴′, now up to constant factors, and reduce down to just 𝑂(𝑛 log 𝑛) rows. In total,
each iteration will take time 𝑂(𝜃−1(nnz(𝐴)+𝑛𝜔 log 𝑛)), so obtaining a constant factor approximation
to 𝐴 takes time 𝑂(𝜃−1nnz(𝐴) + 𝜃−1𝑛𝜔 log2 𝑛). Recall that we assume 𝑚 = poly(𝑛), so we have
log(𝑚/𝑛) = 𝑂(log 𝑛) iterations.

In order to obtain a 𝜀-spectral approximation with only 𝑂(𝑛 log 𝑛𝜀−2) rows, we first obtain a con-
stant factor approximation, ̃︀𝐴, with 𝑂(𝑛 log 𝑛) rows. We then use leverage scores estimated with ̃︀𝐴 to
compute a 𝜀/2-approximation to 𝐴 with 𝑂(𝑛1+𝜃 log 𝑛𝜀−2) rows. Finally, we again use leverage scores
estimated with ̃︀𝐴 and Lemma 3.7.1 with 𝜃 = 𝑂(𝜀2/ log 𝑛) to a compute a 𝜀/2-approximation to this
smaller matrix with only 𝑂(𝑛 log 𝑛𝜀−2) rows. This takes total time 𝑂(𝜃−1nnz(𝐴) + 𝜃−1𝑛𝜔 log2 𝑛 +
𝑛2+𝜃 log2 𝑛𝜀−2). The 𝑛2+𝜃 log3 𝑛𝜀−2 comes from applying Lemma 3.7.1 to refine our second approxi-
mation, which has 𝑂(𝑛1+𝜃 log 𝑛𝜀−2) rows and thus at most 𝑂(𝑛2+𝜃 log 𝑛𝜀−2) nonzero entries. Overall,
the technique yields:

Lemma 3.7.3. Given any constant 0 < 𝜃 ≤ 𝜔 − 2, and any error 0 ≤ 𝜀 < 1, w.h.p. in 𝑛 we

can compute a matrix ̃︀𝐴 with 𝑂(𝑛 log 𝑛𝜀−2) rows such that ̃︀𝐴⊤ ̃︀𝐴 ≈1+𝜀 𝐴
⊤𝐴 in 𝑂(𝜃−1nnz(𝐴) +

𝜃−1𝑛𝜔 log2 𝑛+ 𝑛2+𝜃𝜀−2) time.

Proof. As is standard, log 𝑛 factors on the 𝑛2+𝜃 term are ‘hidden’ as we can just slightly increase the
value of 𝜃 to subsume them.
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3.8 Appendix

3.8.1 Rank 1 Updates

Here we prove Lemma 3.5.2, making critical use of the Sherman-Morrison formula for the Moore-
Penrose pseudoinverse (Lemma 2.3.7).

Lemma 3.5.2 (Leverage Score Changes Under Rank 1 Updates). Given any 𝐴 ∈ R𝑚×𝑛, 𝛾 ∈ (0, 1),
and 𝑖 ∈ [𝑚], let 𝑊 be a diagonal matrix such that 𝑊 𝑖𝑖 =

√
1− 𝛾 and 𝑊 𝑗𝑗 = 1 for all 𝑗 ̸= 𝑖. Then,

we have

𝜎𝑖(𝑊𝐴) =
(1− 𝛾)𝜎𝑖(𝐴)

1− 𝛾𝜎𝑖(𝐴)
≤ 𝜎𝑖(𝐴),

and for all 𝑗 ̸= 𝑖,

𝜎𝑗(𝑊𝐴) = 𝜎𝑗(𝐴) +
𝛾𝜎𝑖𝑗(𝐴)2

1− 𝛾𝜎𝑖(𝐴)
≥ 𝜎𝑗(𝐴).

Proof.

𝜎𝑖(𝑊𝐴) = 1𝑖𝑊𝐴
(︁
𝐴⊤𝑊 2𝐴

)︁+
𝐴⊤𝑊⊤1⊤𝑖 (definition of leverage scores)

= (1− 𝛾)𝑎⊤𝑖
(︁
𝐴⊤𝐴− 𝛾𝑎𝑖𝑎⊤𝑖

)︁+
𝑎𝑖 (definition of 𝑊 )

= (1− 𝛾)𝑎⊤𝑖
(︂
(𝐴⊤𝐴)+ + 𝛾

(𝐴⊤𝐴)+𝑎𝑖𝑎
⊤
𝑖 (𝐴

⊤𝐴)+

1− 𝛾𝑎⊤𝑖 (𝐴⊤𝐴)+𝑎𝑖

)︂
𝑎𝑖 (Sherman-Morrison formula)

= (1− 𝛾)
(︂
𝜎𝑖(𝐴) +

𝛾𝜎𝑖(𝐴)2

1− 𝛾𝜎𝑖(𝐴)

)︂
=

(1− 𝛾)𝜎𝑖(𝐴)

1− 𝛾𝜎𝑖(𝐴)
≤ 𝜎𝑖(𝐴).

Similarly,

𝜎𝑗(𝑊𝐴) = 𝑎⊤𝑗

(︁
𝐴⊤𝐴− 𝛾𝑎𝑖𝑎⊤𝑖

)︁+
𝑎𝑗

= 𝑎⊤𝑗

(︂
(𝐴⊤𝐴)+ + 𝛾

(𝐴⊤𝐴)+𝑎𝑖𝑎
⊤
𝑖 (𝐴

⊤𝐴)+

1− 𝛾𝑎⊤𝑖 (𝐴⊤𝐴)+𝑎𝑖

)︂
𝑎𝑗

= 𝜎𝑗(𝐴) +
𝛾𝜎𝑖𝑗(𝐴)2

1− 𝛾𝜎𝑖(𝐴)
≥ 𝜎𝑗(𝐴).

3.8.2 Lower Semi-continuity of Leverage Scores

Here we prove Lemma 3.5.3 by providing a fairly general inequality, Lemma 3.8.1, for relating leverage
scores under one set of weights to leverage scores under another.

Lemma 3.5.3 (Leverage Scores are Lower Semi-continuous). 𝜎(𝑊𝐴) is lower semi-continuous in the
diagonal matrix 𝑊 , i.e. for any sequence 𝑊 (𝑘) →𝑊 with 𝑊 (𝑘)

𝑖𝑖 ≥ 0 for all 𝑘 and 𝑖, we have

𝜎𝑖(𝑊𝐴) ≤ lim inf
𝑘→∞

𝜎𝑖(𝑊
(𝑘)𝐴). (3.7)
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Lemma 3.8.1 (Comparing Leverage Scores). Let 𝑊 ,𝑊 ∈ R𝑚×𝑚 be non-negative diagonal matrices
and suppose that 𝑊 𝑖𝑖 > 0 and 𝑊 𝑖𝑖 > 0 for some 𝑖 ∈ [𝑚]. Then

𝜎𝑖(𝑊𝐴) ≤ 𝑊
2
𝑖𝑖

𝑊 2
𝑖𝑖

(︃
1 +

√︃
𝜆max

(︂
𝐴
(︁
𝐴⊤𝑊

2
𝐴
)︁+
𝐴⊤
)︂
‖𝑊 −𝑊 ‖∞

)︃2

𝜎𝑖(𝑊𝐴). (3.8)

Proof. Scaling the variables in Lemma 2.3.1 we have that there exists 𝑥 ∈ R𝑚 such that

𝐴⊤𝑊𝑥 = 𝑎𝑖 and ‖𝑥‖22 =
𝜎𝑖(𝑊𝐴)

𝑊 2
𝑖𝑖

. (3.9)

Note that 𝐴⊤ (︀𝑊 −𝑊
)︀
𝑥 is in the image of 𝐴⊤𝑊 as 𝐴⊤𝑊𝑥 = 𝑎𝑖 and 𝑊 𝑖𝑖 ̸= 0. Consequently,

𝐴⊤𝑊𝑦 = 𝐴⊤ (︀𝑊 −𝑊
)︀
𝑥(𝑘) for 𝑦

def
= 𝑊𝐴

(︁
𝐴⊤𝑊

2
𝐴
)︁+
𝐴⊤ (︀𝑊 −𝑊

)︀
𝑥.

Since 𝐴⊤𝑊 (𝑥+ 𝑦) = 𝑎𝑖, Lemma 2.3.1 implies

𝜎𝑖(𝑊𝐴) ≤𝑊 2
𝑖𝑖 ‖𝑥+ 𝑦‖22 . (3.10)

We can bound the contribution of 𝑦 by

‖𝑦‖22 ≤
⃦⃦⃦⃦
𝑊𝐴

(︁
𝐴⊤𝑊

2
𝐴
)︁+
𝐴⊤ (︀𝑊 −𝑊

)︀
𝑥

⃦⃦⃦⃦2
2

≤ 𝜆max

(︂
𝐴
(︁
𝐴⊤𝑊

2
𝐴
)︁+
𝐴⊤
)︂ ⃦⃦
𝑊 −𝑊

⃦⃦2
∞ ‖𝑥‖

2
2. (3.11)

Applying triangle inequality to (3.9), (3.10), and (3.11) yields the result.

Proof of Lemma 3.5.3. For any 𝑖 ∈ [𝑛] such that 𝑊 𝑖𝑖 = 0 (3.7) follows trivially from the fact that
leverage scores are non-negative. For any 𝑖 ∈ [𝑚] such that𝑊 𝑖𝑖 > 0, since𝑊 (𝑘) →𝑊 we know that,
for all sufficiently large 𝑘 ≥ 𝑁 for some fixed value 𝑁 , it is the case that𝑊 (𝑘)

𝑖𝑖 > 0. Furthermore, this

implies that as 𝑘 → ∞ we have 𝑊
2
𝑖𝑖/(𝑊

(𝑘)
𝑖𝑖 )2 → 1 and

⃦⃦⃦
𝑊 (𝑘) −𝑊

⃦⃦⃦
∞
→ 0. Applying Lemma 3.8.1

with 𝑊 =𝑊 (𝑘) and taking lim inf𝑘→∞ on both sides of (3.8) gives the result.
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Chapter 4

Linear-Sized Sparsifier In Almost-Linear Time

4.1 Introduction

In the last chapter, we showed how to compute𝑂(𝑛 log 𝑛) sized spectral sparsifier in input sparsity time.
In this chapter, we show how to construct a spectral sparsifier with even smaller size. In particular,
we present an almost-linear time algorithm for constructing linear-sized spectral sparsifiers for graphs,
which improves all previous constructions that either require Ω

(︀
𝑛2+𝜀

)︀
time in order to produce linear-

sized sparsifiers [9, 31, 278], or 𝑂(𝑚 log𝑂(1) 𝑛/𝜀2) time but the number of edges in the sparsifiers is
sub-optimal [242]. Our algorithm is conceptually simple, and is based on a novel combination of two
techniques used in literature for constructing spectral sparsifiers: random sampling by leverage scores
we used in the last chapter, and adaptive construction based on barrier functions [9, 31]. Our result
is summarized as follows:

Theorem 4.1.1. Let 𝑞 ≥ 1 and 0 < 𝜀 ≤ 1 be constants, and 𝐼 =
∑︀𝑚

𝑖=1 v 𝑖v
𝑇
𝑖 be the sum of 𝑚 rank-1

PSD matrices. Then, there is an algorithm that outputs scalars {𝑠𝑖}𝑚𝑖=1 with |{𝑠𝑖 : 𝑠𝑖 ̸= 0}| = 𝑂
(︀
𝑞𝑛/𝜀2

)︀
such that

(1− 𝜀) · 𝐼 ⪯
𝑚∑︁
𝑖=1

𝑠𝑖v 𝑖v
𝑇
𝑖 ⪯ (1 + 𝜀) · 𝐼.

The algorithm runs in �̃�
(︀
𝑍 + 𝑛𝜔+1/𝑞𝜀−4

)︀
time, where 𝑍 is the total number of non-zeros in v 𝑖.

Theorem 4.1.2. Let 𝑞 ≥ 1 and 0 < 𝜀 ≤ 1 be constants, and 𝐺 = (𝑉,𝐸,𝑤) be an undirected and
weighted graph with 𝑛 vertices and 𝑚 edges. Then, there is an algorithm that outputs a 𝜀-spectral
sparsifier of 𝐺 with 𝑂

(︀
𝑞𝑛/𝜀2

)︀
edges. The algorithm runs in �̃�

(︀
𝑚+ 𝑛1+1/𝑞𝜀−(6+1/𝑞)

)︀
time.

4.2 Algorithm

In this section we study the algorithm of sparsifying the sum of rank-1 PSD matrices. Remember that
our goal is to, for any vectors v1, · · · v𝑚 with

∑︀𝑚
𝑖=1 v 𝑖v

𝑇
𝑖 = 𝐼, find scalars {𝑠𝑖}𝑚𝑖=1 satisfying

|{𝑠𝑖 : 𝑠𝑖 ̸= 0}| = 𝑂
(︁𝑞𝑛
𝜀2

)︁
,

such that

(1− 𝜀) · 𝐼 ⪯
𝑚∑︁
𝑖=1

𝑠𝑖v 𝑖v
𝑇
𝑖 ⪯ (1 + 𝜀) · 𝐼.

4.2.1 Overview of our approach

At a high level, our algorithm can be viewed as an improved and randomized version of the algorithm
presented in Batson et al. [31]. We refer their algorithm BSS for short, and first give a brief overview
of the BSS algorithm.
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The BSS algorithm proceeds by iterations, and the matrix 𝐴𝑗 in iteration 𝑗 ≥ 1 is defined as the
sum of 𝐴𝑗−1 and a proper chosen rank-1 matrix. To control the spectral properties of matrix 𝐴𝑗 , the
algorithm introduces two barrier values 𝑢𝑗 and ℓ𝑗 , where 𝑢0 > 0, ℓ0 < 0 initially. It was proven that
one can always find a vector in {v 𝑖}𝑚𝑖=1 and update 𝑢𝑗 , ℓ𝑗 in a proper manner in each iteration, such
that the invariant

ℓ𝑗𝐼 ≺ 𝐴𝑗 ≺ 𝑢𝑗𝐼 (4.1)

always holds [31]. To quantitatively measure “how close the eigenvalues of 𝐴 are to the barriers 𝑢 and
ℓ", Batson et al. [31] analyzed the potential function defined by

Φ𝑢,ℓ(𝐴) , Tr(𝑢𝐼 −𝐴)−1 +Tr(𝐴− ℓ𝐼)−1. (4.2)

Notice that the value of Φ𝑢,ℓ(𝐴) is large if and only if some eigenvalue of 𝐴 is close to 𝑢 or ℓ. With
the help of this potential function, it was shown that, when updating 𝐴𝑗 and barrier values 𝑢𝑗 , ℓ𝑗
properly, it holds after 𝑘 = Θ

(︀
𝑛/𝜀2

)︀
iterations that ℓ𝑘 ≥ 𝑐𝑢𝑘 for some constant 𝑐. This implies that

the resulting matrix 𝐴𝑘 is a linear-sized and 𝐴𝑘 ≈𝑂(𝜀) 𝐼.

However, the BSS algorithm is deterministic, and its time complexity for finding a desired rank-1
matrix in each iteration is high. To improve the runtime and further discuss our approach, let us
study the following randomized variant of the BSS algorithm: In each iteration, we choose a vector v 𝑖
with probability 𝑝𝑖, and add a rank-1 matrix

Δ𝐴 ,
𝜀

Tr(𝑢𝐼 −𝐴)−1 +Tr(𝐴− ℓ𝐼)−1
· 1
𝑝𝑖
· v 𝑖v𝑇𝑖

to the current matrix 𝐴. See Algorithm 3 for formal description.

Algorithm 3: Randomized BSS algorithm
Set 𝑗 = 0, ℓ0 = −8𝑛/𝜀, 𝑢0 = 8𝑛/𝜀, 𝐴0 = 0.
while 𝑢𝑗 − ℓ𝑗 < 8𝑛/𝜀 do

Let 𝑡 = Tr (𝑢𝑗𝐼 −𝐴𝑗)
−1 +Tr (𝐴𝑗 − ℓ𝑗𝐼)−1.

Sample a vector v 𝑖 with probability

𝑝𝑖 ,
(︁
v𝑇𝑖 (𝑢𝑗𝐼 −𝐴𝑗)

−1 v 𝑖 + v𝑇𝑖 (𝐴𝑗 − ℓ𝑗𝐼)−1 v 𝑖

)︁
/𝑡.

𝐴𝑗+1 = 𝐴𝑗 +
𝜀
𝑡 ·

1
𝑝𝑖
· v 𝑖v𝑇𝑖 ;

𝑢𝑗+1 = 𝑢𝑗 +
𝜀

𝑡·(1−𝜀) and ℓ𝑗+1 = ℓ𝑗 +
𝜀

𝑡·(1+𝜀) ;
𝑗 ← 𝑗 + 1;

end

Output:𝐴𝑗 .

Let us look at a fixed iteration 𝑗, and analyze how the added Δ𝐴 impacts the potential function.
We drop the subscript representing the iteration 𝑗 for simplicity. After adding Δ𝐴, the first-order
approximation of Φ𝑢,ℓ(𝐴) gives that

Φ𝑢,ℓ(𝐴+Δ𝐴) ∼ Φ𝑢,ℓ(𝐴) + (𝑢𝐼 −𝐴)−2 ∙Δ𝐴 − (𝐴− ℓ𝐼)−2 ∙Δ𝐴. (4.3)

Since

E [Δ𝐴] =
∑︀𝑚

𝑖=1 𝑝𝑖 ·
(︁
𝜀
𝑡 ·

1
𝑝𝑖
· v 𝑖v𝑇𝑖

)︁
= 𝜀

𝑡 ·
∑︀𝑚

𝑖=1 v 𝑖v
𝑇
𝑖 = 𝜀

𝑡 · 𝐼,
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we have that

E [Φ𝑢,ℓ(𝐴+Δ𝐴)] ∼ Φ𝑢,ℓ(𝐴) +
𝜀

𝑡
· (𝑢𝐼 −𝐴)−2 ∙ 𝐼 − 𝜀

𝑡
· (𝐴− ℓ𝐼)−2 ∙ 𝐼

= Φ𝑢,ℓ(𝐴) +
𝜀

𝑡
· Tr (𝑢𝐼 −𝐴)−2 − 𝜀

𝑡
· Tr (𝐴− ℓ𝐼)−2

= Φ𝑢,ℓ(𝐴)− 𝜀

𝑡
· d

d𝑢
Φ𝑢,ℓ(𝐴)− 𝜀

𝑡
· d
dℓ

Φ𝑢,ℓ(𝐴).

Notice that if we increase 𝑢 by 𝜀/𝑡 and ℓ by 𝜀/𝑡, Φ𝑢,ℓ approximately increases by

𝜀

𝑡
· d

d𝑢
Φ𝑢,ℓ(𝐴) +

𝜀

𝑡
· d
dℓ

Φ𝑢,ℓ(𝐴).

Hence, comparing Φ𝑢+𝜀/𝑡,ℓ+𝜀/𝑡(𝐴 + Δ𝐴) with Φ𝑢,ℓ(𝐴), the increase of the potential function due to
the change of barrier values is approximately compensated by the decrease of the potential function
by the effect of Δ𝐴. For a more rigorous analysis, we need to analyze the higher-order terms and
increase 𝑢 slightly more than ℓ. Batson et al. [31] gives the following estimate:

Lemma 4.2.1 ([31], proof of Lemma 3.3 and 3.4). Let 𝐴 ∈ R𝑛×𝑛, and 𝑢, ℓ be parameters satisfying
ℓ𝐼 ≺ 𝐴 ≺ 𝑢𝐼. Suppose that 𝑤 ∈ R𝑛 satisfies 𝑤𝑤𝑇 ⪯ 𝛿(𝑢𝐼 − 𝐴) and 𝑤𝑤𝑇 ⪯ 𝛿(𝐴 − ℓ𝐼) for some
0 < 𝛿 < 1. Then, it holds that

Φ𝑢,ℓ(𝐴+𝑤𝑤𝑇 ) ≤ Φ𝑢,ℓ(𝐴) +
𝑤𝑇 (𝑢𝐼 −𝐴)−2𝑤

1− 𝛿
− 𝑤

𝑇 (𝐴− ℓ𝐼)−2𝑤

1 + 𝛿
.

The estimate above shows that the first-order approximation (4.3) is good as long as 𝑤𝑤𝑇 ⪯
𝛿(𝑢𝐼−𝐴) and 𝑤𝑤𝑇 ⪯ 𝛿(𝐴− ℓ𝐼) for small 𝛿. By setting 𝛿 = 𝜀, it is easy to see that the added matrix
Δ𝐴 satisfies the preconditions in Lemma 4.2.1, since

𝜀

𝑡
· 1
𝑝𝑖
· v 𝑖v𝑇𝑖 =

𝜀 · v 𝑖v𝑇𝑖
𝑣𝑇𝑖 (𝑢𝐼 −𝐴)−1 𝑣𝑖 + v𝑇𝑖 (𝐴− ℓ𝐼)−1 v 𝑖

⪯ 𝜀 · 𝑣𝑖𝑣𝑇𝑖
𝑣𝑇𝑖 (𝑢𝐼 −𝐴)−1 𝑣𝑖

⪯ 𝜀 (𝑢𝐼 −𝐴) .

Here we used the fact that 𝑣𝑣𝑇 ⪯ (𝑣𝑇𝐵−1𝑣)𝐵 for any vector 𝑣 and PSD matrix 𝐵. Similarly, we have
that

𝜀

𝑡
· 1
𝑝𝑖
· 𝑣𝑖𝑣𝑇𝑖 ⪯ 𝜀(𝐴− ℓ𝐼).

Hence, if the initial value of the potential function is small, Φ𝑢,ℓ(𝐴) is small throughout the executions
of the whole algorithm. Up to a constant factor, this gives the same result as [31], and Algorithm 3
constructs an Θ(𝑛/𝜀2)-sized 𝑂(𝜀)-spectral sparsifier.

However, Algorithm 3 runs for Θ(𝑛/𝜀2) iterations, and in each iteration the algorithm re-computes
the probability distribution for sampling vectors. To improve the runtime of Algorithm 3, we need
to overcome two bottlenecks: (1) we need a fast algorithm to approximate the sampling probability
{𝑝𝑖}𝑚𝑖=1 of vectors; (2) we need to reduce the number of iterations required by the algorithm, i.e.
re-using the sampling probability {𝑝𝑖}𝑚𝑖=1 for few iterations.

For fast approximation of the sampling probabilities, we adopt the idea proposed in [9]: instead of
defining the potential function by (4.2), we define the potential function by

Φ𝑢,ℓ(𝐴) , Tr(𝑢𝐼 −𝐴)−𝑞 +Tr(𝐴− ℓ𝐼)−𝑞. (4.4)

Since 𝑞 is a large constant, the value of the potential function becomes larger when some eigenvalue
of 𝐴 is closer to 𝑢 or ℓ. Hence, a bounded value of Φ𝑢,ℓ(𝐴) insures that the eigenvalues of 𝐴 never get
too close to 𝑢 or ℓ, which allows us to compute the sampling probabilities {𝑝𝑖}𝑚𝑖=1 efficiently simply
by Taylor expansion. Moreover, with our new potential function (4.4) one can prove a similar result
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as Lemma 4.2.1. This gives an alternative analysis of the algorithm presented in [9], which is the first
almost-quadratic time algorithm for constructing linear-sized spectral sparsifiers.

To overcome the second bottleneck, we re-compute {𝑝𝑖}𝑚𝑖=1 after every Θ
(︀
𝑛1−1/𝑞

)︀
iterations: we

show that as long as the sampling probability satisfies

𝑝𝑖 ≥ 𝐶 ·
v𝑇𝑖 (𝑢𝐼 −𝐴)−1 v 𝑖 + v𝑇𝑖 (𝐴− ℓ𝐼)−1 v 𝑖∑︀𝑚

𝑖=1

(︁
v𝑇𝑖 (𝑢𝐼 −𝐴)−1 v 𝑖 + v𝑇𝑖 (𝐴− ℓ𝐼)−1 v 𝑖

)︁
for some constant 𝐶 > 0, we can still sample 𝑣𝑖 with probability 𝑝𝑖 and get the same guarantee
on the potential function. The reason is as follows: assume that Δ𝐴 =

∑︀𝑇
𝑖=1Δ𝐴,𝑖 is the sum of the

sampled matrices within 𝑇 = 𝑂
(︀
𝑛1−1/𝑞

)︀
iterations. If a randomly chosen matrix Δ𝐴,𝑖 satisfies Δ𝐴,𝑖 ⪯

1
𝐶𝑞 (𝑢𝐼 −𝐴), then by the matrix Chernoff bound Δ𝐴 ⪯ 1

2 (𝑢𝐼 −𝐴) holds with high probability. By
scaling every sampled rank-1 matrix 𝑞 times smaller, the sampling probability only changes by a
constant factor within 𝑇 iterations. Since we choose Θ(𝑛/𝜀2) vectors in total, our algorithm only
recomputes the sampling probabilities Θ

(︀
𝑛1/𝑞/𝜀2

)︀
times.

4.2.2 Algorithm description

Our actual algorithm follows the same framework as Algorithm 3, and proceeds by iterations. Initially,
the algorithm sets

𝑢0 , (2𝑛)1/𝑞, ℓ0 , −(2𝑛)1/𝑞, 𝐴0 , 0.

After iteration 𝑗 the algorithm updates 𝑢𝑗 , ℓ𝑗 by Δ𝑢,𝑗 ,Δℓ,𝑗 respectively, i.e.,

𝑢𝑗+1 , 𝑢𝑗 +Δ𝑢,𝑗 , ℓ𝑗+1 , ℓ𝑗 +Δℓ,𝑗 ,

and updates 𝐴𝑗 with respect to the chosen matrix in iteration 𝑗. The choice of Δ𝑢,𝑗 and Δℓ,𝑗 insures
that the invariant

ℓ𝑗𝐼 ≺ 𝐴𝑗 ≺ 𝑢𝑗𝐼
always holds for any iteration 𝑗. In iteration 𝑗, the algorithm computes the relative leverage score of
vectors {𝑣𝑖}𝑚𝑖=1 defined by

𝑅𝑖 (𝐴𝑗 , 𝑢𝑗 , ℓ𝑗) , v𝑇𝑖 (𝑢𝑗𝐼 −𝐴𝑗)
−1 v 𝑖 + v𝑇𝑖 (𝐴𝑗 − ℓ𝑗𝐼)−1 v 𝑖,

and samples 𝑁𝑗 vectors independently with replacement, where vector 𝑣𝑖 is chosen with probability
proportional to 𝑅𝑖(𝐴𝑗 , 𝑢𝑗 , ℓ𝑗), and

𝑁𝑗 ,
1

𝑛2/𝑞

(︃
𝑚∑︁
𝑖=1

𝑅𝑖(𝐴𝑗 , 𝑢𝑗 , ℓ𝑗)

)︃
min {𝜆min(𝑢𝑗𝐼 −𝐴𝑗), 𝜆min(𝐴𝑗 − ℓ𝑗𝐼)} .

The algorithm sets𝐴𝑗+1 to be the sum of𝐴𝑗 and sampled v 𝑖v
𝑇
𝑖 with proper reweighting. For technical

reasons, we define Δ𝑢,𝑗 and Δℓ,𝑗 by

Δ𝑢,𝑗 , (1 + 2𝜀) · 𝜀 ·𝑁𝑗

𝑞 ·
∑︀𝑚

𝑖=1𝑅𝑖(𝐴𝑗 , 𝑢𝑗 , ℓ𝑗)
, Δℓ,𝑗 , (1− 2𝜀) · 𝜀 ·𝑁𝑗

𝑞 ·
∑︀𝑚

𝑖=1𝑅𝑖(𝐴𝑗 , 𝑢𝑗 , ℓ𝑗)
.

See Algorithm 4 for formal description.
We remark that, although exact values of 𝑁𝑗 and relative leverage scores are difficult to compute

in almost-linear time, we can use approximated values of {𝑅𝑖}𝑚𝑖=1 and 𝑁𝑗 instead. It is easy to see
that in each iteration an over estimate of the relative leverage score for every vector v 𝑖, and an under
estimate of 𝑁𝑗 with constant-factor approximation suffice for our purpose.
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Algorithm 4: Algorithm for constructing spectral sparsifiers
Assume: 0 < 𝜀 ≤ 1/120, 𝑞 ≥ 10.
Set 𝑗 = 0, ℓ0 = −(2𝑛)1/𝑞, 𝑢0 = (2𝑛)1/𝑞,𝐴0 = 0.
while 𝑢𝑗 − ℓ𝑗 < 4 · (2𝑛)1/𝑞 do

Let 𝑊 𝑗 = 0.
Compute 𝑅𝑖(𝐴𝑗 , 𝑢𝑗 , ℓ𝑗) for all vectors 𝑣𝑖.
Sample 𝑁𝑗 vectors independently with replacement, where every 𝑣𝑖 is chosen with
probability proportional to 𝑅𝑖(𝐴𝑗 , 𝑢𝑗 , ℓ𝑗).
For every sampled 𝑣, add 𝜀/𝑞 · (𝑅𝑖(𝐴𝑗 , 𝑢𝑗 , ℓ𝑗))

−1 · 𝑣𝑣𝑇 to 𝑊 𝑗 .
𝐴𝑗+1 = 𝐴𝑗 +𝑊 𝑗 .
𝑢𝑗+1 = 𝑢𝑗 +Δ𝑢,𝑗 , ℓ𝑗+1 = ℓ𝑗 +Δℓ,𝑗 .
𝑗 = 𝑗 + 1.

end

Output:𝐴𝑗 .

4.3 Analysis

In this section we prove that the output matrix returned by Algorithm 4 is a 𝜀-spectral sparsifier, and
analyze the algorithm’s runtime. To simplify our analysis, we always assume in the rest of the chapter
that 𝜀 and 𝑞 are constants such that 0 < 𝜀 ≤ 1/120, and 𝑞 ≥ 10.

This section is organized as follows: we will first show how the potential function (4.4) evolves
after each iteration in Section 4.3.1. Combing this with the ending condition of the algorithm, we will
prove in Section 4.3.2 that the algorithm outputs a linear-sized spectral sparsifier. Finally, we will
prove Theorem 4.1.2 and Theorem 4.1.1 in Section 4.3.3. In appendix, we show almost-linear time
algorithms for approximately computing all required quantities of Algorithm 4 within each iteration
when constructing graph sparsifiers.

4.3.1 Analysis of a single iteration

We analyze the sampling scheme within a single iteration, and drop the subscript representing the
iteration 𝑗 for simplicity. Recall that in each iteration the algorithm samples 𝑁 vectors independently
from {v 𝑖}𝑚𝑖=1 satisfying

∑︀𝑚
𝑖=1 v 𝑖v

𝑇
𝑖 = 𝐼, where every vector v 𝑖 is sampled with probability

𝑅𝑖(𝐴, 𝑢, ℓ)∑︀𝑚
𝑗=1𝑅𝑗(𝐴, 𝑢, ℓ)

.

We use v1, · · · , v𝑁 to denote these 𝑁 sampled vectors, and define the reweighted vectors by

𝑤𝑖 ,
√︂

𝜀

𝑞 ·𝑅𝑖(𝐴, 𝑢, ℓ)
· v 𝑖,

for any 1 ≤ 𝑖 ≤ 𝑁 . Let

𝑊 ,
𝑁∑︁
𝑖=1

𝑤𝑖𝑤
𝑇
𝑖 ,

and we use 𝑊 ∼ 𝒟(𝐴, 𝑢, ℓ) to represent that 𝑊 is sampled in this way with parameters 𝐴, 𝑢 and ℓ.
We will show that with high probability matrix 𝑊 satisfies 0 ⪯ 𝑊 ⪯ 1

2(𝑢𝐼 −𝐴). This is basically
follows from Matrix Chernoff Bound (Lemma 2.3.10).
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Lemma 4.3.1. Assume that the number of sampled vectors satisfies

𝑁 <
2

𝑛2/𝑞

(︃
𝑚∑︁
𝑖=1

𝑅𝑖(𝐴, 𝑢, ℓ)

)︃
· 𝜆min(𝑢𝐼 −𝐴).

Then, it holds that E [𝑊 ] = 𝜀
𝑞 ·

𝑁∑︀𝑚
𝑖=1𝑅𝑖(𝐴,𝑢,ℓ)

· 𝐼 and

Pr

[︂
0 ⪯𝑊 ⪯ 1

2
· (𝑢𝐼 −𝐴)

]︂
≥ 1− 𝜀2

100𝑞𝑛
.

Proof. By the description of the sampling procedure, the first statement follows from the calculation

E
[︀
𝑤𝑖𝑤

𝑇
𝑖

]︀
=

𝑚∑︁
𝑗=1

𝑅𝑗(𝐴, 𝑢, ℓ)∑︀𝑚
𝑡=1𝑅𝑡(𝐴, 𝑢, ℓ)

· 𝜀
𝑞
·

v 𝑗v
𝑇
𝑗

𝑅𝑗(𝐴, 𝑢, ℓ)
=
𝜀

𝑞
· 1∑︀𝑚

𝑡=1𝑅𝑡(𝐴, 𝑢, ℓ)
· 𝐼,

and

E [𝑊 ] = E

[︃
𝑁∑︁
𝑖=1

𝑤𝑖𝑤
𝑇
𝑖

]︃
=
𝜀

𝑞
· 𝑁∑︀𝑚

𝑖=1𝑅𝑖(𝐴, 𝑢, ℓ)
· 𝐼.

Now for the second statement. Let 𝑧𝑖 = (𝑢𝐼 −𝐴)−1/2𝑤𝑖. It holds that

Tr
(︀
𝑧𝑖𝑧

𝑇
𝑖

)︀
=
𝜀

𝑞
·
Tr
(︀
(𝑢𝐼 −𝐴)−1/2v 𝑖v

𝑇
𝑖 (𝑢𝐼 −𝐴)−1/2

)︀
𝑅𝑖(𝐴, 𝑢, ℓ)

≤ 𝜀

𝑞
· v𝑇𝑖 (𝑢𝐼 −𝐴)−1v 𝑖

v𝑇𝑖 (𝑢𝐼 −𝐴)−1v 𝑖 + v𝑇𝑖 (𝐴− ℓ𝐼)−1v 𝑖
≤ 𝜀

𝑞
,

and 𝜆max(𝑧𝑖𝑧
𝑇
𝑖 ) ≤ 𝜀

𝑞 . Moreover, it holds that

E

[︃
𝑁∑︁
𝑖=1

𝑧𝑖𝑧
𝑇
𝑖

]︃
⪯ 𝜀

𝑞
· 𝑁∑︀𝑚

𝑡=1𝑅𝑡(𝐴, 𝑢, ℓ)
· 𝜆max

(︂
1

𝑢𝐼 −𝐴

)︂
· 𝐼. (4.5)

This implies that

𝜆max

(︃
E

[︃
𝑁∑︁
𝑖=1

𝑧𝑖𝑧
𝑇
𝑖

]︃)︃
≤ 𝜀

𝑞
· 𝑁∑︀𝑚

𝑡=1𝑅𝑡(𝐴, 𝑢, ℓ)
· 𝜆max

(︂
1

𝑢𝐼 −𝐴

)︂
.

Setting 𝜇 = 𝜀
𝑞 ·

𝑁∑︀𝑚
𝑖=1𝑅𝑖(𝐴,𝑢,ℓ)

· 𝜆max

(︁
1

𝑢𝐼−𝐴

)︁
, the Matrix Chernoff Bound (Lemma 2.3.10) shows that

Pr

[︃
𝜆max

(︃
𝑁∑︁
𝑖=1

𝑧𝑖𝑧
𝑇
𝑖

)︃
≥ (1 + 𝛿)𝜇

]︃
≤ 𝑛 ·

(︂
𝑒𝛿

(1 + 𝛿)1+𝛿

)︂𝜇·𝑞/𝜀
.

Set the value of 1 + 𝛿 to be

1 + 𝛿 =
1

2𝜇
=

𝑞

2𝜀𝑁
·

⎛⎝ 𝑚∑︁
𝑗=1

𝑅𝑗(𝐴, 𝑢, ℓ)

⎞⎠ · 1

𝜆max

(︁
1

𝑢𝐼−𝐴

)︁
=

𝑞

2𝜀𝑁
·

⎛⎝ 𝑚∑︁
𝑗=1

𝑅𝑗(𝐴, 𝑢, ℓ)

⎞⎠ · 𝜆min(𝑢𝐼 −𝐴) ≥ 𝑞

4𝜀
· 𝑛2/𝑞,
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where the last inequality follows from the condition on 𝑁 . Hence, with probability at least

1− 𝑛 ·
(︂

𝑒𝛿

(1 + 𝛿)1+𝛿

)︂𝜇·𝑞/𝜀
≥ 1− 𝑛 ·

(︂
𝑒

1 + 𝛿

)︂(1+𝛿)·𝜇·𝑞/𝜀
≥ 1− 𝑛

(︂
𝑒

1 + 𝛿

)︂ 𝑞
2𝜀

≥ 1− 𝜀2

100𝑞𝑛
,

we have that

𝜆max

(︃
𝑁∑︁
𝑖=1

𝑧𝑖𝑧
𝑇
𝑖

)︃
≤ (1 + 𝛿) · 𝜇 =

1

2
,

which implies that 0 ⪯
∑︀𝑁

𝑖=1 𝑧𝑖𝑧
𝑇
𝑖 ⪯ 1

2 · 𝐼 and 0 ⪯𝑊 ⪯ 1
2 · (𝑢𝐼 −𝐴).

Now we analyze the change of the potential function after each iteration, and show that the
expected value of the potential function decreases over time. By Lemma 4.3.1, with probability at
least 1− 𝜀2

100𝑞𝑛 , it holds that

0 ⪯𝑊 ⪯ 1

2
(𝑢𝐼 −𝐴).

We define

̃︀E [𝑓(𝑊 )] ,
∑︁

𝑊∼𝒟(𝐴,𝑢,ℓ)

Pr
[︂
𝑊 is chosen and 𝑊 ⪯ 1

2
(𝑢𝐼 −𝐴)

]︂
· 𝑓 (𝑊 ) .

Lemma 4.3.2 below shows how the potential function changes after each iteration, and plays a key
role in our analysis. This lemma was first proved in [31] for the case of 𝑞 = 1, and similar lemma was
proved in [9].

Lemma 4.3.2 ([9]). Let 𝑞 ≥ 10 and 𝜀 ≤ 1/10. Suppose that 𝑤𝑇 (𝑢𝐼 −𝐴)−1𝑤 ≤ 𝜀/𝑞 and 𝑤𝑇 (𝐴 −
ℓ𝐼)−1𝑤 ≤ 𝜀/𝑞. Then, it holds that

Tr(𝐴+𝑤𝑤𝑇 − ℓ𝐼)−𝑞 ≤ Tr(𝐴− ℓ𝐼)−𝑞 − 𝑞(1− 𝜀) 𝑤𝑇 (𝐴− ℓ𝐼)−(𝑞+1)𝑤,

and
Tr(𝑢𝐼 −𝐴−𝑤𝑤𝑇 )−𝑞 ≤ Tr(𝑢𝐼 −𝐴)−𝑞 + 𝑞(1 + 𝜀) 𝑤𝑇 (𝑢𝐼 −𝐴)−(𝑞+1)𝑤.

Proof. Let 𝑌 = 𝐴− ℓ𝐼. By the Sherman-Morrison Formula (Lemma 2.3.7), it holds that

Tr(𝑌 +𝑤𝑤𝑇 )−𝑞 = Tr

(︂
𝑌 −1 − 𝑌

−1𝑤𝑤𝑇𝑌 −1

1 + 𝑤𝑇𝑌 −1𝑤

)︂𝑞
. (4.6)

By the assumption of 𝑤𝑇𝑌 −1𝑤 ≤ 𝜀/𝑞, we have that

Tr(𝑌 + 𝑤𝑤𝑇 )−𝑞 ≤ Tr

(︂
𝑌 −1 − 𝑌

−1𝑤𝑤𝑇𝑌 −1

1 + 𝜀/𝑞

)︂𝑞
(4.7)

= Tr

(︃
𝑌 −1/2

(︃
𝐼 − 𝑌

−1/2𝑤𝑤𝑇𝑌 −1/2

1 + 𝜀/𝑞

)︃
𝑌 −1/2

)︃𝑞

≤ Tr

(︃
𝑌 −𝑞/2

(︃
𝐼 − 𝑌

−1/2𝑤𝑤𝑇𝑌 −1/2

1 + 𝜀/𝑞

)︃𝑞
𝑌 −𝑞/2

)︃
(4.8)

= Tr

(︃
𝑌 −𝑞

(︃
𝐼 − 𝑌

−1/2𝑤𝑤𝑇𝑌 −1/2

1 + 𝜀/𝑞

)︃𝑞)︃
, (4.9)

where (4.7) uses the fact that 𝐴 ⪯ 𝐵 implies that Tr (𝐴𝑞) ≤ Tr (𝐵𝑞), (4.8) follows from the Lieb-
Thirring inequality (Lemma 2.3.11), and (4.8) uses the fact that the trace is invariant under cyclic
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permutations.

Let 𝐷 = 𝑌 −1/2𝑤𝑤𝑇𝑌 −1/2

1+𝜀/𝑞 . Note that 0 ⪯ 𝐷 ⪯ 𝜀
𝑞 · 𝐼, and

(𝐼 −𝐷)𝑞 ⪯ 𝐼 − 𝑞𝐷 +
𝑞(𝑞 − 1)

2
𝐷2

⪯ 𝐼 −
(︂
𝑞 − 𝜀(𝑞 − 1)

2

)︂
𝐷.

Therefore, we have that(︃
𝐼 − 𝑌

−1/2𝑤𝑤𝑇𝑌 −1/2

1 + 𝜀/𝑞

)︃𝑞
⪯ 𝐼 −

(︂
𝑞 − 𝜀(𝑞 − 1)

2

)︂
𝑌 −1/2𝑤𝑤𝑇𝑌 −1/2

1 + 𝜀/𝑞

⪯ 𝐼 −
(︂
𝑞 − 𝜀(𝑞 − 1)

2

)︂(︂
1− 𝜀

𝑞

)︂
𝑌 −1/2𝑤𝑤𝑇𝑌 −1/2

⪯ 𝐼 − 𝑞
(︂
1− 𝜀(𝑞 + 1)

2𝑞

)︂
𝑌 −1/2𝑤𝑤𝑇𝑌 −1/2

⪯ 𝐼 − 𝑞 (1− 𝜀)𝑌 −1/2𝑤𝑤𝑇𝑌 −1/2.

This implies that

Tr(𝑌 + 𝑤𝑤𝑇 )−𝑞 ≤ Tr
(︁
𝑌 −𝑞

(︁
𝐼 − 𝑞(1− 𝜀)𝑌 −1/2𝑤𝑤𝑇𝑌 −1/2

)︁)︁
≤ Tr

(︀
𝑌 −𝑞)︀− 𝑞(1− 𝜀) 𝑤𝑇𝑌 −(𝑞+1)𝑤,

which proves the first statement.

Now for the second inequality. Let 𝑍 = 𝑢𝐼 − 𝐴. By the Sherman-Morrison Formula (Lemma
2.3.7), it holds that

Tr(𝑍 − 𝑤𝑤𝑇 )−𝑞 = Tr

(︂
𝑍−1 +

𝑍−1𝑤𝑤𝑇𝑍−1

1− 𝑤𝑇𝑍−1𝑤

)︂𝑞
.

By the assumption of 𝑤𝑇𝑍−1𝑤 ≤ 𝜀/𝑞, it holds that

Tr(𝑍 − 𝑤𝑤𝑇 )−𝑞 ≤ Tr

(︂
𝑍−1 +

𝑍−1𝑤𝑤𝑇𝑍−1

1− 𝜀/𝑞

)︂𝑞
(4.10)

= Tr

(︃
𝑍−1/2

(︃
𝐼 +

𝑍−1/2𝑤𝑤𝑇𝑍−1/2

1− 𝜀/𝑞

)︃
𝑍−1/2

)︃𝑞

≤ Tr

(︃
𝑍−𝑞/2

(︃
𝐼 +

𝑍−1/2𝑤𝑤𝑇𝑍−1/2

1− 𝜀/𝑞

)︃𝑞
𝑍−𝑞/2

)︃
(4.11)

= Tr

(︃
𝑍−𝑞

(︃
𝐼 +

𝑍−1/2𝑤𝑤𝑇𝑍−1/2

1− 𝜀/𝑞

)︃𝑞)︃
, (4.12)

where (4.10) uses the fact that 𝐴 ⪯ 𝐵 implies Tr (𝐴𝑞) ≤ Tr (𝐵𝑞), (4.11) follows from the Lieb-
Thirring inequality (Lemma 2.3.11), and (4.12) uses the fact that the trace is invariant under cyclic
permutations.

Let 𝐸 = 𝑍−1/2𝑤𝑤𝑇𝑍−1/2. Combing 𝐸 ⪯ 𝜀
𝑞 · 𝐼 with the assumption that 𝑞 ≥ 10 and 𝜀 ≤ 1/10, we
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have that (︂
𝐼 +

𝐸

1− 𝜀/𝑞

)︂𝑞
⪯ 𝐼 + 𝑞𝐸

1− 𝜀/𝑞
+
𝑞(𝑞 − 1)

2

(︂
1 +

𝜀/𝑞

1− 𝜀/𝑞

)︂𝑞−2(︂ 𝐸

1− 𝜀/𝑞

)︂2

⪯ 𝐼 + 𝑞

(︂
1 + 1.1

𝜀

𝑞

)︂
𝐸 + 1.4

𝑞(𝑞 − 1)

2
𝐸2

⪯ 𝐼 + 𝑞 (1 + 0.3𝜀)𝐸 + 0.7𝜀𝑞𝐸

⪯ 𝐼 + 𝑞 (1 + 𝜀)𝐸.

Therefore, we have that

Tr(𝑍 − 𝑤𝑤𝑇 )−𝑞 ≤ Tr
(︀
𝑍−𝑞)︀+ 𝑞(1 + 𝜀) 𝑤𝑇𝑍−(𝑞+1)𝑤,

which proves the second statement.

The following lemma shows that, with our choice of updated matrices and barrier values, the value
of the potential function will never increase.

Lemma 4.3.3. It holds for any iteration 𝑗 that Φ𝑢𝑗+1,ℓ𝑗+1
(𝐴𝑗+1) ≤ Φ𝑢𝑗 ,ℓ𝑗 (𝐴𝑗).

Proof. Let 𝑤1𝑤
𝑇
1 , · · · , 𝑤𝑁𝑗𝑤

𝑇
𝑁𝑗

be the matrices picked in iteration 𝑗, and define for any 0 ≤ 𝑖 ≤ 𝑁𝑗

that 𝐵𝑖 = 𝐴𝑗 +
∑︀𝑖

𝑡=1𝑤𝑡𝑤
𝑇
𝑡 . We study the change of the potential function after adding a rank-1

matrix within each iteration. For this reason, we use

Δ𝑢 =
Δ𝑢,𝑗

𝑁𝑗
= (1 + 2𝜀) · 𝜀

𝑞 ·
∑︀𝑚

𝑡=1𝑅𝑡(𝐴𝑗 , 𝑢𝑗 , ℓ𝑗)
,

and

Δℓ =
Δℓ,𝑗

𝑁𝑗
= (1− 2𝜀) · 𝜀

𝑞 ·
∑︀𝑚

𝑡=1𝑅𝑡(𝐴𝑗 , 𝑢𝑗 , ℓ𝑗)

to express the average change of the barrier values Δ𝑢,𝑗 and Δℓ,𝑗 . We further define for 0 ≤ 𝑗 ≤ 𝑁𝑗

that �̂�𝑖 = 𝑢𝑗 + 𝑖 ·Δ𝑢, ℓ̂𝑖 = ℓ𝑗 + 𝑖 ·Δℓ.

Assuming 0 ⪯𝑊𝑗 ⪯ 1
2(𝑢𝑗𝐼 −𝐴𝑗), we claim that

𝑤𝑖𝑤
𝑇
𝑖 ⪯

2𝜀

𝑞
· (�̂�𝑖𝐼 −𝐵𝑖−1) and 𝑤𝑖𝑤

𝑇
𝑖 ⪯

2𝜀

𝑞
·
(︁
𝐵𝑖−1 − ℓ̂𝑖𝐼

)︁
, (4.13)

for any 1 ≤ 𝑖 ≤ 𝑁𝑗 . Based on this, we apply Lemma 4.3.2 and get that

Φ�̂�𝑖,ℓ̂𝑖

(︀
𝐵𝑖−1 + 𝑤𝑖𝑤

𝑇
𝑖

)︀
≤ Φ�̂�𝑖,ℓ̂𝑖(𝐵𝑖−1) + 𝑞(1 + 2𝜀)Tr

(︁
(�̂�𝑖𝐼 −𝐵𝑖−1)

−(𝑞+1)E
[︀
𝑤𝑖𝑤

𝑇
𝑖

]︀)︁
− 𝑞(1− 2𝜀)Tr

(︂(︁
𝐵𝑖−1 − ℓ̂𝑖𝐼

)︁−(𝑞+1)
E
[︀
𝑤𝑖𝑤

𝑇
𝑖

]︀)︂
= Φ�̂�𝑖,ℓ̂𝑖(𝐵𝑖−1) + 𝑞 ·Δ𝑢 · Tr

(︁
(�̂�𝑖𝐼 −𝐵𝑖−1)

−(𝑞+1)
)︁

− 𝑞 ·Δℓ · Tr
(︁
(𝐵𝑖−1 − ℓ̂𝑖𝐼)−(𝑞+1)

)︁
. (4.14)

We define a function 𝑓𝑖 : R→ R by

𝑓𝑖(𝑥) = Tr
(︀(︀
�̂�𝑖−1 + 𝑥 ·Δ𝑢

)︀
𝐼 −𝐵𝑖−1

)︀−𝑞
+Tr

(︁
𝐵𝑖−1 −

(︁
ℓ̂𝑖−1 + 𝑥 ·Δℓ

)︁
𝐼
)︁−𝑞

.
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Notice that

d𝑓𝑖(𝑥)

d𝑥
= −𝑞 ·Δ𝑢 · Tr

(︀(︀
�̂�𝑖−1 + 𝑥 ·Δ𝑢

)︀
𝐼 −𝐵𝑖−1

)︀−(𝑞+1)

+ 𝑞 ·Δℓ · Tr
(︁
𝐵𝑖−1 −

(︁
ℓ̂𝑖−1 + 𝑥 ·Δℓ

)︁
𝐼
)︁−(𝑞+1)

.

Since 𝑓 is convex, we have that

d𝑓𝑖(𝑥)

d𝑥

⃒⃒⃒
𝑥=1
≥ 𝑓𝑖(1)− 𝑓𝑖(0) = Φ�̂�𝑖,ℓ̂𝑖(𝐵𝑖−1)− Φ�̂�𝑖−1,ℓ̂𝑖−1

(𝐵𝑖−1). (4.15)

Putting (4.14) and (4.15) together, we have that

Φ�̂�𝑖,ℓ̂𝑖(𝐵𝑖) ≤ Φ�̂�𝑖,ℓ̂𝑖(𝐵𝑖−1)−
d𝑓𝑖(𝑥)

d𝑥

⃒⃒⃒
𝑥=1
≤ Φ�̂�𝑖−1,ℓ̂𝑖−1

(𝐵𝑖−1).

Repeating this argument we have that

Φ𝑢𝑗+1,ℓ𝑗+1
(𝐴𝑗+1) = Φ�̂�𝑁𝑗

,ℓ̂𝑁𝑗

(︀
𝐵𝑁𝑗

)︀
≤ Φ�̂�0,ℓ̂0(𝐵0) = Φ𝑢𝑗 ,ℓ𝑗 (𝐴𝑗),

which proves the statement.
So, it suffices to prove (4.13). Since 𝑣𝑣𝑇 ⪯ (𝑣𝑇𝐵−1𝑣)𝐵 for any vector 𝑣 and PSD matrix 𝐵, we

have that
𝑣𝑖𝑣

𝑇
𝑖

𝑅𝑖(𝐴𝑗 , 𝑢𝑗 , ℓ𝑗)
⪯ 𝑣𝑖𝑣

𝑇
𝑖

𝑣𝑇𝑖 (𝑢𝑗𝐼 −𝐴𝑗)−1𝑣𝑖
⪯ 𝑢𝑗𝐼 −𝐴𝑗 .

By the assumption of 𝑊𝑗 ⪯ 1
2(𝑢𝑗𝐼 −𝐴𝑗), it holds that

𝑤𝑖𝑤
𝑇
𝑖 =

𝜀

𝑞𝑅𝑖(𝐴𝑗 , 𝑢𝑗 , ℓ𝑗)
𝑣𝑖𝑣

𝑇
𝑖 ⪯

𝜀

𝑞
(𝑢𝑗𝐼 −𝐴𝑗) ⪯

2𝜀

𝑞
(�̂�𝑖𝐼 −𝐵𝑖−1) .

This proves the first statement of the claim.
For the second statement, notice that

ℓ𝑗+1 − ℓ𝑗 = Δℓ,𝑗 ≤
𝜀𝑁𝑗

𝑞
∑︀𝑚

𝑡=1𝑅𝑡(𝐴𝑗 , 𝑢𝑗 , ℓ𝑗)
≤ 1

2
· 𝜆min(𝐴𝑗 − ℓ𝑗𝐼),

and hence
𝑤𝑖𝑤

𝑇
𝑖 ⪯

𝜀

𝑞
(𝐴𝑗 − ℓ𝑗𝐼) ⪯

2𝜀

𝑞

(︁
𝐴𝑗 − ℓ̂𝑖𝐼

)︁
⪯ 2𝜀

𝑞

(︁
𝐵𝑖−1 − ℓ̂𝑖𝐼

)︁
.

4.3.2 Analysis of the approximation guarantee

In this subsection we will prove that the algorithm produces a linear-sized 𝑂(𝜀)-spectral sparsifier. We
assume that the algorithm finishes after 𝑘 iterations, and will prove that the condition number of 𝐴𝑘
is small, which follows from our setting of parameters.

Lemma 4.3.4. The output matrix 𝐴𝑘 has condition number at most 1 +𝑂(𝜀).

Proof. Since the condition number of 𝐴𝑘 is at most 𝑢𝑘
ℓ𝑘

=
(︁
1− 𝑢𝑘−ℓ𝑘

𝑢𝑘

)︁−1
, it suffices to prove that

(𝑢𝑘 − ℓ𝑘)/𝑢𝑘 = 𝑂(𝜀).
Since the increase rate of Δ𝑢,𝑗 −Δℓ,𝑗 with respect to Δ𝑢,𝑗 for any iteration 𝑗 is

Δ𝑢,𝑗 −Δℓ,𝑗

Δ𝑢,𝑗
=

(1 + 2𝜀)− (1− 2𝜀)

1 + 2𝜀
=

4𝜀

1 + 2𝜀
≤ 4𝜀,
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we have that

𝑢𝑘 − ℓ𝑘
𝑢𝑘

=
2 · (2𝑛)1/𝑞 +

∑︀𝑘−1
𝑗=0 (Δ𝑢,𝑗 −Δℓ,𝑗)

(2𝑛)1/𝑞 +
∑︀𝑘−1

𝑗=0 Δ𝑢,𝑗

≤
2 · (2𝑛)1/𝑞 +

∑︀𝑘−1
𝑗=0 (Δ𝑢,𝑗 −Δℓ,𝑗)

(2𝑛)1/𝑞 + (4𝜀)−1
∑︀𝑘−1

𝑗=0 (Δ𝑢,𝑗 −Δℓ,𝑗)
.

By the ending condition of the algorithm, it holds that 𝑢𝑘 − ℓ𝑘 ≥ 4 · (2𝑛)1/𝑞, i.e.

𝑘−1∑︁
𝑗=0

(Δ𝑢,𝑗 −Δℓ,𝑗) ≥ 2 · (2𝑛)1/𝑞.

Hence, it holds that
𝑢𝑘 − ℓ𝑘
𝑢𝑘

≤ 2 · (2𝑛)1/𝑞 + 2 · (2𝑛)1/𝑞

(2𝑛)1/𝑞 + (4𝜀)−1 2 · (2𝑛)1/𝑞
≤ 8𝜀,

which finishes the proof.

Now we prove that the algorithm finishes in 𝑂
(︁
𝑞𝑛3/𝑞

𝜀2

)︁
iterations, and picks 𝑂

(︀
𝑞𝑛/𝜀2

)︀
vectors in

total.

Lemma 4.3.5. The following statements hold:

1. With probability at least 4/5, the algorithm finishes in 10𝑞𝑛3/𝑞

𝜀2
iterations.

2. With probability at least 4/5, the algorithm chooses at most 10𝑞𝑛/𝜀2 vectors.

Proof. Notice that after iteration 𝑗 the barrier gap 𝑢𝑗 − ℓ𝑗 is increased by

Δ𝑢,𝑗 −Δℓ,𝑗 =
4𝜀2

𝑞

𝑁𝑗∑︀𝑚
𝑖=1𝑅𝑖(𝐴𝑗 , 𝑢𝑗 , ℓ𝑗)

=
4𝜀2

𝑞

1

𝑛2/𝑞
·min {𝜆min(𝑢𝑗𝐼 −𝐴𝑗), 𝜆min(𝐴𝑗 − ℓ𝑗𝐼)}

≥ 4𝜀2

𝑞

1

𝑛2/𝑞
·
(︀
Φ𝑢𝑗 ,ℓ𝑗 (𝐴𝑗)

)︀−1/𝑞
.

Since the algorithm finishes within 𝑘 iterations if
∑︀𝑘−1

𝑗=0(Δ𝑢,𝑗 −Δℓ,𝑗) ≥ 2 · (2𝑛)1/𝑞, it holds that

Pr [algorithm finishes within 𝑘 iterations] ≥ Pr

⎡⎣𝑘−1∑︁
𝑗=0

(Δ𝑢,𝑗 −Δℓ,𝑗) ≥ 2 · (2𝑛)1/𝑞
⎤⎦

≥ Pr

⎡⎣𝑘−1∑︁
𝑗=0

4𝜀2

𝑞𝑛2/𝑞
·
(︀
Φ𝑢𝑗 ,ℓ𝑗 (𝐴𝑗)

)︀−1/𝑞 ≥ 2 · (2𝑛)1/𝑞
⎤⎦

= Pr

⎡⎣𝑘−1∑︁
𝑗=0

(︀
Φ𝑢𝑗 ,ℓ𝑗 (𝐴𝑗)

)︀−1/𝑞 ≥ 𝑞

2𝜀2
·
(︀
2𝑛3
)︀1/𝑞⎤⎦

≥ Pr

⎡⎣𝑘−1∑︁
𝑗=0

(︀
Φ𝑢𝑗 ,ℓ𝑗 (𝐴𝑗)

)︀1/𝑞 ≤ 2 · 𝑘
2𝜀2

𝑞
·
(︂

1

2𝑛3

)︂1/𝑞
⎤⎦ ,
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where the last inequality follows from the fact that⎛⎝𝑘−1∑︁
𝑗=0

(︀
Φ𝑢𝑗 ,ℓ𝑗 (𝐴𝑗)

)︀−1/𝑞

⎞⎠ ·
⎛⎝𝑘−1∑︁
𝑗=0

(︀
Φ𝑢𝑗 ,ℓ𝑗 (𝐴𝑗)

)︀1/𝑞⎞⎠ ≥ 𝑘2.
By Lemma 4.3.1, every picked matrix𝑊𝑗 in iteration 𝑗 satisfies 0 ⪯𝑊𝑗 ⪯ 1

2 ·(𝑢𝑗𝐼 −𝐴) with probability
at least 1− 𝜀2

100𝑞𝑛 , and with probability 9/10 all matrices picked in 𝑘 = 10𝑞𝑛/𝜀2 iterations satisfy the
condition above. Also, by Lemma 4.3.3 we have that

𝑘−1∑︁
𝑗=0

(Φ𝑢𝑗 ,ℓ𝑗 (𝐴𝑗))
1/𝑞 =

𝑘−1∑︁
𝑗=0

(Φ𝑢𝑗 ,ℓ𝑗 (𝐴𝑗))
1/𝑞 ≤

𝑘−1∑︁
𝑗=0

(︀
Φ𝑢𝑗 ,ℓ𝑗 (𝐴𝑗)

)︀1/𝑞 ≤ 𝑘, (4.16)

since the initial value of the potential function is at most 1. Therefore, it holds that

Pr [algorithm finishes in more than 𝑘 iterations]

≤ Pr

⎡⎣𝑘−1∑︁
𝑗=0

(︀
Φ𝑢𝑗 ,ℓ𝑗 (𝐴𝑗)

)︀1/𝑞 ≥ 2 · 𝑘
2𝜀2

𝑞
·
(︂

1

2𝑛3

)︂1/𝑞
⎤⎦

≤ Pr

⎡⎣𝑘−1∑︁
𝑗=0

(︀
Φ𝑢𝑗 ,ℓ𝑗 (𝐴𝑗)

)︀1/𝑞 ≥ 2 · 𝑘
2𝜀2

𝑞
·
(︂

1

2𝑛3

)︂1/𝑞

and ∀𝑗 :𝑊𝑗 ⪯
1

2
(𝑢𝑗𝐼 −𝐴𝑗)

⎤⎦
+ Pr

[︂
∃𝑗 :𝑊𝑗 ̸⪯

1

2
(𝑢𝑗𝐼 −𝐴𝑗)

]︂
≤ 𝑞

2 · 𝑘𝜀2
·
(︀
2𝑛3
)︀1/𝑞

+ 1/10 ≤ 1/5,

where the second last inequity follows from Markov’s inequality and (4.16), and the last inequality
follows by our choice of 𝑘. This proves the first statement.

Now for the second statement. Notice that for every vector chosen in iteration 𝑗, the barrier gap
Δ𝑢,𝑗 −Δℓ,𝑗 is increased on average by

Δ𝑢,𝑗 −Δℓ,𝑗

𝑁𝑗
=

4𝜀2

𝑞
∑︀𝑚

𝑖=1𝑅𝑖(𝐴𝑗 , 𝑢𝑗 , ℓ𝑗)
.

To bound 𝑅𝑖(𝐴𝑗 , 𝑢𝑗 , ℓ𝑗), let the eigenvalues of matrix 𝐴𝑗 be 𝜆1, · · · , 𝜆𝑛. Then, it holds that

𝑚∑︁
𝑖=1

𝑅𝑖(𝐴𝑗 , 𝑢𝑗 , ℓ𝑗) =
𝑚∑︁
𝑖=1

�⃗�𝑇𝑖 (𝑢𝑗𝐼 −𝐴𝑗)−1𝑣𝑖 +
𝑚∑︁
𝑖=1

�⃗�𝑇𝑖 (𝐴𝑗 − ℓ𝑗𝐼)−1�⃗�𝑖

=

𝑛∑︁
𝑖=1

1

𝑢𝑗 − 𝜆𝑖
+

𝑛∑︁
𝑖=1

1

𝜆𝑖 − ℓ𝑗

≤

(︃
𝑛∑︁
𝑖=1

(𝑢𝑗 − 𝜆𝑖)−𝑞 +
𝑛∑︁
𝑖=1

(𝜆𝑖 − ℓ𝑗)−𝑞
)︃1/𝑞

(2𝑛)1−1/𝑞

=
(︀
Φ𝑢𝑗 ,ℓ𝑗 (𝐴𝑗)

)︀1/𝑞 · (2𝑛)1−1/𝑞.

Therefore, we have that

Δ𝑢,𝑗 −Δℓ,𝑗

𝑁𝑗
≥ 4𝜀2

𝑞
· 1

(2𝑛)1−1/𝑞 · (Φ𝑢𝑗 ,ℓ𝑗 (𝐴𝑗))1/𝑞
. (4.17)

Let 𝑣1, · · · , 𝑣𝑧 be the vectors sampled by the algorithm, and 𝑣𝑗 is picked in iteration 𝜏𝑗 , where



4.3. Analysis 57

1 ≤ 𝑗 ≤ 𝑧. We first assume that the algorithm could check the ending condition after adding every
single vector. In such case, it holds that

Pr [algorithm finishes after choosing 𝑧 vectors]

≥ Pr

⎡⎣ 𝑧∑︁
𝑗=1

4𝜀2

𝑞
· 1

(2𝑛)1−1/𝑞 · (Φ𝑢𝜏𝑗 ,ℓ𝜏𝑗 (𝐴𝜏𝑗 ))
1/𝑞
≥ 2 · (2𝑛)1/𝑞

⎤⎦
= Pr

⎡⎣ 𝑧∑︁
𝑗=1

(Φ𝑢𝜏𝑗 ,ℓ𝜏𝑗 (𝐴𝜏𝑗 ))
−1/𝑞 ≥ 𝑞𝑛/𝜀2

⎤⎦ .
Following the same proof as the first part and noticing that in the final iteration the algorithm chooses
at most 𝑂(𝑛) extra vectors, we obtain the second statement.

4.3.3 Proof of the main results

Now we analyze the runtime of the algorithm, and prove the main results. We first analyze the
algorithm for sparsifying the sum of rank-1 PSD matrices, and prove Theorem 4.1.1.

Proof of Theorem 4.1.1. By Theorem 3.7.3, we can first find a 𝜀-approximation with 𝑂(𝑛 log 𝑛/𝜀2)
vectors in time �̃�(𝑍 + 𝑛𝜔𝜀−2). Note that if 𝑞 < log 𝑛, we are done.

Otherwise, by Lemma 4.3.5, with probability at least 4/5 the algorithm chooses at most 10𝑞𝑛/𝜀2

vectors, and by Lemma 4.3.4 the condition number of 𝐴𝑘 is at most 1+𝑂(𝜀), implying that the matrix
𝐴𝑘 is a (1+𝑂(𝜀))-approximation of 𝐼. These two results together prove that 𝐴𝑘 is a linear-sized spectral
sparsifier.

For the runtime, Lemma 4.3.5 proves that the algorithm finishes in 10𝑞𝑛3/𝑞

𝜀2
iterations, and it

is easy to see that all the required quantities in each iteration can be approximately computed in
�̃�(𝑚 · 𝑛𝜔−1) time using fast matrix multiplication. Therefore, the total runtime of the algorithm is
�̃�
(︀
𝑍 + 𝑛𝜔𝜀−2 + 𝑞·𝑚

𝜀2
· 𝑛𝜔−1+3/𝑞

)︀
. Using 𝑞 < log 𝑛 and 𝑚 = 𝑂(𝑛 log 𝑛/𝜀2), we have

�̃�
(︁
𝑍 + 𝑛𝜔+3/𝑞𝜀−4

)︁
.

Next we apply our algorithm in the graph setting, and prove Theorem 4.1.2.

Proof of Theorem 4.1.2. For any edge 𝑒 = {𝑢, 𝑣} in graph 𝐺 = (𝑉,𝐸), we define 𝑏𝑒 ∈ R𝑛, where
𝑏𝑒(𝑤) = 1 if 𝑤 = 𝑢, 𝑏𝑒(𝑤) = −1 if 𝑤 = 𝑣, and 𝑏𝑒(𝑤) = 0 otherwise. Then the Laplacian matrix of
𝐺 can be written as 𝐿 =

∑︀
𝑒∈𝐸[𝐺] 𝑏𝑒𝑏

𝑇
𝑒 . By setting 𝑣𝑒 = 𝐿−1/2𝑏𝑒 for 𝑒 ∈ 𝐸[𝐺], it is easy to see that

constructing a spectral sparsifier of 𝐺 is equivalent to sparsifying the matrix
∑︀

𝑒∈𝐸[𝐺] 𝑣𝑒𝑣
𝑇
𝑒 . We apply

the same analysis as in the proof of Theorem 4.1.1, and hence the output is a linear-sized spectral
sparsifier of graph 𝐺. So it suffices to analyze the runtime of the algorithm.

By Lemma 4.3.1 and the Union Bound, with probability at least 9/10 all the matrices picked in

𝑘 = 10𝑞𝑛3/𝑞

𝜀2
iterations satisfy 𝑊𝑗 ⪯ 1

2(𝑢𝑗𝐼 −𝐴𝑗). Conditioning on the event, with constant probability
E
[︀
Φ𝑢𝑗 ,ℓ𝑗 (𝐴𝑗)

]︀
≤ 2 for all iterations 𝑗, and by Markov’s inequality with high probability it holds that

Φ𝑢𝑗 ,ℓ𝑗 (𝐴𝑗) = 𝑂
(︀
𝑞𝑛/𝜀2

)︀
for all iterations 𝑗.

On the other hand, notice that it holds for any 1 ≤ 𝑗 ≤ 𝑛 that

(𝑢− 𝜆𝑗)−𝑞 ≤
𝑛∑︁
𝑖=1

(𝑢− 𝜆𝑖)−𝑞 < Φ𝑢,ℓ(𝐴),
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where 𝜆1, . . . , 𝜆𝑛 are the eigenvalues of 𝐴. This implies that 𝜆𝑗 < 𝑢 − (Φ𝑢,ℓ(𝐴))−1/𝑞. Similarly, it
holds that 𝜆𝑗 > ℓ+ (Φ𝑢,ℓ(𝐴))−1/𝑞 for any 1 ≤ 𝑗 ≤ 𝑛. Therefore, we have that(︃

ℓ𝑗 +𝑂

(︃(︂
𝜀2

𝑞𝑛

)︂1/𝑞
)︃)︃

𝐼 ≺ 𝐴𝑗 ≺

(︃
𝑢𝑗 −𝑂

(︃(︂
𝜀2

𝑞𝑛

)︂1/𝑞
)︃)︃

𝐼.

Since both of 𝑢𝑗 and ℓ𝑗 are of the order 𝑂(𝑛1/𝑞), we set 𝜂 = 𝑂
(︀
(𝜀/𝑛)2/𝑞

)︀
and obtain that

(ℓ𝑗 + |ℓ𝑗 |𝜂)𝐼 ≺ 𝐴𝑗 ≺ (1− 𝜂)𝑢𝑗𝐼.
Hence, we apply Lemma 4.4.3 and Lemma 4.4.4 to compute all required quantities in each iteration
up to constant approximation in time

�̃�

(︂
𝑚

𝜀2 · 𝜂

)︂
= �̃�

(︃
𝑚 · 𝑛2/𝑞

𝜀2+2/𝑞

)︃
.

Since by Lemma 4.3.5 the algorithm finishes in 10𝑞𝑛3/𝑞

𝜀2
iterations with probability at least 4/5, the

total runtime of the algorithm is

�̃�

(︃
𝑞 ·𝑚 · 𝑛5/𝑞

𝜀4+4/𝑞

)︃
.

Again, we can assume 𝑚 = �̃�(𝑛 log 𝑛/𝜀2) and 𝑞 < log 𝑛 by existing algorithm by using existing
algorithm for graph sparsification. Hence, we have the promised runtime.

4.4 Appendix

In this section we study fast approximation of the required quantities for constructing graph sparsifiers,
and show that the number of sampled vectors 𝑁𝑗 and the relative leverage scores {𝑅𝑖(𝐴𝑗 , 𝑢𝑗 , ℓ𝑗)}𝑚𝑖=1

used in each iteration can be approximately computed in almost-linear time. For simplicity we drop the
subscript 𝑗 expressing the iterations in this subsection. We will assume that the following assumption
holds on 𝐴, and show that the matrix under consideration always satisfies this condition.

Assumption 4.4.1. Let 𝐿 and �̃� be the Laplacian matrices of graph 𝐺 and its subgraph after reweight-
ing. Let 𝐴 = 𝐿−1/2�̃�𝐿−1/2, and assume that

(ℓ+ |ℓ|𝜂) · 𝐼 ≺ 𝐴 ≺ (1− 𝜂)𝑢 · 𝐼
holds for some 0 < 𝜂 < 1.

Lemma 4.4.2. Under Assumption 4.4.1, the following statements hold:

1. We can construct a matrix 𝑆𝑢 such that

𝑆𝑢 ≈𝜀/10 (𝑢𝐼 −𝐴)−1/2,

and 𝑆𝑢 = 𝑝(𝐴) for a polynomial 𝑝 of degree 𝑂
(︁
log(1/𝜀𝜂)

𝜂

)︁
.

2. We can construct a matrix 𝑆ℓ such that

𝑆ℓ ≈𝜀/10 (𝐴− ℓ𝐼)−1/2.

Moreover, 𝑆ℓ is of the form (𝐴′)−1/2𝑞((𝐴′)−1),where 𝑞 is a polynomial of degree 𝑂
(︁
log(1/𝜀𝜂)

𝜂

)︁
and 𝐴′ = 𝐿−1/2𝐿′𝐿−1/2 for some Laplacian matrix 𝐿′.
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Proof. By Taylor expansion, it holds that

(1− 𝑥)−1/2 = 1 +
∞∑︁
𝑘=1

𝑘−1∏︁
𝑗=0

(︂
𝑗 +

1

2

)︂
𝑥𝑘

𝑘!
.

We define for any 𝑇 ∈ N that

𝑝𝑇 (𝑥) = 1 +
𝑇∑︁
𝑘=1

𝑘−1∏︁
𝑗=0

(︂
𝑗 +

1

2

)︂
𝑥𝑘

𝑘!
.

Then, it holds for any 0 < 𝑥 < 1− 𝜂 that

𝑝𝑇 (𝑥) ≤ (1− 𝑥)−1/2 = 𝑝𝑇 (𝑥) +
∞∑︁

𝑘=𝑇+1

𝑘−1∏︁
𝑗=0

(︂
𝑗 +

1

2

)︂
𝑥𝑘

𝑘!

≤ 𝑝𝑇 (𝑥) +
∞∑︁

𝑘=𝑇+1

𝑥𝑘

≤ 𝑝𝑇 (𝑥) +
(1− 𝜂)𝑇+1

𝜂
.

Hence, it holds that

(𝑢𝐼 −𝐴)−1/2 = 𝑢−1/2(𝐼 − 𝑢−1𝐴)−1/2 ⪰ 𝑢−1/2𝑝𝑇 (𝑢
−1𝐴),

and

(𝑢𝐼 −𝐴)−1/2 ⪯ 𝑢−1/2

(︂
𝑝𝑇 (𝑢

−1𝐴) +
(1− 𝜂)𝑇+1

𝜂
· 𝐼
)︂
,

since 𝑢−1𝐴 ⪯ (1− 𝜂)𝐼. Notice that 𝑢−1/2𝐼 ⪯ (𝑢𝐼 −𝐴)−1/2, and therefore

(𝑢𝐼 −𝐴)−1/2 ⪯ 𝑢−1/2𝑝𝑇 (𝑢
−1𝐴) +

(1− 𝜂)𝑇+1

𝜂
· (𝑢𝐼 −𝐴)−1/2.

Setting 𝑇 = 𝑐 log(1/(𝜀𝜂))
𝜂 for some constant 𝑐 and defining 𝑆𝑢 = 𝑢−1/2𝑝𝑇 (𝑢

−1𝐴) gives us that

𝑆𝑢 ≈𝜀/10 (𝑢𝐼 −𝐴)−1/2.

Now for the second statement. Our construction of 𝑆ℓ is based on the case distinction (ℓ > 0, and
ℓ ≤ 0).

Case 1 (ℓ > 0): Notice that

(𝐴− ℓ𝐼)−1/2 = 𝐴−1/2(𝐼 − ℓ𝐴−1)−1/2,

and

𝑝𝑇 (ℓ𝐴
−1) ⪯

(︀
𝐼 − ℓ𝐴−1

)︀−1/2 ⪯ 𝑝𝑇
(︀
ℓ𝐴−1

)︀
+

(1− 𝜂/2)𝑇+1

𝜂/2
· 𝐼.

Using the same analysis as before, we have that

𝐴−1/2(𝐼 − ℓ𝐴−1)−1/2 ≈𝜀/10 𝐴−1/2𝑝𝑇 (ℓ𝐴
−1).

By defining 𝑆ℓ = 𝐴−1/2𝑝𝑇 (ℓ𝐴
−1), i.e., 𝐴′ = 𝐴 and 𝑞

(︀
(𝐴′)−1

)︀
= 𝑝𝑇 (ℓ𝐴

−1), we have that

𝑆ℓ ≈𝜀/10 (𝐴− ℓ𝐼)−1/2.
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Case 2 (ℓ ≤ 0): We look at the matrix

𝐴− ℓ𝐼 = 𝐿−1/2�̃�𝐿−1/2 − ℓ𝐼 = 𝐿−1/2(�̃�− ℓ𝐿)𝐿−1/2.

Notice that �̃� − ℓ𝐿 is a Laplacian matrix, and hence this reduces to the case of ℓ = 0, for which we
simply set 𝑆ℓ = (𝐴 − ℓ𝐼)−1/2. Therefore, we can write 𝑆ℓ as a desired form, where 𝐴′ = 𝐴 − ℓ𝐼 and
polynomial 𝑞 = 1.

The following two lemmas present nearly-linear time algorithms for computing the required quan-
tities within each iteration. We remark that an almost-linear time algorithm for computing similar
quantities was shown in [9].

Lemma 4.4.3. Let 𝐴 =
∑︀𝑚

𝑖=1 𝑣𝑖𝑣
𝑇
𝑖 , and suppose that 𝐴 satisfies Assumption 4.4.1. Then, we can

compute {𝑟𝑖}𝑚𝑖=1 and {𝑡𝑖}𝑚𝑖=1 in �̃�
(︁
𝑚
𝜀2𝜂

)︁
time such that

(1− 𝜀)𝑟𝑖 ≤ 𝑣𝑇𝑖 (𝑢𝐼 −𝐴)−1𝑣𝑖 ≤ (1 + 𝜀)𝑟𝑖,

and
(1− 𝜀)𝑡𝑖 ≤ 𝑣𝑇𝑖 (𝐴− ℓ𝐼)−1𝑣𝑖 ≤ (1 + 𝜀)𝑡𝑖.

Proof. Define 𝑢𝑖 = 𝐿1/2𝑣𝑖 for any 1 ≤ 𝑖 ≤ 𝑚. By Lemma 4.4.2, we have that

𝑣𝑇𝑖 (𝑢𝐼 −𝐴)−1𝑣𝑖 ≈3𝜀/10 ‖𝑝(𝐴)𝑣𝑖‖2

=
⃦⃦⃦
𝑝
(︁
𝐿−1/2�̃�𝐿−1/2

)︁
𝐿−1/2𝑢𝑖

⃦⃦⃦2
=
⃦⃦⃦
𝐿1/2𝑝

(︁
𝐿−1�̃�

)︁
𝐿−1𝑢𝑖

⃦⃦⃦2
.

Let 𝐿 = 𝐵𝑇𝐵 for some 𝐵 ∈ R𝑚×𝑛. Then, it holds that

𝑣𝑇𝑖 (𝑢𝐼 −𝐴)−1𝑣𝑖 ≈3𝜀/10

⃦⃦⃦
𝐵𝑝
(︁
𝐿−1�̃�

)︁
𝐿−1𝑢𝑖

⃦⃦⃦2
.

We invoke the Johnson-Lindenstrauss Lemma and find a random matrix 𝑄 ∈ R𝑂(log𝑛/𝜀2)×𝑚: With
high probability, it holds that

𝑣𝑇𝑖 (𝑢𝐼 −𝐴)−1𝑣𝑖 ≈4𝜀/10

⃦⃦⃦
𝑄𝐵𝑝

(︁
𝐿−1�̃�

)︁
𝐿−1𝑢𝑖

⃦⃦⃦2
.

We apply a nearly-linear time Laplacian solver to compute
⃦⃦⃦
𝑄𝐵𝑝

(︁
𝐿−1�̃�

)︁
𝐿−1𝑢𝑖

⃦⃦⃦2
for all {𝑢𝑖}𝑚𝑖=1 up

to (1± 𝜀/10)-multiplicative error in time �̃�
(︁
𝑚
𝜀2𝜂

)︁
. This gives the desired {𝑟𝑖}𝑚𝑖=1.

The computation for {𝑡𝑖}𝑚𝑖=1 is similar. By Lemma 4.4.2, it holds for any 1 ≤ 𝑖 ≤ 𝑚 that

𝑣𝑇𝑖 (𝐴− ℓ𝐼)−1𝑣𝑖 ≈3𝜀/10

⃦⃦⃦
(𝐴′)−1/2𝑞((𝐴′)−1)𝑣𝑖

⃦⃦⃦2
=
⃦⃦⃦
(𝐴′)−1/2𝑞

(︁
𝐿1/2(𝐿′)−1𝐿1/2

)︁
𝐿−1/2𝑢𝑖

⃦⃦⃦2
=
⃦⃦⃦
(𝐴′)−1/2𝐿−1/2𝑞(𝐿(𝐿′)−1)𝑢𝑖

⃦⃦⃦2
.
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Let 𝐿′ = (𝐵′)𝑇 (𝐵′) for some 𝐵′ ∈ R𝑚×𝑛. Then, it holds that

𝑣𝑇𝑖 (𝐴− ℓ𝐼)−1𝑣𝑖 ≈3𝜀/10

⃦⃦⃦
(𝐿′)−1/2𝑞

(︀
𝐿(𝐿′)−1

)︀
𝑢𝑖

⃦⃦⃦2
=
⃦⃦⃦
(𝐿′)1/2(𝐿′)−1𝑞

(︀
𝐿(𝐿′)−1

)︀
𝑢𝑖

⃦⃦⃦2
=
⃦⃦
𝐵′(𝐿′)−1𝑞

(︀
𝐿(𝐿′)−1

)︀
𝑢𝑖
⃦⃦2
.

We invoke the Johnson-Lindenstrauss Lemma and a nearly-linear time Laplacian solver as before to

obtain required {𝑡𝑖}𝑚𝑖=1. The total runtime is �̃�
(︁
𝑚
𝜂𝜀2

)︁
.

Lemma 4.4.4. Under Assumption 4.4.1, we can compute values 𝛼, 𝛽 in �̃�
(︁
𝑚
𝜂𝜀3

)︁
time such that

(1− 𝜀)𝛼 ≤ 𝜆min(𝑢𝐼 −𝐴) ≤ (1 + 𝜀)𝛼

and
(1− 𝜀)𝛽 ≤ 𝜆min(𝐴− ℓ𝐼) ≤ (1 + 𝜀)𝛽.

Proof. By Lemma 4.4.2, we have that 𝑆𝑢 ≈𝜀/10 (𝑢𝐼−𝐴)−1/2. Hence, 𝜆max(𝑆𝑢)
−2 ≈3𝜀/10 𝜆min(𝑢𝐼−𝐴),

and it suffices to estimate 𝜆max(𝑆𝑢). Since

𝜆max(𝑆𝑢) ≤
(︁
Tr
(︁
𝑆2𝑘
𝑢

)︁)︁1/2𝑘
≤ 𝑛1/2𝑘𝜆max(𝑆𝑢),

by picking 𝑘 = log 𝑛/𝜀 we have that
(︀
Tr(𝑆2𝑘

𝑢 )
)︀1/2𝑘 ≈𝜀/2 𝜆max(𝑆𝑢). Notice that

Tr
(︁
𝑆2𝑘
𝑢

)︁
= Tr

(︁
𝑝2𝑘
(︁
𝐿−1/2�̃�𝐿−1/2

)︁)︁
= Tr

(︁
𝑝2𝑘
(︁
𝐿−1�̃�

)︁)︁
.

Set �̃� = �̃�𝑇 �̃� for some matrix �̃� ∈ R𝑚×𝑛, and we have that

Tr
(︁
𝑆2𝑘
𝑢

)︁
= Tr

(︁
𝑝2𝑘
(︁
�̃�𝐿−1�̃�𝑇

)︁)︁
.

Since we can apply 𝑝𝑘
(︁
�̃�𝐿−1�̃�𝑇

)︁
to vectors in �̃�

(︁
𝑚
𝜂𝜀

)︁
time, we invoke the Johnson-Lindenstrauss

Lemma and approximate Tr
(︀
𝑆2𝑘
𝑢

)︀
in �̃�

(︁
𝑚
𝜂𝜀3

)︁
time.

We approximate 𝜆min(𝐴− ℓ𝐼) in a similar way. Notice that

Tr
(︁
𝑆4𝑘
ℓ

)︁
= Tr

(︁
(𝐴′)−1/2𝑞((𝐴′)−1)

)︁4𝑘
= Tr

(︀
𝑞((𝐴′)−1)(𝐴′)−1𝑞((𝐴′)−1)

)︀2𝑘
.

Let 𝑧 be a polynomial defined by 𝑧(𝑥) = 𝑥𝑞2(𝑥) and 𝐿′ = (𝐵′)𝑇 (𝐵′). Then, we have that

Tr(𝑆4𝑘
ℓ ) = Tr

(︁
𝑧2𝑘((𝐴′)−1)

)︁
= Tr

(︁
𝑧2𝑘
(︁
𝐿1/2(𝐿′)−1𝐿1/2

)︁)︁
.

Applying the same analysis as before, we can estimate the trace in �̃�
(︁
𝑚
𝜂𝜀3

)︁
time.
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Chapter 5

ℓ𝑝 Regression and John Ellipsoid

5.1 Introduction

In this chapter, we study sparsification for ℓ𝑝 regression problems.
For ℓ2 regression, Lemma 2.3.3 shows that given a tall matrix, we can sample 𝑂(𝑛 log 𝑛) rows of

𝐴 to form a matrix ̃︀𝐴 such that, for all vectors 𝑥, ‖̃︀𝐴𝑥‖2 ≈ ‖𝐴𝑥‖2. Similarly, for ℓ𝑝 regression, it
is known that an approximation can be obtained by sampling rows with a certain probability (called
ℓ𝑝 Lewis weights). The main goal of this chapter is to show how to approximate ℓ𝑝 Lewis weights
by solving ̃︀𝑂(1) linear systems (Theorem 5.3.4). Since we know how to solve linear systems in input
sparsity time, this allows us to compute ℓ𝑝 Lewis Weights in nearly input sparsity time.

This chapter is organized as follows: In Section 5.2, we define ℓ𝑝 Lewis weights; in Section 5.3,
we show how to approximate ℓ𝑝 Lewis weights efficiently; in Section 5.4, we discuss some geometric
implications of ℓ𝑝 Lewis weights.

5.2 Lewis Weights

Unlike leverage scores, ℓ𝑝 Lewis weights do not have closed formulas and are defined by the following
non-linear equation.

Definition 5.2.1. For a matrix 𝐴 ∈ R𝑚×𝑛 and 1 ≤ 𝑝 <∞, the ℓ𝑝 Lewis weight is the unique vector
𝑤 ∈ R𝑚 such that

𝑤𝑖 = 𝜎𝑖(𝑊
1/2−1/𝑝𝐴) for all 𝑖 ∈ [𝑚]

where 𝜎𝑖(𝐴) = (𝐴(𝐴⊤𝐴)−1𝐴)𝑖𝑖.
The following result show how to use ℓ𝑝 Lewis weights to construct sparsifiers for ℓ𝑝 regression.

They follow from a collection of results for Banach spaces (See [56] for the summary of each result).

Theorem 5.2.2 ([169, 38, 245, 246, 56]). Let 𝑤 be the ℓ𝑝 Lewis weight of some given matrix 𝐴 ∈ R𝑚×𝑛

and 1 ≤ 𝑝 <∞. Given an error parameter 0 < 𝜀 < 1 and sampling valuesp that

p𝑖 ≥ 𝑓(𝑝, 𝑛, 𝜀, 𝛿)𝑤𝑖

𝑝 Success probability: 1− 𝛿 Number of rows:𝑛 · 𝑓(𝑝, 𝑛, 𝜀, 𝛿)
𝑝 = 1 1− 1/𝑛𝐶 𝑂(𝑛 log(𝑛/𝜀)/𝜀2)

𝑝 = 1 1− 1/𝐶 𝑂(𝑛 log 𝑛/𝜀2)

1 < 𝑝 < 2 1− 1/𝐶 𝑂(𝑛 log(𝑛/𝜀) log(log 𝑛/𝜀)2/𝜀2)

𝑝 > 2 1− 1/𝑛𝐶 𝑂(𝑛𝑝/2 log 𝑛 log(1/𝜀)/𝜀5)

Table 5.1: 𝑛 · 𝑓(𝑝, 𝑛, 𝜀, 𝛿): Number of rows needed for ℓ𝑝 sampling. The constants in big O notation depend
on 𝐶.
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where 𝑓(𝑝, 𝑛, 𝜀, 𝛿) is shown in the Table 5.1. Let 𝑆 be the diagonal matrix with independently chosen
entries. 𝑆𝑖𝑖 =

1

𝑝
1/𝑝
𝑖

with probability p𝑖 and 0 otherwise. Then, with probability at least 1− 𝛿, we have

that
(1− 𝜀)‖𝐴x‖𝑝 ≤ ‖S𝐴x‖𝑝 ≤ (1 + 𝜀)‖𝐴x‖𝑝

for all x ∈ R𝑛.
This theorem shows if we have a good upper estimate of ℓ𝑝 Lewis weights, then we can simplẽ︀𝑂(max(𝑛, 𝑛𝑝/2)) rows to approximate the original matrix. Since ‖Ax − b‖𝑝 = ‖[A, b]

(︂
x
−1

)︂
‖𝑝,

Lewis weights allow us to reduce a ℓ𝑝 regression problem involving a tall matrix to a matrix with onlỹ︀𝑂(max(𝑛, 𝑛𝑝/2)) rows.

5.3 Approximate Lewis Weights

In this section, we show how to compute ℓ𝑝 Lewis weights by solving ̃︀𝑂(1) linear systems for 1 ≤ 𝑝 <∞.
For 𝑝 < 4, this can be done by the following algorithm [56].

Algorithm 5: Approximate ℓ𝑝 Lewis weights for 𝑝 < 4

Input: a matrix 𝐴 ∈ R𝑚×𝑛, accuracy 0 < 𝜀 < 1, 1 ≤ 𝑝 < 4.

Let v (1)
𝑖 = 𝑛/𝑚 for all 𝑖 ∈ [𝑚] and 𝑇 = Θ

(︁
log(𝑚/𝜀)

4−𝑝

)︁
.

for 𝑘 = 1, · · · , 𝑇 do

Let �̃� be a 𝑐1(4− 𝑝)𝜀-approximation of 𝜎𝑖

(︂(︁
V (𝑘)

)︁1/2−1/𝑝
𝐴

)︂
for some small enough

constant 𝑐1.

v
(𝑘+1)
𝑖 =

(︂(︁
v
(𝑘)
𝑖

)︁2/𝑝−1
�̃�𝑖

)︂𝑝/2
.

end

Output: v (𝑇+1).

Theorem 5.3.1 ([56]). For any matrix 𝐴 ∈ R𝑚×𝑛, accuracy 0 < 𝜀 < 1 and 1 ≤ 𝑝 < 4, the algorithm
5 outputs a vector v in time ̃︀𝑂 (︀𝒯 𝜀−2

)︀
with high probability such that

(1− 𝜀)𝑤𝑖 ≤ v 𝑖 ≤ (1 + 𝜀)𝑤𝑖 (5.1)

where 𝑤 is the ℓ𝑝 Lewis weight for 𝐴 and 𝒯 be the time needed to apply (𝐴⊤𝐷𝐴)−1 to a vector for
any diagonal matrix 𝐷.

This algorithm relies on the stability of ℓ𝑝 Lewis weights for 1 ≤ 𝑝 < 4, namely, if we rescale each
row of 𝐴 by a constant, the Lewis weight of 𝐴 changes only by a constant. However, this is not true
for large 𝑝. For 𝑝 ∼ ∞, the Lewis weights can change arbitrarily even with a tiny rescaling and hence
it is almost impossible to approximate Lewis weight in the sense of (5.1). To avoid this inability issue,
we define the 𝜀-approximate ℓ𝑝 Lewis weight as follows:

Definition 5.3.2. For a matrix 𝐴 ∈ R𝑚×𝑛 and 1 ≤ 𝑝 < ∞, we call a vector 𝑤 ∈ R𝑚 is an 𝜀-
approximate ℓ𝑝 Lewis weight for 𝐴 if

(1− 𝜀)𝜎𝑖(𝑊 1/2−1/𝑝𝐴) ≤ 𝑤𝑖 ≤ (1 + 𝜀)𝜎𝑖(𝑊
1/2−1/𝑝𝐴).

For 1 ≤ 𝑝 < 4, an 𝜀-approximate ℓ𝑝 Lewis weight is indeed a 𝑂(𝜀) approximate of the true ℓ𝑝 Lewis
weight in the sense of (5.1). Although this is not true for larger 𝑝, the following lemma shows that
𝜀-approximate ℓ𝑝 Lewis weights suffice for the sampling purpose.
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Lemma 5.3.3. Given an error parameter 0 < 𝜀 < 1
2 . Let 𝑤 be an 𝜀-approximate ℓ𝑝 Lewis weight of

some given matrix 𝐴 ∈ R𝑚×𝑛 and 1 ≤ 𝑝 <∞. Let p be the sampling values such that

p𝑖 ≥ 𝑓(𝑝, 𝑛, 𝜀, 𝛿)𝑤𝑖

where 𝑓(𝑝, 𝑛, 𝜀, 𝛿) is shown in the Table 5.1. Let 𝑆 be the diagonal matrix with independently chosen
entries. 𝑆𝑖𝑖 =

1

𝑝
1/𝑝
𝑖

with probability p𝑖 and 0 otherwise. Then, with probability at least 1− 𝛿, we have

that
(1− 2𝜀)‖𝐴x‖𝑝 ≤ ‖S𝐴x‖𝑝 ≤ (1 + 2𝜀)‖𝐴x‖𝑝

for all x ∈ R𝑛.

Proof. Let 𝑑𝑖 = 𝜎𝑖(𝑊
1/2−1/𝑝𝐴)/𝑤𝑖, ̃︀𝐴 = 𝐷−1/2+1/𝑝𝐴 and ̃︁𝑊 = 𝐷𝑊 . From the definition of 𝜎𝑖

(Definition 5.2.1), we see that

𝜎𝑖(̃︁𝑊 1/2−1/𝑝 ̃︀𝐴) = 𝜎𝑖(𝑊
1/2−1/𝑝𝐴)

= 𝑑𝑖𝑤𝑖 = ̃︀𝑤𝑖.

Hence, ̃︀𝑤 is the ℓ𝑝 Lewis weight of ̃︀𝐴 and theorem 5.2.2 shows that

(1− 𝜀)‖̃︀𝐴x‖𝑝 ≤ ‖S ̃︀𝐴x‖𝑝 ≤ (1 + 𝜀)‖̃︀𝐴x‖𝑝.
From the definition of 𝜀-approximate ℓ𝑝 Lewis weight, we know that 1− 𝜀 ≤ 𝑑𝑖 ≤ 1 + 𝜀 and hence

(1− 2𝜀)‖𝐴x‖𝑝 ≤ ‖S𝐴x‖𝑝 ≤ (1 + 2𝜀)‖𝐴x‖𝑝.

Note that if we have a constant approximate of leverage scores, we can construct an arbitrarily
good approximation by sampling more rows. However, this is not true for ℓ𝑝 Lewis weights; we need
a good approximation of Lewis weight to get a good approximate of the original matrix.

Now, we have everything to describe our result, a simple multiplicative weight update algorithm.

Algorithm 6: Approximate ℓ𝑝 Lewis weights for 𝑝 ≥ 2

Input: a matrix 𝐴 ∈ R𝑚×𝑛, accuracy 0 < 𝜀 < 1, 𝑝 ≥ 2.

Let v (1)
𝑖 = 𝑛/𝑚 for all 𝑖 ∈ [𝑚] and 𝑇 = Θ

(︁
log(𝑚/𝑛)

𝜀

)︁
.

for 𝑘 = 1, · · · , 𝑇 do

Let �̃� be a 𝜀
4 -approximation of 𝜎𝑖

(︂(︁
V (𝑘)

)︁1/2−1/𝑝
𝐴

)︂
.

v
(𝑘+1)
𝑖 = �̃�𝑖.

end

Output: 1
𝑇

∑︀𝑇
𝑘=1 v

(𝑘).

Theorem 5.3.4. For any matrix 𝐴 ∈ R𝑚×𝑛, accuracy 0 < 𝜀 < 1 and 𝑝 ≥ 2, the algorithm 6 outputs
an 𝜀-approximate ℓ𝑝 Lewis weight in time ̃︀𝑂(𝒯 𝜀−3) where 𝒯 be the time needed to apply (𝐴⊤𝐷𝐴)−1

to a vector for any diagonal matrix 𝐷.

Since we know how to solve linear systems in input sparsity time (Chapter 3), this theorem gives
an input sparsity time algorithm for approximating Lewis weights. This algorithm is based on the
following convexity result.
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Lemma 5.3.5. For any matrix 𝐴 ∈ R𝑚×𝑛, 𝑖 ∈ [𝑚] and 𝑝 ≥ 2, the function

𝜑𝑖(𝑤) = log(𝑎⊤𝑖 (𝐴
⊤𝑊 1−2/𝑝𝐴)−1𝑎𝑖𝑤

−2/𝑝
𝑖 )

is convex.

Proof. For any vector ℎ ∈ R𝑚, we define 𝜑𝑖(𝑡) = 𝜑𝑖(𝑤 + 𝑡ℎ). Let 𝑀 =
(︁
𝐴⊤𝑊 1−2/𝑝𝐴

)︁−1
, we have

that

𝑑

𝑑𝑡

⃒⃒⃒⃒
𝑡=0

𝜑𝑖(𝑡) = −2

𝑝

ℎ𝑖
𝑤𝑖
− (1− 2/𝑝)𝑎⊤𝑖 𝑀𝐴⊤𝐻𝑊−2/𝑝𝐴𝑀𝑎𝑖

𝑎⊤𝑖 M𝑎𝑖

𝑑2

𝑑𝑡2

⃒⃒⃒⃒
𝑡=0

𝜑𝑖(𝑡) =
2

𝑝

ℎ2
𝑖

𝑤2
𝑖

−
(1− 2/𝑝)2

(︁
𝑎⊤𝑖 𝑀𝐴⊤𝐻𝑊−2/𝑝𝐴𝑀𝑎𝑖

)︁2
(𝑎⊤𝑖 M𝑎𝑖)2

−(−2/𝑝)(1− 2/𝑝)𝑎⊤𝑖 𝑀𝐴⊤𝐻2𝑊−1−2/𝑝𝐴𝑀𝑎𝑖

𝑎⊤𝑖 M𝑎𝑖

+
2(1− 2/𝑝)2𝑎⊤𝑖 𝑀𝐴⊤𝐻𝑊−2/𝑝𝐴M𝐴⊤𝐻𝑊−2/𝑝𝐴𝑀𝑎𝑖

𝑎⊤𝑖 M𝑎𝑖
.

By Cauchy-Schwarz inequality, we have that(︁
𝑎⊤𝑖 𝑀𝐴⊤𝐻𝑊−2/𝑝𝐴𝑀𝑎𝑖

)︁2
≤
(︁
𝑎⊤𝑖 𝑀𝐴⊤𝐻𝑊−2/𝑝𝐴M𝐴⊤𝐻𝑊−2/𝑝𝐴𝑀𝑎𝑖

)︁(︁
𝑎⊤𝑖 M𝑎𝑖

)︁
and hence

𝑑2

𝑑𝑡2

⃒⃒⃒⃒
𝑡=0

𝜑𝑖(𝑡) ≥
2

𝑝

(︃
ℎ2
𝑖

𝑤2
𝑖

+
(1− 2/𝑝)𝑎⊤𝑖 𝑀𝐴⊤𝐻2𝑊−1−2/𝑝𝐴𝑀𝑎𝑖

𝑎⊤𝑖 M𝑎𝑖

)︃

+
(1− 2/𝑝)2𝑎⊤𝑖 𝑀𝐴⊤𝐻𝑊−2/𝑝𝐴M𝐴⊤𝐻𝑊−2/𝑝𝐴𝑀𝑎𝑖

𝑎⊤𝑖 M𝑎𝑖
≥ 0.

Since this holds for any any vector ℎ ∈ R𝑚, this shows that 𝜑𝑖 is convex.

Now, we prove Theorem 5.3.4.

Proof of Theorem 5.3.4. Let v = 1
𝑇

∑︀𝑇
𝑘=1 v

(𝑘)
𝑖 . Let 𝑑(𝑘)𝑖 = �̃�𝑖/𝜎𝑖

(︂(︁
V (𝑘)

)︁1/2−1/𝑝
𝐴

)︂
. Then, we have

that

v
(𝑘+1)
𝑖 = 𝑑

(𝑘)
𝑖 𝜎𝑖

(︂(︁
V (𝑘)

)︁1/2−1/𝑝
𝐴

)︂
= 𝑑

(𝑘)
𝑖

(︁
v
(𝑘)
𝑖

)︁1−2/𝑝
𝑎⊤𝑖

(︂
𝐴⊤

(︁
𝑉 (𝑘)

)︁1−2/𝑝
𝐴

)︂−1

𝑎𝑖.

Hence, we have

log v
(𝑘+1)
𝑖 = log v

(𝑘)
𝑖 + log

(︃
𝑎⊤𝑖

(︂
𝐴⊤

(︁
𝑉 (𝑘)

)︁1−2/𝑝
𝐴

)︂−1

𝑎𝑖

(︁
v
(𝑘)
𝑖

)︁−2/𝑝
)︃

+ log(𝑑
(𝑘)
𝑖 ).
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Using v
(1)
𝑖 = 𝑛

𝑚 and v
(𝑇+1)
𝑖 ≤ 1, we have that

0 ≥ log v
(𝑇+1)
𝑖

= log v
(1)
𝑖 +

𝑇∑︁
𝑘=1

log

(︃
𝑎⊤𝑖

(︂
𝐴⊤

(︁
𝑉 (𝑘)

)︁1−2/𝑝
𝐴

)︂−1

𝑎𝑖

(︁
v
(𝑘)
𝑖

)︁−2/𝑝
)︃

+
𝑇∑︁
𝑘=1

log(𝑑
(𝑘)
𝑖 ).

By Lemma 5.3.5, we have that

log(𝑎⊤𝑖 (𝐴
⊤V

1−2/𝑝
𝐴)−1𝑎𝑖v

−2/𝑝
𝑖 ) ≤ 1

𝑇

𝑇∑︁
𝑘=1

log

(︃
𝑎⊤𝑖

(︂
𝐴⊤

(︁
V (𝑘)

)︁1−2/𝑝
𝐴

)︂−1

𝑎𝑖

(︁
v
(𝑘)
𝑖

)︁−2/𝑝
)︃
.

Hence, we have that

log

(︃
𝜎𝑖(V

1/2−1/𝑝
𝐴)

v 𝑖

)︃
= log(𝑎⊤𝑖 (𝐴

⊤V
1−2/𝑝

𝐴)−1𝑎𝑖v
−2/𝑝
𝑖 )

≤
log
(︀
𝑚
𝑛

)︀
𝑇

− 1

𝑇

𝑇∑︁
𝑖=1

log(𝑑
(𝑘)
𝑖 )

≤
log
(︀
𝑚
𝑛

)︀
𝑇

+
1

2
𝜀.

By setting 𝑇 large enough, we have that

(1− 𝜀)𝜎𝑖(V
1/2−1/𝑝

𝐴) ≤ v 𝑖 ≤ (1 + 𝜀)𝜎𝑖(V
1/2−1/𝑝

𝐴).

5.4 Approximate John Ellipsoids

In this section, we discuss some geometric implications of ℓ𝑝 Lewis weight. [270] shows that the ℓ𝑝
Lewis weight is given by the following optimization problem.

Lemma 5.4.1. Given a matrix 𝐴 ∈ R𝑚×𝑛. Let M be the maximizer of the following optimization
problem

max
M

log det𝑀 subject to
𝑚∑︁
𝑖=1

(︁
𝑎⊤𝑖 𝑀𝑎𝑖

)︁𝑝/2
≤ 𝑛 and 𝑀 ⪰ 0. (5.2)

Then, the ℓ𝑝 Lewis weight of A is given by w 𝑖 =
(︀
𝑎⊤𝑖 M𝑎𝑖

)︀𝑝/2
. Furthermore, we have that M−1 =∑︀

𝑖w
1−2/𝑝
𝑖 𝑎𝑖𝑎

⊤
𝑖 .

To understand this optimization problem, we define the ℓ𝑝 Lewis Ellipsoids and John ellipsoids as
follows:

Definition 5.4.2. For any matrix A ∈ R𝑚×𝑛, we define the ℓ𝑝 Lewis Ellipsoid of A by 𝐸 = {x ∈
R𝑛 such that x⊤A⊤W 1−2/𝑝Ax ≤ 1} where w is the ℓ𝑝 Lewis weight of A. For any convex set 𝐾, we
define the John ellipsoid of 𝐾 is the maximum volume ellipsoid contained inside 𝐾

We note that
∑︀𝑚

𝑖=1

(︀
𝑎⊤𝑖 𝑀𝑎𝑖

)︀𝑝/2
is proportional to the average value of ‖Ax‖𝑝𝑝 inside the ellipsoid{︀

𝑥⊤M−1x ≤ 1
}︀
. Therefore, the ℓ𝑝 Lewis Ellipsoids is the maximum volume ellipsoid 𝐸 such that the

average value of ‖𝐴x‖𝑝𝑝 inside that ellipsoid is less than certain value. In particular, the ℓ∞ Lewis
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Ellipsoid of A exactly corresponds to the John ellipsoid of the symmetric polytope {‖𝐴x‖∞ ≤ 1}.
Therefore, our algorithm for computing Lewis weights gives an efficient algorithm for approximating
John ellipsoids for symmetric polytopes.

Lemma 5.4.3. Given a symmetric polytope 𝑃 = {x such that ‖𝐴x‖∞ ≤ 1}. Then, we can find v
such that

𝜎𝑖(𝑉
1/2𝐴) ≤ v 𝑖 ≤ (1 + 𝜀)𝜎𝑖(𝑉

1/2𝐴)

in time ̃︀𝑂(𝒯 𝜀−3) where 𝒯 be the time needed to apply (𝐴⊤𝐷𝐴)−1 to a vector for any diagonal matrix
𝐷. Furthermore, the ellipsoid 𝐸 = {x ∈ R𝑛 such that x⊤A⊤VAx ≤ 1} satisfies the rounding
condition

𝐸 ⊂ 𝑃 ⊂
√︀
(1 + 𝜀)𝑛𝐸. (5.3)

Proof. By Lemma 5.3.4, we can find v such that (1− 𝜀
3)𝜎𝑖(𝑉

1/2𝐴) ≤ v 𝑖 ≤ (1 + 𝜀
3)𝜎𝑖(𝑉

1/2𝐴) in timẽ︀𝑂(𝒯 𝜀−3). By scaling v up 1/(1− 𝜀/3), we get the first guarantee.
By 𝜎𝑖(𝑉 1/2𝐴) ≤ v 𝑖, we know that for all 𝑖

𝑎⊤𝑖

(︁
A⊤𝑉 𝐴

)︁−1
𝑎𝑖 ≤ 1.

Since
(︀
𝑎⊤𝑖 x

)︀2 ≤ (︁𝑎⊤𝑖 (︀A⊤𝑉 𝐴
)︀−1

𝑎𝑖

)︁ (︀
x⊤A⊤VAx

)︀
, this shows that 𝐸 ⊂ 𝑃 .

On the other hand, for any x ∈ 𝑃 , we have that

x⊤A⊤VAx ≤
𝑚∑︁
𝑖=1

v 𝑖‖𝐴x‖2∞

≤
𝑚∑︁
𝑖=1

(1 + 𝜀)𝜎𝑖(𝑉
1/2𝐴)

= (1 + 𝜀)𝑛.

Therefore, we have that 𝑃 ⊂
√︀

(1 + 𝜀)𝑛𝐸.

Remark 5.4.4. We call the ellipsoid found in this theorem is an approximate John ellipsoid because
it almost satisfies the optimality condition of John ellipsoid, i.e. v 𝑖 = 𝜎𝑖(𝑉

1/2𝐴). Although this
does not show that the ellipsoid is actually close to the true John ellipsoid, this has similar rounding
guarantee (5.3) as John ellipsoid and hence satisfies the requirement for most of the applications such
as volume computation [262] and solving linear systems (next chapter).



Chapter 6

Faster Linear Programming

6.1 Introduction

In this chapter, we present a new algorithm for the following linear programs

min
𝑥 ∈ R𝑚 : 𝐴𝑇𝑥 = 𝑏
∀𝑖 ∈ [𝑚] : 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖

𝑐𝑇𝑥. (6.1)

Our algorithm is based on interior point methods, a framework for solving linear programming.
Roughly speaking, interior point methods approximate the domain by a sequence of ellipsoids and
the number of iterations depends on how good are these approximations. In Chapter 5, we showed a
family of ellipsoids that is easy to compute and gives a good approximations for arbitrary symmetric
polytopes. Using these ellipsoids, we develop an interior point method that takes ̃︀𝑂(

√︀
rank(𝐴)𝐿)1

iterations (Theorem 6.8.1). Furthermore, we show how to achieve this convergence rate while only
solving ̃︀𝑂(1) linear systems and performing additional ̃︀𝑂(nnz(𝐴)) work in each iteration. This is the
first polynomial improvement on the running time of solving linear programming over 25 years.

Applying our techniques to the linear programming formulation of the maximum flow problem we
achieve a running time of ̃︀𝑂(|𝐸|

√︀
|𝑉 | log(𝑈)) for solving the problem on a graph with |𝐸| edges, |𝑉 | ver-

tices, and capacity ratio 𝑈 (Theorem 6.9.3). This improves upon the previous fastest running time of̃︀𝑂(|𝐸|min{|𝐸|1/2, |𝑉 |2/3} log(𝑈)) achieved over 15 years ago by Goldberg and Rao [104]2 and the previ-
ous fastest running times for solving dense directed unit capacity graphs of 𝑂(|𝐸|min{|𝐸|1/2, |𝑉 |2/3})
achieved by Even and Tarjan [85] over 35 years ago and of ̃︀𝑂(|𝐸|10/7) achieved recently by Mądry
[183].

6.1.1 Organization

The rest of this chapter is structured as follows. In Section 6.3, we provide some background in-
formation on linear programming and interior point methods and show how to obtain the “first”̃︀𝑂(
√︀
rank(𝐴)𝐿) iterations algorithm for the standard dual linear program (6.2). In Section 6.4, we

explain why this algorithm is not sufficient for the maximum flow problem. In Section 6.5 we introduce
our framework to use our alternative barrier function more efficiently and in Section 6.6 we present the
key lemmas used to analyze progress along paths and in Section 6.7 we introduce the weight function
we use to find paths. In Section 6.8 provide our linear programming algorithm for the linear program
(6.1). In Section 6.9 we use these results to achieve our desired running times for the maximum flow

1Throughout this thesis 𝐿 denotes the standard “bit complexity” of the linear program, a quantity less than the

number of bits needed to represent (6.2). For integral 𝐴, 𝑏, and 𝑐 this quantity is often defined as 𝐿
def
= log(1 + 𝑑𝑚𝑎𝑥) +

log(1+max{‖𝑐‖∞, ‖𝑏‖∞}) where 𝑑𝑚𝑎𝑥 is the largest absolute value of the determinant of a square sub-matrix of 𝐴 [136].
2In this thesis we are primarily concerned with “weakly” polynomial time algorithms. The current fastest “strongly”

polynomial running time for solving this problem is 𝑂(𝑛𝑚) [218].
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problem and its generalizations.

6.2 Previous Work

Linear programming and maximum flow are extremely well studied problems with long histories. Here
we focus on recent history that particularly influenced our work.

6.2.1 Convergence Rate of Interior Point Methods

Given a matrix, 𝐴 ∈ R𝑚×𝑛, and vectors, 𝑏 ∈ R𝑚 and 𝑐 ∈ R𝑛, solving the linear program3

min
𝑥∈R𝑛 : 𝐴𝑥≥𝑏

𝑐𝑇𝑥 (6.2)

is a core algorithmic task for both the theory and practice of computer science.
In 1984, Karmarkar [136] provided the first proof of an interior point method running in polynomial

time. This method required 𝑂(𝑚𝐿) iterations where the running time of each iteration was dominated
by the time needed to solve a linear system of the form

(︀
𝐴𝑇𝐷𝐴

)︀
𝑥 = 𝑦 for some positive diagonal

matrix 𝐷 ∈ R𝑚×𝑚 and some 𝑦 ∈ R𝑛. Using low rank matrix updates and preconditioning Karmarkar
achieved a running time of 𝑂(𝑚3.5𝐿).

In 1988, Renegar improved the convergence rate of interior point methods to 𝑂 (
√
𝑚𝐿) iterations

[227]. He presented a path following method where the iterations had comparable complexity to
Karmarkar’s method. Using a combination of techniques involving low rank updates, preconditioning
and fast matrix multiplication, the amortized complexity of each iteration was improved [254, 107,
211] yielding the current state of the art running time of �̃�(𝑚1.5𝑛𝐿) [257].

In 1989, Vaidya [258] proposed two barrier functions which were shown to yield𝑂((𝑚rank(𝐴))1/4 𝐿)
and 𝑂(rank(𝐴)𝐿) iteration linear programming algorithms [255, 258, 253]. Unfortunately each itera-
tion of these methods required explicit computation of the projection matrix𝐷1/2𝐴(𝐴𝑇𝐷𝐴)−1𝐴𝑇𝐷1/2

for a positive diagonal matrix 𝐷 ∈ R𝑚×𝑚. This was improved by Anstreicher [15] who showed it suf-
ficed to compute the diagonal of this projection matrix. Unfortunately both methods do not yield
faster running times unless 𝑚≫ 𝑛.

In 1994 Nesterov and Nemirovski [211] showed that path-following methods can in principle be
applied to any solve convex optimization problem, given a suitable barrier function. The number of
iterations of their method depends on a square root of a quantity known as the self-concordance of the
barrier. They showed that for any convex set in R𝑛, there exists a barrier function, called the universal
barrier function, with self-concordance 𝑂(𝑛) and therefore in principle any convex optimization prob-
lem with 𝑛 variables can be solved in 𝑂 (

√
𝑛𝐿) iterations. However, this result is generally considered

to be only of theoretical interest as the universal barrier function is defined as the volume of certain
polytopes, a problem which in full-genearality is NP-hard and can only be computed approximately
in 𝑂(𝑛𝑐) for some large constant 𝑐 [180].

These results suggested that you can solve linear programs closer to the �̃�(
√︀

rank(𝐴)𝐿) bound
achieved by the universal barrier only if you pay more in each iteration. In this chapter we show that
this is not the case and up to polylogarithmic factors we achieve the convergence rate of the universal
barrier function while only having iterations of cost comparable to that of Renegar’s algorithm.

3This expression is the dual of a linear program written in standard form. It is well known that all linear programs
can be written as (6.2). Note that this notation of 𝑚 and 𝑛 differs from that in some papers. Here 𝑚 denotes the
number of constraints and 𝑛 denotes the number of variables. To avoid confusion we state many of our results in terms
of

√︀
rank(𝐴) instead of

√
𝑛 .
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Year Author Number of Iterations Nature of iterations

1984 Karmarkar [136] 𝑂(𝑚𝐿) Linear system solve
1986 Renegar [227] 𝑂(

√
𝑚𝐿) Linear system solve

1989 Vaidya [253] 𝑂((𝑚rank(𝐴))1/4 𝐿) Expensive linear algebra
1994 Nesterov and Nemirovskii [211] 𝑂(

√︀
rank(𝐴)𝐿) Volume computation

- This chapter �̃�(
√︀
rank(𝐴)𝐿) ̃︀𝑂(1) Linear system solves

Figure 6-1: Interior Point Iteration Improvements

6.2.2 Recent Breakthroughs on the Maximum Flow Problem

A beautiful line of work on solving the maximum flow on undirected graphs began with a result of
Benzcur and Karger in which they showed how to reduce approximately computing minimum s-t cuts
on arbitrary undirected graphs to the same problem on sparse graphs, i.e. those with |𝐸| = ̃︀𝑂(|𝑉 |)
[33]. Pushing these ideas further Karger showed how to perform a similar reduction for the maximum
flow problem [134] and Karger and Levine showed how to compute the exact maximum flow in an
unweighted undirected graph with maximum flow value 𝐹 in ̃︀𝑂(|𝐸|+ |𝑉 |𝐹 ) time [135].

In a breakthrough result of Spielman and Teng [243] they showed that a particular class of linear
systems, Laplacians, can be solved in nearly linear time. Leveraging these fast Laplacian system solvers
Christiano, Kelner, Mądry, and Spielman [51] showed how to compute (1− 𝜀) approximations to the
maximum flow problem on undirected graphs in ̃︀𝑂(|𝐸| · |𝑉 |1/3𝜀−11/3). Later Lee, Rao and Srivastava
[161] improved the running time to ̃︀𝑂(|𝐸| · |𝑉 |1/3𝜀−2/3) for unweighted undirected graphs. This line of
work culminated in recent results of Sherman [233] and Kelner, Lee, Orecchia, and Sidford (Chapter 12)
who showed how to solve the problem in 𝑂(|𝐸|1+𝑜(1)𝜀−2), using congestion-approximators, oblivious
routings, and techniques developed by Mądry [182].

In 2008, Daitch and Spielman [63] showed that, by careful application of interior point techniques,
fast Laplacian system solvers [243], and a novel method for solving M-matrices, they could match
(up to polylogarithmic factors) the running time of Goldberg Rao and achieve a running time of̃︀𝑂(|𝐸|3/2 log2(𝑈)) not just for maximum flow but also for the minimum cost flow and lossy generalized
minimum cost flow problems (see Fig 6-2).

Very recently Mądry [183] achieved an astounding running time of ̃︀𝑂(|𝐸|10/7) for solving the
maximum flow problem on un-capacitated directed graphs by a novel application and modification
of interior point methods. This shattered numerous barriers providing the first general improvement
over the running time of 𝑂(|𝐸|min{|𝐸|1/2, |𝑉 |2/3}) for solving unit capacity graphs proven over 35
years ago by Even and Tarjan [85] in 1975.

While our algorithm for solving the maximum flow problem is new, we make extensive use of these
breakthroughs. We use sampling techniques first discovered in the context of graph sparsification
(previous two chapters) to re-weight the graph so that we make progress at a rate commensurate
with the number of vertices and not the number of edges. We use fast Laplacian system solvers as
in [51, 161] to make the cost of interior point iterations cheap when applied to the linear program
formulations analyzed by Daitch and Spielman [63]. Furthermore, as in Mądry [183] we use weights
to change the central path (albeit for a slightly different purpose). We believe this further emphasizes
the power of these tools as general purpose techniques for algorithm design.
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Year Author Running Time

1972 Edmonds, Karp [84] �̃�(|𝐸|2 log(𝑈))

1984 Tardos [247] 𝑂(|𝐸|4)
1984 Orlin [217] �̃�(|𝐸|3)
1986 Galil, Tardos [98] �̃�

(︀
|𝐸||𝑉 |2

)︀
1987 Goldberg, Tarjan [106] �̃�(|𝐸||𝑉 | log(𝑈))

1988 Orlin [215] �̃�(|𝐸|2)
2008 Daitch, Spielman [63] �̃�(|𝐸|3/2 log2(𝑈))

- This chapter �̃�(|𝐸|
√︀
|𝑉 | log2(𝑈))

Figure 6-2: Minimum Cost Flow Running Times Improvements

6.3 Simple Case

In this section, we introduce the notation of 𝜈-self-concordant barrier functions and explain how such
barrier functions can be used to develop an 𝑂(

√
𝜈𝐿) iterations linear programming algorithm. Then,

we construct an �̃�(𝑛)-self-concordant barrier function which can be computed in polynomial time.
This barrier function will only be used to give the intuition on how we are getting our main algorithm.
The reader well versed in path following methods can likely skip to subsection 6.3.5 and to the more
curious reader we encourage them to consider some of the many wonderful expositions on this subject
[209, 273, 107] for further reading.

6.3.1 The Setup

Given a matrix, 𝐴 ∈ R𝑚×𝑛, and vectors, 𝑏 ∈ R𝑚 and 𝑐 ∈ R𝑛, the goal of this section is to solve the
following linear program

min
𝑥∈R𝑛 : 𝐴𝑥≥𝑏

𝑐𝑇𝑥 (6.3)

This is called the dual of the standard form of a linear program and all linear programs can be
expressed in this form. We call a vector 𝑥 ∈ R𝑚 feasible if 𝐴𝑥 ≥ 𝑏, we call 𝑐𝑇𝑥 the cost of such a
vector. therefore our goal is to either compute a minimum cost feasible vector or determine that none
exists.

We assume that 𝐴 is full rank, i.e. rank(𝐴) = 𝑛, and that 𝑚 ≥ 𝑛. Nevertheless, we still write
many of our results using rank(𝐴) rather than 𝑛 for two reasons. First, this notation makes clear that
rank(𝐴) is referring to the smaller of the two quantities 𝑚 and 𝑛. Second, if rank(𝐴) < 𝑛, then we
can reduce the number of variables to rank(𝐴) by a change of basis. Hence, we only need to solve
linear programs in the full rank version.

6.3.2 Central Path

Interior point methods solve (6.3) by maintaining a point 𝑥 that is in the interior of the feasible
region, i.e. 𝑥 ∈ Ω where

Ω
def
= {𝑥 ∈ R𝑛 : 𝐴𝑥 > 𝑏}.

These methods attempt to iteratively decrease the cost of 𝑥 while maintaining strict feasibility. This
is often done by considering some measurement of the distance to feasibility such as 𝑠 def

= 𝐴𝑥 − 𝑏,
called the slacks, and creating some penalty for these distances approaching 0. By carefully balancing
penalties for small 𝑠(𝑥) and penalties for large 𝑐𝑇𝑥, these methods eventually compute a point close
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enough to the optimum solution that it can be computed exactly.
Path following methods fix ratios between the the penalty for large 𝑐𝑇𝑥 and the penalty for small

𝑠 and alternate between steps of optimizing with respect to this ratio and changing the ratio. These
methods typically encode the penalties through a barrier function 𝜑 : Ω → R such that 𝜑(𝑥) → ∞
as 𝑠(𝑥)𝑖 → 0 for any 𝑖 ∈ [𝑚] and they encode the ratio through some parameter 𝑡 > 0. Formally, they
attempt to solve optimization problems of the following form for increasing values of 𝑡

min
𝑥∈R𝑚

𝑓𝑡(𝑥) where 𝑓𝑡(𝑥)
def
= 𝑡 · 𝑐𝑇𝑥+ 𝜑(𝑥) (6.4)

Since 𝜑(𝑥)→∞ as 𝑠(𝑥)𝑖 → 0, the minimizer of 𝑓𝑡(𝑥), denoted 𝑥*(𝑡), is in Ω for all 𝑡. As 𝑡 increases
the effect of the cost vector on 𝑥*(𝑡) increases and the distance from the boundary of the feasible
region as measured by 𝑠(𝑥) decreases. One can think of the points {𝑥*(𝑡) | 𝑡 > 0} as a path in R𝑛,
called the central path, where 𝑥*(𝑡) approaches a solution to (6.3) as 𝑡 → ∞. A standard choice of
barrier is the standard log barrier, 𝜑(𝑥)

def
= −

∑︀𝑚
𝑖=1 log(𝑠(𝑥)𝑖) and for this choice of barrier we refer to

{𝑥*(𝑡) | 𝑡 > 0} as the standard central path.
Path following methods typically follow the following framework:

(1) Compute Initial Point: Compute an approximation 𝑥*(𝑡) for some 𝑡.

(2) Follow the central path: Repeatedly increase 𝑡 and compute an approximation to 𝑥*(𝑡).

(3) Round to optimal solution: Use the approximation to 𝑥*(𝑡) to compute the solution to (6.3).

Usually, steps (1) and (3) are not the bottleneck of interior point methods (including our algorithm)
and can be carried out by standard interior point techniques. In this chapter, we ignore the details for
step (1) and (3) and refer the interested reader to the paper version of this chapter [165, 166]. In the
following subsection, we provide a simple technique for performing (2) and serves as the foundation
for the algorithms considered in the remainder of this section.

6.3.3 Following the Path

Typically, path following methods compute an approximation to 𝑥*(𝑡) using Newton’s method. While
for an arbitrary current point 𝑥 ∈ Ω and 𝑡 > 0, the function 𝑓𝑡(𝑥) can be ill-behaved, in a region near
𝑥*(𝑡), the Hessian ∇2𝑓𝑡(𝑥) changes fairly slowly. More precisely, if one considers the second order
approximation of 𝑓𝑡(𝑧) around some point 𝑥 ∈ Ω “close enough” to 𝑥*(𝑡)

𝑓𝑡(𝑧) ≈ 𝑓𝑡(𝑥) + ⟨∇𝑓𝑡(𝑥), 𝑧 − 𝑥⟩+
1

2
(𝑧 − 𝑥)𝑇 (∇2𝑓𝑡(𝑥)) (𝑧 − 𝑥) ,

and applies one step of Newton’s method, i.e. minimizes this quadratic approximation to compute

𝑥(𝑛𝑒𝑤) := 𝑥− (∇2𝑓𝑡(𝑥))
−1∇𝑓𝑡(𝑥)

for 𝑠 def
= 𝑠(𝑥), then this procedure rapidly converges to 𝑥*(𝑡).

To quantify this, we measure centrality, i.e. how close the current point 𝑥 ∈ Ω is to 𝑥*(𝑡), by
the size of this Newton step in the Hessian induced norm. For 𝑥 ∈ Ω and Newton step ℎ𝑡(𝑥)

def
=

(∇2𝑓𝑡(𝑥))
−1∇𝑓𝑡(𝑥), we denote centrality by 𝛿𝑡(𝑥)

def
= ‖ℎ𝑡(𝑥)‖∇2𝑓𝑡(𝑥).

For the standard log barrier function, 𝜑(𝑥) def
= −

∑︀
𝑖∈[𝑚] log(𝑠(𝑥)𝑖), a standard analysis of Newton’s

method shows that if 𝛿𝑡(𝑥) ≤ 1
2 , then for 𝑥(𝑛𝑒𝑤) := 𝑥− ℎ(𝑥), we have 𝛿𝑡(𝑥(𝑛𝑒𝑤)) ≤ 2𝛿𝑡(𝑥)

2. Further-
more, if 𝛿𝑡(𝑥) ≤ 1

4 , it is not hard to show that for 𝑡′ = 𝑡(1+𝑚−1/2/4) we have 𝛿𝑡′(𝑥) ≤ 1/2. Combining
these facts yields that in 𝑂(

√
𝑚) iterations we can double 𝑡 while maintaining a nearly centered 𝑥,
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i.e. 𝛿𝑡(𝑥) at most a constant. With some additional work, it can be shown that by maintaining a
nearly centered 𝑥 and increasing 𝑡 at most 𝑂(

√
𝑚𝐿) times one can compute a solution to (6.3) exactly.

Therefore, this barrier function gives an 𝑂(
√
𝑚𝐿) iterations algorithm for solving (6.3).

6.3.4 Self-Concordant Barrier Functions

In a seminal result of Nesterov and Nemirovski [211], they studied the sufficient conditions (called
self-concordance) on 𝜑 that allows us to follow the path efficiently. They showed that given the ability
to construct a 𝜈-self-concordant barrier for a convex set, one can minimize linear functions over that
convex set with a convergence rate of 𝑂(

√
𝜈).

Definition 6.3.1. Given a open convex set 𝐾 ⊂ R𝑛. We call 𝜑 is a 𝜈-self-concordant barrier function
for 𝐾 if the following conditions are satisfies

∙ 𝜑 is convex and thrice continuously differentiable,

∙ 𝜑(x 𝑖)→∞ for any sequence x 𝑖 ∈ 𝐾 converging to boundary of 𝐾.

∙ |𝐷3𝜑(x )[ℎ,ℎ,ℎ]| ≤ 2|𝐷2𝜑(x )[ℎ,ℎ]|3/2 for any x ∈ 𝐾, ℎ ∈ R𝑛,

∙ |𝐷𝐹 (x )[ℎ]| ≤
√
𝜈|𝐷2𝜑(x )[ℎ,ℎ]|1/2 for any x ∈ 𝐾, ℎ ∈ R𝑛.

For example, the standard log barrier function is a𝑚-self concordant barrier function for polytopes.
Nesterov and Nemirovski further showed that, for any convex set in R𝑛, there exists a barrier function,
called the universal barrier function, with self-concordance 𝑂(𝑛) [211]. However, the universal barrier
function is defined via the volume of certain polytopes, which is very difficult to compute.

6.3.5 A �̃�(𝑛)-Self-Concordant Barrier Function

In this section, we showed that for any polytope, there is an easy-to-compute barrier function with
self-concordance �̃�(𝑛). This barrier function is based on the following intuition on interior point
methods. In high level, interior point methods replace the key difficulty of linear programming, the
hard constraints, by barrier functions and solve the linear programs by a sequence of linear systems
induced by barrier functions. Since these linear system corresponds to minimizing linear functions
over ellipsoids and these ellipsoids comes from the second order approximation of barrier functions,
interior point methods, to a certain degree, use a sequence of ellipsoids to approximate polytopes.
Self-concordance can be thought as a geometric condition that relates how good those ellipsoids ap-
proximate the domain. In particular, the following lemma shows that the second order approximation
of the barrier function at the minimum point indeed has a geometric implication, it approximates the
domain.

Theorem 6.3.2 ([206, Thm 4.2.6]). Given a 𝜈-self-concordant barrier function 𝜑 for some convex set
Ω ⊂ R𝑛. Let 𝑥𝜑 be the minimizer of 𝜑 and let the Dikin ellipse 𝐸 = {𝑥 ∈ R𝑛 : (𝑥− 𝑥𝜑)𝑇∇2𝜑(𝑥𝜑)(𝑥−
𝑥𝜑) ≤ 1}. Then, we have that

𝐸 ⊂ Ω ⊂ (𝜈 + 2
√
𝜈)𝐸. (6.5)

This shows that in order to construct a �̃�(𝑛)-self-concordant barrier function, we must able to
find an ellipse that gives a �̃�(𝑛) approximation of the convex set Ω. There are quite a few ellipsoids
satisfying the condition (6.5). In contrast to other known ellipsoids that gives an approximation
guarantee such as second moment, John ellipsoid is defined by a convex optimization problem and
therefore can be computed in weakly polynomial time.
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Lemma 6.3.3 ([128]). Given a convex Ω ⊂ R𝑛. We define the John ellipsoid 𝐽(Ω) as the largest
volume ellipsoid contained inside Ω. Then, we have that

𝐽(Ω) ⊂ 𝐾 ⊂ 𝑛𝐽(Ω).

There are different ways to write down the John ellipsoid as a convex problem. Our barrier function
is motivated by the following formulation, called 𝐷-optimal design.

Lemma 6.3.4 ([143]). For any polytope Ω = {𝐴𝑥 > 𝑏}, the John ellipsoid 𝐽(𝐾) is given by {𝑦 ∈
R𝑛 : (𝑦 − 𝑥)𝑇𝐴𝑇𝑊𝐴(𝑦 − 𝑥) ≤ 1} where (𝑥,𝑤) is the saddle point of the following convex concave
problem

min
𝑥

max∑︀
𝑤𝑖=𝑛,𝑤𝑖≥0

ln det
(︀
𝐴𝑇𝑆−1𝑊𝑆−1𝐴

)︀
(6.6)

where 𝑆 and 𝑊 are diagonal 𝑚×𝑚 matrices with 𝑆𝑖𝑖 = 𝑎𝑇𝑖 𝑥− 𝑏𝑖 and 𝑊 𝑖𝑖 = 𝑤𝑖.

Motivated by Theorem 6.3.2, we want to find a barrier function whose minimizer is exactly the
center of John ellipsoid. From (6.6), we see that the function

𝜑∞(𝑥)
def
= max∑︀

𝑤𝑖=𝑛,𝑤𝑖≥0
ln det

(︀
𝐴𝑇𝑆−1𝑊𝑆−1𝐴

)︀
satisfies this requirement exactly.

However, 𝜑∞(𝑥) is not even continuously differentiable. To see this, we define 𝐽(Ω, 𝑥) be the
maximum volume ellipsoid inside 𝐾 and centered at 𝑥. We note that 𝜑∞(𝑥) = 𝑐 log(vol(𝐽(Ω, 𝑥)))
for some universal constant 𝑐. Consider the convex set Ω = [0, 1]. For any 𝑥 < 1/2, 𝐽(Ω, 𝑥) is the
“ellipsoid” [0, 2𝑥] and in some sense this ellipsoid does not see the constraint 𝑥 ≤ 1. Therefore, the
function 𝜑∞(𝑥) is not continuously differentiable at 1/2.

To make 𝜑∞(𝑥) smooth, we employ the standard approach, adding a strongly concave term into
the objective function ln det

(︀
𝐴𝑇𝑆−1𝑊𝑆−1𝐴

)︀
. In general, if a smooth function 𝑓(𝑥, 𝑦) is strongly

concave in 𝑦, then max𝑦 𝑓(𝑥, 𝑦) is smooth. Since the domain of 𝑤 is a simplex, a natural choice for
the strongly concave term is the entropy function. Therefore, we consider the following function

max∑︀
𝑤𝑖=𝑛,𝑤𝑖≥0

ln det
(︀
𝐴𝑇𝑆−1𝑊𝑆−1𝐴

)︀
+ 𝜌(𝑤)

with 𝜌(𝑤) = −
∑︀𝑚

𝑖=1𝑤𝑖 ln𝑤𝑖. By some direct calculations, one can show this is indeed a �̃�(𝑛) self-
concordant barrier function. In fact, there are many other choices of 𝜌 that give similar result. For
example, we considered 𝜌(𝑤) = −

∑︀𝑚
𝑖=1𝑤

1+1/ log(𝑚/𝑛)
𝑖 in our original paper. In the appendix, we

proved the following:

Theorem 6.3.5. For any polytope Ω = {𝐴𝑥 > 𝑏}, we define the barrier 𝑝(𝑥) for Ω as max𝑤𝑖≥0 𝑓(𝑥,𝑤)
where

𝑓(𝑥,𝑤) = ln det(𝐴𝑇𝑆−1𝑊𝑆−1𝐴)− 𝑛

𝑚

𝑚∑︁
𝑖=1

𝑤𝑖 ln𝑤𝑖 −
𝑛

𝑚

𝑚∑︁
𝑖=1

ln 𝑠𝑖 (6.7)

and 𝑆 and 𝑊 are diagonal 𝑚 × 𝑚 matrices with 𝑆𝑖𝑖 = 𝑎𝑇𝑖 𝑥 − 𝑏𝑖 and 𝑊 𝑖𝑖 = 𝑤𝑖. Then, 𝑝 is an
𝑂
(︀
𝑛 ln6

(︀
𝑚𝑒
𝑛

)︀)︀
-self concordant barrier function (after rescaling). More precisely, we have

1. For any 𝑥 ∈ Ω∘, (∇𝑝(𝑥))𝑇
(︀
∇2𝑝(𝑥)

)︀−1
(∇𝑝(𝑥)) ≤ 𝑂(𝑛).

2. For any 𝑥 ∈ Ω∘, ℎ ∈ R𝑛, we have
⃒⃒
∇3𝑝(𝑥)[ℎ, ℎ, ℎ]

⃒⃒
≤ 𝑂

(︀
ln3
(︀
𝑚𝑒
𝑛

)︀)︀ ⃒⃒
∇2𝑝(𝑥)[ℎ, ℎ]

⃒⃒3/2
.
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We remark that both the scaling 𝑛/𝑚 and the extra term
∑︀𝑚

𝑖=1 ln 𝑠𝑖 is not essential. In fact, one
consider the ℓ𝑝 Lewis ellipsoids instead and use the following barrier function

𝜑𝑝(𝑥)
def
= min

M
− log det𝑀 subject to

𝑚∑︁
𝑖=1

(︂
𝑎⊤𝑖 𝑀𝑎𝑖
s2𝑖 (𝑥)

)︂𝑝/2
≤ 𝑛 and 𝑀 ⪰ 0.

One can show that 𝜑log(𝑚) is an ̃︀𝑂 (𝑛)-self concordant barrier function. However, this barrier function
is more difficult to analyze and hence we left it as an 15 pages calculus exercise.

6.4 Difficulties

In this section, we discuss two issues arises from using the barrier function defined in the previous
section and outline our approaches used in the rest of this chapter for fixing them.

6.4.1 Avoiding Matrix Multiplication

The minimax formula involves the maximizer 𝑤 in (6.7), which we call weight function 𝑔(𝑥). Comput-
ing 𝑔(𝑥) requires computing the diagonal of some projection matrices as in Vaidya and Anstreicher’s
work [257, 15] and is therefore not efficient enough for our purposes. Although we can compute 𝑔(𝑥)
approximately up to certain multiplicative coordinate-wise error using dimension reduction techniques
(Section 6.7.1), this error is still too much for path following to handle the directly as multiplicatively
changing weights can hurt our measures of progress too much.

To avoid the minimax formulation, we note that the barrier function 𝑝(𝑥) has similar behaviors as
−
∑︀

w 𝑖 ln s 𝑖(x ) around 𝑥 if 𝑤 is close to the maximizer in (6.7) for that given 𝑥. Therefore, rather
than using the minimax formula, we maintain separate weights 𝑤 and current point 𝑥 and use the
barrier

𝜑(𝑥,𝑤) = −
∑︁
𝑖∈[𝑚]

w 𝑖 ln s 𝑖(x ).

We then maintain two invariants, (1) 𝑥 is centered, i.e. 𝑥 close to the minimum point of 𝑡·𝑐𝑇𝑥+𝜑(𝑥,𝑤)
and (2) 𝑤 close to 𝑔(𝑥) multiplicatively.

We separate the problem of maintaining these invariants into two steps. First, we show that a
Newton step for 𝑥 improves centrality without moving 𝑤 too far away from 𝑔(𝑥). Second, we show
that given a multiplicative approximation to 𝑔(𝑥) and bounds for how much 𝑔(𝑥) may have changed,
we can maintain the invariant that 𝑔(𝑥) is close to 𝑤 multiplicatively without moving 𝑤 too much.
We formulate this as a general two player game and prove that there is an efficient strategy to maintain
our desired invariant. Combining these and standard techniques in path-following methods, we obtain
an �̃�(

√︀
rank(𝐴)𝐿) iterations path-following algorithm for solving (6.2) where each iterations consists

of �̃�(1) linear system solves.

6.4.2 Generalizing The Result

Unfortunately, this result is insufficient to produce faster algorithms for the maximum flow problem
and its generalizations. Given an arbitrary minimum cost maximum flow instance there is a natural
linear program that one can use to express the problem:

min
𝑥 ∈ R𝑚 : 𝐴𝑇𝑥 = 𝑏
∀𝑖 ∈ [𝑚] : 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖

𝑐𝑇𝑥 (6.8)
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where the variables 𝑥𝑖 denote the flow on an edge, the 𝑙𝑖 and 𝑢𝑖 denote lower and upper bounds on
how much flow we can put on the edge, and 𝐴 is the incidence matrix associated with the graph [63].
In this formulation, rank(𝐴) is less than the number of vertices in the graph and using fast Laplacian
system solvers [243, 147, 146, 141, 162, 170, 223] we can solve linear systems involving 𝐴 in time
nearly linear in the number of edges in the graph. Thus, if we could solve (6.8) in time comparable to
that we achieve for solving (6.2) this would immediately yield a ̃︀𝑂(𝑚

√
𝑛 log𝑂(1)(𝑈)) algorithm for the

maximum flow problem. Unfortunately, it is not clear how to apply our previous results in this more
general setting and naive attempts to write (6.8) in the form of (6.2) without increasing rank(𝐴) fail.

Even more troubling, achieving a faster than ̃︀𝑂(
√
𝑚𝐿) iterations interior point method for solving

general linear programs in this form would break a long-standing barrier for the convergence rate of
interior point methods. To the best of the authors knowledge, there is no general purpose interior point
method that achieves a convergence rate faster than the self concordance of the best barrier of the
feasible region. Furthermore, using lower bounds results of Nesterov and Nemirovski [211, Proposition
2.3.6], it is not hard to see that any general barrier for (6.8) must have self-concordance Ω(𝑚).

After all, linear programs of the form (6.2) are easier because each step of Newton steps lies in
some ellipsoids that is strictly contained inside the domain 𝐴𝑥 ≥ 𝑏. However, such restriction implies
that it takes at least 𝑂(

√
𝑚) iterations to go from one point in the box {𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖} to another

point and that is too slow. Therefore, we need to explicitly bound the size of the Newton step in both
the ℓ∞ norm and a weighted ℓ2 norm. Hence, we measure the progress by the size of the Newton
step in a mixed norm of the form ‖ · ‖ = ‖ · ‖∞ + 𝐶norm‖ · ‖𝑊 to keep track of these two quantities
simultaneously.

Measuring of Newton step size both with respect to the mixed norm helps to explain how our
method outperforms the self-concordance of the best barrier for the space. Self-concordance is based
on ℓ2 analysis and the lower bounds for self-concordance are precisely the failure of the sphere to
approximate a box. While ideally we would just perform optimization over the ℓ∞ box directly, ℓ∞
is ripe with degeneracies that makes this analysis difficult. Nevertheless, unconstrained minimization
over a box is quite simple and by working with this mixed norm and choosing weights to improve the
conditioning, we are taking advantage of the simplicity of minimizing ℓ∞ over most of the domain and
only paying for the 𝑛-self-concordance of a barrier for the smaller subspace induce by the requirement
that 𝐴𝑇𝑥 = 𝑏.

6.5 Weighted Path Finding

In this section, we formally define the formulation of linear program we solve (Subsection 6.5.1),
introduce the weighted central path we follow (Subsection 6.5.3), define key properties of the path
(Subsection 6.5.4) and the weights (Subsection 6.5.5) that we will use to produce an efficient path
finding scheme.

6.5.1 The Problem

As we explained in subsection 6.4.2, the standard dual linear program is not suitable for the maximum
flow application. From now on, our goal is to efficiently solve the following linear program

min
𝑥 ∈ R𝑚 : 𝐴𝑇𝑥 = 𝑏
∀𝑖 ∈ [𝑚] : 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖

𝑐𝑇𝑥 (6.9)



78 CHAPTER 6. FASTER LINEAR PROGRAMMING

where𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑛, 𝑐 ∈ R𝑚, 𝑙𝑖 ∈ R∪{−∞}, and 𝑢𝑖 ∈ R∪{+∞}.4 We assume that for all 𝑖 ∈ [𝑚]

the domain of variable 𝑥𝑖, dom(𝑥𝑖)
def
= {𝑥 : 𝑙𝑖 ≤ 𝑥 ≤ 𝑢𝑖}, is non-degenerate. In particular we assume

that dom(𝑥𝑖) is not the empty set, a singleton, or the entire real line, i.e. 𝑙𝑖 < 𝑢𝑖 and either 𝑙𝑖 ̸= −∞ or
𝑢𝑖 ̸= +∞. Furthermore we make the standard assumptions that 𝐴 has full column rank, and therefore
𝑚 ≥ 𝑛, and we assume that the interior of the polytope, Ω def

= {𝑥 ∈ R𝑚 : 𝐴𝑇𝑥 = 𝑏, 𝑙𝑖 < 𝑥𝑖 < 𝑢𝑖}, is
non-empty.

The linear program (6.9) is a generalization of standard form, the case where for all 𝑖 ∈ [𝑚] we
have 𝑙𝑖 = 0 and 𝑢𝑖 = +∞. While it is well known that all linear programs can be written in standard
form, the transformations to rewrite (6.9) in standard form may increase the rank of 𝐴 and therefore
we solve (6.9) directly.

6.5.2 Coordinate Barrier Functions

Rather than working directly with the different domain of the 𝑥𝑖 we take a slightly more general
approach and for the remainder of the chapter assume that for all 𝑖 ∈ [𝑚] we have a barrier function,
𝜑𝑖 : dom(𝑥𝑖)→ R, such that

lim
𝑥→𝑙𝑖

𝜑𝑖(𝑥) = lim
𝑥→𝑢𝑖

𝜑𝑖(𝑥) = +∞.

More precisely, we assume that each 𝜑𝑖 is a 1-self-concordant barrier function. Recall from defini-
tion 6.3.1, 𝜑 is a 1-self-concordant barrier function if⃒⃒

𝜑′′′(𝑥)
⃒⃒
≤ 2(𝜑′′(𝑥))3/2 for all 𝑥 ∈ dom(𝜑) (6.10)

and ⃒⃒
𝜑′(𝑥)

⃒⃒
≤
√︀
𝜑′′(𝑥) for all 𝑥 ∈ dom(𝜑). (6.11)

The first condition (6.10) bounds how quickly the second order approximation to the function can
change and the second condition (6.11) bounds how much force the barrier can exert.

The existence of a self-concordant barrier for the domain is a standard assumption for interior
point methods [211]. However, for completeness, here we show how for each possible setting of the 𝑙𝑖
and 𝑢𝑖 there is an explicit 1-self-concordant barrier function we can use:

∙ Case (1): 𝑙𝑖 finite and 𝑢𝑖 =∞: Here we use a log barrier defined as 𝜑𝑖(𝑥)
def
= − log(𝑥− 𝑙𝑖). For

this barrier we have

𝜑′𝑖(𝑥) = −
1

𝑥− 𝑙𝑖
, 𝜑′′𝑖 (𝑥) =

1

(𝑥− 𝑙𝑖)2
, and 𝜑′′′𝑖 (𝑥) = −

2

(𝑥− 𝑙𝑖)3

and therefore clearly |𝜑′′′𝑖 (𝑥)| = 2(𝜑′′𝑖 (𝑥))
3/2 , |𝜑′𝑖(𝑥)| =

√︀
𝜑′′𝑖 (𝑥), and lim𝑥→𝑙𝑖 𝜑𝑖(𝑥) =∞.

∙ Case (2): 𝑙𝑖 = −∞ and 𝑢𝑖 finite: Here we use a log barrier defined as 𝜑𝑖(𝑥)
def
= − log(𝑢𝑖 − 𝑥).

For this barrier we have

𝜑′𝑖(𝑥) =
1

𝑢𝑖 − 𝑥
, 𝜑′′𝑖 (𝑥) =

1

(𝑢𝑖 − 𝑥)2
, and 𝜑′′′𝑖 (𝑥) = −

2

(𝑢𝑖 − 𝑥)3

and therefore clearly |𝜑′′′𝑖 (𝑥)| = 2(𝜑′′𝑖 (𝑥))
3/2, |𝜑′𝑖(𝑥)| =

√︀
𝜑′′𝑖 (𝑥), and lim𝑥→𝑢𝑖 𝜑𝑖(𝑥) =∞.

4Typically (6.9) is written as 𝐴𝑥 = 𝑏 rather than 𝐴𝑇𝑥 = 𝑏. We chose this formulation to be consistent with the
previous section and to be consistent with the standard use of 𝑛 to denote the number of vertices and 𝑚 to denote the
number of edges in a graph in the linear program formulation of flow problems.



6.5. Weighted Path Finding 79

∙ Case (3): 𝑙𝑖 finite and 𝑢𝑖 finite: Here we use a trigonometric barrier5 defined as 𝜑𝑖(𝑥)
def
=

− log cos(𝑎𝑖𝑥 + 𝑏𝑖) for 𝑎𝑖 = 𝜋
𝑢𝑖−𝑙𝑖 and 𝑏𝑖 = −𝜋

2
𝑢𝑖+𝑙𝑖
𝑢𝑖−𝑙𝑖 . Note for this choice as 𝑥 → 𝑢𝑖 we have

𝑎𝑖𝑥+ 𝑏𝑖 → 𝜋
2 and as 𝑥→ 𝑙𝑖 we have 𝑎𝑖𝑥+ 𝑏𝑖 → −𝜋

2 and in both cases 𝜑𝑖(𝑥)→∞. Furthermore,

𝜑′𝑖(𝑥) = 𝑎𝑖 tan (𝑎𝑖𝑥+ 𝑏𝑖) , 𝜑′′𝑖 (𝑥) =
𝑎2𝑖

cos2(𝑎𝑖𝑥+ 𝑏𝑖)
, and 𝜑′′′𝑖 =

2𝑎3𝑖 sin(𝑎𝑖𝑥+ 𝑏𝑖)

cos3(𝑎𝑖𝑥+ 𝑏𝑖)
.

Therefore, we have |𝜑′′′𝑖 (𝑥)| ≤ 2(𝜑′′(𝑥))3/2 and |𝜑′𝑖(𝑥)| ≤
√︀
𝜑′′𝑖 (𝑥).

For the remainder of this chapter we will simply assume that we have a 1 self-concordant barrier 𝜑𝑖
for each of the dom(𝜑𝑖) and will not use any more structure about the barriers.

While there is much theory regarding properties of self-concordant barrier functions we will pri-
marily use two common properties about self-concordant barriers functions. The first property,
Lemma 6.5.1, shows that the Hessian of the barrier cannot change to quickly, and the second property,
Lemma 6.5.2 we use to reason about how the force exerted by the barrier changes over the domain.

Lemma 6.5.1 ([206, Theorem 4.1.6]). Suppose 𝜑 is a 1-self-concordant barrier function. For all

𝑠 ∈ dom(𝜑) if 𝑟
def
=
√︀
𝜑′′(𝑠) |𝑠− 𝑡| < 1 then 𝑡 ∈ dom(𝜑) and

(1− 𝑟)
√︀
𝜑′′(𝑠) ≤

√︀
𝜑′′(𝑡) ≤

√︀
𝜑′′(𝑠)

1− 𝑟
.

Lemma 6.5.2 ([206, Theorem 4.2.4]). Suppose 𝜑 is a 1-self-concordant barrier function. For all
𝑥, 𝑦 ∈ dom(𝜑) , we have

𝜑′(𝑥) · (𝑦 − 𝑥) ≤ 1.

6.5.3 The Weighted Central Path

Our linear programming algorithm maintains a feasible point 𝑥 ∈ Ω, weights 𝑤 ∈ R𝑚>0, and minimizes
the following penalized objective function

min
𝐴𝑇𝑥=𝑏

𝑓𝑡(𝑥,𝑤) where 𝑓𝑡(𝑥,𝑤)
def
= 𝑡 · 𝑐𝑇𝑥+

∑︁
𝑖∈[𝑚]

𝑤𝑖𝜑𝑖(𝑥𝑖) (6.12)

for increasing 𝑡 and small 𝑤. For every fixed set of weights, 𝑤 ∈ R𝑚>0 the set of points 𝑥𝑤(𝑡) =
argmin𝑥∈Ω 𝑓𝑡(𝑥,𝑤) for 𝑡 ∈ [0,∞) forms a path through the interior of the polytope that we call the
weighted central path. We call 𝑥𝑤(0) a weighted center of the polytope and note that lim𝑡→∞ 𝑥𝑤(0) is
a solution to the linear program.

Our weighted path finding algorithm follows a simple iterative scheme. We assume we have a
feasible point {𝑥,𝑤} ∈ {Ω × R𝑚>0} and a weight function 𝑔(𝑥) : Ω → R𝑚>0, such that for any point
𝑥 ∈ R𝑚>0 the function 𝑔(𝑥) returns a good set of weights that suggest a possibly better weighted path.
Although the weight function we use is motivated by the barrier function introduced in Theorem 6.3.5,
we do not assume anything on 𝑔 in this section. Our algorithm then repeats the following.

1. If 𝑥 close to argmin𝑦∈Ω 𝑓𝑡 (𝑦,𝑤), then increase 𝑡.

2. Otherwise, use projected Newton step to update 𝑥 and move 𝑤 closer to 𝑔(𝑥).

3. Repeat.

5The “trigonometric barrier” we use arises as the (unique) solution of the ODE 𝜑′′′ = 2 (𝜑′′)
3/2

such that the function
value goes to infinity up at 𝑢𝑖 and 𝑙𝑖.
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In the remainder of this section we present how we measure both the quality of a current feasible
point {𝑥,𝑤} ∈ {Ω × R𝑚>0} and the quality of the weight function. In Section 6.5.4 we derive and
present both how we measure how close {𝑥,𝑤} is to the weighted central path and the step we take
to improve this centrality. Then in Section 6.5.5 we present how we measure the quality of a weight
function, i.e. how good the weighted paths it finds are.

6.5.4 Measuring Centrality.

Here we explain how we measure the distance from 𝑥 to the minimum of 𝑓𝑡 (𝑥,𝑤) for fixed 𝑤. This
distance is a measure of how close 𝑥 is to the weighted central path and we refer to it as the centrality
of 𝑥, denote 𝛿𝑡(𝑥,𝑤).

To motivate our centrality measure, we first compute a projected Newton step for 𝑥. For all 𝑥 ∈ Ω,
we define 𝜑(𝑥) ∈ R𝑚 by 𝜑(𝑥)𝑖 = 𝜑𝑖(𝑥𝑖) for 𝑖 ∈ [𝑚]. We define 𝜑′(𝑥), 𝜑′′(𝑥), and 𝜑′′′(𝑥) similarly and
let Φ,Φ′,Φ′′,Φ′′′ denote the diagonal matrices corresponding to these matrices. Using this, we have6

∇𝑥𝑓𝑡(𝑥,𝑤) = 𝑡 · 𝑐+𝑤𝜑′(𝑥) and ∇𝑥𝑥𝑓𝑡(𝑥,𝑤) =𝑊Φ′′(𝑥) .

Therefore, a Newton step for 𝑥 is given by

ℎ𝑡(𝑥,𝑤) = −
(︀
𝑊Φ′′(𝑥)

)︀−1/2
𝑃𝐴𝑇 (𝑊Φ′′(𝑥))−1/2

(︀
𝑊Φ′′(𝑥)

)︀−1/2∇𝑥𝑓𝑡(𝑥,𝑤)

= −Φ′′(𝑥)−1/2𝑃 𝑥,𝑤𝑊
−1Φ′′(𝑥)−1/2∇𝑥𝑓𝑡(𝑥,𝑤) (6.13)

where 𝑃𝐴𝑇 (𝑊Φ′′(𝑥))−1/2 is the orthogonal projection onto the kernel of 𝐴𝑇 (𝑊Φ′′(𝑥))−1/2 and 𝑃 𝑥,𝑤

is the orthogonal projection onto the kernel of 𝐴𝑇 (Φ′′(𝑥))−1/2 with respect to the norm ‖ · ‖𝑊 , i.e.

𝑃 𝑥,𝑤
def
= 𝐼 −𝑊−1𝐴𝑥

(︀
𝐴𝑇
𝑥𝑊

−1𝐴𝑥

)︀−1
𝐴𝑇
𝑥 for 𝐴𝑥

def
= Φ′′(𝑥)−1/2𝐴 . (6.14)

As with standard convergence analysis of Newton’s method, we wish to keep the Newton step size in
the Hessian norm, i.e. ‖ℎ𝑡(𝑥,𝑤)‖𝑊Φ′′(𝑥) = ‖

√︀
𝜑′′(𝑥)ℎ𝑡(𝑥,𝑤)‖𝑊 , small and the multiplicative change

in the Hessian, ‖
√︀
𝜑′′(𝑥)ℎ𝑡(𝑥,𝑤)‖∞, small (See Lemma 6.5.2). While in the unweighted case we can

bound the multiplicative change by the change in the hessian norm (since ‖ · ‖∞ ≤ ‖ · ‖2), here we
would like to use small weights and this comparison would be insufficient.

To track both these quantities simultaneously, we define the mixed norm for all 𝑦 ∈ R𝑚 by

‖𝑦‖𝑤+∞
def
= ‖𝑦‖∞ + 𝐶norm‖𝑦‖𝑊 (6.15)

for some 𝐶norm > 0 that we define later. Note that ‖·‖𝑤+∞ is indeed a norm for 𝑤 ∈ R𝑚>0 as in this
case both ‖ · ‖∞ and ‖ · ‖𝑊 are norms. However, rather than measuring centrality by the quantity

‖
√︀
𝜑′′(𝑥)ℎ𝑡(𝑥,𝑤)‖𝑤+∞ =

⃦⃦⃦⃦
𝑃 𝑥,𝑤

(︂
∇𝑥𝑓𝑡(𝑥,𝑤)

𝑤
√
�⃗�′′

)︂⃦⃦⃦⃦
𝑤+∞

, we instead find it more convenient to use the

following idealized form

𝛿𝑡(𝑥,𝑤)
def
= min

𝜂∈R𝑛

⃦⃦⃦⃦
⃦∇𝑥𝑓𝑡(𝑥,𝑤)−𝐴𝜂

𝑤
√︀
𝜑′′(𝑥)

⃦⃦⃦⃦
⃦
𝑤+∞

.

We justify this definition by showing these two quantities differ by at most a multiplicative factor of
‖𝑃 𝑥,𝑤‖𝑤+∞ as follows

𝛿𝑡(𝑥,𝑤) ≤
⃦⃦⃦⃦√︁

𝜑′′(𝑥)ℎ𝑡(𝑥,𝑤)

⃦⃦⃦⃦
𝑤+∞

≤ ‖𝑃 𝑥,𝑤‖𝑤+∞ · 𝛿𝑡(𝑥,𝑤). (6.16)

6Recall that 𝑤𝜑′(𝑥) denotes the entry-wise multiplication of the vectors 𝑤 and 𝜑′(𝑥).
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This a direct consequence of the more general Lemma 6.11.1 that we prove in the appendix.
We summarize this section with the following definition.

Definition 6.5.3 (Centrality Measure). For {𝑥,𝑤} ∈ {Ω × R𝑚>0} and 𝑡 ≥ 0, we let ℎ𝑡(𝑥,𝑤) denote
the projected newton step for 𝑥 on the penalized objective 𝑓𝑡 given by

ℎ𝑡(𝑥,𝑤)
def
= − 1√︁

�⃗�′′(𝑥)
𝑃 𝑥,𝑤

⎛⎝∇𝑥𝑓𝑡(𝑥,𝑤)

𝑤

√︁
�⃗�′′(𝑥)

⎞⎠
where 𝑃 𝑥,𝑤 is the orthogonal projection onto the kernel of 𝐴𝑇 (Φ′′)−1/2 with respect to the norm
‖ · ‖𝑊 (see (6.15)). We measure the centrality of {𝑥,𝑤} by

𝛿𝑡(𝑥,𝑤)
def
= min

𝜂∈R𝑛

⃦⃦⃦⃦
⃦∇𝑥𝑓𝑡(𝑥,𝑤)−𝐴𝜂

𝑤
√︀
𝜑′′(𝑥)

⃦⃦⃦⃦
⃦
𝑤+∞

(6.17)

where for all 𝑦 ∈ R𝑚 we let ‖𝑦‖𝑤+∞
def
= ‖𝑦‖∞ + 𝐶norm‖𝑦‖𝑊 for some 𝐶norm > 0 we define later.

6.5.5 The Weight Function

With the Newton step and centrality conditions defined, the specification of our algorithm becomes
more clear. Our algorithm is as follows

1. If 𝛿𝑡(𝑥,𝑤) is small, then increase 𝑡.

2. Set 𝑥(new) ← 𝑥+ ℎ𝑡(𝑥,𝑤) and move 𝑤(new) towards 𝑔(𝑥(new)).

3. Repeat.

To prove this algorithm converges, we need to show what happens to 𝛿𝑡 (𝑥,𝑤) when we change 𝑡,
𝑥 and 𝑤. At the heart of this chapter is understanding what conditions we need to impose on the
weight function 𝑔(𝑥) : Ω→ R𝑚>0 so that we can bound this change in 𝛿𝑡(𝑥,𝑤) and hence achieve fast
converge rates. In Lemma 6.6.1 we show that the effect of changing 𝑡 on 𝛿𝑡 is bounded by 𝐶norm and
‖𝑔(𝑥)‖1, in Lemma 6.6.2 we show that the effect that a Newton Step on 𝑥 has on 𝛿𝑡 is bounded by⃦⃦
𝑃 𝑥,𝑔(𝑥)

⃦⃦
𝑔(𝑥)+∞, and in Lemma 6.6.3 and 6.6.4 we show the change of 𝑤 as 𝑔(𝑥) changes is bounded

by
⃦⃦
𝐺(𝑥)−1𝐺′(𝑥)(Φ′′(𝑥))−1/2

⃦⃦
𝑔(𝑥)+∞.

Hence for the remainder of the chapter we assume we have a weight function 𝑔(𝑥) : Ω → R𝑚>0

and make the following assumptions regarding our weight function. In Section 6.7 we prove that such
weight function exists.

Definition 6.5.4 (Weight Function). A weight function is a differentiable function from 𝑔 : Ω→ R𝑚>0

such that for constants 𝑐1(𝑔), 𝑐𝛾(𝑔), and 𝑐𝛿(𝑔), we have the following for all 𝑥 ∈ Ω:

∙ Size : The size 𝑐1(𝑔) = ‖𝑔(𝑥)‖1.

∙ Slack Sensitivity : The slack sensitivity 𝑐𝛾(𝑔) satisfies 1 ≤ 𝑐𝛾(𝑔) ≤ 5
4 and ‖𝑃 𝑥,𝑤‖𝑤+∞ ≤ 𝑐𝛾(𝑔)

for any 𝑤 such that 4
5𝑔 (𝑥) ≤ 𝑤 ≤

5
4𝑔 (𝑥).

∙ Step Consistency : The step consistency 𝑐𝛿(𝑔) satisfies 𝑐𝛿(𝑔) · 𝑐𝛾(𝑔) < 1 and⃦⃦⃦
𝐺(𝑥)−1𝐺′(𝑥)(Φ′′(𝑥))−1/2

⃦⃦⃦
𝑔(𝑥)+∞

≤ 𝑐𝛿 ≤ 1.

∙ Uniformity : The weight function satisfies ‖𝑔(𝑥)‖∞ ≤ 2.
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6.5.6 Notation

Here we introduce various notation that we will use throughout the chapter (excluding Section 6.13).
This should be used primarily for reference as we reintroduce notation as needed later in the chapter.
For a matrix 𝐴 ∈ R𝑚×𝑛 and vector 𝑥 ∈ R𝑚>0 we define the following matrices and vectors

∙ Projection matrix 𝑃𝐴(𝑥) ∈ R𝑚×𝑚: 𝑃𝐴(𝑥)
def
= 𝑋1/2𝐴(𝐴𝑇𝑋𝐴)−1𝐴𝑇𝑋1/2.

∙ Leverage scores 𝜎𝐴(𝑥) ∈ R𝑚: 𝜎𝐴(𝑥)
def
= 𝑑𝑖𝑎𝑔(𝑃𝐴(𝑥)).

∙ Leverage matrix Σ𝐴(𝑥) ∈ R𝑚×𝑚: Σ𝐴(𝑥)
def
= 𝐷𝑖𝑎𝑔(𝑃𝐴(𝑥)).

∙ Projection Laplacian Λ𝐴(𝑥) ∈ R𝑚×𝑚: Λ𝐴(𝑥)
def
= Σ𝐴(𝑥)− 𝑃𝐴(𝑥)

(2).

6.6 Progressing Along Weighted Paths

In this section, we provide the main lemmas we need for an �̃�(
√︀
rank(𝐴) log(𝑈/𝜀)) iterations weighted

path following algorithm for (6.9) assuming a weight function satisfying Definition 6.5.5. In Section
6.6.1, 6.6.2, and 6.6.3 we show how centrality, 𝛿𝑡(𝑥,𝑤), is affected by changing 𝑡, 𝑥 ∈ Ω, and 𝑤 ∈ R𝑚>0

respectively. In Section 6.6.5 we then show how to use these Lemmas to improve centrality using
approximate computations of the weight function, 𝑔 : Ω→ R𝑚>0.

6.6.1 Changing 𝑡

Here we bound how much centrality increases as we increase 𝑡. We show that this rate of increase is
governed by 𝐶norm and ‖𝑤‖1.

Lemma 6.6.1. For all {𝑥,𝑤} ∈ {Ω× R𝑚>0}, 𝑡 > 0 and 𝛼 ≥ 0, we have

𝛿(1+𝛼)𝑡(𝑥,𝑤) ≤ (1 + 𝛼)𝛿𝑡(𝑥,𝑤) + 𝛼
(︁
1 + 𝐶norm

√︀
‖𝑤‖1

)︁
.

Proof. Let 𝜂𝑡 ∈ R𝑛 be such that

𝛿𝑡(𝑥,𝑤) =

⃦⃦⃦⃦
⃦∇𝑥𝑓𝑡(𝑥,𝑤) +𝐴𝜂𝑡

𝑤
√︀
𝜑′′(𝑥)

⃦⃦⃦⃦
⃦
𝑤+∞

=

⃦⃦⃦⃦
⃦ 𝑡 · 𝑐+𝑤𝜑′(𝑥) +𝐴𝜂𝑡

𝑤
√︀
𝜑′′(𝑥)

⃦⃦⃦⃦
⃦
𝑤+∞

.

Applying this to the definition of 𝛿(1+𝛼)𝑡 and using that ‖·‖𝑤+∞ is a norm then yields

𝛿(1+𝛼)𝑡(𝑥,𝑤) = min
𝜂∈R𝑛

⃦⃦⃦⃦
⃦(1 + 𝛼)𝑡 · 𝑐+𝑤𝜑′(𝑥) +𝐴𝜂

𝑤
√︀
𝜑′′(𝑥)

⃦⃦⃦⃦
⃦
𝑤+∞

≤

⃦⃦⃦⃦
⃦(1 + 𝛼)𝑡 · 𝑐+𝑤𝜑′(𝑥) +𝐴(1 + 𝛼)𝜂𝑡

𝑤
√︀
𝜑′′(𝑥)

⃦⃦⃦⃦
⃦
𝑤+∞

≤ (1 + 𝛼)

⃦⃦⃦⃦
⃦ 𝑡 · 𝑐+𝑤𝜑′(𝑥) +𝐴𝜂𝑡

𝑤
√︀
𝜑′′(𝑥)

⃦⃦⃦⃦
⃦
𝑤+∞

+ 𝛼

⃦⃦⃦⃦
⃦ 𝑤𝜑′(𝑥)

𝑤
√︀
𝜑′′(𝑥)

⃦⃦⃦⃦
⃦
𝑤+∞

= (1 + 𝛼)𝛿𝑡(𝑥,𝑤) + 𝛼

(︃⃦⃦⃦⃦
⃦ 𝜑′(𝑥)√︀

𝜑′′(𝑥)

⃦⃦⃦⃦
⃦
∞

+ 𝐶norm

⃦⃦⃦⃦
⃦ 𝜑′(𝑥)√︀

𝜑′′(𝑥)

⃦⃦⃦⃦
⃦
𝑊

)︃
Using that |𝜑′𝑖(𝑥)| ≤

√︀
𝜑′′𝑖 (𝑥) for all 𝑖 ∈ [𝑚] and 𝑥 ∈ R𝑚 by Equation (6.11) yields the result.
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6.6.2 Changing 𝑥

Here we analyze the effect of a Newton step on 𝑥 on centrality. We show for sufficiently central
{𝑥,𝑤} ∈ {Ω× R𝑚>0} and 𝑤 sufficiently close to 𝑔(𝑥) Newton steps converge quadratically.

Lemma 6.6.2. Let {𝑥0,𝑤} ∈ {Ω × R𝑚>0} such that 𝛿𝑡(𝑥0,𝑤) ≤ 1
10 and 4

5𝑔 (𝑥) ≤ 𝑤 ≤
5
4𝑔 (𝑥) and

consider a Newton step 𝑥1 = 𝑥0 + ℎ𝑡(𝑥,𝑤). Then, 𝛿𝑡(𝑥1,𝑤) ≤ 4 (𝛿𝑡(𝑥0,𝑤))2 .

Proof. Let 𝜑0
def
= 𝜑(𝑥0) and let 𝜑1

def
= 𝜑(𝑥1). By the definition of ℎ𝑡(𝑥0,𝑤) and the formula of 𝑃 𝑥0,𝑤

we know that there is some 𝜂0 ∈ R𝑛 such that

−
√︁
�⃗�′′0ℎ𝑡(𝑥0,𝑤) =

𝑡 · 𝑐+𝑤𝜑′
0 −𝐴𝜂0

𝑤
√︀
𝜑′′
0

.

Therefore, 𝐴𝜂0 = 𝑐+𝑤𝜑
′
0 +𝑤𝜑

′′
0ℎ𝑡(𝑥0,𝑤). Recalling the definition of 𝛿𝑡 this implies that

𝛿𝑡(𝑥1,𝑤) = min
𝜂∈R𝑛

⃦⃦⃦⃦
⃦⃦ 𝑡 · 𝑐+𝑤�⃗�′1 −𝐴𝜂

𝑤

√︁
�⃗�′′1

⃦⃦⃦⃦
⃦⃦
𝑤+∞

≤

⃦⃦⃦⃦
⃦⃦ 𝑡 · 𝑐+𝑤�⃗�′1 −𝐴𝜂0

𝑤

√︁
�⃗�′′1

⃦⃦⃦⃦
⃦⃦
𝑤+∞

≤

⃦⃦⃦⃦
⃦⃦𝑤(�⃗�′1 − 𝜑′

0)−𝑤𝜑′′
0ℎ𝑡(𝑥0,𝑤)

𝑤

√︁
�⃗�′′1

⃦⃦⃦⃦
⃦⃦
𝑤+∞

=

⃦⃦⃦⃦
⃦⃦(�⃗�′1 − 𝜑′

0)− 𝜑′′
0ℎ𝑡(𝑥0,𝑤)√︁

�⃗�′′1

⃦⃦⃦⃦
⃦⃦
𝑤+∞

By the mean value theorem, we have �⃗�′1 − 𝜑′
0 = �⃗�′′(𝜃)ℎ𝑡(𝑥0,𝑤) for some 𝜃 between 𝑥0 and 𝑥1

coordinate-wise. Hence,

𝛿𝑡(𝑥1,𝑤) ≤

⃦⃦⃦⃦
⃦⃦ �⃗�′′(𝜃)ℎ𝑡(𝑥0,𝑤)− 𝜑′′

0ℎ𝑡(𝑥0,𝑤)√︁
�⃗�′′1

⃦⃦⃦⃦
⃦⃦
𝑤+∞

=

⃦⃦⃦⃦
⃦⃦
(︁
�⃗�′′(𝜃)− �⃗�′′0

)︁
√︁
�⃗�′′1
√︀
𝜑′′
0

(
√︁
𝜑′′0ℎ𝑡(𝑥0,𝑤))

⃦⃦⃦⃦
⃦⃦
𝑤+∞

≤

⃦⃦⃦⃦
⃦⃦ �⃗�′′(𝜃)− �⃗�′′0√︁

�⃗�′′1
√︀
𝜑′′
0

⃦⃦⃦⃦
⃦⃦
∞

·
⃦⃦⃦⃦√︁

𝜑′′0ℎ𝑡(𝑥0,𝑤)

⃦⃦⃦⃦
𝑤+∞

.

To bound the first term, we use Lemma 6.5.1 as follows⃦⃦⃦⃦
⃦⃦
(︁
�⃗�′′(𝜃)− �⃗�′′0

)︁
√︁
�⃗�′′1

√︁
�⃗�′′0

⃦⃦⃦⃦
⃦⃦
∞

≤

⃦⃦⃦⃦
⃦𝜑′′(𝜃)

𝜑′′
0

− 1

⃦⃦⃦⃦
⃦
∞

·

⃦⃦⃦⃦
⃦⃦
√︁
�⃗�′′0√︁
�⃗�′′1

⃦⃦⃦⃦
⃦⃦
∞

≤

⃒⃒⃒⃒
⃒
(︂
1−

⃦⃦⃦⃦√︁
�⃗�′′0ℎ𝑡(𝑥0,𝑤)

⃦⃦⃦⃦
∞

)︂−2

− 1

⃒⃒⃒⃒
⃒ ·
(︂
1−

⃦⃦⃦⃦√︁
�⃗�′′0ℎ𝑡(𝑥0,𝑤)

⃦⃦⃦⃦
∞

)︂−1

.

Using (6.16), i.e. Lemma 6.11.1, the bound 𝑐𝛾 ≤ 2, and the assumption on 𝛿𝑡(𝑥0,𝑤), we have⃦⃦⃦⃦√︁
�⃗�′′0ℎ𝑡(𝑥0,𝑤)

⃦⃦⃦⃦
∞
≤
⃦⃦⃦⃦√︁

�⃗�′′0ℎ𝑡(𝑥0,𝑤)

⃦⃦⃦⃦
𝑤+∞

≤ 𝑐𝛾 · 𝛿𝑡(𝑥0,𝑤) ≤ 1

5
.

Using
(︀
(1− 𝑡)−2 − 1

)︀
· (1− 𝑡)−1 ≤ 4𝑡 for 𝑡 ≤ 1/5, we have⃦⃦⃦⃦

⃦⃦
(︁
�⃗�′′(𝜃)− �⃗�′′0

)︁
√︁
�⃗�′′1

√︁
�⃗�′′0

⃦⃦⃦⃦
⃦⃦
∞

≤ 4

⃦⃦⃦⃦√︁
�⃗�′′0ℎ𝑡(𝑥0,𝑤)

⃦⃦⃦⃦
∞
.
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Combining the above formulas yields that 𝛿𝑡(𝑥1,𝑤) ≤ 4 (𝛿𝑡(𝑥0,𝑤))2 as desired.

6.6.3 Changing 𝑤

In the previous subsection we used the assumption that the weights, 𝑤, were multiplicatively close
to the output of the weight function, 𝑔(𝑥), for the current point 𝑥 ∈ Ω. In order to maintain this
invariant when we change 𝑥 we will need to change 𝑤 to move it closer to 𝑔(𝑥). Here we bound how
much 𝑔(𝑥) can move as we move 𝑥 (Lemma 6.6.3) and we bound how much changing 𝑤 can hurt
centrality (Lemma 6.6.4). Together these lemmas will allow us to show that we can keep 𝑤 close to
𝑔(𝑥) while still improving centrality (Section 6.6.5).

Lemma 6.6.3. For all 𝑡 ∈ [0, 1], let 𝑥𝑡
def
= 𝑥0 + 𝑡Δ𝑥 for Δ𝑥 ∈ R𝑚, 𝑥𝑡 ∈ Ω, 𝑔𝑡 = 𝑔(𝑥𝑡) and

𝜀 =

⃦⃦⃦⃦√︁
�⃗�′′0Δ𝑥

⃦⃦⃦⃦
𝑔0+∞

≤ 0.1. Then

‖log (𝑔1)− log (𝑔0)‖𝑔0+∞ ≤ 𝑐𝛿𝜀(1 + 4𝜀) ≤ 0.2

and for all 𝑠, 𝑡 ∈ [0, 1] and for all 𝑦 ∈ R𝑚 we have

‖𝑦‖𝑔𝑠+∞ ≤ (1 + 2𝜀) ‖𝑦‖𝑔𝑡+∞ . (6.18)

Proof. Let 𝑞 : [0, 1]→ R𝑚 be given by 𝑞(𝑡) def
= log (𝑔𝑡) for all 𝑡 ∈ [0, 1]. Then, we have

𝑞′(𝑡) = 𝐺−1
𝑡 𝐺

′
𝑡Δ𝑥.

Let 𝑄(𝑡)
def
= ‖�⃗�(𝑡)− �⃗�(0)‖𝑔0+∞ . Using Jensen’s inequality we have that for all 𝑢 ∈ [0, 1],

𝑄(𝑢) ≤ 𝑄(𝑢)
def
=

ˆ 𝑢

0

⃦⃦⃦⃦
𝐺−1
𝑡 𝐺

′
𝑡

(︁
�⃗�′′𝑡

)︁−1/2
⃦⃦⃦⃦
𝑔0+∞

⃦⃦⃦⃦√︁
�⃗�′′𝑡Δ𝑥

⃦⃦⃦⃦
𝑔0+∞

𝑑𝑡.

Using Lemma 6.5.1 and 𝜀 ≤ 1
10 , we have for all 𝑡 ∈ [0, 1],⃦⃦⃦⃦√︁

�⃗�′′𝑡Δ𝑥

⃦⃦⃦⃦
𝑔0+∞

≤
⃦⃦⃦⃦√︁

�⃗�′′𝑡 /

√︁
�⃗�′′0

⃦⃦⃦⃦
∞

⃦⃦⃦⃦√︁
�⃗�′′0Δ𝑥

⃦⃦⃦⃦
𝑔0+∞

≤
(︂
1−

⃦⃦⃦⃦√︁
�⃗�′′0Δ𝑥

⃦⃦⃦⃦
∞

)︂−1 ⃦⃦⃦⃦√︁
�⃗�′′0Δ𝑥

⃦⃦⃦⃦
𝑔0+∞

≤ 𝜀

1− 𝜀
.

Thus, we have

𝑄(𝑢) ≤ 𝜀

1− 𝜀

ˆ 𝑢

0

⃦⃦⃦⃦
𝐺−1
𝑡 𝐺

′
𝑡

(︁
�⃗�′′𝑡

)︁−1/2
⃦⃦⃦⃦
𝑔0+∞

𝑑𝑡. (6.19)

Note that 𝑄 is monotonically increasing. Let 𝜃 = sup𝑢∈[0,1]
{︀
𝑄(𝑢) ≤ 𝑐𝛿𝜀(1 + 4𝜀)

}︀
. Since 𝑄(𝜃) ≤ 1

2 , we
know that for all 𝑠, 𝑡 ∈ [0, 𝜃], we have⃦⃦⃦⃦

𝑔(𝑥𝑠)− 𝑔(𝑥𝑡)
𝑔(𝑥𝑡)

⃦⃦⃦⃦
∞
≤ ‖�⃗�(𝑠)− �⃗�(𝑡)‖∞ + ‖�⃗�(𝑠)− �⃗�(𝑡)‖2∞

and therefore

‖𝑔𝑠/𝑔𝑡‖∞ ≤
(︀
1 + ‖�⃗�(𝑠)− �⃗�(𝑡)‖∞ + ‖�⃗�(𝑠)− �⃗�(𝑡)‖2∞

)︀2 ≤ (1 + 𝑐𝛿𝜀(1 + 4𝜀))2
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Consequently,

‖𝑦‖𝑔𝑠+∞ ≤ (1 + 𝑐𝛿𝜀(1 + 4𝜀)) ‖𝑦‖𝑔𝑡+∞ ≤ (1 + 2𝜀) ‖𝑦‖𝑔𝑡+∞ .

Using (6.19), we have for all 𝑢 ∈ [0, 𝜃],

𝑄(𝑢) ≤ 𝑄(𝑢) ≤ 𝜀

1− 𝜀

ˆ 𝑢

0

⃦⃦⃦⃦
𝐺−1
𝑡 𝐺

′
𝑡

(︁
�⃗�′′𝑡

)︁−1/2
⃦⃦⃦⃦
𝑔0+∞

𝑑𝑡

≤ 𝜀

1− 𝜀

ˆ 𝑢

0
(1 + 2𝜀)

⃦⃦⃦⃦
𝐺−1
𝑡 𝐺

′
𝑡

(︁
�⃗�′′𝑡

)︁−1/2
⃦⃦⃦⃦
𝑔𝑡+∞

𝑑𝑡

≤ 𝜀

1− 𝜀
(1 + 2𝜀) 𝑐𝛿𝜃 ≤ 𝑐𝛿𝜀(1 + 4𝜀).

Consequently, we have that 𝜃 = 1 and we have the desired result with 𝑄(1) ≤ 𝑐𝛿𝜀(1 + 4𝜀) < 1
5 .

Lemma 6.6.4. Let v ,𝑤 ∈ R𝑚>0 such that 𝜀 = ‖log(𝑤)− log(v)‖𝑤+∞ ≤ 0.1. Then for 𝑥 ∈ Ω we have

𝛿𝑡(𝑥, v) ≤ (1 + 4𝜀)(𝛿𝑡(𝑥,𝑤) + 𝜀).

Proof. Let 𝜂𝑤 be such that

𝛿𝑡(𝑥,𝑤) =

⃦⃦⃦⃦
⃦⃦𝑐+𝑤�⃗�′(𝑥)−𝐴𝜂𝑤

𝑤

√︁
�⃗�′′(𝑥)

⃦⃦⃦⃦
⃦⃦
𝑤+∞

(6.20)

Furthermore, the assumption shows that (1 + 𝜀)−2𝑤𝑖 ≤ v 𝑖 ≤ (1 + 𝜀)2𝑤𝑖 for all 𝑖. Using these, we
bound the energy with the new weights as follows

𝛿𝑡(𝑥, v) = min
𝜂

⃦⃦⃦⃦
⃦⃦𝑐+ v �⃗�′(𝑥)−𝐴𝜂

v

√︁
�⃗�′′(𝑥)

⃦⃦⃦⃦
⃦⃦
v+∞

≤

⃦⃦⃦⃦
⃦⃦𝑐+ v �⃗�′(𝑥)−𝐴𝜂𝑤

v

√︁
�⃗�′′(𝑥)

⃦⃦⃦⃦
⃦⃦
v+∞

≤ (1 + 𝜀)

⃦⃦⃦⃦
⃦⃦𝑐+ v �⃗�′(𝑥)−𝐴𝜂𝑤

v

√︁
�⃗�′′(𝑥)

⃦⃦⃦⃦
⃦⃦
𝑤+∞

≤ (1 + 𝜀) ·

⎛⎜⎝
⃦⃦⃦⃦
⃦⃦𝑐+𝑤�⃗�′(𝑥)−𝐴𝜂𝑤

v

√︁
�⃗�′′(𝑥)

⃦⃦⃦⃦
⃦⃦
𝑤+∞

+

⃦⃦⃦⃦
⃦⃦(v −𝑤)�⃗�′(𝑥)

v

√︁
�⃗�′′(𝑥)

⃦⃦⃦⃦
⃦⃦
𝑤+∞

⎞⎟⎠
≤ (1 + 𝜀)3 𝛿𝑡(𝑥,𝑤) + (1 + 𝜀) ·

⃦⃦⃦⃦
⃦ 𝜑′(𝑥)√︀

𝜑′′(𝑥)

⃦⃦⃦⃦
⃦
∞

·
⃦⃦⃦⃦
(v −𝑤)

v

⃦⃦⃦⃦
𝑤+∞

Using that |𝜑′𝑖(𝑥)| ≤
√︀
𝜑′′𝑖 (𝑥) for all 𝑖 ∈ [𝑚] by Equation (6.11), we have that

𝛿𝑡(𝑥, v) ≤ (1 + 𝜀)3𝛿𝑡(𝑥,𝑤) + (1 + 𝜀)2𝜀

≤ (1 + 4𝜀) (𝛿𝑡(𝑥,𝑤) + 𝜀) .

6.6.4 The Chasing 0 Game

In the previous subsection, we saw how much the weight function, 𝑔(𝑥), can change after a Newton
step on 𝑥 and we bounded how much we can move the weights without affecting centrality too much.
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Here we study how to correctly move the weights even when we cannot compute the weight function
exactly. To effectively use multiplicative approximations to the weight function, we need to smooth
out changes to the weights by using some slowly changing approximation to the weight function. In
this subsection, we present the smoothing problem in a general form that we call the chasing 0 game
and we provide an effective strategy for playing this game. In next subsection, we show how to use
this strategy to produce a efficient weighted path following scheme.

The chasing 0 game is as follows. There is a player, an adversary, and a point 𝑥 ∈ R𝑚. The goal
of the player is to keep the point close to 0 in ℓ∞ norm and the goal of the adversary tries to move 𝑥
away from 0 ∈ R𝑚. The game proceeds for an infinite number of iterations where in each iteration the
adversary moves the current point 𝑥(𝑘) ∈ R𝑚 to some new point 𝑦(𝑘) ∈ R𝑚 and the player needs to
respond. The player does not know 𝑥(𝑘), 𝑦(𝑘), or the move of the adversary. All the player knows is
that the adversary moved the point within some convex set 𝑈 (𝑘) and the player knows some 𝑧(𝑘) ∈ R𝑛
that is close to 𝑦(𝑘) in ℓ∞ norm. With this information the player is allowed to move the point a little
more than the adversary. Formally, the player is allowed to set the next point to 𝑥(𝑘+1) ∈ R𝑚 such
that Δ(𝑘) def

= 𝑥(𝑘+1) − 𝑦(𝑘) ∈ (1 + 𝜀)𝑈 for some fixed 𝜀 > 0.

The question we would like to address is, how close the player can keep 𝑥(𝑘+1) to 0 in ℓ∞ norm?
In particular, we would like an efficient strategy for computing Δ(𝑘) such that ‖𝑥(𝑘)‖∞ is bounded for
all 𝑘 ≥ 0.

Algorithm 7: Chasing 0 Game

Given 𝑅 > 0, 𝜀 > 0,𝑥(0) ∈ R𝑚.
for 𝑘 = 1, 2, · · · do

The adversary announces symmetric convex set 𝑈 (𝑘) ⊆ R𝑛 and 𝑢(𝑘) ∈ 𝑈 (𝑘).
The adversary sets 𝑦(𝑘) := 𝑥(𝑘) + 𝑢(𝑘).
The adversary announces 𝑧(𝑘) such that ‖𝑧(𝑘) − 𝑦(𝑘)‖∞ ≤ 𝑅.
The player chooses Δ(𝑘) ∈ (1 + 𝜀)𝑈 (𝑘).
The player sets 𝑥(𝑘+1) = 𝑦(𝑘) +Δ(𝑘).

end

We show that assuming that the 𝑈 (𝑘) are sufficiently bounded then there is strategy that the
player can follow to ensure that that ‖𝑥(𝑘)‖∞ is never too large. Our strategy simply consists of
taking “gradient steps” using the following potential function.

Definition 6.6.5. For any 𝜇 ≥ 0 let 𝑝𝜇 : R→ R and Φ𝜇 : R𝑚 → R be given by

∀𝑥 ∈ R : 𝑝𝜇(𝑥)
def
= 𝑒𝜇𝑥 + 𝑒−𝜇𝑥 and Φ𝜇(𝑥)

def
=
∑︁
𝑖∈[𝑚]

𝑝𝜇(𝑥𝑖).

In other words, for all 𝑘 we simply set Δ(𝑘) to be the vector in (1 + 𝜀)𝑈 (𝑘) that best minimizes
the potential function of the observed position, i.e. Φ𝜇(𝑧

(𝑘)) for an appropriate choice of 𝜇. In the
following theorem we show that this suffices to keep Φ𝜇(𝑥

(𝑘)) small and that small Φ𝜇(𝑥(𝑘)) implies
small ‖𝑥(𝑘)‖∞ and hence has the desired properties.

Theorem 6.6.6. Suppose that each 𝑈 (𝑘) is a symmetric convex set that contains an ℓ∞ ball of radius
𝑟𝑘 and is contained in a ℓ∞ ball of radius 𝑅𝑘 ≤ 𝑅. Let 0 < 𝜀 < 1

5 and consider the strategy

Δ(𝑘) = (1 + 𝜀) argmin
Δ∈𝑈(𝑘)

⟨
∇Φ𝜇(𝑧(𝑘)),Δ

⟩
where 𝜇 =

𝜀

12𝑅
.
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Let 𝜏
def
= max𝑘

𝑅𝑘
𝑟𝑘

and suppose Φ𝜇(𝑥
(0)) ≤ 12𝑚𝜏

𝜀 (or more specifically ‖𝑥(0)‖∞ ≤ 12𝑅
𝜀 log

(︀
6𝜏
𝜀

)︀
) then

∀𝑘 ≥ 0 : Φ𝜇(𝑥
(𝑘+1)) ≤

(︂
1− 𝜀2𝑟𝑘

24𝑅

)︂
Φ𝜇(𝑥

(𝑘)) + 𝜀𝑚
𝑅𝑘
2𝑅
≤ 12𝑚𝜏

𝜀
.

In particular, we have ‖𝑥(𝑘)‖∞ ≤ 12𝑅
𝜀 log

(︀
12𝑚𝜏
𝜀

)︀
.

To prove Theorem 6.6.6 we first provide the following lemma regarding properties of the potential
function Φ𝜇.

Lemma 6.6.7. For all 𝑥 ∈ R𝑚, we have

𝑒𝜇‖𝑥‖∞ ≤ Φ𝜇(𝑥) ≤ 2𝑚𝑒𝜇‖𝑥‖∞ and 𝜇Φ𝜇(𝑥)− 2𝜇𝑚 ≤ ‖∇Φ𝜇(𝑥)‖1 (6.21)

Furthermore, for any symmetric convex set 𝑈 ⊆ R𝑚 and any 𝑥 ∈ R𝑚, let 𝑥♭ def
= argmax𝑦∈𝑈 ⟨𝑥,𝑦⟩ and

‖𝑥‖𝑈
def
= max𝑦∈𝑈 ⟨𝑥,𝑦⟩. Then for all 𝑥,𝑦 ∈ R𝑚 with ‖𝑥− 𝑦‖∞ ≤ 𝛿 ≤ 1

5𝜇 we have

𝑒−𝜇𝛿‖∇Φ𝜇(𝑦)‖𝑈 −𝜇‖∇Φ𝜇(𝑦)♭‖1 ≤
⟨
∇Φ𝜇(𝑥),∇Φ𝜇(𝑦)♭

⟩
≤ 𝑒𝜇𝛿‖∇Φ𝜇(𝑦)‖𝑈 +𝜇𝑒𝜇𝛿‖∇Φ𝜇(𝑦)♭‖1. (6.22)

If additionally 𝑈 is contained in a ℓ∞ ball of radius 𝑅 then

𝑒−𝜇𝛿‖∇Φ𝜇(𝑦)‖𝑈 − 𝜇𝑚𝑅 ≤ ‖∇Φ𝜇(𝑥)‖𝑈 ≤ 𝑒𝜇𝛿‖∇Φ𝜇(𝑦)‖𝑈 + 𝜇𝑒𝜇𝛿𝑚𝑅. (6.23)

Proof. First we note that for all 𝑥 ∈ R we have

𝑒𝜇|𝑥| ≤ 𝑝𝜇(𝑥) ≤ 2𝑒𝜇|𝑥| and 𝑝′𝜇(𝑥) = 𝜇 sign(𝑥)
(︁
𝑒𝜇|𝑥| − 𝑒−𝜇|𝑥|

)︁
and therefore we have (6.21).

Next let 𝑥, 𝑦 ∈ R such that |𝑥− 𝑦| ≤ 𝛿. Note that
⃒⃒
𝑝′𝜇(𝑥)

⃒⃒
= 𝑝′𝜇(|𝑥|) = 𝜇

(︀
𝑒𝜇|𝑥| − 𝑒−𝜇|𝑥|

)︀
and since

|𝑥− 𝑦| ≤ 𝛿 we have that |𝑥| = |𝑦| + 𝑧 for some 𝑧 ∈ (−𝛿, 𝛿). Using that 𝑝′(|𝑥|) is monotonic in |𝑥| we
then have

|𝑝′𝜇(𝑥)| = 𝑝′𝜇(|𝑥|) = 𝑝′𝜇(|𝑦|+ 𝑧) ≤ 𝑝′𝜇(|𝑦|+ 𝛿)

= 𝜇
(︁
𝑒𝜇|𝑦|+𝜇𝛿 − 𝑒−𝜇|𝑦|−𝜇𝛿

)︁
= 𝑒𝜇𝛿𝑝′(|𝑦|) + 𝜇

(︁
𝑒𝜇𝛿−𝜇|𝑦| − 𝑒−𝜇|𝑦|−𝜇𝛿

)︁
≤ 𝑒𝜇𝛿

⃒⃒
𝑝′(𝑦)

⃒⃒
+ 𝜇𝑒𝜇𝛿. (6.24)

By symmetry (i.e. replacing 𝑥 and 𝑦) this implies that

|𝑝′𝜇(𝑥)| ≥ 𝑒−𝜇𝛿|𝑝′(𝑦)| − 𝜇 (6.25)

Since 𝑈 is symmetric this implies that for all 𝑖 ∈ [𝑚] we have sign(∇Φ𝜇(𝑦)♭)𝑖 = ∇Φ𝜇(𝑦)𝑖 = sign(𝑦𝑖)
. Therefore, if for all 𝑖 ∈ [𝑛] we have sign(𝑥𝑖) = sign(𝑦𝑖), by (6.24), we see that⟨

∇Φ𝜇(𝑥),∇Φ𝜇(𝑦)♭
⟩

=
∑︁
𝑖

𝑝′𝜇(𝑥𝑖)∇Φ𝜇(𝑦)♭𝑖

≤
∑︁
𝑖

(︁
𝑒𝜇𝛿𝑝′𝜇(𝑦𝑖) + 𝜇𝑒𝜇𝛿

)︁
∇Φ𝜇(𝑦)♭𝑖

≤ 𝑒𝜇𝛿
⟨
∇Φ𝜇(𝑦),∇Φ𝜇(𝑦)♭

⟩
+ 𝜇𝑒𝜇𝛿‖∇Φ𝜇(𝑦)♭‖1

= 𝑒𝜇𝛿‖∇Φ𝜇(𝑦)‖𝑈 + 𝜇𝑒𝜇𝛿‖∇Φ𝜇(𝑦)♭‖1.
Similarly, using (6.25), we have 𝑒−𝜇𝛿‖∇Φ𝜇(𝑦)‖𝑈 − 𝜇‖∇Φ𝜇(𝑦)♭‖1 ≤

⟨︀
∇Φ𝜇(𝑥),∇Φ𝜇(𝑦)♭

⟩︀
and hence
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(6.22) holds. On the other hand if sign(𝑥𝑖) ̸= sign(𝑦𝑖) then we know that |𝑥𝑖| ≤ 𝛿 and consequently
|𝑝′𝜇(𝑥𝑖)| ≤ 𝜇(𝑒𝜇𝛿 − 𝑒−𝜇𝛿) ≤

𝜇
2 since 𝛿 ≤ 1

5𝜇 . Thus, we have

𝑒−𝜇𝛿
⃒⃒
𝑝′𝜇(𝑦𝑖)

⃒⃒
− 𝜇 ≤ −𝜇

2
≤ sign (𝑦𝑖) 𝑝

′
𝜇(𝑥𝑖) ≤ 0 ≤ 𝑒𝜇𝛿

⃒⃒
𝑝′𝜇(𝑦𝑖)

⃒⃒
+ 𝜇𝑒𝜇𝛿.

Taking inner product on both sides with ∇Φ𝜇(𝑦)♭𝑖 and using definition of ‖ · ‖𝑈 and ·♭, we get (6.22).
Thus, (6.22) holds in general.

Finally we note that since 𝑈 is contained in a ℓ∞ ball of radius 𝑅, we have ‖𝑦♭‖1 ≤ 𝑚𝑅 for all 𝑦.
Using this fact, (6.22), and the definition of ‖ · ‖𝑈 , we obtain

𝑒−𝜇𝛿‖∇Φ𝜇(𝑦)‖𝑈 − 𝜇𝑚𝑅 ≤
⟨
∇Φ𝜇(𝑥),∇Φ𝜇(𝑦)♭

⟩
≤ ‖∇Φ𝜇(𝑥)‖𝑈

where the last line comes from the fact ∇Φ𝜇(𝑦)♭ ∈ 𝑈 and the definition of ‖ · ‖𝑈 . By symmetry (6.23)
follows.

Using Lemma 6.6.7 we prove Theorem 6.6.6.

Theorem 6.6.6. Let ‖𝑥‖𝑈(𝑘) = max𝑦∈𝑈(𝑘) ⟨𝑥,𝑦⟩ and 𝑥♭(𝑘) = argmax𝑦∈𝑈(𝑘) ⟨𝑥,𝑦⟩. Since 𝑈 (𝑘) is sym-

metric, we know that Δ(𝑘) = − (1 + 𝜀)
(︀
∇Φ𝜇(𝑧(𝑘))

)︀♭(𝑘) and therefore by applying the mean value
theorem twice we have that

Φ𝜇(𝑥
(𝑘+1)) = Φ𝜇(𝑦

(𝑘)) +
⟨
∇Φ𝜇(𝑧),𝑥(𝑘+1) − 𝑦(𝑘)

⟩
= Φ𝜇(𝑥

(𝑘)) +
⟨
∇Φ𝜇(𝑦),𝑦(𝑘) − 𝑥(𝑘)

⟩
+
⟨
∇Φ𝜇(𝑧),𝑥(𝑘+1) − 𝑦(𝑘)

⟩
for some 𝑦 between 𝑦(𝑘) and 𝑥(𝑘) and some 𝑧 between 𝑥(𝑘+1) and 𝑦(𝑘). Now, using that 𝑦(𝑘) −𝑥(𝑘) ∈
𝑈 (𝑘) and that 𝑥(𝑘+1) − 𝑦(𝑘) = Δ(𝑘) we have

Φ𝜇(𝑥
(𝑘+1)) ≤ Φ𝜇(𝑥

(𝑘)) + ‖∇Φ𝜇(𝑦)‖𝑈(𝑘) − (1 + 𝜀)

⟨
∇Φ𝜇(𝑧),

(︁
∇Φ𝜇(𝑧(𝑘))

)︁♭(𝑘)⟩
. (6.26)

Since 𝑈𝑘 is contained within the ℓ∞ ball of radius 𝑅𝑘 Lemma 6.6.7 shows that

‖∇Φ𝜇(𝑦)‖𝑈(𝑘) ≤ 𝑒𝜇𝑅𝑘‖∇Φ𝜇(𝑥(𝑘))‖𝑈(𝑘) +𝑚𝜇𝑅𝑘𝑒
𝜇𝑅𝑘 . (6.27)

Furthermore, since 𝜀 < 1
5 and 𝑅𝑘 ≤ 𝑅, by triangle inequality we have ‖𝑧−𝑧

(𝑘)‖∞ ≤ (1+𝜀)𝑅𝑘+𝑅 ≤ 3𝑅

and ‖𝑧(𝑘) − 𝑥(𝑘)‖∞ ≤ 2𝑅. Therefore, applying Lemma 6.6.7 twice yields that⟨
∇Φ𝜇(𝑧),∇Φ𝜇(𝑧(𝑘))♭(𝑘)

⟩
≥ 𝑒−3𝜇𝑅‖∇Φ𝜇(𝑧(𝑘))‖𝑈(𝑘) − 𝜇𝑚𝑅𝑘

≥ 𝑒−5𝜇𝑅‖∇Φ𝜇(𝑥(𝑘))‖𝑈(𝑘) − 2𝜇𝑚𝑅𝑘. (6.28)

Combining (6.26), (6.27), and (6.28) then yields that

Φ𝜇(𝑥
(𝑘+1)) ≤ Φ𝜇(𝑥

(𝑘))−
(︀
(1 + 𝜀)𝑒−5𝜇𝑅 − 𝑒𝜇𝑅

)︀
‖∇Φ𝜇(𝑥(𝑘))‖𝑈(𝑘) +𝑚𝜇𝑅𝑘𝑒

𝜇𝑅 + 2(1 + 𝜀)𝑚𝜇𝑅𝑘.

Since we chose 𝜇 = 𝜀
12𝑅 , we have 1+𝜀 ≤

𝜀
2 +(1 + 6𝜇𝑅) ≤ 𝜀

2𝑒
5𝜇𝑅+𝑒6𝜇𝑅. Hence, we have (1+𝜀)𝑒−5𝜇𝑅−

𝑒𝜇𝑅 ≤ 𝜀
2 . Also, since 0 < 𝜀 < 1

5 we have

𝑚𝜇𝑅𝑘𝑒
𝜇𝑅 + 2(1 + 𝜀)𝑚𝜇𝑅𝑘 ≤

(︀
𝑒𝜇𝑅 + 2(1 + 𝜀)

)︀
𝑚𝜇𝑅𝑘 ≤ 𝜀𝑚

7𝑅𝑘
24𝑅

.
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Thus, we have

Φ𝜇(𝑥
(𝑘+1)) ≤ Φ𝜇(𝑥

(𝑘))− 𝜀

2
‖∇Φ𝜇(𝑥(𝑘))‖𝑈(𝑘) + 𝜀𝑚

7𝑅𝑘
24𝑅

.

Using Lemma 6.6.7 and the fact that 𝑈𝑘 contains a ℓ∞ ball of radius 𝑟𝑘, we have

‖∇Φ𝜇(𝑥(𝑘))‖𝑈(𝑘) ≥ 𝑟𝑘‖∇Φ𝜇(𝑥(𝑘))‖1 ≥
𝜀𝑟𝑘
12𝑅

(︁
Φ𝜇(𝑥

(𝑘))− 2𝑚
)︁
.

Therefore, we have that

Φ𝜇(𝑥
(𝑘+1)) ≤

(︂
1− 𝜀2𝑟𝑘

24𝑅

)︂
Φ𝜇(𝑥

(𝑘)) +
𝜀𝑟𝑘
12𝑅

𝑚+ 𝜀𝑚
7𝑅𝑘
24𝑅

≤
(︂
1− 𝜀2𝑟𝑘

24𝑅

)︂
Φ𝜇(𝑥

(𝑘)) + 𝜀𝑚
𝑅𝑘
2𝑅

.

Hence, if Φ𝜇(𝑥(𝑘)) ≤ 12𝑚𝜏
𝜀 , we have Φ𝜇(𝑥

(𝑘+1)) ≤ 12𝑚𝜏
𝜀 . SinceΦ𝜇(𝑥(0)) ≤ 12𝑚𝜏

𝜀 by assumption we
have by induction that Φ𝜇(𝑥

(𝑘)) ≤ 12𝑚𝜏
𝜀 for all 𝑘. The necessary bound on ‖𝑥(𝑘)‖∞ then follows

immediately from Lemma 6.6.7.

6.6.5 Centering

Here, we show how to use the results of the previous subsection to perform weighted path following
given access only to a multiplicative approximation of the weight function. To apply the results of the
previous subsection, we can think updating weight is playing this game, we want to make sure the
error between 𝑤 and 𝑔(𝑥) is close to 0 while the adversary control the next point 𝑔(𝑥) and the noise
in the approximate 𝑔(𝑥). Theorem 6.6.6 shows that we can control the error to be small in ℓ∞ if we
can approximate 𝑔(𝑥) with small ℓ∞ error.

Formally, we will measure its distance from the optimal weights in log scale by

Ψ(𝑥,𝑤)
def
= log(𝑔 (𝑥))− log(𝑤). (6.29)

Our goal will be to keep ‖Ψ(𝑥,𝑤)‖𝑤+∞ ≤ 𝐾 for some error 𝐾 that is just small enough to not impair
our ability to decrease 𝛿𝑡 linearly and not to impair our ability to approximate 𝑔. We will attempt to
do this without moving 𝑤 too much in ‖·‖𝑤+∞.

Algorithm 8: (𝑥(new),𝑤(new)) = centeringInexact(𝑥,𝑤,𝐾)

Let 𝑐𝑘 = 1
1−𝑐𝛿𝑐𝛾 ,𝑅 = 𝐾

48𝑐𝑘 log(400𝑚) , 𝛿𝑡 = 𝛿𝑡(𝑥,𝑤) and 𝜀 = 1
2𝑐𝑘

.

Set 𝑥(new) = 𝑥− 1√
�⃗�′′(𝑥)

𝑃 𝑥,𝑤

(︂
𝑡𝑐−𝑤�⃗�′(𝑥)
𝑤
√
�⃗�′′(𝑥)

)︂
.

Let 𝑈 = {𝑥 ∈ R𝑚 | ‖𝑥‖𝑤+∞ ≤
(︁
1− 7

8𝑐𝑘

)︁
𝛿𝑡}.

Find 𝑧 such that ‖𝑧 − log(𝑔(𝑥(new)))‖∞ ≤ 𝑅.
Set 𝑤(new) = exp

(︁
log(𝑤) + (1 + 𝜀) argmin𝑢∈𝑈

⟨
∇Φ 𝜀

12𝑅
(𝑧 − log (𝑤)),𝑢

⟩)︁
.

Output (𝑥(new),𝑤(new)).

The minimization problem in last step in centeringInexact is simply a projection onto the convex
set 𝑈 and it can be done in �̃�(1) depth and �̃�(𝑚) work. See section 6.12 for details.

Theorem 6.6.8. Assume that 24𝑚1/4 ≥ 𝑐𝑘
def
= 1

1−𝑐𝛿𝑐𝛾 ≥ 5, 1 ≤ 𝐶norm ≤ 2𝑐𝑘 and 𝐾 ≤ 1
20𝑐𝑘

. Let
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Ψ(𝑥,𝑤)
def
= log(𝑔 (𝑥))− log(𝑤). Suppose that

𝛿
def
= 𝛿𝑡(𝑥,𝑤) ≤ 𝐾

48𝑐𝑘 log (400𝑚)
and Φ𝜇(Ψ(𝑥,𝑤)) ≤ (400𝑚)2

where 𝜇 = 𝜀
12𝑅 = 2 log (400𝑚) /𝐾. Let (𝑥(new),𝑤(new)) = centeringInexact(𝑥,𝑤,𝐾), then

𝛿𝑡(𝑥
(new),𝑤(new)) ≤

(︂
1− 1

4𝑐𝑘

)︂
𝛿 and Φ𝜇(Ψ(𝑥(new),𝑤(new))) ≤ (400𝑚)2 .

Also, we have ‖ log(𝑔(𝑥(new)))− log(𝑤)‖∞ ≤ 𝐾.

Proof. By Lemma 6.6.3, inequality (6.16), 𝑐𝛿𝑐𝛾 ≤ 1 and 𝑐𝛾 ≤ 5
4 (see Def 6.5.4), we have⃦⃦⃦

log
(︁
𝑔(𝑥(new))

)︁
− log (𝑔(𝑥))

⃦⃦⃦
𝑔(𝑥)+∞

≤ 𝑐𝛿𝑐𝛾𝛿(1 + 4𝑐𝛾𝛿)

≤ 𝑐𝛿𝑐𝛾𝛿 + 5𝛿2

≤
(︂
1− 15

16𝑐𝑘

)︂
𝛿.

Using 𝐾 ≤ 1
20𝑐𝑘

, we have⃦⃦⃦⃦
𝑤 − 𝑔 (𝑥)
𝑔 (𝑥)

⃦⃦⃦⃦
∞
≤ ‖ log (𝑤)− log (𝑔 (𝑥)) ‖∞ + ‖ log (𝑤)− log (𝑔 (𝑥)) ‖2∞ ≤

21

20
𝐾 ≤ 1

16𝑐𝑘
.

Hence, we have ⃦⃦⃦
log
(︁
𝑔(𝑥(new))

)︁
− log (𝑔(𝑥))

⃦⃦⃦
𝑤+∞

≤
(︂
1 +

1

16𝑐𝑘

)︂(︂
1− 15

16𝑐𝑘

)︂
𝛿

≤
(︂
1− 7

8𝑐𝑘

)︂
𝛿.

Therefore, we know that for the Newton step, we have Ψ(𝑥(new),𝑤) −Ψ(𝑥,𝑤) ∈ 𝑈 where 𝑈 is the
symmetric convex set given by

𝑈
def
= {𝑥 ∈ R𝑛 | ‖𝑥‖𝑤+∞ ≤ 𝐶}

where 𝐶 =
(︁
1− 7

8𝑐𝑘

)︁
𝛿. Note that from our assumption on 𝛿, we have

𝐶 ≤ 𝛿 ≤ 𝐾

48𝑐𝑘 log (400𝑚)
= 𝑅.

It ensures that 𝑈 are contained in some ℓ∞ ball of radius 𝑅. Therefore, we can play the chasing 0
game on Ψ(𝑥,𝑤) attempting to maintain the invariant that ‖Ψ(𝑥,𝑤)‖∞ ≤ 𝐾 without taking steps
that are more than 1+ 𝜀 times the size of 𝑈 where we pick 𝜀 = 1

2𝑐𝑘
so to not interfere with our ability

to decrease 𝛿𝑡 linearly.

However, to do this with the chasing 0 game, we need to ensure that 𝑅 satisfying the following

12𝑅

𝜀
log

(︂
12𝑚𝜏

𝜀

)︂
≤ 𝐾

where here 𝜏 is as defined in Theorem 6.6.6.

To bound 𝜏 , we need to lower bound the radius of ℓ∞ ball it contains. Since by assumption
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‖𝑔(𝑥)‖∞ ≤ 2 and ‖Ψ(𝑥,𝑤)‖∞ ≤ 1
8 , we have that ‖𝑤‖∞ ≤ 3. Hence, we have

∀𝑢 ∈ R𝑚 : ‖𝑢‖2∞ ≥
1

3𝑚
‖𝑢‖2𝑤.

Consequently, if ‖𝑢‖∞ ≤ 𝛿
5𝐶norm

√
𝑚
, then 𝑢 ∈ 𝑈 . So, we have that 𝑈 contains a box of radius 𝛿

5𝐶norm
√
𝑚

and since 𝑈 is contained in a box of radius 𝛿, we have that

𝜏 ≤ 5𝐶norm
√
𝑚 ≤ 10𝑐𝑘

√
𝑚.

Using 𝑐𝑘 ≤ 24𝑚1/4, we have

12𝑅

𝜀
log

(︂
12𝑚𝜏

𝜀

)︂
≤ 24𝑐𝑘𝑅 log

(︁
240𝑚3/2𝑐2𝑘

)︁
≤ 48𝑐𝑘𝑅 log (400𝑚) = 𝐾.

and
12𝑚𝜏

𝜀
≤ 240𝑚3/2𝑐2𝑘 ≤ (400𝑚)2.

This proves that we meet the conditions of Theorem 6.6.6. Consequently, ‖Ψ(𝑥(new),𝑤(new))‖∞ ≤ 𝐾
and Φ𝛼(Ψ(𝑥(new),𝑤(new))) ≤ (400𝑚)2.

Since 𝐾 ≤ 1
4 , Lemma 6.6.2 shows that

𝛿𝑡(𝑥
(new),𝑤) ≤ 4 (𝛿𝑡(𝑥,𝑤))2 .

Our choice of 𝑤(new) shows that⃦⃦⃦
log(𝑤)− log(𝑤(new))

⃦⃦⃦
𝑤+∞

≤
(︂
1 +

1

2𝑐𝑘

)︂(︂
1− 7

8𝑐𝑘

)︂
𝛿

≤
(︂
1− 3

8𝑐𝑘

)︂
𝛿.

Using 𝛿 ≤ 1
80𝑐𝑘

, the Lemma 6.6.4 shows that

𝛿𝑡(𝑥
(new),𝑤(new)) ≤

(︂
1 + 4

(︂
1− 3

8𝑐𝑘

)︂
𝛿

)︂(︂
𝛿𝑡(𝑥

(new),𝑤) +

(︂
1− 3

8𝑐𝑘

)︂
𝛿

)︂
≤ (1 + 4𝛿)

(︂
4𝛿2 +

(︂
1− 3

8𝑐𝑘

)︂
𝛿

)︂
≤

(︂
1− 3

8𝑐𝑘

)︂
𝛿 + 4𝛿2 + 16𝛿3 + 4𝛿2

≤
(︂
1− 1

4𝑐𝑘

)︂
𝛿.

6.7 Weight Function

In this section we present the weight function that we use to achieve our ̃︀𝑂(
√︀

rank(𝐴) log(𝑈/𝜀))
iteration linear program solver. This weight function is motivated from the barrier introduced in
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Subsection 6.3.5. We define the weight function 𝑔 : Ω→ R𝑚>0 for all 𝑥 ∈ R𝑚>0 as follows

𝑔(𝑥)
def
= argmin

𝑤∈R𝑚
>0

𝑓(𝑥,𝑤) where 𝑓(𝑥,𝑤)
def
= 1𝑇𝑤 +

1

𝛼
log det

(︀
𝐴𝑇
𝑥𝑊

−𝛼𝐴𝑥

)︀
− 𝛽

∑︁
𝑖∈[𝑚]

log𝑤𝑖. (6.30)

where here and in the remainder of the subsection we let 𝐴𝑥
def
= (Φ′′(𝑥))−1/2𝐴 and the parameters

𝛼, 𝛽 are chosen later such that the following hold

𝛼 ∈ [1, 2) , 𝛽 ∈ (0, 1) , and 𝛽1−𝛼 ≤ 2 . (6.31)

Here we choose 𝛽 small and 𝛼 just slightly larger than 1.
We start by computing the gradient and Hessian of 𝑓(𝑥,𝑤) with respect to 𝑤.

Lemma 6.7.1. For all 𝑥 ∈ Ω and 𝑤 ∈ R𝑚>0, we have

∇𝑤𝑓(𝑥,𝑤) =
(︀
𝐼 −Σ𝑊−1 − 𝛽𝑊−1

)︀
1 and ∇2

𝑤𝑤𝑓(𝑥,𝑤) =𝑊−1 (Σ+ 𝛽𝐼 + 𝛼Λ)𝑊−1

where Σ
def
= Σ𝐴𝑥 (𝑤

−𝛼) and Λ
def
= Λ𝐴𝑥 (𝑤

−𝛼).

Proof. Using Lemma 6.11.2 and the chain rule we compute the gradient of ∇𝑤𝑓(𝑥,𝑤) as follows

∇𝑤𝑓(𝑥,𝑤) = 1+
1

𝛼
Σ𝑊 𝛼

(︀
−𝛼𝑊−𝛼−1

)︀
− 𝛽𝑊−11

=
(︀
𝐼 −Σ𝑊−1 − 𝛽𝑊−1

)︀
1.

Next, using Lemma 6.11.2 and chain rule, we compute the following for all 𝑖, 𝑗 ∈ [𝑚]

𝜕(∇𝑤𝑓(𝑥,𝑤))𝑖
𝜕𝑤𝑗

= −
𝑤𝑖Λ𝑖𝑗𝑤

𝛼
𝑗

(︁
−𝛼𝑤−𝛼−1

𝑗

)︁
−Σ𝑖𝑗1𝑖=𝑗

𝑤2
𝑖

+ 𝛽1𝑖=𝑗
{︀
𝑤−2
𝑖

}︀
=

Σ𝑖𝑗

𝑤𝑖𝑤𝑗
+ 𝛼

Λ𝑖𝑗

𝑤𝑖𝑤𝑗
+
𝛽1𝑖=𝑗
𝑤2
𝑖

. (Using that Σ is diagonal)

Consequently, ∇2
𝑤𝑤𝑓(𝑥,𝑤) =𝑊−1 (Σ+ 𝛽𝐼 + 𝛼Λ)𝑊−1 as desired.

Lemma 6.7.2. For all 𝑥 ∈ Ω, the weight function 𝑔(𝑥) is a well defined with

𝛽 ≤ 𝑔𝑖(𝑠) ≤ 1 + 𝛽 and ‖𝑔(𝑥)‖1 = rank(𝐴) + 𝛽 ·𝑚.
Furthermore, for all 𝑥 ∈ Ω, the weight function obeys the following equations

𝐺(𝑥) = (Σ+ 𝛽𝐼)1 , and 𝐺′(𝑥) = −𝐺(𝑥) (𝐺(𝑥) + 𝛼Λ)−1Λ
(︀
Φ′′(𝑥)

)︀−1
Φ′′′(𝑥)

where Σ
def
= Σ𝐴𝑥 (𝑔

−𝛼(𝑥)), Λ
def
= Λ𝐴𝑥 (𝑔

−𝛼(𝑥)), and 𝐺′(𝑥) is the Jacobian matrix of 𝑔 at 𝑥.

Proof. By Lemma 6.11.2 we have that Σ ⪰ Λ ⪰ 0. Therefore, by Lemma 6.7.1, we have that
∇2
𝑤𝑤𝑓(𝑥,𝑤) ⪰ 𝛽𝑊−2 and 𝑓(𝑥,𝑤) is convex. Using the formula for the gradient in Lemma 6.7.1,

we see that that for all 𝑖 ∈ [𝑚] it is the case that[︁
∇𝑤𝑓(𝑥,𝑤)

]︁
𝑖
=

1

𝑤𝑖
(𝑤𝑖 −Σ𝑖𝑖 − 𝛽) .

Using that 0 ≤ 𝜎𝑖 ≤ 1 for all 𝑖 by Lemma 6.11.2 and 𝛽 ∈ (0, 1) by (6.31), we see that if 𝑤𝑖 ∈ (0, 𝛽)

then
[︁
∇𝑤𝑓(𝑥,𝑤)

]︁
𝑖
is strictly negative and if 𝑤𝑖 ∈ (1 + 𝛽,∞) then

[︁
∇𝑤𝑓(𝑥,𝑤)

]︁
𝑖
is strictly positive.
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Therefore, for any 𝑥 ∈ Ω, the 𝑤 that minimizes this convex function 𝑓(𝑥,𝑤) lies between the box
between 𝛽 to 1 + 𝛽. Since 𝑓 is strongly convex in this region, the minimizer is unique.

The formula for 𝐺(𝑥) follows by setting ∇𝑤𝑓(𝑥,𝑤) = 0 and the size of 𝑔(𝑥) follows from the fact
that ‖𝜎‖1 = tr (𝑃𝐴𝑥 (𝑔

−𝛼(𝑥))). Since 𝑃𝐴𝑥 (𝑔
−𝛼(𝑥)) is a projection onto the image of 𝐺(𝑥)−𝛼/2𝐴𝑥

and since 𝑔(𝑥) > 0 and �⃗�′′(𝑥) > 0, we have that the dimension of the image of 𝐺(𝑥)−𝛼/2𝐴𝑥 is the
rank of 𝐴. Hence, we have that ‖𝑔(𝑥)‖1 = rank(𝐴) + 𝛽 ·𝑚.

By Lemma 6.11.2 and chain rule, we get the following for all 𝑖, 𝑗 ∈ [𝑚]

𝜕(∇𝑤𝑓(𝑥,𝑤))𝑖
𝜕𝑥𝑗

= −𝑤−1
𝑖 Λ𝑖𝑗�⃗�

′′
𝑗 (𝑥)

(︁
−(�⃗�′′𝑗 (𝑥))−2�⃗�′′′𝑗 (𝑥)

)︁
= 𝑤−1

𝑖 Λ𝑖𝑗(�⃗�
′′
𝑗 (𝑥))

−1�⃗�′′′𝑗 (𝑥).

Consequently, 𝐽𝑥(∇𝑤𝑓(𝑥,𝑤)) = 𝑊−1Λ (Φ′′(𝑥))
−1

Φ′′′(𝑥) where 𝐽𝑥 denotes the Jacobian matrix
of the function ∇𝑤𝑓(𝑥,𝑤) with respect to 𝑥. Since we have already know that 𝐽𝑤(∇𝑤𝑓(𝑥,𝑤)) =
∇2
𝑤𝑤𝑓𝑡(𝑥,𝑤) =𝑊−1 (Σ+ 𝛽𝐼 + 𝛼Λ)𝑊−1 is positive definite (and hence invertible), by applying the

implicit function theorem (Lemma 2.3.9) to the specification of 𝑔(𝑥) as the solution to ∇𝑤𝑓(𝑥,𝑤) = 0,
we have

𝐺′(𝑥) = −
(︁
𝐽𝑤(∇𝑤𝑓(𝑥,𝑤))

)︁−1 (︁
𝐽𝑥(∇𝑤𝑓(𝑥,𝑤))

)︁
= −𝐺(𝑥) (𝐺(𝑥) + 𝛼Λ)−1Λ

(︀
Φ′′(𝑥)

)︀−1
Φ′′′(𝑥).

Now we show the step consistency of 𝑔.

Lemma 6.7.3 (Step Consistency). For all 𝑥 ∈ Ω and 𝑦 ∈ R𝑚, and

𝐵
def
= 𝐺(𝑥)−1𝐺′(𝑥)(𝜑(𝑥)′′)−1/2,

we have

‖𝐵𝑦‖𝐺(𝑥) ≤
2

1 + 𝛼
‖𝑦‖𝐺(𝑥) and ‖𝐵𝑦‖∞ ≤

2

1 + 𝛼

(︂
‖𝑦‖∞ +

1 + 2𝛼

1 + 𝛼
‖𝑦‖𝐺(𝑥)

)︂
.

Therefore

‖𝐵‖𝑔+∞ ≤
2

1 + 𝛼

(︂
1 +

2

𝐶norm

)︂
.

Proof. Fix an arbitrary 𝑥 ∈ Ω and let 𝑔 def
= 𝑔(𝑥), 𝜎 def

= 𝜎𝐴𝑥 (𝑔
−𝛼(𝑥)), Σ def

= Σ𝐴𝑥 (𝑔
−𝛼(𝑥)), 𝑃 def

=

𝑃𝐴𝑥 (𝑔
−𝛼(𝑥)), Λ def

= Λ𝐴𝑥 (𝑔
−𝛼(𝑥)). Also, fix an arbitrary 𝑦 ∈ R𝑚 and let 𝑧 def

= 𝐵𝑦.
By Lemma 6.7.2, 𝐺′ = −𝐺 (𝐺+ 𝛼Λ)−1Λ (Φ′′)

−1
Φ′′′ and therefore

𝐵 = −𝐺−1
(︁
𝐺 (𝐺+ 𝛼Λ)−1Λ

(︀
Φ′′)︀−1

Φ′′′
)︁ (︀

Φ′′)︀−1/2

= (𝐺+ 𝛼Λ)−1 (2Λ)𝐷𝑖𝑎𝑔

(︂
−𝜑′′′

2(𝜑′′)3/2

)︂
.

Let 𝐶 def
= (𝐺+ 𝛼Λ)−1 (2Λ) and let 𝑦′ def

= 𝐷𝑖𝑎𝑔
(︁

−𝜑′′′

2(𝜑′′)3/2

)︁
𝑦. By the self concordance of 𝜑 (6.11), we

know that ‖𝑦′‖ ≤ ‖𝑦‖ for both ‖ · ‖𝐺 and ‖ · ‖∞ . Since 𝑧 = 𝐵𝑦 = 𝐶𝑦′, it suffices to bound ‖𝐶𝑦′‖ in
terms of ‖𝑦′‖ for the necessary norms.

Letting Λ̄
def
= 𝐺−1/2Λ𝐺−1/2, we simplify the equation further and note that

‖𝐶‖𝐺 = ‖𝐺1/2 (𝐺+ 𝛼Λ)−1 (2Λ)𝐺−1/2‖2 = ‖
(︀
𝐼 + 𝛼Λ̄

)︀−1 (︀
2Λ̄
)︀
‖2.
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Now, for any eigenvector, v , of Λ̄ with eigenvalue 𝜆, we see that v is an eigenvector of (𝐼+𝛼Λ̄)−1(2Λ̄)
with eigenvalue 2𝜆/(1 + 𝛼𝜆). Furthermore, since 0 ⪯ Λ̄ ⪯ 𝐼, we have that ‖𝐶‖𝐺 ≤ 2/(1 + 𝛼) and
hence ‖𝑧‖𝐺 ≤ 2(1 + 𝛼)−1‖𝑦′‖𝐺 ≤ 2(1 + 𝛼)−1‖𝑦‖𝐺 as desired.

To bound ‖𝑧‖∞, we use that (𝐺+ 𝛼Λ) 𝑧 = 2Λ𝑦′, Λ = Σ− 𝑃 (2), and 𝐺 = Σ+ 𝛽𝐼 to derive

(1 + 𝛼)Σ𝑧 + 𝛽𝑧 − 𝛼𝑃 (2)𝑧 = 2Σ𝑦′ − 2𝑃 (2)𝑦′.

Looking at the 𝑖𝑡ℎ coordinate of both sides and using that 𝜎𝑖 ≥ 0, we have

((1 + 𝛼)𝜎𝑖 + 𝛽) |𝑧𝑖|

≤𝛼
⃒⃒⃒
[𝑃 (2)𝑧]𝑖

⃒⃒⃒
+ 2𝜎𝑖‖𝑦′‖∞ + 2

⃒⃒⃒
[𝑃 (2)𝑦′]𝑖

⃒⃒⃒
≤𝛼𝜎𝑖‖𝑧‖Σ + 2𝜎𝑖‖𝑦′‖∞ + 2𝜎𝑖‖𝑦′‖Σ (Lemma 6.11.2)

≤2𝜎𝑖‖𝑦′‖∞ + 𝜎𝑖

(︂
2𝛼

1 + 𝛼
+ 2

)︂
‖𝑦′‖𝐺 (Σ ⪯ 𝐺and ‖𝑧‖𝐺 ≤ 2(1 + 𝛼)−1‖𝑦′‖𝐺)

Hence, we have

|𝑧𝑖| ≤
2

1 + 𝛼
‖𝑦′‖∞ +

1

1 + 𝛼

(︂
2𝛼

1 + 𝛼
+ 2

)︂
‖𝑦′‖𝐺

≤ 2

1 + 𝛼

[︀
‖𝑦′‖∞ + 2‖𝑦′‖𝐺

]︀
.

Therefore, ‖𝐵𝑦‖∞ = ‖𝑧‖∞ ≤ 2(1 + 𝛼)−1(‖𝑦′‖∞ + 2‖𝑦′‖𝐺). Finally, we note that

‖𝐵𝑦‖𝑔+∞ = ‖𝐵𝑦‖∞ + 𝐶norm‖𝐵𝑦‖𝐺 (Definition)

≤ 2

1 + 𝛼
‖𝑦‖∞ +

2

1 + 𝛼
· 2‖𝑦‖𝐺 +

2

1 + 𝛼
𝐶norm‖𝑦‖𝐺

≤ 2

1 + 𝛼

(︂
1 +

2

𝐶norm

)︂
‖𝑦‖𝑔+∞ .

Theorem 6.7.4. Choosing parameters

𝛼 = 1 +
1

log2

(︁
2𝑚

rank(𝐴)

)︁ , 𝛽 =
rank(𝐴)

2𝑚
, and 𝐶norm = 18 log2

(︂
2𝑚

rank(𝐴)

)︂
yields

𝑐1(𝑔) = 2rank(𝐴) , 𝑐𝛾(𝑔) = 1 +
1

9 log2

(︁
2𝑚

rank(𝐴)

)︁ , and 𝑐𝛿(𝑔) = 1− 2

9 log2

(︁
2𝑚

rank(𝐴)

)︁ .
In particular, we have

𝑐𝛾(𝑔)𝑐𝛿(𝑔) ≤ 1− 1

9 log2

(︁
2𝑚

rank(𝐴)

)︁ .
Proof. The bounds on 𝑐1(𝑔) and 𝑐𝛿(𝑔) follow immediately from Lemma 6.7.2 and Lemma 6.7.3. Now,
we estimate the 𝑐𝛾(𝑔) and let 4

5𝑔 ≤ 𝑤 ≤
5
4𝑔. Fix an arbitrary 𝑥 ∈ Ω and let 𝑔 def

= 𝑔(𝑥). Recall that by
Lemma 6.7.2, we have 𝑔 ≥ 𝛽. Furthermore, since 𝑔−1 = 𝑔𝛼−1𝑔−𝛼 and 𝛽𝛼−1 ≥ 1

2 , the following holds

4

10
𝑔−𝛼𝑖 ≤ 4

5
𝛽𝛼−1𝑔−𝛼𝑖 ≤ 4

10
𝑔−1
𝑖 ≤ 𝑤

−1
𝑖 (6.32)



6.7. Weight Function 95

for all 𝑖. Applying this and using the definition of 𝑃𝐴𝑥 yields

𝐴𝑥(𝐴
𝑇
𝑥𝑊

−1𝐴𝑥)
−1𝐴𝑇

𝑥 ⪯
10

4
𝐴𝑥(𝐴

𝑇
𝑥𝐺

−𝛼𝐴𝑥)
−1𝐴𝑇

𝑥 =
10

4
𝐺𝛼/2𝑃𝐴𝑥(𝑔

−𝛼)𝐺𝛼/2 . (6.33)

Hence, we have

𝜎𝑖

(︁
1

𝑤�⃗�′′

)︁
𝑤𝑖

=
1𝑇𝑖 𝐴𝑥(𝐴

𝑇
𝑥𝑊

−1𝐴𝑥)
−1𝐴𝑇

𝑥1𝑖
𝑤2
𝑖

≤ 10

4

1𝑇𝑖 𝐺
𝛼/2𝑃𝐴𝑥(𝑔

−𝛼)𝐺𝛼/21𝑖
𝑤2
𝑖

≤ 10

4

(︂
5

4

)︂2 𝜎𝑖

(︁
1

𝑔𝛼�⃗�′′

)︁
𝑔−2𝛼
𝑖

< 4.

Since 𝑃 𝑥,𝑤 is an orthogonal projection in ‖ · ‖𝑤, we have ‖𝑃 𝑥,𝑤‖𝑤→𝑤 = 1. Let 𝑃 𝑥,𝑤
def
= 𝐼 −𝑃 𝑥,𝑤, we

have ⃦⃦
𝑃 𝑥,𝑤

⃦⃦
𝑤→∞ = max

𝑖∈[𝑚]
max

‖𝑦‖𝑤≤1
1𝑇𝑖 𝑃 𝑥,𝑤𝑦

≤ max
𝑖∈[𝑚]

‖ (𝑤)−1/2𝑃
𝑇
𝑥,𝑤1𝑖‖2

= max
𝑖∈[𝑚]

√︁
1𝑖𝑊

−1𝐴𝑥

(︀
𝐴𝑇
𝑥𝑊

−1𝐴𝑥

)︀−1
𝐴𝑇
𝑥𝑊

−11𝑖.

= max
𝑖∈[𝑚]

⎯⎸⎸⎷𝜎𝑖

(︁
1

𝑤�⃗�′′

)︁
𝑤𝑖

≤ 2.

For any 𝑦, we have

‖𝑃 𝑥,𝑤𝑦‖𝑤+∞ ≤ ‖𝑃 𝑥,𝑤𝑦‖∞ + 𝐶norm ‖𝑃 𝑥,𝑤𝑦‖𝑤
≤ ‖𝑦‖∞ +

⃦⃦
𝑃 𝑥,𝑤𝑦

⃦⃦
∞ + 𝐶norm ‖𝑦‖𝑤

≤ ‖𝑦‖∞ + (2 + 𝐶norm) ‖𝑦‖𝑤

≤ 𝐶norm + 2

𝐶norm
‖𝑦‖𝑤+∞ .

Hence, we have 𝑐𝛾 ≤ 𝐶norm+2
𝐶norm

. Thus, we have picked 𝐶norm = 18
𝛼−1 and have 𝑐𝛾 ≤ 1 + 𝛼−1

9 .

6.7.1 Weight computation

Here, we describe how to efficiently compute approximations to the weight function 𝑔 : Ω → R𝑚>0

as given by (6.30). The two main technical tools we use towards this end are the gradient descent
method, Theorem 2.3.12, a standard result in convex optimization, and fast numerical methods for
estimating leverage scores using the Johnson-Lindenstrauss Lemma, Theorem 2.3.4, a powerful tool
in randomized numerical linear algebra.

Since the weight function, 𝑔, is defined as the minimizer of a convex optimization problem, we could
use the gradient descent method directly to minimize 𝑓 and hence compute 𝑔. Indeed, in Lemma 6.7.6
we show how applying the gradient descent method in a carefully scaled space allows us to compute
𝑔(𝑥) to high accuracy in ̃︀𝑂(1) iterations. Unfortunately, this result makes two assumptions to compute
𝑔(𝑥): (1) we are given a weight 𝑤 ∈ Ω that is not too far from 𝑔(𝑥) and (2) we compute the gradient
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of 𝑓 exactly.
Assumption (1) is not an issue as we always ensure that 𝑔 does not change too much between calls to

compute 𝑔 and therefore can always use our previous weights as the approximation to 𝑔(𝑥). However,
naively computing the gradient of 𝑓 is computationally expensive and hence assumption (2) is prob-
lematic. To deal with this issue we use the fact that by careful application of Johnson-Lindenstrauss
one can compute a multiplicative approximation to the gradient efficiently and in Theorem 6.7.7 we
show that this suffices to compute an approximation to 𝑔 that suffices to use in our weighted path
following scheme.

Recall from Theorem 2.3.12 that if we take repeated projected gradient steps then we can achieve
linear convergence up to bounds on how much the hessian of the function changes over the domain of
interest. To apply this Theorem 2.3.12 to compute 𝑔(𝑠) we first need to show that there is a region
around the optimal point 𝑔(𝑠) such that the Hessian of 𝑓 does not change too much.

Lemma 6.7.5 (Hessian Approximation). For ‖𝑊−1
(0)(𝑔(𝑥)−𝑤

(0))‖∞ ≤ 1
24 we have

0.84𝑊−1 ⪯ ∇2
𝑤𝑤𝑓𝑡(𝑥,𝑤) ⪯ 3.6𝑊−1.

Proof. From Lemma 6.7.1, we know that

∇2
𝑤𝑤𝑓𝑡(𝑥,𝑤) =𝑊−1 (Σ+ 𝛽𝐼 + 𝛼Λ)𝑊−1

where Σ = Σ𝐴𝑥(𝑤
−𝛼) and Λ = Λ𝐴𝑥(𝑤

−𝛼). Using 0 ⪯ Λ ⪯ Σ, we have

𝑊−1 (Σ+ 𝛽𝐼)𝑊−1 ⪯ ∇2
𝑤𝑤𝑓𝑡(𝑥,𝑤) ⪯ 3𝑊−1 (Σ+ 𝛽𝐼)𝑊−1

Using that ‖𝑊−1
(0)(𝑔(𝑥)−𝑤

(0))‖∞ ≤ 1
24 , we have

Σ+ 𝛽𝐼 ⪯
(︂
1− 1

24

)︂−4

Σ𝐴𝑥(𝑔
−𝛼) + 𝛽𝐼 ⪯

(︂
1− 1

24

)︂−4

𝐺 ⪯ 1.19𝑊

and

Σ+ 𝛽𝐼 ⪰
(︂
1− 1

24

)︂4

Σ𝐴𝑥(𝑔
−𝛼) + 𝛽𝐼 ⪰

(︂
1− 1

24

)︂4

𝐺 ⪰ 0.84𝑊 .

Combining Theorem 2.3.12 and Lemma 6.7.5, we get the following algorithm to compute the weight
function using the exact computation of the gradient of 𝑓 . Note that this algorithm applies Theorem
2.3.12 multiple times as in each iteration we are taking a gradient step with respect to a different
norm.

Lemma 6.7.6 (Exact Weight Computation). Given 𝑤(0) ∈ R𝑚>0 such that ‖𝑊
−1
(0)(𝑔(𝑥)−𝑤

(0))‖∞ ≤ 1
48 .

Let

𝑄 =

{︂
𝑤 ∈ R𝑚 | ‖𝑊−1

(0)(𝑔(𝑥)−𝑤
(0))‖∞ ≤

1

48

}︂
.

For all 𝑘 ≥ 0 let

𝑤(𝑘+1) = argmin
𝑤∈𝑄

⃦⃦⃦⃦
𝑤 − 1

2

(︂
𝑤(𝑘) + 𝜎𝐴𝑥

(︂(︁
𝑤(𝑘)

)︁−𝛼)︂
+ 𝛽

)︂⃦⃦⃦⃦2
𝑊−1

(𝑘)

This implies that for all 𝑘 , ⃦⃦⃦
𝑔(𝑥)−1(𝑔(𝑥)−𝑤(𝑘))

⃦⃦⃦2
∞
≤ 4𝑚2

(︂
1− 1

10

)︂𝑘
.
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Proof. Note that iterations of Theorem 2.3.12 can be rewritten as

𝑤(𝑘+1) = argmin
𝑤∈𝑄

⟨(︂
𝐼 −Σ𝐴𝑥

(︂(︁
𝑤(𝑘)

)︁−𝛼)︂
𝑊−1

(𝑘) − 𝛽𝑊
−1
(𝑘)

)︂
1,𝑤

⟩
+

4

2

⃦⃦⃦
𝑤 −𝑤(𝑘)

⃦⃦⃦2
𝑊−1

(𝑘)

= argmin
𝑤∈𝑄

⃦⃦⃦⃦
𝑤 − 1

4

(︂
𝑤(𝑘) + 𝜎𝐴𝑥

(︂(︁
𝑤(𝑘)

)︁−𝛼)︂
+ 𝛽

)︂⃦⃦⃦⃦2
𝑊−1

(𝑘)

which is the same as in the statement of this lemma. To apply Theorem 2.3.12 we note that for any
𝑤 ∈ 𝑄 the definition of 𝑄 and the fact that 𝛼 ∈ (0, 1) implies that (1− 1

48)𝑊 (0) ⪯𝑊 ⪯ (1+ 1
48)𝑊 (0).

Therefore Lemma 6.7.5 shows that for all 𝑤(𝑘) ∈ 𝑄,

4

5
𝑊−1

(𝑘) ⪯ 0.84𝑊−1
(0) ⪯ ∇

2
𝑤𝑤𝑓𝑡(𝑥,𝑤) ⪯ 3.6𝑊−1

(0) ⪯ 4𝑊−1
(𝑘). (6.34)

Hence, Theorem 2.3.12 and inequality (6.34) shows that⃦⃦⃦
𝑤(𝑘+1) − 𝑔

⃦⃦⃦2
𝑊−1

(𝑘)

≤
(︂
1− 1

5

)︂ ⃦⃦⃦
𝑤(𝑘) − 𝑔

⃦⃦⃦2
𝑊−1

(𝑘)

.

Since
⃦⃦⃦
𝑊−1

(0)(𝑔(𝑠)−𝑤
(0))
⃦⃦⃦
∞
≤ 1

48 and 𝑤(𝑘) ∈ 𝑄 we know that 𝐺 ⪰
(︀
1− 1

48

)︀2
𝑊 (𝑘). Hence, we have

‖𝑤(𝑘) − 𝑔‖2
𝐺−1 ≤

(︂
1− 1

48

)︂−2(︂
1− 1

5

)︂
‖𝑤(𝑘−1) − 𝑔‖2

𝐺−1

≤
(︂
1− 1

10

)︂
‖𝑤(𝑘−1) − 𝑔‖2

𝐺−1

≤
(︂
1− 1

10

)︂𝑘
‖𝑤(0) − 𝑔‖2

𝐺−1

The result follows from the facts that

‖𝑤(0) − 𝑔‖2
𝐺−1 ≤ 𝑚‖𝑔‖∞‖𝑔−1(𝑔 −𝑤(0))‖2∞ ≤

𝑚(1 + 𝛽)(︀
1− 1

48

)︀2 ‖𝑤−1
(0)(𝑔 −𝑤

(0))‖2∞

and ‖𝑔−1(𝑤(𝑘) − 𝑔)‖2∞ ≤ 𝛽−1‖𝑤(𝑘) − 𝑔‖2
𝐺−1 where 𝛽 = rank(𝐴)

2𝑚 .

Recall that Theorem 2.3.4 showed that we can compute leverage scores, 𝜎𝐴𝑥 , approximately by
solving only ̃︀𝑂(1) many regression problems. Now, we show that we can modify Lemma 6.7.6 and use
Lemma 2.3.4. Our weight computation and the analysis is as follows.

Algorithm 9: 𝑤 = computeWeight(𝑥,𝑤(0),𝐾)

Let 𝛼 = 1 + 1

log2

(︁
2𝑚

rank(𝐴)

)︁ , 𝛽 = rank(𝐴)
2𝑚 , 𝜀 = 𝐾

40𝑐𝑟 log( 2𝑚
𝐾 )

.

Let 𝑄 =
{︁
𝑤 ∈ R𝑚 |

⃦⃦⃦
𝑊−1

(0)(𝑤 −𝑤
(0))
⃦⃦⃦
∞
≤ 1

48

}︁
.

for 𝑗 = 1 to 𝑘 where 𝑘 = ⌈20 log
(︀
4𝑚
𝐾

)︀
⌉ do

Let 𝜎(𝑗) be a (1 + 𝜀) approximation of 𝜎𝐴
(︁(︀
𝑤(𝑗)

)︀−𝛼)︁
. (Theorem 2.3.4)

Set 𝑤(𝑗) = argmin𝑤∈𝑄
⃦⃦
𝑤 − 1

4

(︀
𝑤(𝑗−1) + 𝜎(𝑗) + 𝛽1

)︀⃦⃦2
𝑤−1

(𝑗−1)

end

Output 𝑤(𝑗).

Note that the convex set 𝑄 is aligned with standard basis and hence the step on 𝑤(𝑗) can be



98 CHAPTER 6. FASTER LINEAR PROGRAMMING

computed by explicit formula (6.36).

Theorem 6.7.7 (Approximate Weight Computation). Let 𝑥 ∈ Ω, ‖𝑊−1
(0)(𝑔(𝑥) −𝑤

(0))‖∞ ≤ 1
48 and

𝐾 ∈ (0, 1). The algorithm computeWeight(𝑥,𝑤(0),𝐾) returns 𝑤 such that

‖𝑔(𝑥)−1(𝑔(𝑥)−𝑤)‖∞ ≤ 𝐾

with probability 1− �̃�(1)
𝑚 .

The running time is dominated by the time needed to solve �̃�(log3(1/𝐾)/𝐾2) linear systems.

Proof. Consider an execution of computeWeight(𝑥,𝑤(0),𝐾) where 𝜎(𝑗) = 𝜎𝐴𝑠

(︀
(𝑤(𝑗))−𝛼

)︀
exactly,

i.e. 𝜎(𝑗) = 𝜎𝐴𝑠 ((𝑤)−𝛼), and let v (𝑗)denote the 𝑤 computed during this idealized execution of
computeWeight.

Now suppose that for all 𝑖 ∈ [𝑚] we have

(1− 𝜀)𝑀v
(𝑗)
𝑖 ≤ 𝑤

(𝑗)
𝑖 ≤ (1 + 𝜀)𝑀v

(𝑗)
𝑖 (6.35)

for some 𝑀 ≥ 0 and 𝑗 ∈ [𝑘 − 1]. Since the objective function and the constraint 𝑄 are axis-aligned
we can compute 𝑤(𝑗) coordinate-wise and we see that

𝑤(𝑗+1) = median

(︂(︂
1− 1

48

)︂
𝑤(0),

1

4

(︁
𝜎𝐴𝑠

(︁(︁
𝑤(𝑗)

)︁𝛼)︁
+ 𝛽

)︁
,

(︂
1 +

1

48

)︂
𝑤(0)

)︂
(6.36)

where [median (𝑥,𝑦, 𝑧)]𝑖 is equal to the median of 𝑥𝑖, 𝑦𝑖 and 𝑧𝑖 for all 𝑖 ∈ [𝑚]. By (6.35), (6.36), and

the fact that (1− 𝜀)𝜎𝐴𝑥

(︁(︀
𝑤(𝑗+1)

)︀𝛼)︁
𝑖
≤ 𝜎(𝑗+1)

𝑖 ≤ (1 + 𝜀)𝜎𝐴𝑥

(︁(︀
𝑤(𝑗+1)

)︀𝛼)︁
𝑖
for all 𝑖 ∈ [𝑚], we have

that
(1− 𝜀)𝑀+1v

(𝑗+1)
𝑖 ≤ 𝑤(𝑗+1)

𝑖 ≤ (1 + 𝜀)𝑀+1v
(𝑗+1)
𝑖 .

Since v (0) = 𝑤(0) and since 𝑗 ∈ [𝑘 − 1] was arbitrary we can apply induction and we have that for all
𝑗 ∈ [𝑘]

(1− 𝜀)𝑗v (𝑗)
𝑖 ≤ 𝑤

(𝑗)
𝑖 ≤ (1 + 𝜀)𝑗v

(𝑗)
𝑖 .

Note that 𝑘𝜀 ≤ 1
8 and therefore by Taylor series expansion we have ‖𝑉 −1

(𝑘)

(︀
𝑤(𝑘) − v (𝑘)

)︀
‖∞ ≤ 9

8𝜀𝑘.

Furthermore since v (𝑘) ∈ 𝑄 we know that 𝐺(𝑠) ⪰
(︀
1− 1

24

)︀
𝑉 (𝑘). Putting these together, applying

Lemma 6.7.6, and recalling that 𝑘 = ⌈20 log
(︀
4𝑚
𝐾

)︀
⌉ we have

‖𝑔(𝑥)−1(𝑔(𝑥)−𝑤(𝑘))‖∞ ≤ ‖𝑔(𝑥)−1(𝑔(𝑥)− v (𝑘))‖∞ + ‖𝑔(𝑥)−1
(︁
v (𝑘) −𝑤(𝑘)

)︁
‖∞

≤ 2𝑚

(︂
1− 1

10

)︂ 𝑘
2

+

(︂
1− 1

24

)︂−1

‖𝑉 −1
(𝑘)(v

(𝑘) −𝑤(𝑘))‖∞

≤ 2𝑚 · exp
(︂
− 𝑘

20

)︂
+ 1.5𝑘𝜀

≤ 𝐾

2
+ 1.5𝜀⌈20 log

(︂
4𝑚

𝐾

)︂
⌉ ≤ 𝐾

Finally, we show how to compute an initial weight without having an approximate weight to
help the computation. The algorithm computeInitialWeight(𝑥,𝐾) computes an initial weight in

�̃�
(︁√

rank𝐴
)︁
iterations of computeWeight by computing 𝑔 for a large enough value of 𝛽 that the
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calculation is trivial and then decreasing 𝛽 gradually.

Algorithm 10: 𝑤 = computeInitialWeight(𝑠,𝐾)

Let 𝛼 = 1 + 1

log2

(︁
2𝑚

rank(𝐴)

)︁ , 𝛽 = 48 and 𝑤 = 𝛽1.

while 𝛽 > rank(𝐴)
2𝑚 do

Set 𝑤 = computeWeight(𝑥,𝑤, 1
100).

Set 𝛽 = max

{︂(︂
1− 1

1000
√

rank(𝐴)

)︂
𝛽, rank(𝐴)

2𝑚

}︂
.

end

Output computeWeight(𝑥,𝑤,𝐾).

Theorem 6.7.8 (Computating Initial Weights). For 𝑥 ∈ Ω and 𝐾 > 0, with constant probability the
algorithm computeInitialWeight(𝑥,𝐾) returns 𝑤 ∈ R𝑚>0 such that

‖𝑔(𝑥)−1(𝑔(𝑥)−𝑤)‖∞ ≤ 𝐾.
The total running time of computeInitialWeight(𝑥,𝐾) is dominated by the time needed to solve
�̃�(
√︀
rank (𝐴) log3(1/𝐾)/𝐾2) linear systems.

Proof. Fix 𝑥 ∈ Ω. Let 𝑔 : Ω→ R𝑚 be defined by7

𝑔(𝛽)
def
= argmin

𝑤∈R𝑚
>0

1𝑇𝑤 +
1

𝛼
log det(𝐴𝑇

𝑥𝑊
−𝛼𝐴𝑥)− 𝛽

∑︁
𝑖∈[𝑚]

log𝑤𝑖.

We first prove by induction that at the beginning of each while iteration, we have that

‖𝑊−1(𝑔(𝛽)−𝑤)‖∞ ≤
1

48
. (6.37)

First, we prove that (6.37) holds at the first iteration. Since 𝑔(𝛽) = 𝜎(𝛽) + 𝛽 where 𝜎(𝛽) def
=

𝜎𝐴𝑥(𝑔
−𝛼(𝛽)), we have that for all 𝑖 ∈ [𝑚]

𝛽 ≤ 𝑔(𝛽)𝑖 ≤ 1 + 𝛽.

Therefore, the initial weight, 𝑤 = 𝛽1 ∈ R𝑚>0 satisfies the invariant (6.37).
Now, we assume (6.37) holds at the beginning of a certain iteration. After the step of computeWeight,

by Theorem 6.7.7 we have

‖𝐺(𝛽)−1(𝑔(𝛽)−𝑤)‖∞ ≤
1

100
. (6.38)

Therefore, it suffices to prove that 𝑔(𝛽) is close to 𝑔(𝛽 − 𝜃) for small 𝜃.
To bound how much 𝑔(𝛽) changes for small changes in 𝛽 we proceed similarly to Lemma 6.7.2.

First by the implicit function theorem (Lemma 2.3.9) and direct calculation we know that

𝑑𝑔

𝑑𝛽
= −

(︁
𝐽𝑤(∇𝑤𝑓(𝑥,𝑤))

)︁−1 (︁
𝐽𝛽(∇𝑤𝑓(𝑥,𝑤))

)︁
= 𝐺(𝛽) (𝐺(𝛽) + 𝛼Λ𝑔)

−1 1 (6.39)

where Λ𝑔
def
= Λ𝐴𝑥(𝐺(𝛽)−𝛼1). Next to estimate how fast 𝑔 can change as a function of 𝛽 we estimate

(6.39) in a similar manner to Lemma 6.7.3. Note that

𝐺(𝛽) + 𝛼Λ𝑔 ⪰ Σ(𝛽)

7Note that early we assumed that 𝛽 < 1 and here we use much larger values of 𝛽. However, this bound on 𝛽 was
primarily to assist in bounding 𝑐1 and does not affect this proof.
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where Σ(𝛽)
def
= Σ𝐴𝑠(𝑔

𝛼(𝛽)). Consequently,⃦⃦⃦⃦
𝐺(𝛽)−1 𝑑𝑔

𝑑𝛽

⃦⃦⃦⃦2
Σ(𝛽)

≤
⃦⃦⃦
(𝐺(𝛽) + 𝛼Λ𝑔)

−1 1
⃦⃦⃦2
Σ(𝛽)

≤ ‖1‖2Σ(𝛽) = rank (𝐴) . (6.40)

Using this estimate of how much 𝑔 changes in the Σ(𝛽) norm, we now estimate how much 𝑔 changes
in the ℓ∞ norm. Let 𝑧 def

= (𝐺(𝛽) + 𝛼Λ𝑔)
−1 1. Then, we have

((1 + 𝛼)𝜎𝑖(𝛽) + 𝛽) |𝑧𝑖| ≤
⃒⃒⃒
𝛼1𝑇𝑖 𝑃

(2)𝑧
⃒⃒⃒
+ 1

≤ 𝛼𝜎𝑖(𝛽)‖𝑧‖Σ(𝛽) + 1.

Using (6.40) and 𝛼 < 1, we have⃦⃦⃦⃦
𝑑 ln 𝑔

𝑑𝛽

⃦⃦⃦⃦
∞

= ‖𝑧‖∞ ≤ max

(︂
𝛼‖𝑧‖Σ(𝛽)

1 + 𝛼
,
1

𝛽

)︂
≤ max

(︂√︀
rank (𝐴),

1

𝛽

)︂
.

Using (6.38), we have that

‖𝐺(𝛽 − 𝜃)−1(𝑔(𝛽 − 𝜃)−𝑤)‖∞ ≤
1

48

for 𝜃 ≤ 𝛽

1000
√

rank(𝐴)
.

Hence, this proves the while loop preserves the invariant (6.37). Therefore, the assumptions
needed for Theorem 6.7.7 throughout and computeWeight works as desired. Since each iteration

𝛽 decreased by �̃�
(︁
1/
√︀

rank (𝐴)
)︁
portion and the initial 𝛽 is �̃�(1) we see that the algorithm requires

only �̃�
(︁√︀

rank (𝐴)
)︁
iterations. Using Theorem 6.7.7 to bound the total number of linear systems

solved then yields the result.

6.8 The Algorithm

Here we show how to use the results of previous sections to solve (6.9) using exact linear system solver.
In the next section we will discuss how to relax this assumption. The central goal of this section is to
develop an algorithm, LPSolve, for which we can prove the following theorem

Theorem 6.8.1. Suppose we have an interior point 𝑥0 ∈ Ω for the linear program (6.9).Then, the

algorithm LPSolve outputs 𝑥 such that 𝑐𝑇𝑥 ≤ OPT + 𝜀 in �̃�
(︁√︀

rank(𝐴) (𝒯𝑤 + nnz(𝐴)) log (𝑈/𝜀)
)︁

work and �̃�
(︁√︀

rank(𝐴)𝒯𝑑 log (𝑈/𝜀)
)︁
depth where 𝑈 = max

(︁⃦⃦⃦
𝑢−𝑙
𝑢−𝑥0

⃦⃦⃦
∞
,
⃦⃦⃦
𝑢−𝑙
𝑥0−𝑙

⃦⃦⃦
∞
, ‖𝑢− 𝑙‖∞, ‖𝑐‖∞

)︁
and 𝒯𝑤 and 𝒯𝑑 is the work and depth needed to compute

(︀
𝐴𝑇𝐷𝐴

)︀−1
𝑞 for input positive definite

diagonal matrix 𝐷 and vector 𝑞.

We break this proof into several parts. First we provide Lemma 6.8.2, and adaptation of a proof
from [206, Thm 4.2.7] that allows us to reason about the effects of making progress along the weighted
central path. Then we provide Lemma 6.8.3 that we use to bound the distance to the weighted central
path in terms of centrality. After that in Lemma 6.8.3, we analyze a subroutine, pathFollowing,
for following the weighted central path. Using these lemmas we conclude by describing our LPSolve
algorithm and proving Theorem 6.8.1.
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Lemma 6.8.2 ([206, Theorem 4.2.7]). Let 𝑥* ∈ R𝑚 denote an optimal solution to (6.9) and 𝑥𝑡 =
argmin 𝑓𝑡 (𝑥,𝑤) for some 𝑡 > 0 and 𝑤 ∈ R𝑚>0. Then the following holds

𝑐𝑇𝑥𝑡(𝑤)− 𝑐𝑇𝑥* ≤ ‖𝑤‖1
𝑡

.

Proof. By the optimality conditions of (6.9) we know that ∇𝑥𝑓𝑡(𝑥𝑡(𝑤)) = 𝑡 · 𝑐 + 𝑤�⃗�′(𝑥𝑡(𝑤)) is
orthogonal to the kernel of 𝐴𝑇 . Furthermore since 𝑥𝑡(𝑤)− 𝑥* ∈ ker(𝐴𝑇 ) we have(︁

𝑡 · 𝑐+𝑤�⃗�′(𝑥𝑡(𝑤))
)︁𝑇

(𝑥𝑡(𝑤)− 𝑥*) = 0.

Using that 𝜑′𝑖(𝑥𝑡(𝑤)𝑖) · (𝑥*𝑖 − 𝑥𝑡(𝑤)𝑖) ≤ 1 by Lemma 6.5.2 then yields

𝑐𝑇 (𝑥𝑡(𝑤)− 𝑥*) =
1

𝑡

∑︁
𝑖∈[𝑚]

𝑤𝑖 · 𝜑′𝑖(𝑥𝑡(𝑤)𝑖) · (𝑥*𝑖 − 𝑥𝑡(𝑤)𝑖) ≤
‖𝑤‖1
𝑡

.

Lemma 6.8.3. For 𝛿𝑡(𝑥
(1), 𝑔(𝑥(1))) ≤ 1

960𝑐2𝑘 log(400𝑚)
and 𝑥𝑡

def
= argmin 𝑓𝑡 (𝑥,𝑤) we have⃦⃦⃦⃦√︁

�⃗�′′(𝑥𝑡)
(︁
𝑥(1) − 𝑥𝑡

)︁⃦⃦⃦⃦
∞
≤ 16𝑐𝛾𝑐𝑘𝛿𝑡(𝑥

(1), 𝑔(𝑥(1))).

Proof. We use Theorem 6.6.8 with exact weight computation and start with 𝑥(1) and 𝑤(1) = 𝑔(𝑥(1)).

In each iteration, 𝛿𝑡 is decreased by a factor of
(︁
1− 1

4𝑐𝑘

)︁
. (6.16) shows that

‖
√︁
�⃗�′′(𝑥(𝑘))

(︁
𝑥(𝑘+1) − 𝑥(𝑘)

)︁
‖∞ ≤ 𝑐𝛾𝛿𝑡(𝑥(𝑘),𝑤(𝑘)).

The Lemma 6.5.1 shows that⃦⃦⃦
log
(︁
𝜑′′(𝑥(𝑘))

)︁
− log

(︁
𝜑′′(𝑥(𝑘+1))

)︁⃦⃦⃦
∞
≤

(︁
1− 2𝑐𝛾𝛿𝑡(𝑥

(𝑘),𝑤(𝑘))
)︁−1

≤ 𝑒4𝑐𝛾𝛿𝑡(𝑥
(𝑘),𝑤(𝑘)).

Therefore, for any 𝑘, we have⃦⃦⃦
log
(︁
𝜑′′(𝑥(1))

)︁
− log

(︁
𝜑′′(𝑥(𝑘))

)︁⃦⃦⃦
∞
≤ 𝑒4𝑐𝛾

∑︀
𝛿𝑡(𝑥(𝑘),𝑤(𝑘)) ≤ 𝑒32𝑐𝑘𝑐𝛾𝛿𝑡(𝑥(1),𝑔(𝑥(1))) ≤ 2.

Hence, for any 𝑘, we have⃦⃦⃦⃦√︁
�⃗�′′(𝑥𝑡)

(︁
𝑥(1) − 𝑥(𝑘)

)︁⃦⃦⃦⃦
∞
≤

∑︁
2𝑐𝛾𝛿𝑡(𝑥

(𝑘),𝑤(𝑘))

≤ 16𝑐𝛾𝑐𝑘𝛿𝑡(𝑥
(1), 𝑔(𝑥(1))).

It is clear now 𝑥(𝑘) forms a Cauchy sequence and converges to 𝑥𝑡 because 𝛿𝑡 continuous and 𝑥𝑡 is the
unique point such that 𝛿𝑡 = 0.

Next, we put together the results of Section 6.6 and analyze the following algorithm for following
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the weighted central path.

Algorithm 11: (𝑥(final),𝑤(new)) = pathFollowing(𝑥,𝑤, 𝑡start, 𝑡end, 𝜀)

Let 𝑐𝑘 = 9 log2

(︁
2𝑚

rank(𝐴)

)︁
, 𝑡 = 𝑡start,𝐾 = 1

20𝑐𝑘
.

while (𝑡 < 𝑡𝑒𝑛𝑑 if 𝑡start < 𝑡end) or (𝑡 > 𝑡𝑒𝑛𝑑 if 𝑡start > 𝑡end) do

Set (𝑥(new),𝑤(new)) = centeringInexact(𝑥,𝑤,𝐾) where it uses the function
computeWeight to find the approximation of 𝑔(𝑥).

Set 𝑡← 𝑡

(︂
1± 1

105𝑐4𝑘 log(400𝑚)
√

rank(𝐴)

)︂
where the sign of ± is the sign of 𝑡end − 𝑡start.

Set 𝑥← 𝑥(final) and 𝑤 ← 𝑤(new).
end

for 𝑖 = 1, · · · , 4𝑐𝑘 log (1/𝜀) do
Set (𝑥,𝑤) = centeringInexact(𝑥,𝑤,𝐾) where it uses the function computeWeight to find
the approximation of 𝑔(𝑥).

end

Output (𝑥,𝑤).

Theorem 6.8.4. Suppose that

𝛿𝑡start(𝑥,𝑤) ≤ 1

960𝑐2𝑘 log (400𝑚)
and Φ𝜇(Ψ(𝑥,𝑤)) ≤ (400𝑚)2 .

where 𝜇 = 2 log (400𝑚) /𝐾. Let (𝑥(final),𝑤(new)) = pathFollowing(𝑥,𝑤, 𝑡start, 𝑡end), then

𝛿𝑡end(𝑥
(final),𝑤(new)) ≤ 𝜀 and Φ𝜇(Ψ(𝑥(final),𝑤(new))) ≤ (400𝑚)2 .

Furthermore, pathFollowing(𝑥,𝑤, 𝑡start, 𝑡end) takes time

�̃�

(︂√︀
rank(𝐴)

(︂⃒⃒⃒⃒
log

(︂
𝑡end
𝑡start

)︂⃒⃒⃒⃒
+ log (1/𝜀)

)︂
(𝒯 +𝑚)

)︂
where 𝒯 is the time needed to solve on linear system.

Proof. We use induction to prove the invariant that 𝛿𝑡(𝑥,𝑤) ≤ 1
960𝑐2𝑘 log(400𝑚)

and Φ𝛼(Ψ(𝑥,𝑤)) ≤
(400𝑚)2 on the beginning of while iteration. The initial condition holds by assumption.

Now, assume the invariant holds at a certain iteration. Theorem 6.6.8 shows that

‖ log(𝑔(𝑥(new)))− log(𝑤)‖∞ ≤ 𝐾 ≤
1

20𝑐𝑘
. (6.41)

Thus, the weight satisfies the condition of Theorem 6.7.7 and the algorithm centeringInexact can
use the function computeWeight to find the approximation of 𝑔(𝑥(new)). Consequently,

𝛿𝑡(𝑥
(final),𝑤(new)) ≤

(︂
1− 1

4𝑐𝑘

)︂
𝛿𝑡 and Φ𝛼(Ψ(𝑥(final),𝑤(new))) ≤ (400𝑚)2 .

Using Lemma 6.6.1, (6.41) and Theorem 6.7.4,we have

𝛿𝑡(𝑥
(final),𝑤(new)) ≤ 1

960𝑐2𝑘 log (400𝑚)
.

Hence, we proved that the invariant holds after one iteration. The 𝛿𝑡 < 𝜀 bounds follows from the last
loop.
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Algorithm 12: 𝑥(final) = LPSolve(𝑥, 𝜀)

Let 𝛽 = rank(𝐴)
2𝑚 , 𝑤 = computeInitialWeight(𝑥, 1

105 log5(400𝑚)
), 𝑑 = −𝑤𝑖𝜑

′
𝑖(𝑥).

Let 𝑡1 = (1010𝑈2𝑚3)−1, 𝑡2 = 3𝑚/𝜀, 𝜀1 = 1
2000𝑐2𝑘 log(400𝑚)

, 𝜀2 = 𝜀
1003𝑚3𝑈2 .

Set (𝑥(new),𝑤(new)) = pathFollowing(𝑥,𝑤, 1, 𝑡1, 𝜀1) with cost vector 𝑑.
Set (𝑥(final),𝑤(final)) = pathFollowing(𝑥(new),𝑤(new), 𝑡1, 𝑡2, 𝜀2) with cost vector 𝑐.
Output 𝑥(final).

Proof of Theorem 6.8.1. By Theorem 6.7.8, we know the initial weight satisfies

‖𝐺(𝑥)−1(𝑔(𝑥)−𝑤)‖∞ ≤
1

105 log5 (400𝑚)
.

By the definition of 𝑑, we have 𝑥 is the minimum of min𝑑𝑇𝑥−
∑︀
𝑤𝑖𝜑𝑖(𝑥) given 𝐴𝑇𝑥 = 𝑏. Therefore,

(𝑥,𝑤) satisfies the assumption of Theorem 6.8.4 because 𝛿𝑡 = 0 and Φ𝛼 is small enough. Hence, we
have

𝛿𝑡1(𝑥
(new),𝑤(new)) ≤ 1

2000𝑐2𝑘 log (400𝑚)
and Φ𝛼(Ψ(𝑥(new),𝑤(new))) ≤ (400𝑚)2.

Lemma 6.5.2 shows that ‖𝜑′𝑖(𝑥)‖∞ ≤ 𝑈 and hence ‖𝑐 − 𝑑‖∞ ≤ 2𝑈. Also, Lemma 6.5.1 shows that

min𝑦

√︁
�⃗�′′(𝑦) ≥ 1

𝑈 . Therefore, we have

𝛿𝑐𝑡1(𝑥
(new),𝑤(new)) = min

𝜂∈R𝑛

⃦⃦⃦⃦
⃦⃦ 𝑡1𝑐+𝑤�⃗�′(𝑥(new))−𝐴𝜂

𝑤(new)

√︁
�⃗�′′(𝑥(new))

⃦⃦⃦⃦
⃦⃦
𝑤(new)+∞

≤ min
𝜂∈R𝑛

⃦⃦⃦⃦
⃦⃦ 𝑡1𝑑+𝑤�⃗�′(𝑥(new))−𝐴𝜂

𝑤(new)

√︁
�⃗�′′(𝑥(new))

⃦⃦⃦⃦
⃦⃦
𝑤(new)+∞

+ 𝑡1

⃦⃦⃦⃦
⃦⃦ 𝑐− 𝑑

𝑤(new)

√︁
�⃗�′′(𝑥(new))

⃦⃦⃦⃦
⃦⃦
𝑤(new)+∞

≤ 𝛿𝑑𝑡1(𝑥
(new),𝑤(new)) + 4𝑈2𝑡1 ‖1‖𝑤+∞

= 𝛿𝑑𝑡1(𝑥
(new),𝑤(new)) + 100𝑚𝑈2𝑡1.

Since we have chosen 𝑡1 small enough, we have 𝛿𝑐𝑡1(𝑥
(new),𝑤(new)) is small enough to satisfy the

assumption of Theorem 6.8.4. So, we only need to prove how large 𝑡2 should be and how small 𝜀2
should be in order to get 𝑥 such that 𝑐𝑇𝑥 ≤ OPT+ 𝜀. By Lemma 6.8.2 and ‖𝑤(final)‖ ≤ 3𝑚, we have

𝑐𝑇𝑥𝑡2 ≤ OPT+
3𝑚

𝑡2
.

Also, Lemma 6.8.3 shows that we have⃦⃦⃦⃦√︁
�⃗�′′(𝑥𝑡2)

(︁
𝑥(final) − 𝑥𝑡2

)︁⃦⃦⃦⃦
∞
≤ 32𝜀2𝑐𝑘.

Using min𝑦

√︁
�⃗�′′(𝑦) ≥ 1

𝑈 , we have
⃦⃦
𝑥(final) − 𝑥𝑡2

⃦⃦
∞ ≤ 32𝜀2𝑐𝑘𝑈 and hence our choice of 𝑡2 and 𝜀2 gives

the result
𝑐𝑇𝑥(final) ≤ OPT+

3𝑚

𝑡2
+ 32𝜀2𝑐𝑘𝑈

2 ≤ OPT+ 𝜀.
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6.9 Generalized Minimum Cost Flow

In this section we show how to use the interior point method in Section 6.8 to solve the maxi-
mum flow problem in time ̃︀𝑂(𝑚

√
𝑛 log𝑂(1)(𝑈)), to solve the minimum cost flow problem in time,̃︀𝑂(𝑚

√
𝑛 log𝑂(1)(𝑈)), and to compute 𝜀-approximate solutions to the lossy generalized minimum cost

flow problem in time ̃︀𝑂(𝑚
√
𝑛 log𝑂(1)(𝑈/𝜀)). Our algorithm for the generalized minimum cost flow

problem is essentially the same as our algorithm for the simpler specific case of minimum cost flow
and maximum flow and therefore, we present the algorithm for the generalized minimum cost flow
problem directly.

The generalized minimum cost flow problem [63] is as follows. Let 𝐺 = (𝑉,𝐸) be a connected
directed graph where each edge 𝑒 has capacity 𝑐𝑒 > 0 and multiplier 1 ≥ 𝛾𝑒 > 0. For each edge 𝑒,
there can be only at most 𝑐𝑒 units of flow on that edge and the flow on that edge must be non-negative.
Also, for each unit of flow entering edge 𝑒, there are only 𝛾𝑒 units of flow going out. The generalized
maximum flow problem is to compute how much flow can be sent into 𝑡 given a unlimited source 𝑠.
The generalized minimum cost flow is to ask what is the minimum cost of sending the maximum flow
given the cost of each edge is 𝑞𝑒. The maximum flow and the minimum cost flow are the case with
𝛾𝑒 = 1 for all edges 𝑒.

Since the generalized minimum cost flow includes all of these cases, we focus on this general
formulation. The problem can be written as the following linear program

min
0≤𝑥≤𝑐

𝑞𝑇𝑥 such that 𝐴𝑥 = 𝐹1𝑡

where 𝐹 is the generalized maximum flow value, 1𝑡 is a indicator vector of size (𝑛−1) that is non-zero
at vertices 𝑡 and 𝐴 is a |𝑉 ∖{𝑠}| × |𝐸| matrix such that for each edge 𝑒, we have

𝐴(𝑒ℎ𝑒𝑎𝑑, 𝑒) = 𝛾(𝑒),

𝐴(𝑒𝑡𝑎𝑖𝑙, 𝑒) = −1.
In order words, the constraint 𝐴𝑥 = 𝐹1𝑡 requires the flow to satisfies the flow conversation at all
vertices except 𝑠 and 𝑡 and requires it flows 𝐹 unit of flow to 𝑡. We assume 𝑐𝑒 are integer and 𝛾𝑒 is
a rational number. Let 𝑈 be the maximum of 𝑐𝑒, 𝑞𝑒, the numerator of 𝛾𝑒 and the denominator of
𝛾𝑒. For the generalized flow problems, getting an efficient exact algorithm is difficult and we aim for
approximation algorithms only.

Definition 6.9.1. We call a flow an 𝜀−approximate generalized maximum flow if it is a flow satisfies
the flow conservation and the flow value is larger than maximum flow value minus 𝜀. We call a flow is
an 𝜀−approximate generalized minimum cost maximum flow if it is an 𝜀-approximate maximum flow
and has cost not greater than the minimum cost maximum flow value.

Note that rank (𝐴) = 𝑛 − 1 because the graph is connected and hence our algorithm takes only
�̃�(
√
𝑛𝐿) iterations. Therefore, the problems remaining are to compute 𝐿 and bound how much time

is required to solve the linear systems involved. However, 𝐿 is large in the most general setting and
hence we cannot use the standard theory to say how to get the initial point, how to round to the
vertex. Furthermore, the condition number of 𝐴𝑇𝐴 can be very bad.

In [63], they used dual path following to solve the generalized minimum cost flow problem with the
caveats that the dual polytope is not bounded, the problem of getting the initial flow, the problem of
rounding it to the a feasible flow. We use there analysis to formulate the problem in a manner more
amenable to our algorithms. Since we are doing the primal path following, we will state a reformulation
of the LP slightly different.
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Theorem 6.9.2 ([63]). Given a directed graph 𝐺. We can find a new directed graph �̃� with 𝑂(𝑚)
edges and 𝑂(𝑛) vertices in �̃�(𝑚) time such that the modified linear program

min
0≤𝑥𝑖≤𝑐𝑖,0≤𝑦𝑖≤4𝑚𝑈2,0≤𝑧𝑖≤4𝑚𝑈2

𝑞𝑇𝑥+
256𝑚5𝑈5

𝜀2
(︀
1𝑇𝑦 + 1𝑇𝑧

)︀
such that 𝐴𝑥+ 𝑦 − 𝑧 = 𝐹1𝑡

satisfies the following conditions:

1. 𝑥 = 𝑐
21, 𝑦 = 2𝑚𝑈21 − (𝐴 𝑐

21)
− + 𝐹 1⃗𝑡, 𝑧 = 2𝑚𝑈21 + (𝐴 𝑐

21)
+ is an interior point of the linear

program.

2. Given any (𝑥,𝑦, 𝑧) such that ‖𝐴𝑥+ 𝑦 − 𝑧‖2 ≤ 𝜀2

128𝑚2𝑛2𝑈3 and with cost value within 𝜀2

128𝑚2𝑛2𝑈3

of the optimum. Then, one can compute an 𝜀-approximate minimum cost maximum flow for
graph 𝐺 in time �̃�(𝑚).

3. The linear system of the linear program is well-conditioned, i.e., the condition number of

[︀
𝐴 𝐼 −𝐼

]︀ ⎡⎣ 𝐴𝑇

𝐼
−𝐼

⎤⎦
is 𝑂(𝑚𝑈).

4. The linear system of the linear program can be solve in nearly linear time, i.e. for any diagonal
matrix 𝑆 with condition number 𝜅 and vector 𝑏, it takes �̃�

(︀
𝑚 log

(︀
𝜅𝑈
𝛿

)︀)︀
time to find 𝑥 such that

‖𝑥−𝐿−1𝑏‖𝐿 ≤ 𝛿‖𝑥‖𝐿

where 𝐿 =
[︀
𝐴 𝐼 −𝐼

]︀
𝑆

⎡⎣ 𝐴𝑇

𝐼
−𝐼

⎤⎦ .
The main difference between what stated in [63] and here is that

1. Our linear program solver can support constraint 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 and hence we do not need to split
the flow variable to positive part and negative part.

2. Our linear program solver is primal path following and hence we add the constraint 𝑦𝑖 ≤ 4𝑚𝑈2

and 𝑧𝑖 ≤ 4𝑚𝑈2. Since the maximum flow value is at most 𝑚𝑈2, it does not affect the optimal
solution of the linear program.

3. We remove the variable x3 in [63] because the purpose of that is to make the dual polytope is
bounded and we do not need it here.

Using the reduction mentioned above, one can obtain the promised generalized minimum cost flow
algorithm.

Theorem 6.9.3. There is a randomized algorithm to compute an 𝜀−approximate generalized mini-
mum cost maximum flow in �̃�(

√
𝑛 log𝑂(1)(𝑈/𝜀)) depth ̃︀𝑂(𝑚

√
𝑛 log𝑂(1) (𝑈/𝜀)) total work (see Defini-

tion 6.9.1). Furthermore, there is an algorithm to compute an exact standard minimum cost maximum
flow in �̃�(

√
𝑛 log𝑂(1)(𝑈)) depth and ̃︀𝑂(𝑚

√
𝑛 log𝑂(1) (𝑈)) total work.

Proof. Using the reduction above and Theorem 6.8.1, we get an algorithm of generalized minimum cost
flow by solving ̃︀𝑂(

√
𝑛) linear systems to �̃� (1) bit accuracy and the condition number of those systems
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are poly(𝑚𝑈/𝜀). In [63], they showed that the linear system involved can be reduced to �̃�(log(𝑈/𝜀))
many Laplacian systems and hence we can use a recent nearly linear work polylogarithmic depth
Laplacian system solver of Spielman and Peng [223]. In total, it takes ̃︀𝑂(𝑚 log𝑂(1)

(︀
𝑈
𝜀

)︀
) time to solve

each systems.
For the standard minimum cost maximum flow problem, it is known that the solution set is a

convex polytope with integer coordinates and we can use Isolation lemma to make sure there is unique
minimum. Hence, we only need to take 𝜀 = poly(1/𝑚𝑈) and round the solution to the closest integer.
See Section 3.5 in [63] for details.

6.10 Glossary

Here we summarize various linear programming specific notation that we use throughout the chapter.
For many quantities we included the typical order of magnitude as they appear during our algorithms.

∙ Linear program related: constraint matrix 𝐴 ∈ R𝑚×𝑛 , cost vector 𝑐 ∈ R𝑚, constraint vector
𝑏 ∈ R𝑛, solution 𝑥 ∈ R𝑚, weights of constraints 𝑤 ∈ R𝑚 where 𝑚 is the number of variables
and 𝑛 is the number of constraints.

∙ Matrix version of variables: 𝑆 is the diagonal matrix corresponds to 𝑠,𝑊 corresponds to 𝑤, Φ
corresponds to 𝜑.

∙ Penalized objective function (6.12): 𝑓𝑡(𝑥,𝑤) = 𝑡 · 𝑐𝑇𝑥+
∑︀

𝑖∈[𝑚]𝑤𝑖𝜑𝑖(𝑥𝑖).

∙ Barrier functions (Sec 6.5.1): For [𝑙,∞), we use 𝜑(𝑥) = − log(𝑥 − 𝑙). For (−∞, 𝑢], we use
𝜑(𝑥) = − log(𝑢− 𝑥). For [𝑙, 𝑢], we use 𝜑(𝑥) = − log(𝑎𝑥+ 𝑏) where 𝑎 = 𝜋

𝑢−𝑙 and 𝑏 = −
𝜋
2
𝑢+𝑙
𝑢−𝑙 .

∙ The projection matrix 𝑃 𝑥,𝑤 (6.14): 𝑃 𝑥,𝑤 = 𝐼 −𝑊−1𝐴𝑥

(︀
𝐴𝑇
𝑥𝑊

−1𝐴𝑥

)︀−1
𝐴𝑇
𝑥 where 𝐴𝑥

def
=

Φ′′(𝑥)−1/2𝐴.

∙ Newton step (6.13): ℎ𝑡(𝑥,𝑤) = −Φ′′(𝑥)−1/2𝑃 𝑥,𝑤𝑊
−1Φ′′(𝑥)−1/2∇𝑥𝑓𝑡(𝑥,𝑤).

∙ The mixed norm (6.15): ‖𝑦‖𝑤+∞ = ‖𝑦‖∞ + 𝐶norm‖𝑦‖𝑊 where 𝐶norm ≈ polylog(𝑚).

∙ Centrality (6.17): 𝛿𝑡(𝑥,𝑤) = min𝜂∈R𝑛

⃦⃦⃦⃦
∇𝑥𝑓𝑡(𝑥,𝑤)−𝐴𝜂
𝑤
√
𝜑′′(𝑥)

⃦⃦⃦⃦
𝑤+∞

≈ 1
polylog(𝑚) .

∙ Properties of weight function (Def 6.5.4): size 𝑐1(𝑔) = ‖𝑔(𝑥)‖1 ≈ rank (𝐴), slack sensitivity

𝑐𝛾(𝑔) = ‖𝑃 𝑥,𝑤‖𝑤+∞ ≈ 1 + 1
polylog(𝑚) , step consistency 𝑐𝛿(𝑔) ≈ 1− 1

polylog(𝑚) .

∙ Difference between 𝑔 and 𝑤 (6.29): Ψ(𝑥,𝑤) = log(𝑔(𝑥))− log(𝑤).

∙ Potential function for tracing 0 (Thm 6.6.6): Φ𝜇(𝑥) = 𝑒𝜇𝑥 + 𝑒−𝜇𝑥 ≈ poly(𝑚).

∙ The weight function proposed (6.30):

𝑔(𝑥) = argmin
𝑤∈R𝑚

>0

𝑓(𝑥,𝑤) where 𝑓(𝑥,𝑤) = 1𝑇𝑤 +
1

𝛼
log det

(︀
𝐴𝑇
𝑥𝑊

−𝛼𝐴𝑥

)︀
− 𝛽

∑︁
𝑖

log𝑤𝑖

where 𝐴𝑥 = (Φ′′(𝑥))−1/2𝐴, 𝛼 ≈ 1 + 1/ log2

(︁
𝑚

rank(𝐴)

)︁
, 𝛽 ≈ rank(𝐴)/𝑚.
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6.11 Appendix: Technical Lemmas

Lemma 6.11.1. For any norm ‖ · ‖ and ‖𝑦‖𝑄
def
= min𝜂∈R𝑛

⃦⃦⃦⃦
𝑦 − 𝐴𝜂

𝑤
√
�⃗�′′(𝑥)

⃦⃦⃦⃦
, we have

‖𝑦‖𝑄 ≤ ‖𝑃 𝑥,𝑤𝑦‖ ≤ ‖𝑃 𝑥,𝑤‖ · ‖𝑦‖𝑄 .

Proof. By definition 𝑃 𝑥,𝑤𝑦 = 𝑦 − 𝐴𝜂𝑦

𝑤
√
�⃗�′′(𝑥)

for some 𝜂𝑦 ∈ R𝑛. Consequently,

‖𝑦‖𝑄 = min
𝜂∈R𝑛

⃦⃦⃦⃦
⃦⃦𝑦 − 𝐴𝜂

𝑤

√︁
�⃗�′′(𝑥)

⃦⃦⃦⃦
⃦⃦ ≤ ‖𝑃 𝑥,𝑤𝑦‖ .

On the other hand, let 𝜂𝑞 such that ‖𝑦‖𝑄 =

⃦⃦⃦⃦
𝑦 − 𝐴𝜂𝑞

𝑤
√
�⃗�′′(𝑥)

⃦⃦⃦⃦
. Since 𝑃 𝑥,𝑤𝑊

−1(Φ′′)−1/2𝐴 = 0, we

have

‖𝑃 𝑥,𝑤𝑦‖ =

⃦⃦⃦⃦
⃦⃦𝑃 𝑥,𝑤

⎛⎝𝑦 − 𝐴𝜂𝑞

𝑤

√︁
�⃗�′′

⎞⎠⃦⃦⃦⃦⃦⃦ ≤ ‖𝑃 𝑥,𝑤‖ ·

⃦⃦⃦⃦
⃦⃦𝑦 − 𝐴𝜂𝑞

𝑤

√︁
�⃗�′′

⃦⃦⃦⃦
⃦⃦ = ‖𝑃 𝑥,𝑤‖ · ‖𝑦‖𝑄 .

Lemma 6.11.2. For any projection matrix 𝑃 ∈ R𝑚×𝑚, Σ = 𝐷𝑖𝑎𝑔(𝑃 ), 𝑖, 𝑗 ∈ [𝑚], 𝑥 ∈ R𝑚, and
𝑤 ∈ R𝑚>0 we have

1. Σ𝑖𝑖 =
∑︀

𝑗∈[𝑚]𝑃
(2)
𝑖𝑗 ,

2. 0 ⪯ 𝑃 (2) ⪯ Σ ⪯ 𝐼,

3. 𝑃
(2)
𝑖𝑗 ≤ Σ𝑖𝑖Σ𝑗𝑗,

4. |1𝑇𝑖 𝑃 (2)𝑥| ≤ Σ𝑖𝑖‖𝑥‖Σ.

5. ∇𝑤 log det(𝐴𝑇𝑊𝐴) = Σ𝐴(𝑤)𝑤−1.

6. 𝐽𝑤(𝜎𝐴(𝑤)) = Λ𝐴(𝑤)𝑊−1.

Proof. To prove (1), we simply note that by definition of a projection matrix 𝑃 = 𝑃𝑃 and therefore

Σ𝑖𝑖 = 𝑃 𝑖𝑖 = 1𝑇𝑖 𝑃1𝑖 = 1𝑇𝑖 𝑃𝑃1𝑖 =
∑︁
𝑗∈[𝑛]

𝑃 2
𝑖𝑗 =

∑︁
𝑗∈[𝑛]

𝑃
(2)
𝑖𝑗

To prove (2), we observe that since 𝑃 is a projection matrix, all its eigenvectors are either 0 or
1. Therefore, Σ ⪯ 𝐼 and by (1) Σ − 𝑃 (2) is diagonally dominant. Consequently, Σ − 𝑃 (2) ⪰ 0.
Rearranging terms and using the well known fact that the shur product of two positive semi-definite
matrices is positive semi-definite yields (2).

To prove (3), we use 𝑃 = 𝑃𝑃 , Cauchy-Schwarz, and (1) to derive

𝑃 𝑖𝑗 =
∑︁
𝑘∈[𝑛]

𝑃 𝑖𝑘𝑃 𝑘𝑗 ≤

⎯⎸⎸⎸⎷
⎛⎝∑︁
𝑘∈[𝑛]

𝑃 2
𝑖𝑘

⎞⎠⎛⎝∑︁
𝑘∈[𝑛]

𝑃 2
𝑘𝑗

⎞⎠ =
√︀
Σ𝑖𝑖Σ𝑗𝑗 .
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Squaring then yields (3).
To prove (4), we note that by the definition of 𝑃 (2) and Cauchy-Schwarz, we have

⃒⃒⃒
1𝑇𝑖 𝑃

(2)𝑥
⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒∑︁
𝑗∈[𝑛]

𝑃
(2)
𝑖𝑗 �⃗�𝑗

⃒⃒⃒⃒
⃒⃒ ≤

⎯⎸⎸⎸⎷
⎛⎝∑︁
𝑗∈[𝑛]

Σ𝑗𝑗 �⃗�2𝑗

⎞⎠ ·∑︁
𝑗∈[𝑛]

𝑃
(4)
𝑖𝑗

Σ𝑗𝑗
(6.42)

Now, by (1) and (3), we know that

∑︁
𝑗∈[𝑛]

𝑃 4
𝑖𝑗

Σ𝑗𝑗
≤
∑︁
𝑗∈[𝑛]

𝑃 2
𝑖𝑗Σ𝑖𝑖Σ𝑗𝑗

Σ𝑗𝑗
= Σ𝑖𝑖

∑︁
𝑗∈[𝑛]

𝑃 2
𝑖𝑗 = Σ2

𝑖𝑖 (6.43)

Since ‖𝑥‖Σ
def
=
√︁∑︀

𝑗∈[𝑛]Σ𝑗𝑗𝑥2
𝑗 , combining (6.42) and (6.43) yields

⃒⃒⃒
1𝑇𝑖 𝑃

(2)𝑥
⃒⃒⃒
≤ Σ𝑖𝑖‖𝑥‖Σ as desired.

To prove (5), we let 𝑓(𝑤) = log det(𝐴𝑇𝑊𝐴). Lemma 2.3.8 shows that

𝜕

𝜕𝑤𝑖
𝑓(𝑤) = Tr

(︁(︀
𝐴𝑇𝑊𝐴

)︀−1
𝑎𝑖𝑎

𝑇
𝑖

)︁
= Σ𝐴(𝑤)𝑖𝑖𝑤

−1
𝑖 .

To prove (6), we let 𝑅𝐴(𝑤)𝑖𝑗
def
= 𝑎𝑇𝑖 (𝐴

𝑇𝑊𝐴)−1𝑎𝑗 . Lemma 2.3.8 shows that

𝜕

𝜕𝑤𝑖
(𝐴𝑇𝑊𝐴)−1 = −(𝐴𝑇𝑊𝐴)−1𝑎𝑖𝑎

𝑇
𝑖 (𝐴

𝑇𝑊𝐴)−1

and hence 𝜕
𝜕𝑤𝑘

[𝑅𝐴(𝑤)]𝑖𝑗 = −𝑅𝐴(𝑤)𝑖𝑘𝑅𝐴(𝑤)𝑘𝑗 . Since by definition 𝜎𝐴(𝑤)𝑖 = 𝑤𝑖𝑅𝐴(𝑤)𝑖𝑖 by the
previous lemma, we have that

𝜕

𝜕𝑤𝑗
𝜎𝐴(𝑤)𝑖 = 1𝑖=𝑗𝑅𝐴(𝑤)𝑖𝑖 − 𝑤𝑖𝑅𝐴(𝑤)

(2)
𝑖𝑗 .

Writing this in matrix form and recalling the definition of the Jacobian then yields

𝐽𝑤(𝜎𝐴(𝑤)) =𝐷𝑖𝑎𝑔(𝑅𝐴(𝑤))−𝑊𝑅𝐴(𝑤)(2).

Right multiplying by 𝐼 =𝑊𝑊−1 and recalling the definition of Λ𝐴 then yields the result.

Lemma 6.11.3. For any 𝑥, 𝜀 and 𝜆 > 0, we have

𝜋

2
|𝑥| − 𝜋𝜀− 1

𝜆
≤ 𝑥 tan−1(𝜆(𝑥+ 𝜀)) ≤ 𝜋

2
|𝑥| .

Proof. We first consider the case 𝜀 = 0. Note that

𝑥 tan−1(𝜆𝑥) ≤ 𝜋

2
|𝑥| .

Also, we note that

𝑥 tan−1(𝜆𝑥) ≥ |𝑥|
(︂
𝜋

2
− 1

𝜆 |𝑥|

)︂
because ⃒⃒⃒⃒

tan(
𝜋

2
− 1

𝜆 |𝑥|
)

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒cos(

1
𝜆|𝑥|)

sin( 1
𝜆|𝑥|)

⃒⃒⃒⃒
⃒ ≤ 𝜆 |𝑥| .
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Hence, we have
𝜋

2
|𝑥| − 1

𝜆
≤ 𝑥 tan−1(𝜆𝑥) ≤ 𝜋

2
|𝑥| .

For 𝜀 ̸= 0, we have

𝜋

2
|𝑥+ 𝜀| − 1

𝜆
≤ (𝑥+ 𝜀) tan−1(𝜆(𝑥+ 𝜀)) ≤ 𝜋

2
|𝑥+ 𝜀| .

Thus, we have
𝜋

2
|𝑥| − 𝜋𝜀− 1

𝜆
≤ 𝑥 tan−1(𝜆(𝑥+ 𝜀)) ≤ 𝜋

2
|𝑥| .

6.12 Appendix: Projection on Mixed Norm Ball

In this section, we give an algorithm to solve the problem

max
‖𝑥‖2+‖𝑙−1𝑥‖∞≤1

⟨𝑎,𝑥⟩ (6.44)

for some given vector 𝑙 and 𝑎. This is used in Section 6.7.1 to compute the weights. We note that

max
‖𝑥‖2+‖𝑙−1𝑥‖∞≤1

⟨𝑎,𝑥⟩ = max
0≤𝑡≤1

max
‖𝑥‖2≤1−𝑡 and −𝑡𝑙𝑖≤𝑥𝑖≤𝑡𝑙𝑖

⟨𝑎,𝑥⟩

= max
0≤𝑡≤1

(1− 𝑡) max
‖𝑥‖2≤1 and − 𝑡

1−𝑡
𝑙𝑖≤𝑥𝑖≤ 𝑡

1−𝑡
𝑙𝑖

⟨𝑎,𝑥⟩

= max
0≤𝑡≤1

(1− 𝑡)𝑓( 𝑡

1− 𝑡
) (6.45)

where
𝑓(

𝑡

1− 𝑡
) = max

‖𝑥‖2≤1,−𝑡𝑙𝑖≤𝑥𝑖≤𝑡𝑙𝑖
⟨𝑎,𝑥⟩ .

In [165], we showed that the maximizer x in the problem 𝑓 must be of the form

𝑥𝑖𝑡 =

⎧⎪⎨⎪⎩
𝑡

1−𝑡sign (𝑎𝑗) 𝑙𝑗 if 𝑗 ∈ {1, 2, · · · , 𝑖𝑡}√︃
1−( 𝑡

1−𝑡)
2 ∑︀𝑖𝑡

𝑘=0 𝑙
2
𝑘

1−
∑︀𝑖𝑡

𝑘=0 𝑎
2
𝑘

𝑎𝑗 otherwise
. (6.46)

where 𝑖𝑡 be the first coordinate such that

1−
(︁

𝑡
1−𝑡

)︁2∑︀𝑖
𝑘=0 𝑙

2
𝑘

1−
∑︀𝑖

𝑘=0 𝑎
2
𝑘

≤

(︁
𝑡

1−𝑡

)︁2
𝑙2𝑖

𝑎2𝑖
.

Note that 𝑖𝑡 ≥ 𝑖𝑠 if 𝑡 ≤ 𝑠. Therefore, we have that the set of 𝑡 such that 𝑖𝑡 = 𝑗 is simply an interval
given by8

|𝑎𝑗 |√︂
𝑙2𝑗

(︁
1−

∑︀𝑗
𝑘=0 𝑎

2
𝑘

)︁
+ 𝑎2𝑗

∑︀𝑗
𝑘=0 𝑙

2
𝑘

≤ 𝑡

1− 𝑡
<

|𝑎𝑗−1|√︂
𝑙2𝑗−1

(︁
1−

∑︀𝑗−1
𝑘=0 𝑎

2
𝑘

)︁
+ 𝑎2𝑗−1

∑︀𝑗−1
𝑘=0 𝑙

2
𝑘

. (6.47)

8There are some boundary cases we ignored for simplicity.
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Therefore, we know that

𝑓(
𝑡

1− 𝑡
) =

⟨
𝑎,𝑥(𝑖𝑡)

⟩
=

𝑡

1− 𝑡

𝑖𝑡∑︁
𝑗=1

|𝑎𝑗 | |𝑙𝑗 |+

⎯⎸⎸⎷1−
(︂

𝑡

1− 𝑡

)︂2 𝑖𝑡∑︁
𝑘=0

𝑙2𝑘

⎯⎸⎸⎷1−
𝑖𝑡∑︁
𝑘=0

𝑎2𝑘.

Putting this into 6.45, we have that

max
‖𝑥‖2+‖𝑙−1𝑥‖∞≤1

⟨𝑎,𝑥⟩ = max
0≤𝑡≤1

𝑡

𝑖𝑡∑︁
𝑗=1

|𝑎𝑗 | |𝑙𝑗 |+

⎯⎸⎸⎷(1− 𝑡)2 − 𝑡2
𝑖𝑡∑︁
𝑘=0

𝑙2𝑘

⎯⎸⎸⎷1−
𝑖𝑡∑︁
𝑘=0

𝑎2𝑘.

Note that the function 𝑡
∑︀𝑖

𝑗=1 |𝑎𝑗 | |𝑙𝑗 | +
√︁

(1− 𝑡)2 − 𝑡2
∑︀𝑖

𝑘=0 𝑙
2
𝑘

√︁
1−

∑︀𝑖
𝑘=0 𝑎

2
𝑘 is concave and the

solution has a close form. Therefore, one can compute the maximum value for each interval of 𝑡 (6.47)
and find which is the best. Hence, we get the following algorithm.

𝑥 = projectOntoMixedNormBallParallel(𝑎, 𝑙)

1. Set 𝑎 = 𝑎/‖𝑎‖2.
2. Sort the coordinate such that |𝑎𝑖| /𝑙𝑖 is in descending order.
3. Precompute

∑︀𝑖
𝑘=0 𝑙

2
𝑘,
∑︀𝑖

𝑘=0 𝑎
2
𝑘 and

∑︀𝑖
𝑗=1 |𝑎𝑗 | |𝑙𝑗 | for all 𝑖.

4. Let 𝑔𝑖(𝑡) = 𝑡
∑︀𝑖

𝑗=1 |𝑎𝑗 | |𝑙𝑗 |+
√︁

(1− 𝑡)2 − 𝑡2
∑︀𝑖

𝑘=0 𝑙
2
𝑘

√︁
1−

∑︀𝑖
𝑘=0 𝑎

2
𝑘.

5. For each 𝑗 ∈ {1, · · · , 𝑛}, Find 𝑡𝑗 = argmax𝑖𝑡=𝑗 𝑔𝑗(𝑡) using (6.47)
6. Find 𝑖 = argmax𝑖 𝑔𝑖(𝑡𝑖).

7. Output (1− 𝑡𝑖)𝑥(𝑖) defined by 6.46.

The discussion above leads to the following theorem.

Theorem 6.12.1. The algorithm projectOntoMixedNormBallParallel outputs a solution to

max
‖𝑥‖2+‖𝑙−1𝑥‖∞≤1

⟨𝑎,𝑥⟩

in total work �̃�(𝑚) and depth �̃�(1).

6.13 Appendix: A �̃�(𝑛)-Self-Concordant Barrier Function

In this section, we proved the barrier function introduced in Subsection 6.3.5 is an �̃�(𝑛)-self-concordant
barrier. We separate the proof of Theorem 6.3.5 into two lemma, Lemma 6.13.3 and Lemma 6.13.8.
The proof is pretty straightforward, but it requires some familiarity with matrix calculus.

6.13.1 Notation

Here, we define some notations that is used throughout in this section. They different from previous
sections because this section our domain is Ω def

= {Ax > b} instead of A⊤x = b.

1. Let 𝑓(𝑥,𝑤) = ln det(𝐴𝑇𝑆−1𝑊𝑆−1𝐴)− 𝑛
𝑚

∑︀𝑚
𝑖=1𝑤𝑖 ln𝑤𝑖 −

𝑛
𝑚

∑︀𝑚
𝑖=1 ln 𝑠𝑖.

2. Let 𝑆 =𝐷𝑖𝑎𝑔𝐴x − b and 𝐴𝑥 = 𝑆−1𝐴.
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3. Let 𝑃 (𝑥,𝑤) =
√
𝑊𝐴𝑥

(︀
𝐴𝑇
𝑥𝑊𝐴𝑥

)︀−1
𝐴𝑇
𝑥

√
𝑊 , 𝜎(𝑥,𝑤) = 𝑑𝑖𝑎𝑔 (𝑃 (𝑥,𝑤)).

4. Let 𝑃 (2)(𝑥,𝑤) be a 𝑚×𝑚 matrix such that
(︁
𝑃 (2)(𝑥,𝑤)

)︁
𝑖𝑗
= (𝑃 (𝑥,𝑤))2𝑖𝑗 .

5. Let Λ(𝑥,𝑤) = Σ(𝑥,𝑤)− 𝑃 (2)(𝑥,𝑤).

6. Let 𝑤𝑥 be the unique maximizer of 𝑓(𝑥,𝑤), i.e. 𝑤𝑥
def
= argmax𝑤𝑖≥0 𝑓(𝑥,𝑤).

7. Let 𝑃 𝑥 = 𝑃 (𝑥,𝑤), 𝜎𝑥 = 𝜎(𝑥,𝑤𝑥), Σ𝑥 = Σ(𝑥,𝑤𝑥), 𝑃
(2)
𝑥 = 𝑃 (2)(𝑥,𝑤𝑥) and Λ𝑥 = Λ(𝑥,𝑤𝑥).

Similar to lemma 6.11.2, we have 0 ⪯ 𝑃 (2)(𝑥,𝑤) ⪯ Σ(𝑥,𝑤) ⪯ 𝐼, 0 ⪯ Λ(𝑥,𝑤) and
∑︀

𝑖 𝜎𝑖(𝑥,𝑤) = 𝑛.

6.13.2 Basic properties of 𝑓 and 𝑝

First, we compute the gradient and Hessian of 𝑓 and 𝑝.

Lemma 6.13.1. For any interior point 𝑥 ∈ Ω and any positive weight 𝑤 > 0, we have

∇𝑥𝑓(𝑥,𝑤) = −2𝐴𝑇
𝑥𝜎(𝑥,𝑤)−

𝑛

𝑚
𝐴𝑇
𝑥 1,

∇𝑤𝑓(𝑥,𝑤) =𝑊−1𝜎(𝑥,𝑤)− 𝑛

𝑚
ln(𝑒𝑤), (6.48)

∇2
𝑥𝑥𝑓(𝑥,𝑤) = 𝐴

𝑇
𝑥

(︁
6Σ(𝑥,𝑤)− 4𝑃 (2)(𝑥,𝑤) +

𝑛

𝑚
𝐼
)︁
𝐴𝑥,

∇2
𝑤𝑤𝑓(𝑥,𝑤) = −𝑊−1𝑃 (2)(𝑥,𝑤)𝑊−1 − 𝑛

𝑚
𝑊−1,

∇2
𝑥𝑤𝑓(𝑥,𝑤) = −2𝐴𝑇

𝑥

(︁
Σ(𝑥,𝑤)− 𝑃 (2)(𝑥,𝑤)

)︁
𝑊−1.

For 𝑥 ∈ Ω, 𝑤𝑥 uniquely exist in the region
{︀
1
𝑒 ≤ 𝑤𝑖 ≤

𝑚
𝑛

}︀
and 𝑝 satisfies

∇𝑝(𝑥) = −2𝐴𝑇
𝑥𝜎𝑥 −

𝑛

𝑚
𝐴𝑇
𝑥 1.

∇2𝑝(𝑥) = 𝐴𝑇
𝑥

(︁
6Σ𝑥 − 4𝑃 (2)

𝑥 +
𝑛

𝑚
𝐼
)︁
𝐴𝑥 + 4𝐴𝑇

𝑥Λ𝑥

(︁
𝑃 (2)
𝑥 +

𝑛

𝑚
𝑊 𝑥

)︁−1
Λ𝑥𝐴𝑥. (6.49)

Also, we have

𝐽𝑥𝑤 = −2𝑊
(︁
𝑃 (2)(𝑥,𝑤) +

𝑛

𝑚
𝑊
)︁−1 (︁

Σ(𝑥,𝑤)− 𝑃 (2)(𝑥,𝑤)
)︁
𝐴𝑥. (6.50)

Proof. For ∇𝑥𝑓 , we have

𝜕𝑓

𝜕𝑠𝑖
= Tr

(︂(︀
𝐴𝑇𝑆−1𝑊𝑆−1𝐴

)︀−1
(︂
𝜕

𝜕𝑠𝑖

)︂(︀
𝐴𝑇𝑆−1𝑊𝑆−1𝐴

)︀)︂
− 𝑛

𝑚

1

𝑠𝑖

= −2Tr
(︂
𝐴
(︀
𝐴𝑇𝑆−1𝑊𝑆−1𝐴

)︀−1
𝐴𝑇 𝑤𝑖

𝑠3𝑖
1𝑖1

𝑇
𝑖

)︂
− 𝑛

𝑚

1

𝑠𝑖

= −2𝜎𝑖(𝑥,𝑤)
𝑠𝑖

− 𝑛

𝑚

1

𝑠𝑖
By Chain rule, we have

∇𝑥𝑓(𝑥,𝑤) = −2𝐴𝑇
𝑥𝜎(𝑥,𝑤)−

𝑛

𝑚
𝐴𝑇
𝑥 1.
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For ∇𝑤𝑓 , we have

𝜕𝑓

𝜕𝑤𝑖
= Tr

(︂(︀
𝐴𝑇𝑆−1𝑊𝑆−1𝐴

)︀−1
(︂

𝜕

𝜕𝑤𝑖

)︂(︀
𝐴𝑇𝑆−1𝑊𝑆−1𝐴

)︀)︂
− 𝑛

𝑚
ln𝑤𝑖 −

𝑛

𝑚

=
𝜎𝑖(𝑥,𝑤)

𝑤𝑖
− 𝑛

𝑚
ln(𝑒𝑤𝑖).

Hence, we have
∇𝑤𝑓(𝑥,𝑤) =𝑊−1𝜎 − 𝑛

𝑚
ln(𝑒𝑤).

For ∇𝑥𝑥𝑓 , taking partial derivative on 𝜕𝑓
𝜕𝑠𝑖

, we have

𝜕2𝑓

𝜕𝑠𝑖𝜕𝑠𝑗
=

𝜕

𝜕𝑠𝑗

(︂
−2Tr

(︂
𝐴
(︀
𝐴𝑇𝑆−1𝑊𝑆−1𝐴

)︀−1
𝐴𝑇 𝑤𝑖

𝑠3𝑖
1𝑖1

𝑇
𝑖

)︂
− 𝑛

𝑚

1

𝑠𝑖

)︂
= −4Tr

(︃
𝐴
(︀
𝐴𝑇
𝑥𝑊𝐴𝑥

)︀−1
𝐴𝑇 𝑤𝑗

𝑠3𝑗
1𝑗1

𝑇
𝑗 𝐴

(︀
𝐴𝑇
𝑥𝑊 𝑥𝐴

)︀−1
𝐴𝑇 𝑤𝑖

𝑠3𝑖
1𝑖1

𝑇
𝑖

)︃

6Tr

(︂
𝐴
(︀
𝐴𝑇
𝑥𝑊𝐴𝑥

)︀−1
𝐴𝑇 𝑤𝑖

𝑠4𝑖
1𝑖1

𝑇
𝑖 1𝑖=𝑗

)︂
+
𝑛

𝑚

1

𝑠2𝑖
1𝑖=𝑗

= 6
𝜎𝑖(𝑥,𝑤)

𝑠2𝑖
1𝑖=𝑗 − 4

(𝑃 (𝑥,𝑤))2𝑖𝑗
𝑠𝑖𝑠𝑗

+
𝑛

𝑚

1

𝑠2𝑖
1𝑖=𝑗 .

By Chain rule, we have

∇𝑥𝑥𝑓(𝑥,𝑤) = 𝐴𝑇
𝑥

(︁
6Σ(𝑥,𝑤)− 4𝑃 (2)(𝑥,𝑤) +

𝑛

𝑚
𝐼
)︁
𝐴𝑥.

For ∇𝑤𝑤𝑓 , taking partial derivative on 𝜕𝑓
𝜕𝑤𝑖

, we have

𝜕2𝑓

𝜕𝑤𝑖𝜕𝑤𝑗
=

𝜕

𝜕𝑤𝑗

(︁
Tr
(︁
𝐴𝑥

(︀
𝐴𝑇
𝑥𝑊𝐴𝑥

)︀−1
𝐴𝑇
𝑥 𝑒𝑖𝑒

𝑇
𝑖

)︁
− 𝑛

𝑚
ln𝑤𝑖 −

𝑛

𝑚

)︁
= −Tr

(︁
𝐴𝑥

(︀
𝐴𝑇
𝑥𝑊𝐴𝑥

)︀−1
𝐴𝑇
𝑥 𝑒𝑗𝑒

𝑇
𝑗 𝐴𝑥

(︀
𝐴𝑇
𝑥𝑊𝐴𝑥

)︀−1
𝐴𝑇
𝑥 𝑒𝑖𝑒

𝑇
𝑖

)︁
− 𝑛

𝑚

1

𝑤𝑗
1𝑖=𝑗

= −
(𝑃 (𝑥,𝑤))2𝑖𝑗

𝑤𝑖𝑤𝑗
− 𝑛

𝑚

1

𝑤𝑗
1𝑖=𝑗 .

Hence, we have
∇𝑤𝑤𝑓(𝑥,𝑤) = −𝑊−1𝑃 (2)(𝑥,𝑤)𝑊−1 − 𝑛

𝑚
𝑊−1.

For ∇𝑥𝑤𝑓 , taking partial derivative on 𝜕𝑓
𝜕𝑤𝑖

, we have

𝜕2𝑓

𝜕𝑠𝑗𝜕𝑤𝑖
=

𝜕

𝜕𝑠𝑗

(︂
Tr

(︂
𝐴
(︀
𝐴𝑇
𝑥𝑊𝐴𝑥

)︀−1
𝐴𝑇 𝑒𝑖𝑒

𝑇
𝑖

𝑠2𝑖

)︂
− 𝑛

𝑚
ln𝑤𝑖 −

𝑛

𝑚

)︂
= 2Tr

(︃
𝐴
(︀
𝐴𝑇
𝑥𝑊𝐴𝑥

)︀−1
𝐴𝑇

𝑤𝑗𝑒𝑗𝑒
𝑇
𝑗

𝑠3𝑗
𝐴
(︀
𝐴𝑇
𝑥𝑊𝐴𝑥

)︀−1
𝐴𝑇 𝑒𝑖𝑒

𝑇
𝑖

𝑠2𝑖

)︃

−2Tr
(︂
𝐴
(︀
𝐴𝑇
𝑥𝑊𝐴𝑥

)︀−1
𝐴𝑇 𝑒𝑖𝑒

𝑇
𝑖

𝑠3𝑖
1𝑖=𝑗

)︂
= 2

(𝑃 (𝑥,𝑤))𝑖𝑗
𝑠𝑗𝑤𝑖

− 2
𝜎𝑖(𝑥,𝑤)

𝑠𝑗𝑤𝑖
1𝑖=𝑗 .
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By Chain rule, we have

∇𝑥𝑤𝑓(𝑥,𝑤) = −2𝐴𝑇
𝑥

(︁
Σ(𝑥,𝑤)− 𝑃 (2)(𝑥,𝑤)

)︁
𝑊−1.

Now, we prove that 𝑤𝑥 uniquely exists in the region {1𝑒 ≤ 𝑤𝑖 ≤ 𝑚
𝑛 }. For any 𝑤 such that 𝑤𝑖 > 𝑚

𝑛
for some 𝑖, we have

𝜕𝑓

𝜕𝑤𝑖
=

𝜎𝑖(𝑥,𝑤)

𝑤𝑖
− 𝑛

𝑚
ln(𝑒𝑤𝑖)

≤ 1

𝑤𝑖
− 𝑛

𝑚
ln(𝑒𝑤𝑖)

≤ 𝑛

𝑚
− 𝑛

𝑚
ln(𝑒

𝑚

𝑛
) < 0.

Hence, we have sup𝑤𝑖≥0 𝑓(𝑥,𝑤) = sup𝑚
𝑛
≥𝑤𝑖≥0 𝑓(𝑥,𝑤). Since the region 0 ≤ 𝑤𝑖 ≤ 𝑚

𝑛 is a compact set
and 𝑓 is a continuous function, there is 𝑤𝑥 such that attains sup𝑤𝑖≥0 𝑓(𝑥,𝑤). For the uniqueness, we
note that ∇𝑤𝑤𝑓(𝑥,𝑤) ≺ 0 for all 𝑤 and hence 𝑓 is strictly concave and the maximizer is unique. Now,
we note that for any 𝑤 such that 𝑤𝑖 < 1

𝑒 for some 𝑖, we have

𝜕𝑓

𝜕𝑤𝑖
=
𝜎𝑖(𝑥,𝑤)

𝑤𝑖
− 𝑛

𝑚
ln(𝑒𝑤𝑖) > 0.

Therefore, the minimizer is in the region {1𝑒 ≤ 𝑤𝑖 ≤
𝑚
𝑛 }.

To compute 𝑝, we note that 𝑓(𝑥,𝑤) is concave in 𝑤 and the maximizer is in the interior of the set
{𝑤𝑖 ≥ 0} and therefore the optimality conditions imply that

∇𝑤𝑓(𝑥,𝑤𝑥) = 0. (6.51)

Since ∇2
𝑤𝑤𝑓(𝑥,𝑤𝑥) is invertible, implicit function theorem (Lemma 2.3.9) shows that 𝑤𝑥 is differen-

tiable and satisfies
𝐽𝑥𝑤 = −

(︀
∇2
𝑤𝑤𝑓(𝑥,𝑤𝑥)

)︀−1 (︀∇2
𝑤𝑥𝑓(𝑥,𝑤𝑥)

)︀
.

This gives (6.50).
Using that 𝑝(𝑥) = 𝑓(𝑥,𝑤𝑥) and applying the chain rule, we have

∇𝑝(𝑥) = ∇𝑥𝑓(𝑥,𝑤𝑥) +∇𝑤𝑓(𝑥,𝑤𝑥)𝐽𝑥𝑤𝑥
= ∇𝑥𝑓(𝑥,𝑤𝑥)

because the optimality condition. Taking derivative again, we have

∇2𝑝(𝑥) = ∇2
𝑥𝑥𝑓(𝑥,𝑤𝑥) +∇2

𝑥𝑤𝑓(𝑥,𝑤𝑥)𝐽𝑥𝑤𝑥

= ∇2
𝑥𝑥𝑓(𝑥,𝑤𝑥)−∇2

𝑥𝑤𝑓(𝑥,𝑤𝑥)
(︀
∇2
𝑤𝑤𝑓(𝑥,𝑤𝑥)

)︀−1 (︀∇2
𝑤𝑥𝑓(𝑥,𝑤𝑥)

)︀
Substituting in the computed values for ∇2

𝑥𝑥𝑓(𝑥,𝑤𝑥), ∇2
𝑥𝑤𝑓(𝑥,𝑤𝑥), and ∇2

𝑤𝑥𝑓(𝑥,𝑤𝑥) then yields the
result.

Now, we discuss properties of the optimal weight 𝑤𝑥.

Lemma 6.13.2. For 𝑥 ∈ Ω, we have 𝜎𝑥 = 𝑛
𝑚𝑤𝑥 ln(𝑒𝑤𝑥). Also, we have max𝑖

𝜎𝑥,𝑖
𝑤𝑥,𝑖
≤ 𝑛

𝑚 ln(𝑚𝑒𝑛 ).

Proof. The optimality conditions (6.51) implies

𝜎𝑥 =
𝑛

𝑚
𝑤𝑥 ln(𝑒𝑤𝑥).
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Lemma 6.13.1 shows that 1
𝑒 ≤ 𝑤𝑥 ≤

𝑚
𝑛 and hence

𝜎𝑥,𝑖
𝑤𝑥,𝑖

≤ 𝑛

𝑚
ln(

𝑚𝑒

𝑛
).

Using these, we can bound (∇𝑝)𝑇
(︀
∇2𝑝

)︀−1
(∇𝑝).

Lemma 6.13.3. For 𝑥 ∈ Ω, we have

(∇𝑝(𝑥))𝑇
(︀
∇2𝑝(𝑥)

)︀−1
(∇𝑝(𝑥)) ≤ 6𝑛.

Proof. Using ∇𝑝(𝑥) = −2𝐴𝑇
𝑥𝜎𝑥 − 𝑛

𝑚𝐴
𝑇
𝑥 1, we have

(∇𝑝(𝑥))𝑇
(︀
∇2𝑝(𝑥)

)︀−1
(∇𝑝(𝑥))

≤ 8𝜎𝑇𝑥𝐴𝑥

(︀
∇2𝑝(𝑥)

)︀−1
𝐴𝑇
𝑥𝜎𝑥 + 2

(︁ 𝑛
𝑚

)︁2
1𝑇𝐴𝑥

(︀
∇2𝑝(𝑥)

)︀−1
𝐴𝑇
𝑥 1.

For the first term, we use Λ𝑥 ⪰ 0 and 𝑃 (2)
𝑥 ⪰ 0 and get

𝜎𝑇𝑥𝐴𝑥

(︀
∇2𝑝(𝑥)

)︀−1
𝐴𝑇
𝑥𝜎𝑥

≤ 𝜎𝑇𝑥𝐴𝑥

(︁
𝐴𝑇
𝑥

(︁
6Σ𝑥 − 4𝑃 (2)

𝑥 +
𝑛

𝑚
𝐼𝑚

)︁
𝐴𝑥

)︁−1
𝐴𝑇
𝑥𝜎𝑥

≤ 1

2
𝜎𝑇𝑥𝐴𝑥

(︀
𝐴𝑇
𝑥Σ𝑥𝐴𝑥

)︀−1
𝐴𝑇
𝑥𝜎𝑥

≤ 1

2

𝑚∑︁
𝑖=1

𝜎𝑥,𝑖

=
𝑛

2
.

For the second term, we have

1𝑇𝑚𝐴𝑥

(︀
∇2𝑝(𝑥)

)︀−1
𝐴𝑇
𝑥 1𝑚

≤ 1𝑇𝑚𝐴𝑥

(︁
𝐴𝑇
𝑥

(︁
6Σ𝑥 − 4𝑃 (2)

𝑥 +
𝑛

𝑚
𝐼𝑚

)︁
𝐴𝑥

)︁−1
𝐴𝑇
𝑥 1𝑚

≤ 𝑚

𝑛
1𝑇𝑚𝐴𝑥

(︀
𝐴𝑇
𝑥𝐴𝑥

)︀−1
𝐴𝑇
𝑥 1𝑚

≤ 𝑚2

𝑛
.

Combining both terms, we have the result.

6.13.3 𝑤𝑥, Σ𝑥 and 𝑃
(2)
𝑥 are stable

In this subsection, we write 𝑥𝑡 = 𝑥 + 𝑡ℎ, 𝐴𝑡 = 𝐴𝑥𝑡 , 𝑠𝑡 = 𝐴𝑡𝑥𝑡 − 𝑏, 𝑆𝑡 = 𝐷𝑖𝑎𝑔 (𝑠𝑡), 𝑤𝑡 = 𝑤𝑥𝑡 , 𝑊 𝑡 =

𝐷𝑖𝑎𝑔 (𝑤𝑡), 𝑃 𝑡 = 𝑃 (𝑥𝑡, 𝑤𝑡), 𝜎𝑡 = 𝜎(𝑥𝑡, 𝑤𝑡), Σ𝑡 = Σ(𝑥𝑡, 𝑤𝑡), 𝑃
(2)
𝑡 = 𝑃 (2)(𝑥𝑡, 𝑤𝑡) and Λ𝑡 = Λ(𝑥𝑡, 𝑤𝑡).

First of all, we show that 𝐴𝑥ℎ is small.

Lemma 6.13.4. For any 𝑥 ∈ Ω and ℎ ∈ R𝑛, we have

‖𝐴𝑥ℎ‖∞ ≤
1√
2
ln
(︁𝑚𝑒
𝑛

)︁
‖ℎ‖∇2𝑝(𝑥).
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Therefore, we have

‖𝑆−1
𝑡

𝑑

𝑑𝑡
𝑠𝑡‖∞ ≤

1√
2
ln
(︁𝑚𝑒
𝑛

)︁
‖ℎ‖∇2𝑝(𝑥𝑡).

Proof. Note that

‖𝐴𝑥ℎ‖∞ = max
𝑖
⟨𝑒𝑖,𝐴𝑥ℎ⟩

≤ max
𝑖

⟨
(𝐴𝑇

𝑥𝑊𝐴𝑥)
−1/2𝐴𝑇

𝑥 1𝑖, (𝐴
𝑇
𝑥𝑊𝐴𝑥)

1/2ℎ
⟩

≤
(︂
max
𝑖

𝜎𝑥,𝑖
𝑤𝑥,𝑖

)︂
‖ℎ‖𝐴𝑇

𝑥𝑊𝐴𝑥
.

Lemma 6.13.2 shows that max𝑖
𝜎𝑥,𝑖
𝑤𝑥,𝑖
≤ 𝑛

𝑚 ln
(︀
𝑚𝑒
𝑛

)︀
and hence

‖𝐴𝑥ℎ‖∞ ≤
𝑛

𝑚
ln
(︁𝑚𝑒
𝑛

)︁
‖ℎ‖𝐴𝑇

𝑥𝑊𝐴𝑥
.

On the other hand, we have

∇2𝑝 = 𝐴𝑇
𝑥

(︁
6Σ𝑥 − 4𝑃 (2)

𝑥 +
𝑛

𝑚
𝐼
)︁
𝐴𝑥 + 4𝐴𝑇

𝑥Λ𝑥

(︁ 𝑛
𝑚
𝑊 𝑥 + 𝑃

(2)
𝑥

)︁−1
Λ𝑥𝐴𝑥

⪰ 𝐴𝑇
𝑥

(︁
2Σ𝑥 +

𝑛

𝑚
𝐼
)︁
𝐴𝑥

Lemma 6.13.2 shows that 𝜎𝑥 = 𝑛
𝑚𝑤 ln(𝑒𝑤) and hence

2𝜎 +
𝑛

𝑚
=

𝑛

𝑚
(2𝑤 ln(𝑒𝑤) + 1) .

Using 2𝑤 ln(𝑒𝑤)+1
𝑤 ≥ 4− ln(4) ≥ 2 for all 𝑤 > 0, we have

∇2𝑝(𝑥) ⪰ 2𝐴𝑇
𝑥𝑊 𝑥𝐴𝑥

Hence, we have

‖𝐴𝑥ℎ‖∞ ≤ 1√
2
ln
(︁𝑚𝑒
𝑛

)︁
‖ℎ‖∇2𝑝(𝑥).

The last claim follows from the equality

𝑆−1
𝑡

𝑑

𝑑𝑡
𝑠𝑡 = 𝐴𝑡ℎ.

In the next lemma, we show that 𝑤𝑡 is stable both 𝑃 (2) norm, Σ norm and ℓ∞ norm.

Lemma 6.13.5. We have

‖𝑊−1
𝑡

𝑑

𝑑𝑡
𝑤𝑡‖𝑃 (2)

𝑡
≤ 1

2
‖ℎ‖∇2𝑝(𝑥𝑡),

‖𝑊−1
𝑡

𝑑

𝑑𝑡
𝑤𝑡‖Σ𝑡 ≤

√︂
ln
(︁𝑚
𝑛
𝑒
)︁
‖ℎ‖∇2𝑝(𝑥𝑡),

‖𝑊−1
𝑡

𝑑

𝑑𝑡
𝑤𝑡‖∞ ≤ ln(

𝑚𝑒

𝑛
)

(︂
1 +
√
2 ln

(︂
𝑚𝑒2

𝑛

)︂)︂
‖ℎ‖∇2𝑝(𝑥𝑡).

Proof. Using (6.50), we have
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𝑑

𝑑𝑡
𝑤𝑡 = −2𝑊 𝑡

(︁ 𝑛
𝑚
𝑊 𝑡 + 𝑃

(2)
𝑡

)︁−1
Λ𝑡𝐴𝑡ℎ. (6.52)

Let 𝑧 =
(︁
𝑛
𝑚𝑊 𝑡 + 𝑃

(2)
𝑡

)︁−1
Λ𝑡𝐴𝑡ℎ. First, we note that

‖𝑧‖2
𝑃

(2)
𝑡

= ℎ𝑇𝐴𝑇
𝑡 Λ𝑡

(︁ 𝑛
𝑚
𝑊 𝑡 + 𝑃

(2)
𝑡

)︁−1
𝑃

(2)
𝑡

(︁ 𝑛
𝑚
𝑊 𝑡 + 𝑃

(2)
𝑡

)︁−1
Λ𝑡𝐴𝑡ℎ.

Since 𝑃 (2)
𝑡 ⪯ 𝑛

𝑚𝑊 𝑡 + 𝑃
(2)
𝑡 and ∇2𝑝 ⪰ 4𝐴𝑇

𝑡 Λ𝑡

(︁
𝑛
𝑚𝑊 𝑡 + 𝑃

(2)
𝑡

)︁−1
Λ𝑡𝐴𝑡 (6.49), we have

‖𝑧‖2
𝑃

(2)
𝑡

≤ ℎ𝑇𝐴𝑇
𝑡 Λ𝑡

(︁ 𝑛
𝑚
𝑊 𝑡 + 𝑃

(2)
𝑡

)︁−1
Λ𝑡𝐴𝑡ℎ ≤

1

4
‖ℎ‖2∇2𝑝(𝑥𝑡)

.

For the Σ𝑡 bound, note that

‖𝑧‖2Σ𝑡
= ℎ𝑇𝐴𝑇

𝑡 Λ𝑡

(︁ 𝑛
𝑚
𝑊 𝑡 + 𝑃

(2)
𝑡

)︁−1
Σ𝑡

(︁ 𝑛
𝑚
𝑊 𝑡 + 𝑃

(2)
𝑡

)︁−1
Λ𝑡𝐴𝑡ℎ.

Using Lemma 6.13.2, we have max𝑖
𝜎𝑡,𝑖
𝑤𝑡,𝑖
≤ 𝑛

𝑚 ln(𝑚𝑒𝑛 ) and hence

‖𝑧‖2Σ𝑡
≤ ln

(︁𝑚𝑒
𝑛

)︁
ℎ𝑇𝐴𝑇

𝑡 Λ𝑡

(︁ 𝑛
𝑚
𝑊 𝑡 + 𝑃

(2)
𝑡

)︁−1 (︁ 𝑛
𝑚
𝑊 𝑡

)︁(︁ 𝑛
𝑚
𝑊 𝑡 + 𝑃

(2)
𝑡

)︁−1
Λ𝑡𝐴𝑡ℎ

≤ ln
(︁𝑚𝑒
𝑛

)︁
ℎ𝑇𝐴𝑇

𝑡 Λ𝑡

(︁ 𝑛
𝑚
𝑊 𝑡 + 𝑃

(2)
𝑡

)︁−1
Λ𝑡𝐴𝑡ℎ ≤

ln
(︀
𝑚𝑒
𝑛

)︀
4
‖ℎ‖2∇2𝑝(𝑥𝑡)

.

For the ℓ∞ bound, note that(︁ 𝑛
𝑚
𝑊 𝑡 + 𝑃

(2)
𝑡

)︁
𝑧 = Σ𝑡𝐴𝑡ℎ− 𝑃 (2)

𝑡 𝐴𝑡ℎ.

Hence, we have
𝑛

𝑚
𝑤𝑡,𝑖 |𝑧𝑖| ≤

⃒⃒⃒
𝑃

(2)
𝑡 𝑧
⃒⃒⃒
𝑖
+ 𝜎𝑡,𝑖 |𝐴𝑡ℎ|𝑖 +

⃒⃒⃒
𝑃

(2)
𝑡 𝐴𝑡ℎ

⃒⃒⃒
𝑖
. (6.53)

For the term
⃒⃒⃒
𝑃

(2)
𝑡 𝑧
⃒⃒⃒
𝑖
, note that

⃒⃒⃒
𝑃

(2)
𝑡 𝑧
⃒⃒⃒
𝑖

=

√︁
1𝑇𝑖 𝑃

(2)
𝑡 1𝑖

√︂
‖𝑧‖2

𝑃
(2)
𝑡

= 𝜎𝑡,𝑖‖𝑧‖𝑃 (2)
𝑡
≤ 𝜎𝑡,𝑖

2
‖ℎ‖∇2𝑝(𝑥𝑡).

Therefore,
⃒⃒⃒
𝑃

(2)
𝑡 𝑧
⃒⃒⃒
𝑖
≤ 𝜎𝑡,𝑖

2 ‖ℎ‖∇2𝑝(𝑥𝑡).

For the term
⃒⃒⃒
𝑃

(2)
𝑡 𝐴𝑡ℎ

⃒⃒⃒
𝑖
, using ∇2𝑝(𝑥𝑡) ⪰ 2𝐴𝑡

𝑡Σ𝑡𝐴𝑡 and Σ𝑡 ⪰ 𝑃 (2)
𝑡 , we have

⃒⃒⃒
𝑃

(2)
𝑡 𝐴𝑡ℎ

⃒⃒⃒
𝑖

=

√︁
1𝑇𝑖 𝑃

(2)
𝑡 1𝑖

√︂
‖𝐴𝑡ℎ‖2

𝑃
(2)
𝑡

≤ 𝜎𝑡,𝑖‖𝐴𝑡ℎ‖Σ𝑡

≤ 𝜎𝑡,𝑖√
2
‖ℎ‖∇2𝑝(𝑥𝑡).

For the term |𝐴𝑡ℎ|𝑖, Lemma 6.13.4 shows that |𝐴𝑡ℎ|𝑖 ≤
1√
2
ln
(︀
𝑚𝑒
𝑛

)︀
‖ℎ‖∇2𝑝(𝑥𝑡).

Combining these terms into (6.53), we have

𝑛

𝑚
𝑤𝑡,𝑖 |𝑧𝑖| ≤ 𝜎𝑡,𝑖

(︂
1

2
+

1√
2
+

1√
2
ln
(︁𝑚𝑒
𝑛

)︁)︂
‖ℎ‖∇2𝑝(𝑥𝑡).
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Using Lemma 6.13.2, we have max𝑖
𝜎𝑡,𝑖
𝑤𝑡,𝑖
≤ 𝑛

𝑚 ln(𝑚𝑒𝑛 ) and hence

|𝑧𝑖| ≤ ln(
𝑚𝑒

𝑛
)

(︂
1

2
+

1√
2
+

1√
2
ln
(︁𝑚𝑒
𝑛

)︁)︂
‖ℎ‖∇2𝑝(𝑥𝑡).

Using the formula (6.52) for 𝑤𝑡, we have the result.

In the next lemma, we show that Σ𝑡 is stable.

Lemma 6.13.6. We have⃒⃒⃒⃒
𝑑

𝑑𝑡
Σ𝑡

⃒⃒⃒⃒
⪯ 2 ln(

𝑚𝑒

𝑛
)

(︂
1 +
√
2 ln

(︂
𝑚𝑒2

𝑛

)︂)︂
‖ℎ‖∇2𝑝(𝑥𝑡)Σ𝑡.

Proof. Fix any 𝑦 ∈ R𝑛. Let 𝛼(𝑡) = 𝑦𝑇𝐴𝑇
𝑡 Σ𝑡𝐴𝑡𝑦. The optimality condition (6.48) gives

𝜎𝑡 =
𝑛

𝑚
𝑤𝑡 ln(𝑒𝑤𝑡).

Taking derivative on both side, we have

𝑑

𝑑𝑡
𝜎𝑡 =

𝑛

𝑚

(︂
𝑑

𝑑𝑡
𝑤𝑡

)︂
ln(𝑒𝑤𝑡) +

𝑛

𝑚

(︂
𝑑

𝑑𝑡
𝑤𝑡

)︂
=

𝑛

𝑚

(︂
𝑑

𝑑𝑡
𝑤𝑡

)︂
ln(𝑒2𝑤𝑡)

Using Lemma 6.13.5, we have

‖𝑊−1
𝑡

𝑑

𝑑𝑡
𝑤𝑡‖∞ ≤ ln(

𝑚𝑒

𝑛
)

(︂
1 +
√
2 ln

(︂
𝑚𝑒2

𝑛

)︂)︂
‖ℎ‖∇2𝑝(𝑥𝑡).

Therefore, for all 𝑖, we have⃒⃒⃒⃒
𝑑

𝑑𝑡
𝜎𝑡,𝑖

⃒⃒⃒⃒
≤ ln(

𝑚𝑒

𝑛
)

(︂
1 +
√
2 ln

(︂
𝑚𝑒2

𝑛

)︂)︂
𝑛

𝑚
𝑤𝑡,𝑖 ln(𝑒

2𝑤𝑡)

≤ 2 ln(
𝑚𝑒

𝑛
)

(︂
1 +
√
2 ln

(︂
𝑚𝑒2

𝑛

)︂)︂
𝜎𝑡,𝑖‖ℎ‖∇2𝑝(𝑥𝑡).

This gives the result.

Now, we want to prove 𝑃 (2)
𝑡 is stable.

Lemma 6.13.7. We have⃒⃒⃒⃒
𝑑

𝑑𝑡
𝑦𝑇𝑃

(2)
𝑡 𝑦

⃒⃒⃒⃒
⪯
(︂
ln(

𝑚𝑒

𝑛
)

(︂
1 +
√
2 ln

(︂
𝑚𝑒3

𝑛

)︂)︂
+ 2

√︂
ln
(︁𝑚
𝑛
𝑒
)︁
+ 4

)︂
‖𝑦‖2Σ𝑡

‖ℎ‖∇2𝑝(𝑥𝑡).

Proof. Fix any 𝑦 ∈ R𝑛. Let 𝛼(𝑡) = 𝑦𝑇𝑃
(2)
𝑡 𝑦. Then, we have

𝑑𝛼

𝑑𝑡
=

𝑑

𝑑𝑡

∑︁
𝑖,𝑗

(𝑃 𝑡)
2
𝑖,𝑗 𝑦𝑖𝑦𝑗 = 2

∑︁
𝑖,𝑗

(𝑃 𝑡)𝑖,𝑗
𝑑

𝑑𝑡
(𝑃 𝑡)𝑖,𝑗 𝑦𝑖𝑦𝑗 .
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Let 𝑧𝑡 = 𝑑
𝑑𝑡 ln

(︀
𝑤𝑡/𝑠

2
𝑡

)︀
. Note that

𝑑

𝑑𝑡
(𝑃 𝑡)𝑖,𝑗 =

𝑑

𝑑𝑡
1𝑇𝑖
√︀
𝑊 𝑡𝐴𝑡

(︀
𝐴𝑇
𝑡 𝑊 𝑡𝐴𝑡

)︀−1
𝐴𝑇
𝑡

√︀
𝑊 𝑡1𝑗

=
1

2

𝑑𝑧𝑡,𝑖
𝑑𝑡

(𝑃 𝑡)𝑖,𝑗 +
1

2

𝑑𝑧𝑡,𝑗
𝑑𝑡

(𝑃 𝑡)𝑖,𝑗 − 1𝑇𝑖 · 𝑃 𝑡 ·𝐷𝑖𝑎𝑔
𝑑𝑧𝑡,𝑘
𝑑𝑡
· 𝑃 𝑡 · 1𝑗 .

Hence, we have

𝑑𝛼

𝑑𝑡
=

∑︁
𝑖,𝑗

(𝑃 𝑡)𝑖,𝑗
𝑑𝑧𝑡,𝑖
𝑑𝑡

(𝑃 𝑡)𝑖,𝑗 𝑦𝑖𝑦𝑗 +
∑︁
𝑖,𝑗

(𝑃 𝑡)𝑖,𝑗
𝑑𝑧𝑡,𝑗
𝑑𝑡

(𝑃 𝑡)𝑖,𝑗 𝑦𝑖𝑦𝑗

−2
∑︁
𝑖,𝑗

(𝑃 𝑡)𝑖,𝑗 1
𝑇
𝑖 · 𝑃 𝑡 ·𝐷𝑖𝑎𝑔

(︂
𝑑𝑧𝑡,𝑘
𝑑𝑡

)︂
· 𝑃 𝑡 · 1𝑗𝑦𝑖𝑦𝑗

= 2𝑦𝑇𝑃
(2)
𝑡 𝐷𝑖𝑎𝑔

(︂
𝑑𝑧𝑡,𝑗
𝑑𝑡

)︂
𝑦 − 2

∑︁
𝑖,𝑗,𝑘

(𝑃 𝑡)𝑖,𝑗 (𝑃 𝑡)𝑖,𝑘 (𝑃 𝑡)𝑗,𝑘 𝑦𝑖𝑦𝑗
𝑑𝑧𝑡,𝑘
𝑑𝑡

. (6.54)

For the first term 𝑦𝑇𝑃
(2)
𝑡 𝑑𝑖𝑎𝑔

(︁
𝑑𝑧𝑡,𝑗
𝑑𝑡

)︁
𝑦, using 𝑃 (2)

𝑡 ⪯ Σ𝑡, we have⃒⃒⃒⃒
𝑦𝑇𝑃

(2)
𝑡 𝐷𝑖𝑎𝑔

(︂
𝑑𝑧𝑡,𝑗
𝑑𝑡

)︂
𝑦

⃒⃒⃒⃒
≤ ‖𝑦‖

𝑃
(2)
𝑡
‖𝐷𝑖𝑎𝑔

(︂
𝑑𝑧𝑡,𝑗
𝑑𝑡

)︂
𝑦‖
𝑃

(2)
𝑡
≤ ‖𝑦‖2Σ𝑡

‖𝑑𝑧𝑡
𝑑𝑡
‖∞.

Using Lemma 6.13.4 and 6.13.5, we have

‖𝑑𝑧𝑡
𝑑𝑡
‖∞ ≤ ‖ 𝑑

𝑑𝑡
ln(𝑤𝑡)‖∞ + 2‖ 𝑑

𝑑𝑡
ln(𝑠𝑡)‖∞

≤ ln(
𝑚𝑒

𝑛
)

(︂
1 +
√
2 ln

(︂
𝑚𝑒3

𝑛

)︂)︂
‖ℎ‖∇2𝑝(𝑥𝑡).

Hence, we have⃒⃒⃒⃒
𝑦𝑇𝑃

(2)
𝑡 𝐷𝑖𝑎𝑔

(︂
𝑑𝑧𝑡,𝑗
𝑑𝑡

)︂
𝑦

⃒⃒⃒⃒
≤
(︂
ln(

𝑚𝑒

𝑛
)

(︂
1 +
√
2 ln

(︂
𝑚𝑒3

𝑛

)︂)︂)︂
‖𝑦‖2Σ𝑡

‖ℎ‖∇2𝑝(𝑥𝑡).

For the second term
∑︀

𝑖,𝑗,𝑘 (𝑃 𝑡)𝑖,𝑗 (𝑃 𝑡)𝑖,𝑘 (𝑃 𝑡)𝑗,𝑘 𝑦𝑖𝑦𝑗
𝑑
𝑑𝑡𝑧𝑡,𝑘, we let 𝑎𝑖,𝑗 = (𝑃 𝑡)𝑖,𝑗

√︀
|𝑦𝑖𝑦𝑗 |, 𝑏𝑖,𝑘 =

(𝑃 𝑡)𝑖,𝑘

√︁⃒⃒
𝑦𝑖

𝑑
𝑑𝑡𝑧𝑡,𝑘

⃒⃒
and 𝑐𝑗,𝑘 = (𝑃 𝑡)𝑗,𝑘

√︁⃒⃒
𝑦𝑗

𝑑
𝑑𝑡𝑧𝑡,𝑘

⃒⃒
and get⃒⃒⃒⃒

⃒⃒∑︁
𝑖,𝑗,𝑘

(𝑃 𝑡)𝑖,𝑗 (𝑃 𝑡)𝑖,𝑘 (𝑃 𝑡)𝑗,𝑘 𝑦𝑖𝑦𝑗
𝑑

𝑑𝑡
𝑧𝑡,𝑘

⃒⃒⃒⃒
⃒⃒ ≤∑︁

𝑖,𝑗,𝑘

|𝑎𝑖,𝑗𝑏𝑖,𝑘𝑐𝑗,𝑘| .

Using Cauchy Schwarz Inequality twice and 𝑃 (2)
𝑡 ⪯ Σ𝑡, we have⃒⃒⃒⃒

⃒⃒∑︁
𝑖,𝑗,𝑘

(𝑃 𝑡)𝑖,𝑗 (𝑃 𝑡)𝑖,𝑘 (𝑃 𝑡)𝑗,𝑘 𝑦𝑖𝑦𝑗
𝑑

𝑑𝑡
𝑧𝑡,𝑘

⃒⃒⃒⃒
⃒⃒ ≤ √︃∑︁

𝑖,𝑗

𝑎2𝑖,𝑗

√︃∑︁
𝑖,𝑘

𝑏2𝑖,𝑘

√︃∑︁
𝑗,𝑘

𝑐2𝑗,𝑘

= ‖ |𝑦| ‖
𝑃

(2)
𝑡

⟨
|𝑦| ,

⃒⃒⃒⃒
𝑑

𝑑𝑡
𝑧𝑡

⃒⃒⃒⃒⟩2

𝑃
(2)
𝑡

≤ ‖𝑦‖2Σ𝑡
‖ 𝑑
𝑑𝑡
𝑧𝑡‖Σ𝑡 .
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Using Lemma 6.13.5, we have⃒⃒⃒⃒
⃒⃒∑︁
𝑖,𝑗,𝑘

(𝑃 𝑡)𝑖,𝑗 (𝑃 𝑡)𝑖,𝑘 (𝑃 𝑡)𝑗,𝑘 𝑦𝑖𝑦𝑗
𝑑

𝑑𝑡
𝑧𝑡,𝑘

⃒⃒⃒⃒
⃒⃒ ≤ (︂√︂ln

(︁𝑚
𝑛
𝑒
)︁
+ 2

)︂
‖𝑦‖2Σ𝑡

‖ℎ‖∇2𝑝(𝑥𝑡).

Combining two cases into (6.54), we have⃒⃒⃒⃒
𝑑𝛼

𝑑𝑡

⃒⃒⃒⃒
≤
(︂
ln(

𝑚𝑒

𝑛
)

(︂
1 +
√
2 ln

(︂
𝑚𝑒3

𝑛

)︂)︂
+ 2

√︂
ln
(︁𝑚
𝑛
𝑒
)︁
+ 4

)︂
‖𝑦‖2Σ𝑡

‖ℎ‖∇2𝑝(𝑥𝑡).

6.13.4 ∇2𝑝 is stable

Now, we can combine all lemmas before to prove the wanted statement.

Lemma 6.13.8. We have ⃒⃒⃒⃒
𝑑

𝑑𝑡
∇2𝑝

⃒⃒⃒⃒
⪯ 𝑂

(︁
ln3
(︁𝑚𝑒
𝑛

)︁)︁
‖ℎ‖∇2𝑝(𝑥𝑡)∇

2𝑝.

Proof. Note that

∇2𝑝(𝑥𝑡) = 𝐴
𝑇
𝑡

(︁
6Σ𝑡 − 4𝑃

(2)
𝑡 +

𝑛

𝑚
𝐼
)︁
𝐴𝑡 + 4𝐴𝑇

𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
Λ𝑡𝐴𝑡.

Fix any 𝑦 ∈ R𝑛. Let 𝛼(𝑡) = 𝑦𝑇∇2𝑝(𝑥𝑡)𝑦. Then, we have⃒⃒⃒⃒
𝑑𝛼

𝑑𝑡

⃒⃒⃒⃒
≤ 6

⃒⃒⃒⃒
𝑑

𝑑𝑡
𝑦𝑇𝐴𝑇

𝑡 Σ𝑡𝐴𝑡𝑦

⃒⃒⃒⃒
+ 4

⃒⃒⃒⃒
𝑑

𝑑𝑡
𝑦𝑇𝐴𝑇

𝑡 𝑃
(2)
𝑡 𝐴𝑡𝑦

⃒⃒⃒⃒
+4

⃒⃒⃒⃒
𝑑

𝑑𝑡
𝐴𝑇
𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
Λ𝑡𝐴𝑡

⃒⃒⃒⃒
≤ 12

⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡 Σ𝑡

(︂
𝑑

𝑑𝑡
𝐴𝑡

)︂
𝑦

⃒⃒⃒⃒
+ 6

⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡

(︂
𝑑

𝑑𝑡
Σ𝑡

)︂
𝐴𝑡𝑦

⃒⃒⃒⃒
+8

⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡 𝑃
(2)
𝑡

(︂
𝑑

𝑑𝑡
𝐴𝑡

)︂
𝑦

⃒⃒⃒⃒
+ 4

⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡

(︂
𝑑

𝑑𝑡
𝑃

(2)
𝑡

)︂
𝐴𝑡𝑦

⃒⃒⃒⃒
+8

⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
Λ𝑡

(︂
𝑑

𝑑𝑡
𝐴𝑡

)︂
𝑦

⃒⃒⃒⃒
+8

⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
(︂
𝑑

𝑑𝑡
𝑃

(2)
𝑡

)︂
𝐴𝑡𝑦

⃒⃒⃒⃒
+8

⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
(︂
𝑑

𝑑𝑡
Σ𝑡

)︂
𝐴𝑡𝑦

⃒⃒⃒⃒
+4

⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
(︂
𝑑

𝑑𝑡
𝑃

(2)
𝑡

)︂(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
Λ𝑡𝐴𝑡𝑦

⃒⃒⃒⃒
+4

⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
(︂
𝑑

𝑑𝑡

𝑛

𝑚
𝑊 𝑡

)︂(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
Λ𝑡𝐴𝑡𝑦

⃒⃒⃒⃒
.
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Now, we need to bound the terms above one by one. Using Lemma 6.13.4, we have⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡 Σ𝑡

(︂
𝑑

𝑑𝑡
𝐴𝑡

)︂
𝑦

⃒⃒⃒⃒
≤ 𝑂

(︁
ln
(︁𝑚𝑒
𝑛

)︁)︁
‖ℎ‖∇2𝑝(𝑥𝑡)

⃒⃒
𝑦𝑇𝐴𝑇

𝑡 Σ𝑡𝐴𝑡𝑦
⃒⃒

= 𝑂
(︁
ln
(︁𝑚𝑒
𝑛

)︁)︁
‖ℎ‖∇2𝑝(𝑥𝑡)‖𝑦‖

2
∇2𝑝(𝑥𝑡)

.

Using Lemma 6.13.6, we have⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡

(︂
𝑑

𝑑𝑡
Σ𝑡

)︂
𝐴𝑡𝑦

⃒⃒⃒⃒
≤ 𝑂

(︁
ln2
(︁𝑚𝑒
𝑛

)︁)︁
‖ℎ‖∇2𝑝(𝑥𝑡)

⃒⃒
𝑦𝑇𝐴𝑇

𝑡 Σ𝑡𝐴𝑡𝑦
⃒⃒

≤ 𝑂
(︁
ln2
(︁𝑚𝑒
𝑛

)︁)︁
‖ℎ‖∇2𝑝(𝑥𝑡)‖𝑦‖

2
∇2𝑝(𝑥𝑡)

.

Using Lemma 6.13.4, we have⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡 𝑃
(2)
𝑡

(︂
𝑑

𝑑𝑡
𝐴𝑡

)︂
𝑦

⃒⃒⃒⃒
≤

√︁
𝑦𝑇𝐴𝑇

𝑡 𝑃
(2)
𝑡 𝐴𝑡𝑦

√︃
𝑦𝑇
(︂
𝑑

𝑑𝑡
𝐴𝑡

)︂
𝑃

(2)
𝑡

(︂
𝑑

𝑑𝑡
𝐴𝑡

)︂
𝑦

≤ 𝑂(1)
√︁
‖𝑦‖2∇2𝑝(𝑥𝑡)

√︂(︁
ln
(︁𝑚𝑒
𝑛

)︁
‖ℎ‖∇2𝑝(𝑥𝑡)

)︁2
‖𝑦‖2∇2𝑝(𝑥𝑡)

= 𝑂
(︁
ln
(︁𝑚𝑒
𝑛

)︁)︁
‖ℎ‖∇2𝑝(𝑥𝑡)‖𝑦‖

2
∇2𝑝(𝑥𝑡)

.

Using Lemma 6.13.7, we have⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡

(︂
𝑑

𝑑𝑡
𝑃

(2)
𝑡

)︂
𝐴𝑡𝑦

⃒⃒⃒⃒
≤ 𝑂

(︁
ln2
(︁𝑚𝑒
𝑛

)︁)︁
‖𝐴𝑡𝑦‖2Σ𝑡

‖ℎ‖∇2𝑝(𝑥𝑡)

= 𝑂
(︁
ln2
(︁𝑚𝑒
𝑛

)︁)︁
‖ℎ‖∇2𝑝(𝑥𝑡)‖𝑦‖

2
∇2𝑝(𝑥𝑡)

.

Using Lemma 6.13.4, we have⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
Λ𝑡

(︂
𝑑

𝑑𝑡
𝐴𝑡

)︂
𝑦

⃒⃒⃒⃒
≤

√︂
𝑦𝑇𝐴𝑇

𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
𝐴𝑇
𝑡 𝑦

×

√︃
𝑦𝑇
(︂
𝑑

𝑑𝑡
𝐴𝑡

)︂𝑇
Λ𝑡

(︂
𝑑

𝑑𝑡
𝐴𝑡

)︂
𝑦

= 𝑂(1)

√︂
ln(

𝑚𝑒

𝑛
)‖𝑦‖2∇2𝑝(𝑥𝑡)

√︃
𝑦𝑇
(︂
𝑑

𝑑𝑡
𝐴𝑡

)︂𝑇
Σ𝑡

(︂
𝑑

𝑑𝑡
𝐴𝑡

)︂
𝑦

= 𝑂
(︁
ln3/2

(︁𝑚𝑒
𝑛

)︁)︁
‖ℎ‖∇2𝑝(𝑥𝑡)‖𝑦‖

2
∇2𝑝(𝑥𝑡)
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Using Lemma 6.13.6, we have⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
(︂
𝑑

𝑑𝑡
Σ𝑡

)︂
𝐴𝑡𝑦

⃒⃒⃒⃒
≤

√︃
𝑦𝑇𝐴𝑇

𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
(︂
𝑑

𝑑𝑡
Σ𝑡

)︂(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
𝐴𝑇
𝑡 𝑦

×

√︃
𝑦𝑇𝐴𝑇

𝑡

(︂
𝑑

𝑑𝑡
Σ𝑡

)︂
𝐴𝑡𝑦

≤ 𝑂
(︁
ln3/2

(︁𝑚𝑒
𝑛

)︁)︁
‖ℎ‖∇2𝑝(𝑥𝑡)‖𝑦‖

2
∇2𝑝(𝑥𝑡)

Let 𝑧 =
(︁
𝑃

(2)
𝑡 + 𝑛

𝑚𝑊 𝑡

)︁−1
Λ𝑡𝐴𝑡𝑦, using Lemma 6.13.7, we have⃒⃒⃒⃒

𝑦𝑇𝐴𝑇
𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
(︂
𝑑

𝑑𝑡
𝑃

(2)
𝑡

)︂(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
Λ𝑡𝐴𝑡𝑦

⃒⃒⃒⃒
≤ 𝑂

(︁
ln2
(︁𝑚𝑒
𝑛

)︁)︁
‖𝑧‖2Σ𝑡

‖ℎ‖∇2𝑝(𝑥𝑡).

Note that

‖𝑧‖2Σ𝑡
= 𝑦𝑇𝐴𝑇

𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
Σ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
Λ𝑡𝐴𝑡𝑦

≤ ln(
𝑚𝑒

𝑛
)𝑦𝑇𝐴𝑇

𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
Λ𝑡𝐴𝑡𝑦 ≤ 𝑂

(︁
ln(

𝑚𝑒

𝑛
)
)︁
‖𝑦‖2∇2𝑝(𝑥𝑡)

.

Hence, we have ⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
(︂
𝑑

𝑑𝑡
𝑃

(2)
𝑡

)︂(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
Λ𝑡𝐴𝑡𝑦

⃒⃒⃒⃒
≤ 𝑂

(︁
ln3(

𝑚𝑒

𝑛
)
)︁
‖𝑦‖2∇2𝑝(𝑥𝑡)

‖ℎ‖∇2𝑝(𝑥𝑡).

Using Lemma 6.13.5, we have⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
(︂
𝑑

𝑑𝑡

𝑛

𝑚
𝑊 𝑡

)︂(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
Λ𝑡𝐴𝑡𝑦

⃒⃒⃒⃒
≤ 𝑂

(︁
ln2(

𝑚𝑒

𝑛
)
)︁
‖𝑦‖2∇2𝑝(𝑥𝑡)

‖ℎ‖∇2𝑝(𝑥𝑡)

Using Lemma 6.13.7, we have⃒⃒⃒⃒
𝑦𝑇𝐴𝑇

𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
(︂
𝑑

𝑑𝑡
𝑃

(2)
𝑡

)︂
𝐴𝑡𝑦

⃒⃒⃒⃒
≤

√︃
𝑦𝑇𝐴𝑇

𝑡 Λ𝑡

(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
(︂
𝑑

𝑑𝑡
𝑃

(2)
𝑡

)︂(︁
𝑃

(2)
𝑡 +

𝑛

𝑚
𝑊 𝑡

)︁−1
Λ𝑡𝐴𝑡𝑦

√︃
𝑦𝑇𝐴𝑇

𝑡

(︂
𝑑

𝑑𝑡
𝑃

(2)
𝑡

)︂
𝐴𝑡𝑦

≤
√︂
𝑂(ln3

(︁𝑚𝑒
𝑛

)︁
)‖𝑦‖2∇2𝑝(𝑥𝑡)

‖ℎ‖∇2𝑝(𝑥𝑡)

√︂
𝑂(ln2(

𝑚𝑒

𝑛
)‖𝑦‖2∇2𝑝(𝑥𝑡)

‖ℎ‖∇2𝑝(𝑥𝑡)

= 𝑂
(︁
ln5/2(

𝑚𝑒

𝑛
)
)︁
‖𝑦‖2∇2𝑝(𝑥𝑡)

‖ℎ‖∇2𝑝(𝑥𝑡).

Combining all terms together, we have
⃒⃒
𝑑𝛼
𝑑𝑡

⃒⃒
= 𝑂

(︀
ln3(𝑚𝑒𝑛 )

)︀
‖𝑦‖2∇2𝑝(𝑥𝑡)

‖ℎ‖∇2𝑝(𝑥𝑡).
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Chapter 7

Geometric Median In Nearly-Linear Time

7.1 Introduction

In this chapter, we study Fermat-Weber problem, one of the oldest easily-stated nontrivial problems
in computational geometry. Given a set of 𝑛 points in 𝑑 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠, 𝑎(1), . . . , 𝑎(𝑛) ∈ R𝑑, find a point
𝑥* ∈ R𝑑 that minimizes the sum of Euclidean distances to them:

𝑥* ∈ argmin
𝑥∈R𝑑

𝑓(𝑥) where 𝑓(𝑥)
def
=
∑︁
𝑖∈[𝑛]

‖𝑥− 𝑎(𝑖)‖2

This problem, also known as the geometric median problem, is well studied and has numerous applica-
tions. It is often considered over low dimensional spaces in the context of the facility location problem
[267] and over higher dimensional spaces it has applications to clustering in machine learning and
data analysis. For example, computing the geometric median is a subroutine in popular expectation
maximization heuristics for 𝑘-medians clustering.

The problem is also important to robust estimation, where we like to find a point representative
of given set of points that is resistant to outliers. The geometric median is a rotation and translation
invariant estimator that achieves the optimal breakdown point of 0.5, i.e. it is a good estimator even
when up to half of the input data is arbitrarily corrupted [172]. Moreover, if a large constant fraction
of the points lie in a ball of diameter 𝜀 then the geometric median lies in that ball with diameter 𝑂(𝜀)
(see Lemma 7.7.1). Consequently, the geometric median can be used to turn expected results into
high probability results: e.g. if the 𝑎(𝑖) are drawn independently such that E‖𝑥 − 𝑥*‖2 ≤ 𝜀 for some
𝜀 > 0 and 𝑥 ∈ R𝑑 then this fact, Markov bound, and Chernoff Bound, imply ‖𝑥* − 𝑎(𝑖)‖2 = 𝑂(𝜀) with
high probability in 𝑛.

Despite the ancient nature of the Fermat-Weber problem and its many uses there are relatively
few theoretical guarantees for solving it (see Table 7.1). To compute a (1 + 𝜀)-approximate solution,
i.e. 𝑥 ∈ R𝑑 with 𝑓(𝑥) ≤ (1+𝜀)𝑓(𝑥*), the previous fastest running times were either 𝑂(𝑑 ·𝑛4/3𝜀−8/3) by
[50], �̃�(𝑑 exp 𝜀−4 log 𝜀−1) by [25], �̃�(𝑛𝑑 + poly(𝑑, 𝜀−1)) by [86], or 𝑂((𝑛𝑑)𝑂(1) log 1

𝜀 ) time by [222, 271].
In this chapter, we improve upon these running times by providing an 𝑂(𝑛𝑑 log3 𝑛𝜀 ) time algorithm1

as well as an 𝑂(𝑑/𝜀2) time algorithm, provided we have an oracle for sampling a random 𝑎(𝑖). Picking
the faster algorithm for the particular value of 𝜀 improves the running time to 𝑂(𝑛𝑑 log3 1

𝜀 ). We also
extend these results to compute a (1 + 𝜀)-approximate solution to the more general Weber’s problem,
min𝑥∈R𝑑

∑︀
𝑖∈[𝑛]𝑤𝑖‖𝑥− 𝑎(𝑖)‖2 for non-negative 𝑤𝑖, in time 𝑂(𝑛𝑑 log3 1

𝜀 ) (see Section 7.10).

Our 𝑂(𝑛𝑑 log3 𝑛𝜀 ) time algorithm is a careful modification of standard interior point methods for
solving the geometric median problem. We provide a long step interior point method tailored to the
geometric median problem for which we can implement every iteration in nearly linear time. While our
analysis starts with a simple 𝑂((𝑛𝑑)𝑂(1) log 1

𝜀 ) time interior point method and shows how to improve it,

1If 𝑧 is the total number of nonzero entries in the coordinates of the 𝑎(𝑖) then a careful analysis of our algorithm
improves our running time to 𝑂(𝑧 log3 𝑛

𝜀
).
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our final algorithm is quite non-standard from the perspective of interior point literature. Our result
is one of very few cases we are aware of outperforming traditional interior point theory (Chapter 6
and [183]) and the only we are aware of using interior point methods to obtain a nearly linear time
algorithm for a canonical optimization problem that traditionally requires superlinear time. We hope
our work leads to further improvements in this line of research.

Our 𝑂(𝑑𝜀−2) algorithm is a relatively straightforward application of sampling techniques and
stochastic subgradient descent. Some additional insight is required simply to provide a rigorous anal-
ysis of the robustness of the geometric median and use this to streamline our application of stochastic
subgradient descent. We include it for completeness however, we defer its proof to Section 7.7. The
bulk of the work in this chapter is focused on developing our 𝑂(𝑛𝑑 log3 𝑛𝜀 ) time algorithm which we
believe uses a set of techniques of independent interest.

7.1.1 Previous Work

The geometric median problem was first formulated for the case of three points in the early 1600s by
Pierre de Fermat [148, 69]. A simple elegant ruler and compass construction was given in the same
century by Evangelista Torricelli. Such a construction does not generalize when a larger number of
points is considered: Bajaj has shown the even for five points, the geometric median is not expressible
by radicals over the rationals [27]. Hence, the (1+𝜀)-approximate problem has been studied for larger
values of 𝑛.

Many authors have proposed algorithms with runtime polynomial in 𝑛, 𝑑 and 1/𝜀. The most cited
and used algorithm is Weiszfeld’s 1937 algorithm [268]. Unfortunately Weiszfeld’s algorithm may not
converge and if it does it may do so very slowly. There have been many proposed modifications to
Weiszfeld’s algorithm [58, 224, 220, 28, 260, 155] that generally give non-asymptotic runtime guar-
antees. In light of more modern multiplicative weights methods his algorithm can be viewed as a
re-weighted least squares iteration. Chin et al. [50] considered the more general 𝐿2 embedding prob-
lem: placing the vertices of a graph into R𝑑, where some of the vertices have fixed positions while
the remaining vertices are allowed to float, with the objective of minimizing the sum of the Euclidean
edge lengths. Using the multiplicative weights method, they obtained a run time of 𝑂(𝑑 · 𝑛4/3𝜀−8/3)
for a broad class of problems, including the geometric median problem.2

Many authors consider problems that generalize the Fermat-Weber problem, and obtain algorithms
for finding the geometric median as a specialization. For example, Badoiu et al. give an approximate
𝑘-median algorithm by sub-sampling with the runtime for 𝑘 = 1 of ̃︀𝑂(𝑑 ·exp(𝑂(𝜀−4))) [25]. Parrilo and
Sturmfels demonstrated that the problem can be reduced to semidefinite programming, thus obtaining
a runtime of ̃︀𝑂(poly(𝑛, 𝑑) log 𝜀−1) [222]. Furthermore, Bose et al. gave a linear time algorithm for
fixed 𝑑 and 𝜀−1, based on low-dimensional data structures [37] and it has been show how to obtain
running times of ̃︀𝑂(𝑛𝑑+ poly(𝑑, 𝜀−1)) for this problem and a more general class of problems.[113, 86].

An approach very related to ours was studied by Xue and Ye [271]. They give an interior point
method with barrier analysis that runs in time �̃�((𝑑3 + 𝑑2𝑛)

√
𝑛 log 𝜀−1).

7.1.2 Overview of 𝑂(𝑛𝑑 log3 𝑛
𝜀
) Time Algorithm

Interior Point Primer

Our algorithm is broadly inspired by interior point methods, a broad class of methods for efficiently
solving convex optimization problems [273, 211]. Given an instance of the geometric median problem

2The result of [50] was stated in more general terms than given here. However, it easy to formulate the geometric
median problem in their model.
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Year Authors Runtime Comments

1659 Torricelli [263] - Assuming 𝑛 = 3

1937 Weiszfeld [268] - Does not always converge

1990 Chandrasekaran and Tamir[47] ̃︀𝑂(𝑛 · poly(𝑑) log 𝜀−1) Ellipsoid method

1997 Xue and Ye [271] ̃︀𝑂(
(︀
𝑑3 + 𝑑2𝑛

)︀√
𝑛 log 𝜀−1) Interior point with barrier method

2000 Indyk [116] �̃�(𝑑𝑛 · 𝜀−2) Optimizes only over 𝑥 in the input

2001 Parrilo and Sturmfels [222] ̃︀𝑂(poly(𝑛, 𝑑) log 𝜀−1) Reduction to SDP

2002 Badoiu et al. [25] ̃︀𝑂(𝑑 · exp(𝑂(𝜀−4))) Sampling

2003 Bose et al. [37] ̃︀𝑂(𝑛) Assuming 𝑑, 𝜀−1 = 𝑂(1)

2005 Har-Peled and Kushal [113] ̃︀𝑂(𝑛+ poly(𝜀−1)) Assuming 𝑑 = 𝑂(1)

2011 Feldman and Langberg [86] ̃︀𝑂(𝑛𝑑+ poly(𝑑, 𝜀−1)) Coreset
2013 Chin et al. [50] ̃︀𝑂(𝑑𝑛4/3 · 𝜀−8/3) Multiplicative weights

- This Chapter 𝑂(𝑛𝑑 log3(𝑛/𝜀)) Interior point with custom analysis

- This Chapter 𝑂(𝑑𝜀−2) Stochastic gradient descent

Table 7.1: Selected Previous Results.

we first put the problem in a more natural form for applying interior point methods. Rather than
writing the problem as minimizing a convex function over R𝑑

min
𝑥∈R𝑑

𝑓(𝑥) where 𝑓(𝑥)
def
=
∑︁
𝑖∈[𝑛]

‖𝑥− 𝑎(𝑖)‖2 (7.1)

we instead write the problem as minimizing a linear function over a larger convex space:

min
{𝛼,𝑥}∈𝑆

1⊤𝛼 where 𝑆 =
{︁
𝛼 ∈ R𝑛, 𝑥 ∈ R𝑑 | ‖𝑥(𝑖) − 𝑎(𝑖)‖2 ≤ 𝛼𝑖 for all 𝑖 ∈ [𝑛]

}︁
. (7.2)

Clearly, these problems are the same as at optimality 𝛼𝑖 = ‖𝑥(𝑖) − 𝑎(𝑖)‖2.

To solve problems of the form (7.2) interior point methods relax the constraint {𝛼, 𝑥} ∈ 𝑆 through
the introduction of a barrier function. In particular they assume that there is a real valued function
𝑝 such that as {𝛼, 𝑥} moves towards the boundary of 𝑆 the value of 𝑝 goes to infinity. A popular
class of interior point methods known as path following methods [227, 107], they consider relaxations
of (7.2) of the form min{𝛼,𝑥}∈R𝑛×R𝑑 𝑡 · 1⊤𝛼 + 𝑝(𝛼, 𝑥). The minimizers of this function form a path,
known as the central path, parameterized by 𝑡. The methods then use variants of Newton’s method
to follow the path until 𝑡 is large enough that a high quality approximate solution is obtained. The
number of iterations of these methods are then typically governed by a property of 𝑝 known as its self
concordance 𝜈. Given a 𝜈-self concordant barrier, typically interior point methods require 𝑂(

√
𝜈 log 1

𝜀 )
iterations to compute a (1 + 𝜀)-approximate solution.

For our particular convex set, the construction of our barrier function is particularly simple, we
consider each constraint ‖𝑥 − 𝑎(𝑖)‖2 ≤ 𝛼𝑖 individually. In particular, it is known that the function
𝑝(𝑖)(𝛼, 𝑥) = − ln𝛼𝑖 − ln

(︀
𝛼2
𝑖 − ‖𝑥− 𝑎(𝑖)‖2

)︀
is a 𝑂(1) self-concordant barrier function for the set 𝑆(𝑖) ={︀

𝑥 ∈ R𝑑, 𝛼 ∈ R𝑛 | ‖𝑥− 𝑎(𝑖)‖2 ≤ 𝛼𝑖
}︀
[206]. Since ∩𝑖∈[𝑛]𝑆(𝑖) = 𝑆 we can use the barrier

∑︀
𝑖∈[𝑛] 𝑝

(𝑖)(𝛼, 𝑥)
for 𝑝(𝛼, 𝑥) and standard self-concordance theory shows that this is an 𝑂(𝑛) self concordant barrier for
𝑆. Consequently, this easily yields an interior point method for solving the geometric median problem
in 𝑂((𝑛𝑑)𝑂(1) log 1

𝜀 ) time.
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Difficulties

Unfortunately obtaining a nearly linear time algorithm for geometric median using interior point
methods as presented poses numerous difficulties. Particularly troubling is the number of iterations
required by standard interior point algorithms. The approach outlined in the previous section produced
an 𝑂(𝑛)-self concordant barrier and even if we use more advanced self concordance machinery, i.e. the
universal barrier [211], the best known self concordance of barrier for the convex set

∑︀
𝑖∈[𝑛] ‖𝑥−𝑎(𝑖)‖2 ≤

𝑐 is 𝑂(𝑑). An interesting open question still left open by our work is to determine what is the minimal
self concordance of a barrier for this set.

Consequently, even if we could implement every iteration of an interior point scheme in nearly
linear time it is unclear whether one should hope for a nearly linear time interior point algorithm for
the geometric median. While there are a instances of outperforming standard self-concordance analysis
(Chapter 6), these instances are few, complex, and to varying degrees specialized to the problems they
solve. Moreover, we are unaware of any interior point scheme providing a provable nearly linear time
for a general nontrivial convex optimization problem.

Beyond Standard Interior Point

Despite these difficulties we do obtain a nearly linear time interior point based algorithm that only
requires 𝑂(log 𝑛

𝜀 ) iterations, i.e. increases to the path parameter. After choosing the natural penalty
functions 𝑝(𝑖) described above, we optimize in closed form over the 𝛼𝑖 to obtain the following penalized
objective function:3

min
𝑥
𝑓𝑡(𝑥) where 𝑓𝑡(𝑥) =

∑︁
𝑖∈[𝑛]

√︁
1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22 − ln

[︂
1 +

√︁
1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22

]︂
We then approximately minimize 𝑓𝑡(𝑥) for increasing 𝑡. We let 𝑥𝑡

def
= argmin𝑥∈R𝑑 𝑓𝑡(𝑥) for 𝑥 ≥ 0, and

thinking of {𝑥𝑡 : 𝑡 ≥ 0} as a continuous curve known as the central path, we show how to approximately
follow this path. As lim𝑡→∞ 𝑥𝑡 = 𝑥* this approach yields a (1 + 𝜀)-approximation.

So far our analysis is standard and interior point theory yields an Ω(
√
𝑛) iteration interior point

scheme. To overcome this we take a more detailed look at 𝑥𝑡. We note that for any 𝑡 if there is
any rapid change in 𝑥𝑡 it must occur in the direction of the smallest eigenvector of ∇2𝑓𝑡(𝑥), denoted
𝑣𝑡, what we henceforth may refer to as the bad direction at 𝑥𝑡. Furthermore, we show that this bad
direction is stable in the sense that for all directions 𝑑 ⊥ 𝑣𝑡 it is the case that 𝑑⊤(𝑥𝑡 − 𝑥𝑡′) is small for
𝑡′ ≤ 𝑐𝑡 for a small constant 𝑐.

In fact, we show that this movement over such a long step, i.e. constant increase in 𝑡, in the
directions orthogonal to the bad direction is small enough that for any movement around a ball of this
size the Hessian of 𝑓𝑡 only changes by a small multiplicative constant. In short, starting at 𝑥𝑡 there
exists a point 𝑦 obtained just by moving from 𝑥𝑡 in the bad direction, such that 𝑦 is close enough to
𝑥𝑡′ that standard first order method will converge quickly to 𝑥𝑡′ ! Thus, we might hope to find such
a 𝑦, quickly converge to 𝑥𝑡′ and repeat. If we increase 𝑡 by a multiplicative constant in every such
iterations, standard interior point theory suggests that 𝑂(log 𝑛

𝜀 ) iterations suffices.

Building an Algorithm

To turn the structural result in the previous section into a fast algorithm there are several further
issues we need to address. We need to

3It is unclear how to extend our proof for the simpler function:
∑︀

𝑖∈[𝑛]

√︀
1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22.
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∙ (1) Show how to find the point along the bad direction that is close to 𝑥𝑡′

∙ (2) Show how to solve linear systems in the Hessian to actually converge quickly to 𝑥𝑡′

∙ (3) Show how to find the bad direction

∙ (4) Bound the accuracy required by these computations

Deferring (1) for the moment, our solution to the rest are relatively straightforward. Careful inspection
of the Hessian of 𝑓𝑡 reveals that it is well approximated by a multiple of the identity matrix minus a
rank 1 matrix. Consequently using explicit formulas for the inverse of of matrix under rank 1 updates,
i.e. the Sherman-Morrison formula, we can solve such systems in nearly linear time thereby addressing
(2). For (3), we show that the well known power method carefully applied to the Hessian yields the
bad direction if it exists. Finally, for (4) we show that a constant approximate geometric median is
near enough to the central path for 𝑡 = Θ( 1

𝑓(𝑥*)
) and that it suffices to compute a central path point

at 𝑡 = 𝑂( 𝑛
𝑓(𝑥*)𝜀

) to compute a 1 + 𝜀-geometric median. Moreover, for these values of 𝑡, the precision
needed in other operations is clear.

The more difficult operation is (1). Given 𝑥𝑡 and the bad direction exactly, it is still not clear
how to find the point along the bad direction line from 𝑥𝑡 that is close to 𝑥𝑡′ . Just performing binary
search on the objective function a priori might not yield such a point due to discrepancies between
a ball in Euclidean norm and a ball in hessian norm and the size of the distance from the optimal
point in euclidean norm. To overcome this issue we still line search on the bad direction, however
rather than simply using 𝑓(𝑥𝑡 +𝛼 · 𝑣𝑡) as the objective function to line search on, we use the function
𝑔(𝛼) = min‖𝑥−𝑥𝑡−𝛼·𝑣𝑡‖2≤𝑐 𝑓(𝑥) for some constant 𝑐, that is given an 𝛼 we move 𝛼 in the bad direction
and take the best objective function value in a ball around that point. For appropriate choice of 𝑐 the
minimizers of 𝛼 will include the optimal point we are looking for. Moreover, we can show that 𝑔 is
convex and that it suffices to perform the minimization approximately.

Putting these pieces together yields our result. We perform 𝑂(log 𝑛
𝜀 ) iterations of interior point

(i.e. increasing 𝑡), where in each iteration we spend 𝑂(𝑛𝑑 log 𝑛
𝜀 ) time to compute a high quality

approximation to the bad direction, and then we perform 𝑂(log 𝑛
𝜀 ) approximate evaluations on 𝑔(𝛼)

to binary search on the bad direction line, and then to approximately evaluate 𝑔 we perform gradient
descent in approximate Hessian norm to high precision which again takes 𝑂(𝑛𝑑 log 𝑛

𝜀 ) time. Altogether
this yields a 𝑂(𝑛𝑑 log3 𝑛𝜀 ) time algorithm to compute a 1+𝜀 geometric median. Here we made minimal
effort to improve the log factors and plan to investigate this further in future work.

7.1.3 Overview of 𝑂(𝑑𝜀−2) Time Algorithm

In addition to providing a nearly linear time algorithm we provide a stand alone result on quickly
computing a crude (1+𝜀)-approximate geometric median in Section 7.7. In particular, given an oracle
for sampling a random 𝑎(𝑖) we provide an 𝑂(𝑑𝜀−2), i.e. sublinear, time algorithm that computes such
an approximate median. Our algorithm for this result is fairly straightforward. First, we show that
random sampling can be used to obtain some constant approximate information about the optimal
point in constant time. In particular we show how this can be used to deduce an Euclidean ball which
contains the optimal point. Second, we perform stochastic subgradient descent within this ball to
achieve our desired result.

7.1.4 Organization

The rest of the chapter is structured as follows. After covering preliminaries in Section 2.3, in Sec-
tion 7.3 we provide various results about the central path that we use to derive our nearly linear time
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algorithm. In Section 7.4 we then provide our nearly linear time algorithm. All the proofs and sup-
porting lemmas for these sections are deferred to Section 7.5 and Section 7.6. In Section 7.7 we provide
our 𝑂(𝑑/𝜀2) algorithm, in Section 7.8 we provide the derivation of our penalized objective function, in
Section 7.9 we provide general technical machinery we use throughout, and in Section 7.10 we show
how to extend our results to Weber’s problem, i.e. weighted geometric median.

7.2 Preliminaries

7.2.1 General Notation

For a symmetric positive semidefinite matrix (PSD), 𝐴, we let 𝜆1(𝐴) ≥ ... ≥ 𝜆𝑛(𝐴) ≥ 0 denote the
eigenvalues of 𝐴 and let 𝑣1(𝐴), ..., 𝑣𝑛(𝐴) denote corresponding eigenvectors.

7.2.2 Problem Notation

The central problem of this chapter is as follows: we are given points 𝑎(1), ..., 𝑎(𝑛) ∈ R𝑑 and we wish
to compute a geometric median, i.e. 𝑥* ∈ argmin𝑥∈R𝑑 𝑓(𝑥) where 𝑓(𝑥) =

∑︀
𝑖∈[𝑛] ‖𝑎(𝑖) − 𝑥‖2. We call

a point 𝑥 ∈ R𝑑 an (1 + 𝜀)-approximate geometric median if 𝑓(𝑥) ≤ (1 + 𝜀)𝑓(𝑥*).

7.2.3 Penalized Objective Notation

To solve this problem we relax the objective function 𝑓 and instead consider the following family of
penalized objective functions parameterized by 𝑡 > 0

min
𝑥∈R𝑑

𝑓𝑡(𝑥) where 𝑓𝑡(𝑥) =
∑︁
𝑖∈[𝑛]

√︁
1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22 − ln

[︂
1 +

√︁
1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22

]︂
This penalized objective function is derived from a natural interior point formulation of the geometric
median problem (See Section 7.8). For all path parameters 𝑡 > 0, we let 𝑥𝑡

def
= argmin𝑥 𝑓𝑡(𝑥). Our

primary goal is to obtain good approximations to the central path {𝑥𝑡 : 𝑡 > 0} for increasing values
of 𝑡.

We let 𝑔(𝑖)𝑡 (𝑥)
def
=
√︁

1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22 and 𝑓
(𝑖)
𝑡 (𝑥)

def
= 𝑔

(𝑖)
𝑡 (𝑥)− ln(1+𝑔

(𝑖)
𝑡 (𝑥)) so 𝑓𝑡(𝑥) =

∑︀
𝑖∈[𝑛] 𝑓

(𝑖)
𝑡 (𝑥).

We refer to the quantity 𝑤𝑡(𝑥)
def
=
∑︀

𝑖∈[𝑛]
1

1+𝑔
(𝑖)
𝑡 (𝑥)

as weight as it is a natural measure of total contri-

bution of the 𝑎(𝑖) to ∇2𝑓𝑡(𝑥). We let

𝑔𝑡(𝑥)
def
= 𝑤𝑡(𝑥)

⎡⎣∑︁
𝑖∈[𝑛]

1

(1 + 𝑔
(𝑖)
𝑡 (𝑥𝑡))𝑔

(𝑖)
𝑡 (𝑥𝑡)

⎤⎦−1

denote a natural term that helps upper bound the rate of change of the central path. Furthermore,
we let 𝑢(𝑖)(𝑥) denote the unit vector corresonding to 𝑥− 𝑎(𝑖), i.e. 𝑢(𝑖)(𝑥) def

= 𝑥− 𝑎(𝑖)/‖𝑥− 𝑎(𝑖)‖2 when
‖𝑥 − 𝑎(𝑖)‖2 ̸= 0 and 𝑢(𝑖)(𝑥) def

= 0 otherwise. Finally we let 𝜇𝑡(𝑥)
def
= 𝜆𝑑(∇2𝑓𝑡(𝑥)), denote the minimum

eigenvalue of ∇2𝑓𝑡(𝑥), and let 𝑣𝑡(𝑥) denote a corresponding eigenvector. To simplify notation we often
drop the (𝑥) in these definitions when 𝑥 = 𝑥𝑡 and 𝑡 is clear from context.
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7.3 Properties of the Central Path

Here provide various facts regarding the penalized objective function and the central path. While
we use the lemmas in this section throughout the chapter, the main contribution of this section is
Lemma 7.3.5 in Section 7.3.3. There we prove that with the exception of a single direction, the
change in the central path is small over a constant multiplicative change in the path parameter. In
addition, we show that our penalized objective function is stable under changes in a 𝑂(1𝑡 ) Euclidean
ball (Section 7.3.1), we bound the change in the Hessian over the central path (Section 7.3.2). and we
relate 𝑓(𝑥𝑡) to 𝑓(𝑥*) (Section 7.3.4).

7.3.1 How Much Does the Hessian Change in General?

Here, we show that the Hessian of the penalized objective function is stable under changes in a 𝑂(1𝑡 )
sized Euclidean ball. This shows that if we have a point which is close to a central path point in
Euclidean norm, then we can use Newton method to find it.

Lemma 7.3.1. Suppose that ‖𝑥− 𝑦‖2 ≤ 𝜀
𝑡 with 𝜀 ≤

1
20 . Then, we have

(1− 6𝜀2/3)∇2𝑓𝑡(𝑥) ⪯ ∇2𝑓𝑡(𝑦) ⪯ (1 + 6𝜀2/3)∇2𝑓𝑡(𝑥).

7.3.2 How Much Does the Hessian Change Along the Path?

Here we bound how much the Hessian of the penalized objective function can change along the central
path. First we provide the following lemma bound several aspects of the penalized objective func-
tion and proving that the weight, 𝑤𝑡, only changes by a small amount multiplicatively given small
multiplicative changes in the path parameter, 𝑡.

Lemma 7.3.2. For all 𝑡 ≥ 0 and 𝑖 ∈ [𝑛] the following hold⃦⃦⃦⃦
𝑑

𝑑𝑡
𝑥𝑡

⃦⃦⃦⃦
2

≤ 1

𝑡2
𝑔𝑡(𝑥𝑡) ,

⃒⃒⃒⃒
𝑑

𝑑𝑡
𝑔
(𝑖)
𝑡 (𝑥𝑡)

⃒⃒⃒⃒
≤ 1

𝑡

(︁
𝑔
(𝑖)
𝑡 (𝑥𝑡) + 𝑔𝑡

)︁
, and

⃒⃒⃒⃒
𝑑

𝑑𝑡
𝑤𝑡

⃒⃒⃒⃒
≤ 2

𝑡
𝑤𝑡

Consequently, for all 𝑡′ ≥ 𝑡 we have that
(︀
𝑡
𝑡′

)︀2
𝑤𝑡 ≤ 𝑤𝑡′ ≤

(︁
𝑡′

𝑡

)︁2
𝑤𝑡.

Next we use this lemma to bound the change in the Hessian with respect to 𝑡.

Lemma 7.3.3. For all 𝑡 ≥ 0 we have

− 12 · 𝑡 · 𝑤𝑡𝐼 ⪯
𝑑

𝑑𝑡

[︀
∇2𝑓𝑡(𝑥𝑡)

]︀
⪯ 12 · 𝑡 · 𝑤𝑡𝐼 (7.3)

and therefore for all 𝛽 ∈ [0, 18 ]

∇2𝑓(𝑥𝑡)− 15𝛽𝑡2𝑤𝑡𝐼 ⪯ ∇2𝑓(𝑥𝑡(1+𝛽)) ⪯ ∇2𝑓(𝑥𝑡) + 15𝛽𝑡2𝑤𝑡𝐼 . (7.4)

7.3.3 Where is the Next Optimal Point?

Here we prove our main result of this section. We prove that over a long step the central path moves
very little in directions orthogonal to the smallest eigenvector of the Hessian. We begin by noting the
Hessian is approximately a scaled identity minus a rank 1 matrix.

Lemma 7.3.4. For all 𝑡 we have 1
2

[︀
𝑡2 · 𝑤𝑡𝐼 − (𝑡2 · 𝑤𝑡 − 𝜇𝑡)𝑣𝑡𝑣⊤𝑡

]︀
⪯ ∇2𝑓𝑡(𝑥𝑡) ⪯ 𝑡2 ·𝑤𝑡𝐼−(𝑡2 ·𝑤𝑡−𝜇𝑡)𝑣𝑡𝑣⊤𝑡

Using this and the lemmas of the previous section we bound the amount 𝑥𝑡 can move in every
direction far from 𝑣𝑡.
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Lemma 7.3.5 (The Central Path is Almost Straight). For all 𝑡 ≥ 0, 𝛽 ∈ [0, 1
600 ], and any unit vector 𝑦

with |⟨𝑦, 𝑣𝑡⟩| ≤ 1
𝑡2·𝜅 where 𝜅 = max𝛿∈[𝑡,(1+𝛽)𝑡]

𝑤𝛿
𝜇𝛿
, we have 𝑦⊤(𝑥(1+𝛽)𝑡 − 𝑥𝑡) ≤ 6𝛽

𝑡 .

7.3.4 Where is the End?

In this section, we bound the quality of the central path with respect to the geometric median objective.
In particular, we show that if we can solve the problem for some 𝑡 = 2𝑛

𝜀𝑓(𝑥*)
then we obtain an (1 + 𝜀)-

approximate solution. As our algorithm ultimately starts from an initial 𝑡 = 1/𝑂(𝑓(𝑥*)) and increases
𝑡 by a multiplicative constant in every iteration, this yields an 𝑂(log 𝑛

𝜀 ) iteration algorithm.

Lemma 7.3.6. 𝑓(𝑥𝑡)− 𝑓(𝑥*) ≤ 2𝑛
𝑡 for all 𝑡 > 0.

7.4 Overview of the Algorithm

Algorithm 13: AccurateMedian(𝜀)

Input: desired accuracy 𝜀 ∈ (0, 1)

// Compute a 2-approximate geometric median and use it to center

Compute 𝑥(0) := 1
𝑛

∑︀
𝑖∈[𝑛] 𝑎

(𝑖) and ̃︀𝑓* := 𝑓(𝑥(0)) // Note 𝑓* ≤ 2𝑓(𝑥*) by Lemma 7.5.6

Let 𝑡𝑖 = 1

400 ̃︀𝑓* (1 + 1
600)

𝑖−1, 𝜀* = 1
3𝜀, and 𝑡* =

2𝑛
𝜀·𝑓*

Let 𝜀𝑣 = 1
8(

𝜀*
7𝑛)

2 and let 𝜀𝑐 = ( 𝜀𝑣36)
3
2

𝑥(1) = LineSearch(𝑥(0), 𝑡1, 𝑡1, 0, 𝜀𝑐)

// Iteratively improve quality of approximation

Let 𝑘 = max𝑖∈Z 𝑡𝑖 ≤ 𝑡*
for 𝑖 ∈ [1, 𝑘] do

// Compute 𝜀𝑣-approximate minimum eigenvalue and eigenvector of ∇2𝑓𝑡𝑖(𝑥
(𝑖))

(𝜆(𝑖), 𝑢(𝑖)) = ApproxMinEig(𝑥(𝑖), 𝑡𝑖, 𝜀𝑣) .

// Line search to find 𝑥(𝑖+1) such that ‖𝑥(𝑖+1) − 𝑥𝑡𝑖+1‖2 ≤ 𝜀𝑐
𝑡𝑖+1

𝑥(𝑖+1) = LineSearch(𝑥(𝑖), 𝑡𝑖, 𝑡𝑖+1, 𝑢
(𝑖), 𝜀𝑐) w.

end

Output: 𝜀-approximate geometric median 𝑥(𝑘)

Here we show how to use the structural results from the previous section to obtain a nearly linear
time algorithm for computing the geometric median. Our algorithm follows a simple structure (See
Algorithm 13). First we use simply average the 𝑎(𝑖) to compute a (1+ 1

𝑛)-approximate median, denoted
𝑥(0). Then for a number of iterations we repeatedly move closer to 𝑥𝑡 for some path parameter
𝑡, compute the minimum eigenvector of the Hessian, and line search in that direction to find an
approximation to a point further along the central path. Ultimately, this yields a point 𝑥(𝑘) that is
precise enough approximation to a point along the central path with large enough 𝑡 that we can simply
out 𝑥(𝑘) as our (1 + 𝜀)-approximate geometric median.

We split the remainder of the algorithm specification and its analysis into several parts. First in
Section 7.4.1 we show how to compute an approximate minimum eigenvector and eigenvalue of the
Hessian of the penalized objective function. Then in Section 7.4.2 we show how to use this eigenvector
to line search for the next central path point. Finally, in Section 7.4.3 we put these results together
to obtain our nearly linear time algorithm. Throughout this section we will want an upper bound to
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𝑓(𝑥*) and a slight lower bound on 𝜀, the geometric median accuracy we are aiming for. We use an
easily computed 𝑓* ≤ 2𝑓(𝑥*) for the former and 𝜀* = 1

3𝜀 throughout the section.

7.4.1 Eigenvector Computation and Hessian Approximation

Here we show how to compute the minimum eigenvector of ∇2𝑓𝑡(𝑥) and thereby obtain a concise
approximation to ∇2𝑓𝑡(𝑥). Our main algorithmic tool is the well known power method and the fact
that it converges quickly on a matrix with a large eigenvalue gap. To improve our logarithmic terms
we need a slightly non-standard analysis of the method and therefore we provide and analyze this
method for completeness in Section 7.6.1. Using this tool we estimate the top eigenvector as follows.

Algorithm 14: ApproxMinEig(𝑥, 𝑡, 𝜀)

Input: Point 𝑥 ∈ R𝑑, path parameter 𝑡, and target accuracy 𝜀.

Let 𝐴 =
∑︀

𝑖∈[𝑛]
𝑡4(𝑥−𝑎(𝑖))(𝑥−𝑎(𝑖))⊤

(1+𝑔
(𝑖)
𝑡 (𝑥))2𝑔

(𝑖)
𝑡 (𝑥)

Let 𝑢 := PowerMethod(𝐴,Θ(log
(︀
𝑛
𝜀

)︀
))

Let 𝜆 = 𝑢⊤∇2𝑓𝑡(𝑥)𝑢
Output: (𝜆, 𝑢)

Lemma 7.4.1 (Computing Hessian Approximation). Let 𝑥 ∈ R𝑑, 𝑡 > 0, and 𝜀 ∈ (0, 14). The algo-
rithm ApproxMinEig(𝑥, 𝑡, 𝜀) outputs (𝜆, 𝑢) in 𝑂(𝑛𝑑 log 𝑛

𝜀 ) time such that if 𝜇𝑡(𝑥) ≤ 1
4 𝑡

2𝑤𝑡(𝑥) then

⟨𝑣𝑡(𝑥), 𝑢⟩2 ≥ 1− 𝜀 with high probability in 𝑛. Furthermore, if 𝜀 ≤ 𝜇𝑡(𝑥)
8𝑡2·𝑤𝑡(𝑥)

then 1
4𝑄 ⪯ ∇

2𝑓𝑡(𝑥) ⪯ 4𝑄

with high probability in 𝑛 where 𝑄 def
= 𝑡2 · 𝑤𝑡(𝑥)−

(︀
𝑡2 · 𝑤𝑡(𝑥)− 𝜆

)︀
𝑢𝑢⊤.

Furthermore, we show that the 𝑣(𝑖) computed by this algorithm is sufficiently close to the bad
direction. Combining 7.4.1 with the structural results from the previous section and Lemma 7.9.4,
a minor technical lemma regarding the transitivity of large inner products,we provide the following
lemma.

Lemma 7.4.2. Let 𝑢 = ApproxMinEig(𝑥, 𝑡, 𝜀𝑣) for 𝜀𝑣 < 1
8 and 𝑥 such that ‖𝑥−𝑥𝑡‖2 ≤

𝜀𝑐
𝑡 for 𝜀𝑐 ≤ ( 𝜀𝑣36)

3
2 .

𝜇𝑡 ≤ 1
4 𝑡

2 · 𝑤𝑡. For all unit vectors 𝑦 ⊥ 𝑢, we have ⟨𝑦, 𝑣𝑡⟩2 ≤ 8𝜀𝑣.

Note that this lemma assumes 𝜇𝑡 is small. When 𝜇𝑡 is large, we instead show that the next central
path point is close to the current point and hence we do not need to compute the bad direction to
center quickly.

Lemma 7.4.3. Suppose 𝜇𝑡 ≥ 1
4 𝑡

2 · 𝑤𝑡 and let 𝑡′ ∈ [𝑡, (1 + 1
600)𝑡] then ‖𝑥𝑡′ − 𝑥𝑡‖2 ≤

1
100𝑡 .

7.4.2 Line Searching

Here we show how to line search along the bad direction to find the next point on the central path.
Unfortunately, it is not clear if you can binary search on the objective function directly. If we search
over 𝛼 to minimize 𝑓𝑡𝑖+1(𝑦

(𝑖)+𝛼𝑣(𝑖)) directly it is unclear if we actually obtain a point close to 𝑥𝑡+1. It
might be the case that even after minimizing 𝛼 we would be unable to move towards 𝑥𝑡+1 efficiently.

To overcome this difficulty, we use the fact that over the region ‖𝑥 − 𝑦‖2 = 𝑂(1𝑡 ) the Hessian
changes by at most a constant and therefore we can minimize 𝑓𝑡(𝑥) over this region extremely quickly.
Therefore, we instead line search on the following function

𝑔𝑡,𝑦,𝑣(𝛼)
def
= min

‖𝑥−(𝑦+𝛼𝑣)‖2≤ 1
49𝑡

𝑓𝑡(𝑥) (7.5)
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and use that we can evaluate 𝑔𝑡,𝑦,𝑣(𝛼) approximately by using an appropriate centering procedure. We
can show (See Lemma 7.9.6) that 𝑔𝑡,𝑦,𝑣(𝛼) is convex and therefore we can minimize it efficiently just
by doing an appropriate binary search. By finding the approximately minimizing 𝛼 and outputting
the corresponding approximately minimizing 𝑥, we can obtain 𝑥(𝑖+1) that is close enough to 𝑥𝑡𝑖+1 . For
notational convenience, we simply write 𝑔(𝛼) if 𝑡, 𝑦, 𝑣 is clear from the context.

First, we show how we can locally center and provide error analysis for that algorithm.

Algorithm 15: LocalCenter(𝑦, 𝑡, 𝜀)

Input: Point 𝑦 ∈ R𝑑, path parameter 𝑡 > 0, target accuracy 𝜀 > 0.
Let (𝜆, 𝑣) := ApproxMinEig(𝑥, 𝑡, 𝜀).
Let 𝑄 = 𝑡2 · 𝑤𝑡(𝑦)𝐼 −

(︀
𝑡2 · 𝑤𝑡(𝑦)− 𝜆

)︀
𝑣𝑣⊤

Let 𝑥(0) = 𝑦
for 𝑖 = 1, ..., 𝑘 = 64 log 1

𝜀 do

Let 𝑥(𝑖) = min‖𝑥−𝑦‖2≤ 1
49𝑡
𝑓(𝑥(𝑖−1)) + ⟨∇𝑓𝑡(𝑥(𝑖−1)), 𝑥− 𝑥(𝑖−1)⟩+ 4‖𝑥− 𝑥(𝑖−1)‖2𝑄.

end

Output: 𝑥(𝑘)

Lemma 7.4.4. Given some 𝑦 ∈ R𝑑, 𝑡 > 0 and 𝜀 ∈ (0,min{14 ,
𝜇𝑡(𝑥)

8𝑡2·𝑤𝑡(𝑥)
}). In 𝑂(𝑛𝑑 log(𝑛𝜀 )) time

LocalCenter(𝑦, 𝑡, 𝜀) computes 𝑥(𝑘) such that with high probability in 𝑛/𝜀.

𝑓𝑡(𝑥
(𝑘))− min

‖𝑥−𝑦‖2≤ 1
49𝑡

𝑓𝑡(𝑥) ≤ 𝜀

(︃
𝑓𝑡(𝑦)− min

‖𝑥−𝑦‖2≤ 1
49𝑡

𝑓𝑡(𝑥)

)︃
.

Using this local centering algorithm as well as a general result for minimizing one dimensional
convex functions using a noisy oracle (See Section 7.9.3) we obtain our line search algorithm.

Algorithm 16: LineSearch(𝑦, 𝑡, 𝑡′, 𝑢, 𝜀)

Input: Point 𝑦 ∈ R𝑑, current path parameter 𝑡, next path parameter 𝑡′, bad direction 𝑢, target
accuracy 𝜀
Let 𝜀𝑂 = 𝜀2·𝜀2*

300𝑛 , ℓ = −6 ̃︀𝑓*, 𝑢 = 6 ̃︀𝑓*.
Define the oracle 𝑞 : R→ R by 𝑞(𝛼) = 𝑓𝑡′ (LocalCenter (𝑦 + 𝛼𝑢, 𝑡′, 𝜀𝑂))
Let 𝛼′ = OneDimMinimizer(ℓ, 𝑢, 𝜀𝑂, 𝑞, 𝑡𝑛)
Output: 𝑥′ = LocalCenter (𝑦 + 𝛼𝑢, 𝑡′, 𝜀𝑂)

Lemma 7.4.5. Let 1
400𝑓(𝑥*)

≤ 𝑡 ≤ 𝑡′ ≤ (1 + 1
600)𝑡 ≤

2𝑛
𝜀·𝑓*

and let 𝑢 = ApproxMinEig(𝑦, 𝑡, 𝜀𝑣) for 𝜀𝑣 ≤
1
8(

𝜀*
7𝑛)

2 and 𝑦 ∈ R𝑑 such that ‖𝑦 − 𝑥𝑡‖2 ≤ 1
𝑡 (
𝜀𝑣
36)

3
2 . In 𝑂(𝑛𝑑 log2( 𝑛

𝜀·𝜀·𝜀𝑣 )) time, LineSearch(𝑦, 𝑡, 𝑡′, 𝑢, 𝜀)
outputs 𝑥′ such that ‖𝑥′ − 𝑥𝑡′‖2 ≤ 𝜀

𝑡′ with high probability in 𝑛.

We also provide the following lemma useful for finding the first center.

Lemma 7.4.6. Let 1
400𝑓(𝑥*)

≤ 𝑡 ≤ 𝑡′ ≤ (1+ 1
600)𝑡 ≤

2𝑛
𝜀*·𝑓*

and let 𝑥 ∈ R𝑑 satisfy ‖𝑥− 𝑥𝑡‖2 ≤ 1
100𝑡 . Then,

in 𝑂(𝑛𝑑 log2( 𝑛
𝜀·𝜀* )) time, LineSearch(𝑥, 𝑡, 𝑡, 𝑢, 𝜀) output 𝑦 such that ‖𝑦 − 𝑥𝑡‖2 ≤ 𝜀

𝑡 for any vector
𝑢 ∈ R𝑑.

7.4.3 Putting It All Together

Combining the results of the previous sections to prove our main theorem.
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Theorem 7.4.1. In 𝑂(𝑛𝑑 log3(𝑛𝜀 )) time, Algorithm 13 outputs an (1 + 𝜀)-approximate geometric
median with constant probability.

7.5 Analysis of the Central Path

Here we provide proofs of the claims in Section 7.3 as well as additional technical lemmas we use
throughout the chapter.

7.5.1 Basic Facts

Here we provide basic facts regarding the central path that we will use throughout our analysis. First
we compute various derivatives of the penalized objective function.

Lemma 7.5.1 (Path Derivatives). We have

∇𝑓𝑡(𝑥) =
∑︁
𝑖∈[𝑛]

𝑡2(𝑥− 𝑎(𝑖))
1 + 𝑔

(𝑖)
𝑡 (𝑥)

, ∇2𝑓𝑡(𝑥) =
∑︁
𝑖∈[𝑛]

𝑡2

1 + 𝑔
(𝑖)
𝑡 (𝑥)

(︃
𝐼 − 𝑡2(𝑥− 𝑎(𝑖))(𝑥− 𝑎(𝑖))⊤

𝑔
(𝑖)
𝑡 (𝑥)(1 + 𝑔

(𝑖)
𝑡 (𝑥))

)︃
, and

𝑑

𝑑𝑡
𝑥𝑡 = −

(︀
∇2𝑓𝑡(𝑥𝑡)

)︀−1 ∑︁
𝑖∈[𝑛]

𝑡(𝑥𝑡 − 𝑎(𝑖))
(1 + 𝑔

(𝑖)
𝑡 (𝑥𝑡))𝑔

(𝑖)
𝑡 (𝑥𝑡)

Proof of Lemma 7.5.1. Direct calculation shows that

∇𝑓 (𝑖)𝑡 (𝑥) =
𝑡2(𝑥− 𝑎(𝑖))√︁

1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22
− 1

1 +
√︁

1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22

⎛⎝ 𝑡2(𝑥− 𝑎(𝑖))√︁
1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22

⎞⎠
=

𝑡2(𝑥− 𝑎(𝑖))

1 +
√︁

1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22
=
𝑡2(𝑥− 𝑎(𝑖))
1 + 𝑔

(𝑖)
𝑡 (𝑥)

and

∇2𝑓
(𝑖)
𝑡 (𝑥) =

𝑡2

1 +
√︁

1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22
𝐼 −

⎛⎝ 1

1 +
√︁
1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22

⎞⎠2

𝑡4(𝑥− 𝑎(𝑖))(𝑥− 𝑎(𝑖))⊤√︁
1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22

=
𝑡2

1 + 𝑔
(𝑖)
𝑡 (𝑥)

(︃
𝐼 − 𝑡2(𝑥− 𝑎(𝑖))(𝑥− 𝑎(𝑖))⊤

𝑔
(𝑖)
𝑡 (𝑥)(1 + 𝑔

(𝑖)
𝑡 (𝑥))

)︃
and (︂

𝑑

𝑑𝑡
∇𝑓 (𝑖)𝑡

)︂
(𝑥) =

2𝑡(𝑥− 𝑎(𝑖))

1 +
√︁
1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22

− 𝑡2 · (𝑥− 𝑎(𝑖)) · 𝑡‖𝑥− 𝑎(𝑖)‖22(︁
1 +

√︀
1 + 𝑡2‖𝑥− 𝑎(𝑖)‖

)︁2√︁
1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22

=
𝑡 · (𝑥− 𝑎(𝑖))
1 + 𝑔

(𝑖)
𝑡 (𝑥)

(︃
2− 𝑔

(𝑖)
𝑡 (𝑥)2 − 1

(1 + 𝑔
(𝑖)
𝑡 (𝑥))𝑔

(𝑖)
𝑡 (𝑥)

)︃

=
𝑡 · (𝑥− 𝑎(𝑖))
1 + 𝑔

(𝑖)
𝑡 (𝑥)

(︃
2𝑔

(𝑖)
𝑡 (𝑥)− (𝑔

(𝑖)
𝑡 (𝑥)− 1)

𝑔
(𝑖)
𝑡 (𝑥)

)︃
=
𝑡 · (𝑥− 𝑎(𝑖))
𝑔
(𝑖)
𝑡 (𝑥)
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Finally, by the optimality of 𝑥𝑡 we have that ∇𝑓𝑡(𝑥𝑡) = 0. Consequently,

∇2𝑓𝑡(𝑥𝑡)
𝑑

𝑑𝑡
𝑥𝑡 +

(︂
𝑑

𝑑𝑡
∇𝑓𝑡

)︂
(𝑥𝑡) = 0.

and solving for 𝑑
𝑑𝑡𝑥𝑡 then yields

𝑑

𝑑𝑡
𝑥𝑡 = −

(︀
∇2𝑓𝑡(𝑥𝑡)

)︀−1
(︂(︂

𝑑

𝑑𝑡
∇𝑓𝑡

)︂
(𝑥𝑡)

)︂
= −

(︀
∇2𝑓𝑡(𝑥𝑡)

)︀−1
(︂(︂

𝑑

𝑑𝑡
∇𝑓𝑡

)︂
(𝑥𝑡)−

1

𝑡
∇𝑓𝑡(𝑥𝑡)

)︂

= −
(︀
∇2𝑓𝑡(𝑥𝑡)

)︀−1

⎛⎝∑︁
𝑖∈[𝑛]

[︃
𝑡

𝑔
(𝑖)
𝑡

− 𝑡

1 + 𝑔
(𝑖)
𝑡

]︃
(𝑥𝑡 − 𝑎(𝑖))

⎞⎠ .

Next, in we provide simple facts regarding the Hessian of the penalized objective function.

Lemma 7.5.2. For all 𝑡 > 0 and 𝑥 ∈ R𝑑

∇2𝑓𝑡(𝑥) =
∑︁
𝑖∈[𝑛]

𝑡2

1 + 𝑔
(𝑖)
𝑡 (𝑥)

(︃
𝐼 −

(︃
1− 1

𝑔
(𝑖)
𝑡 (𝑥)

)︃
𝑢(𝑖)(𝑥)𝑢(𝑖)(𝑥)⊤

)︃
and therefore ∑︁

𝑖∈[𝑛]

𝑡2

(1 + 𝑔
(𝑖)
𝑡 (𝑥))𝑔

(𝑖)
𝑡 (𝑥)

𝐼 ⪯ ∇2𝑓𝑡(𝑥) ⪯
∑︁
𝑖∈[𝑛]

𝑡2

1 + 𝑔
(𝑖)
𝑡 (𝑥)

𝐼

Proof of Lemma 7.5.2. We have that

∇2𝑓𝑡(𝑥) =
∑︁
𝑖∈[𝑛]

𝑡2

1 + 𝑔
(𝑖)
𝑡 (𝑥)

(︃
𝐼 − 𝑡2(𝑥− 𝑎(𝑖))(𝑥− 𝑎(𝑖))⊤

𝑔
(𝑖)
𝑡 (𝑥)(1 + 𝑔

(𝑖)
𝑡 (𝑥))

)︃

=
∑︁
𝑖∈[𝑛]

𝑡2

1 + 𝑔
(𝑖)
𝑡 (𝑥)

(︃
𝐼 − 𝑡2‖𝑥− 𝑎(𝑖)‖22

(1 + 𝑔
(𝑖)
𝑡 (𝑥))𝑔

(𝑖)
𝑡 (𝑥)

𝑢(𝑖)(𝑥)𝑢(𝑖)(𝑥)⊤

)︃

=
∑︁
𝑖∈[𝑛]

𝑡2

1 + 𝑔
(𝑖)
𝑡 (𝑥)

(︁
𝐼 − 𝑢(𝑖)(𝑥)𝑢(𝑖)(𝑥)⊤

)︁
Since

𝑔
(𝑖)
𝑡 (𝑥)2 − 1

𝑔
(𝑖)
𝑡 (𝑥)(1 + 𝑔

(𝑖)
𝑡 (𝑥))

=
(𝑔

(𝑖)
𝑡 (𝑥) + 1)(𝑔

(𝑖)
𝑡 (𝑥)− 1)

(1 + 𝑔
(𝑖)
𝑡 (𝑥))𝑔

(𝑖)
𝑡 (𝑥)

= 1− 1

𝑔
(𝑖)
𝑡 (𝑥)

the result follows.

7.5.2 Stability of Hessian

Here we show that moving a point 𝑥 ∈ R𝑑 in ℓ2, does not change the Hessian, ∇2𝑓𝑡(𝑥), too much
spectrally. First we show that such changes do not change 𝑔(𝑖)𝑡 (𝑥) by too much (Lemma 7.5.3) and
then we use this to prove the claim, i.e. we prove Lemma 7.3.1.
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Lemma 7.5.3 (Stability of 𝑔). For all 𝑥, 𝑦 ∈ R𝑑 and 𝑡 > 0 , we have

𝑔
(𝑖)
𝑡 (𝑥)− 𝑡‖𝑥− 𝑦‖2 ≤ 𝑔(𝑖)𝑡 (𝑦) ≤ 𝑔(𝑖)𝑡 (𝑥) + 𝑡‖𝑥− 𝑦‖2

Proof of Lemma 7.5.3. Direct calculation reveals that

𝑔
(𝑖)
𝑡 (𝑦)2 = 1 + 𝑡2‖𝑥− 𝑎(𝑖) + 𝑦 − 𝑥‖22

= 1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22 + 2𝑡2(𝑥− 𝑎(𝑖))⊤(𝑦 − 𝑥) + 𝑡2‖𝑦 − 𝑥‖22
= 𝑔

(𝑖)
𝑡 (𝑥)2 + 2𝑡2(𝑥− 𝑎(𝑖))⊤(𝑦 − 𝑥) + 𝑡2‖𝑦 − 𝑥‖22 .

Consequently by Cauchy Schwarz

𝑔
(𝑖)
𝑡 (𝑦)2 ≤ 𝑔(𝑖)𝑡 (𝑥)2 + 2𝑡2‖𝑥− 𝑎(𝑖)‖2 · ‖𝑦 − 𝑥‖2 + 𝑡2‖𝑦 − 𝑥‖22 ≤

(︁
𝑔
(𝑖)
𝑡 (𝑥) + 𝑡‖𝑦 − 𝑥‖2

)︁2
and

𝑔
(𝑖)
𝑡 (𝑦)2 ≥ 𝑔(𝑖)𝑡 (𝑥)2 − 2𝑡2‖𝑥− 𝑎(𝑖)‖2 · ‖𝑦 − 𝑥‖2 + 𝑡2‖𝑦 − 𝑥‖22 ≥

(︁
𝑔
(𝑖)
𝑡 (𝑥)− 𝑡‖𝑦 − 𝑥‖2

)︁2
.

Lemma 7.3.1. Suppose that ‖𝑥− 𝑦‖2 ≤ 𝜀
𝑡 with 𝜀 ≤

1
20 . Then, we have

(1− 6𝜀2/3)∇2𝑓𝑡(𝑥) ⪯ ∇2𝑓𝑡(𝑦) ⪯ (1 + 6𝜀2/3)∇2𝑓𝑡(𝑥).

Proof of Lemma 7.3.1. Here we prove the following stronger statement, for all 𝑖 ∈ [𝑛]

(1− 6𝜀2/3)∇2𝑓
(𝑖)
𝑡 (𝑥) ⪯ ∇2𝑓

(𝑖)
𝑡 (𝑦) ⪯ (1 + 6𝜀2/3)∇2𝑓

(𝑖)
𝑡 (𝑥) .

Without loss of generality let 𝑦 − 𝑥 = 𝛼𝑣 + 𝛽𝑢(𝑖)(𝑥) for some 𝑣 ⊥ 𝑢(𝑖)(𝑥) with ‖𝑣‖2 = 1. Since
‖𝑥− 𝑦‖22 ≤ 𝜀2

𝑡2
, we know that 𝛼2, 𝛽2 ≤ 𝜀2

𝑡2
. Also, let �̄� = 𝑥+ 𝛽𝑢(𝑖)(𝑥), so that clearly, 𝑢(𝑖)(𝑥) = 𝑢(𝑖)(�̄�).

Now some manipulation reveals that for all unit vectors 𝑧 ∈ R𝑑 the following holds (so long as
𝑢(𝑖)(𝑥) ̸= 0 and 𝑢(𝑖)(𝑦) ̸= 0)

⃒⃒⃒⃒[︁
𝑢(𝑖)(𝑥)⊤𝑧

]︁2
−
[︁
𝑢(𝑖)(𝑦)𝑧

]︁2 ⃒⃒⃒⃒
=

⃒⃒⃒⃒[︁
𝑢(𝑖)(�̄�)⊤𝑧

]︁2
−
[︁
𝑢(𝑖)(𝑦)𝑧

]︁2 ⃒⃒⃒⃒

=

⃒⃒⃒⃒
⃒⃒
[︃
(�̄�− 𝑎(𝑖))⊤𝑧
‖�̄�− 𝑎(𝑖)‖2

]︃2
−

[︃
(𝑦 − 𝑎(𝑖))⊤𝑧
‖𝑦 − 𝑎(𝑖)‖2

]︃2 ⃒⃒⃒⃒⃒⃒
≤

⃒⃒⃒⃒
⃒⃒
[︃
(�̄�− 𝑎(𝑖))⊤𝑧
‖�̄�− 𝑎(𝑖)‖2

]︃2
−

[︃
(�̄�− 𝑎(𝑖))⊤𝑧
‖𝑦 − 𝑎(𝑖)‖2

]︃2 ⃒⃒⃒⃒⃒⃒+
⃒⃒⃒⃒
⃒⃒
[︃
(�̄�− 𝑎(𝑖))⊤𝑧
‖𝑦 − 𝑎(𝑖)‖2

]︃2
−

[︃
(𝑦 − 𝑎(𝑖))⊤𝑧
‖𝑦 − 𝑎(𝑖)‖2

]︃2 ⃒⃒⃒⃒⃒⃒
≤

⃒⃒⃒⃒
⃒1− ‖�̄�− 𝑎(𝑖)‖22‖𝑦 − 𝑎(𝑖)‖22

⃒⃒⃒⃒
⃒+

⃒⃒⃒[︀
(�̄�− 𝑎(𝑖) + 𝛼𝑣⊤𝑧

]︀2 − [︀(�̄�− 𝑎(𝑖))⊤𝑧]︀2 ⃒⃒⃒
‖𝑦 − 𝑎(𝑖)‖22

=
𝛼2 +

⃒⃒⃒
2
[︀
(�̄�− 𝑎(𝑖))⊤𝑧

]︀
·
[︀
𝛼𝑣⊤𝑧

]︀
+
[︀
𝛼𝑣⊤𝑧

]︀2 ⃒⃒⃒
‖�̄�− 𝑎(𝑖)‖22 + 𝛼2

𝑖

.



136 CHAPTER 7. GEOMETRIC MEDIAN IN NEARLY-LINEAR TIME

Where we used that 𝑦 = �̄�+𝛼𝑣 and ‖𝑦−𝑎(𝑖)‖22 = 𝛼2+‖�̄�−𝑎(𝑖)‖22 (since 𝑣 ⊥ (�̄�−𝑎(𝑖))). Now we know
that 𝛼2 ≤ 𝜀2

𝑡2
and and therefore, by Young’s inequality and Cauchy Schwarz we have that for all 𝛾 > 0⃒⃒⃒⃒[︁

𝑢(𝑖)(𝑥)⊤𝑧
]︁2
−
[︁
𝑢(𝑖)(𝑦)𝑧

]︁2 ⃒⃒⃒⃒
≤

2𝛼2 + 2
⃒⃒[︀
(�̄�− 𝑎(𝑖))⊤𝑧

]︀
·
[︀
𝛼𝑣⊤𝑧

]︀⃒⃒
‖�̄�− 𝑎(𝑖)‖22 + 𝛼2

≤
2𝛼2 + 𝛾

[︀
(�̄�− 𝑎(𝑖))⊤𝑧

]︀2
+ 𝛾−1𝛼2

[︀
𝑣⊤𝑧

]︀2
‖�̄�− 𝑎(𝑖)‖22 + 𝛼2

≤
𝛼2
(︁
2 + 𝛾−1

(︀
𝑣⊤𝑧

)︀2)︁
‖�̄�− 𝑎(𝑖)‖22 + 𝛼2

+ 𝛾
[︁
(𝑢(𝑖)(𝑥))⊤𝑧

]︁2
≤ 𝜀2

𝑡2‖�̄�− 𝑎(𝑖)‖22 + 𝜀2

(︂
2 +

1

𝛾

(︁
𝑣⊤𝑧

)︁2)︂
+ 𝛾

[︁
(𝑢(𝑖)(𝑥))⊤𝑧

]︁2
. (7.6)

Note that

𝑡2‖�̄�− 𝑎(𝑖)‖22 = 𝑡2
(︁
‖𝑥− 𝑎(𝑖)‖22 + 2𝛽(𝑥− 𝑎(𝑖))⊤𝑢(𝑖)(𝑥) + 𝛽2

)︁
=
(︁
𝑡‖𝑥− 𝑎(𝑖)‖2 + 𝑡𝛽

)︁2
≥
(︁
max

{︁
𝑡‖𝑥− 𝑎(𝑖)‖2 − 𝜀, 0

}︁)︁2
.

Consequently, if 𝑡‖𝑥 − 𝑎(𝑖)‖2 ≥ 2𝜀1/3
√︁
𝑔
(𝑖)
𝑡 (𝑥) then since 𝜀 ≤ 1

20 we have that ‖𝑥 − 𝑎(𝑖)‖2 ≥ 2𝜀 and

‖𝑦 − 𝑎(𝑖)‖ ≥ 𝜀, justifying our assumption that 𝑢(𝑖)(𝑥) ̸= 0 and 𝑢(𝑖)(𝑦) ̸= 0. Furthermore, this implies
that 𝑡2‖�̄�− 𝑎(𝑖)‖22 ≥ 2𝜀2/3𝑔

(𝑖)
𝑡 (𝑥) and therefore letting 𝛾 = 𝜀2/3

𝑔
(𝑖)
𝑡 (𝑥)

yields

⃒⃒⃒⃒[︁
𝑢
(𝑖)
𝑡 (𝑥)⊤𝑧

]︁2
−
[︁
𝑢
(𝑖)
𝑡 (𝑦)𝑧

]︁2 ⃒⃒⃒⃒
≤ 𝜀4/3

2𝑔
(𝑖)
𝑡 (𝑥)

(︃
2 +

𝑔
(𝑖)
𝑡 (𝑥)

𝜀2/3

[︁
𝑣⊤𝑧

]︁2)︃
+

𝜀2/3

𝑔
(𝑖)
𝑡 (𝑥)

[︁
(𝑢(𝑖)(𝑥))⊤𝑧

]︁2
≤ 2𝜀2/3

[︁
𝑣⊤𝑧

]︁2
+

𝜀2/3

𝑔
(𝑖)
𝑡 (𝑥)

[︁
(𝑢(𝑖)(𝑥))⊤𝑧

]︁2
≤ 2𝜀2/3

(︃
1 + 𝑔

(𝑖)
𝑡 (𝑥)

𝑡2

)︃
‖𝑧‖2

∇2𝑓
(𝑖)
𝑡 (𝑥)

and therefore if we let

𝐻
def
=

𝑡2

1 + 𝑔
(𝑖)
𝑡 (𝑥)

(︃
𝐼 −

(︃
1− 1

𝑔
(𝑖)
𝑡 (𝑥)

)︃
𝑢(𝑖)(𝑦)(𝑢(𝑖)(𝑦))⊤

)︃
,

we see that for unit vectors 𝑧,⃒⃒⃒
𝑧⊤
(︁
𝐻 −∇2𝑓

(𝑖)
𝑡 (𝑥)

)︁
𝑧
⃒⃒⃒
≤ 2𝜀2/3‖𝑧‖2

∇2𝑓
(𝑖)
𝑡 (𝑥)

Otherwise, 𝑡‖𝑥− 𝑎(𝑖)‖2 < 2𝜀1/3
√︁
𝑔
(𝑖)
𝑡 (𝑥) and therefore

𝑔
(𝑖)
𝑡 (𝑥)2 = 1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22 ≤ 1 + 4𝜀2/3𝑔

(𝑖)
𝑡 (𝑥)

Therefore, we have

𝑔
(𝑖)
𝑡 (𝑥) ≤ 4𝜀2/3 +

√︀
(4𝜀2/3)2 + 4

2
≤ 1 + 4𝜀2/3 .
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Therefore independent of (7.6) and the assumption that 𝑢(𝑖)(𝑥) ̸= 0 and 𝑢(𝑖)(𝑦) ̸= 0 we have

1

1 + 4𝜀2/3
𝐻 ⪯ 𝑡2

(1 + 𝑔
(𝑖)
𝑡 (𝑥))𝑔

(𝑖)
𝑡 (𝑥)

𝐼 ⪯ ∇2𝑓
(𝑖)
𝑡 (𝑥) ⪯ 𝑡2

(1 + 𝑔
(𝑖)
𝑡 (𝑥))

𝐼 ⪯
(︁
1 + 4𝜀2/3

)︁
𝐻 .

In either case, we have that ⃒⃒⃒
𝑧⊤
(︁
𝐻 −∇2𝑓

(𝑖)
𝑡 (𝑥)

)︁
𝑧
⃒⃒⃒
≤ 4𝜀2/3‖𝑧‖2

∇2𝑓
(𝑖)
𝑡 (𝑥)

.

Now, we note that ‖𝑥− 𝑦‖2 ≤ 𝜀
𝑡 ≤ 𝜀 ·

𝑔
(𝑖)
𝑡 (𝑥)
𝑡 . Therefore, by Lemma 7.5.3 we have that

(1− 𝜀)𝑔(𝑖)𝑡 (𝑥) ≤ 𝑔(𝑖)𝑡 (𝑦) ≤ (1 + 𝜀)𝑔
(𝑖)
𝑡 (𝑥)

Therefore, we have

1− 4𝜀2/3

(1 + 𝜀)2
∇2𝑓

(𝑖)
𝑡 (𝑥) ⪯ 1

(1 + 𝜀)2
𝐻 ⪯ ∇2𝑓

(𝑖)
𝑡 (𝑦) ⪯ 1

(1− 𝜀)2
𝐻 ⪯ 1 + 4𝜀2/3

(1− 𝜀)2
∇2𝑓

(𝑖)
𝑡 (𝑥)

Since 𝜀 < 1
20 , the result follows.

Consequently, so long as we have a point within a 𝑂(1𝑡 ) sized Euclidean ball of some 𝑥𝑡 Newton’s
method (or an appropriately transformed first order method) within the ball will converge quickly.

7.5.3 How Much Does the Hessian Change Along the Path?

Lemma 7.3.2. For all 𝑡 ≥ 0 and 𝑖 ∈ [𝑛] the following hold⃦⃦⃦⃦
𝑑

𝑑𝑡
𝑥𝑡

⃦⃦⃦⃦
2

≤ 1

𝑡2
𝑔𝑡(𝑥𝑡) ,

⃒⃒⃒⃒
𝑑

𝑑𝑡
𝑔
(𝑖)
𝑡 (𝑥𝑡)

⃒⃒⃒⃒
≤ 1

𝑡

(︁
𝑔
(𝑖)
𝑡 (𝑥𝑡) + 𝑔𝑡

)︁
, and

⃒⃒⃒⃒
𝑑

𝑑𝑡
𝑤𝑡

⃒⃒⃒⃒
≤ 2

𝑡
𝑤𝑡

Consequently, for all 𝑡′ ≥ 𝑡 we have that
(︀
𝑡
𝑡′

)︀2
𝑤𝑡 ≤ 𝑤𝑡′ ≤

(︁
𝑡′

𝑡

)︁2
𝑤𝑡.

Proof of Lemma 7.3.2. From Lemma 7.5.1 we know that

𝑑

𝑑𝑡
𝑥𝑡 = −

(︀
∇2𝑓𝑡(𝑥𝑡)

)︀−1 ∑︁
𝑖∈[𝑛]

𝑡(𝑥𝑡 − 𝑎(𝑖))
(1 + 𝑔

(𝑖)
𝑡 (𝑥𝑡))𝑔

(𝑖)
𝑡 (𝑥𝑡)

and by Lemma 7.5.2 we know that

∇2𝑓𝑡(𝑥𝑡) ⪰
∑︁
𝑖∈[𝑛]

𝑡2

(1 + 𝑔
(𝑖)
𝑡 (𝑥𝑡))𝑔

(𝑖)
𝑡 (𝑥𝑡)

𝐼 =
𝑡2

𝑔𝑡(𝑥𝑡)

∑︁
𝑖∈[𝑛]

1

1 + 𝑔
(𝑖)
𝑡 (𝑥𝑡)

𝐼 .

Using this fact and the fact that 𝑡‖𝑥𝑡 − 𝑎(𝑖)‖2 ≤ 𝑔(𝑖)𝑡 we have⃦⃦⃦⃦
𝑑

𝑑𝑡
𝑥𝑡

⃦⃦⃦⃦
2

=

⃦⃦⃦⃦
−
(︀
∇2𝑓𝑡(𝑥𝑡)

)︀−1 𝑑

𝑑𝑡
∇𝑓𝑡(𝑥𝑡)

⃦⃦⃦⃦
2

≤

⎛⎝ 𝑡2

𝑔𝑡(𝑥𝑡)

∑︁
𝑖∈[𝑛]

1

1 + 𝑔
(𝑖)
𝑡 (𝑥𝑡)

⎞⎠−1 ∑︁
𝑖∈[𝑛]

⃦⃦⃦⃦
⃦ 𝑡(𝑥𝑡 − 𝑎(𝑖))
𝑔
(𝑖)
𝑡 (𝑥𝑡)(1 + 𝑔

(𝑖)
𝑡 (𝑥𝑡))

⃦⃦⃦⃦
⃦
2

≤ 𝑔𝑡(𝑥𝑡)

𝑡2
.
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Next, we have

𝑑

𝑑𝑡
𝑔
(𝑖)
𝑡 (𝑥𝑡) =

𝑑

𝑑𝑡

(︁
1 + 𝑡2‖𝑥𝑡 − 𝑎(𝑖)‖22

)︁ 1
2

=
1

2
· 𝑔(𝑖)𝑡 (𝑥𝑡)

−1

(︂
2𝑡‖𝑥𝑡 − 𝑎(𝑖)‖22 + 2𝑡2(𝑥𝑡 − 𝑎(𝑖))⊤

𝑑

𝑑𝑡
𝑥𝑡

)︂
which by Cauchy Schwarz and that 𝑡‖𝑥𝑡 − 𝑎(𝑖)‖2 ≤ 𝑔(𝑖)𝑡 (𝑥𝑡) yields the second equation. Furthermore,

⃒⃒⃒⃒
𝑑

𝑑𝑡
𝑤𝑡

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒ 𝑑𝑑𝑡 ∑︁

𝑖∈[𝑛]

1

1 + 𝑔
(𝑖)
𝑡 (𝑥𝑡)

⃒⃒⃒⃒
⃒⃒ ≤∑︁

𝑖∈[𝑛]

⃒⃒⃒⃒
⃒ 𝑑𝑑𝑡 1

1 + 𝑔
(𝑖)
𝑡 (𝑥𝑡)

⃒⃒⃒⃒
⃒ = ∑︁

𝑖∈[𝑛]

⃒⃒⃒⃒
1

(1 + 𝑔𝑡(𝑥𝑡))2
𝑑

𝑑𝑡
𝑔𝑡(𝑥𝑡)

⃒⃒⃒⃒

≤ 1

𝑡

∑︁
𝑖∈[𝑛]

𝑔
(𝑖)
𝑡 (𝑥𝑡) + 𝑔𝑡

(1 + 𝑔
(𝑖)
𝑡 (𝑥𝑡))𝑔

(𝑖)
𝑡 (𝑥𝑡)

≤ 2
𝑤𝑡
𝑡

which yields the third equation.

Finally, using our earlier results and Jensen’s inequality yields that

|ln𝑤𝑡′ − ln𝑤𝑡| =

⃒⃒⃒⃒
⃒
ˆ 𝑡′

𝑡

𝑑
𝑑𝛼𝑤𝛼

𝑤𝛼
𝑑𝛼

⃒⃒⃒⃒
⃒ ≤
ˆ 𝑡′

𝑡

(︀
2𝑤𝛼
𝛼

)︀
𝑤𝛼

𝑑𝛼 = 2

ˆ 𝑡′

𝑡

1

𝛼
𝑑𝛼 = ln

(︂
𝑡′

𝑡

)︂2

.

Exponentiating the above inequality yields the final inequality.

Lemma 7.3.3. For all 𝑡 ≥ 0 we have

− 12 · 𝑡 · 𝑤𝑡𝐼 ⪯
𝑑

𝑑𝑡

[︀
∇2𝑓𝑡(𝑥𝑡)

]︀
⪯ 12 · 𝑡 · 𝑤𝑡𝐼 (7.3)

and therefore for all 𝛽 ∈ [0, 18 ]

∇2𝑓(𝑥𝑡)− 15𝛽𝑡2𝑤𝑡𝐼 ⪯ ∇2𝑓(𝑥𝑡(1+𝛽)) ⪯ ∇2𝑓(𝑥𝑡) + 15𝛽𝑡2𝑤𝑡𝐼 . (7.4)

Proof of Lemma 7.3.3. Let

𝐴
(𝑖)
𝑡

def
=
𝑡2(𝑥𝑡 − 𝑎(𝑖))(𝑥𝑡 − 𝑎(𝑖))⊤

(1 + 𝑔
(𝑖)
𝑡 )𝑔

(𝑖)
𝑡

and recall that ∇2𝑓𝑡(𝑥𝑡) =
∑︀

𝑖∈[𝑛]
𝑡2

1+𝑔
(𝑖)
𝑡

(︁
𝐼 −𝐴(𝑖)

𝑡

)︁
. Consequently

𝑑

𝑑𝑡
∇2𝑓𝑡(𝑥𝑡) =

𝑑

𝑑𝑡

⎛⎝∑︁
𝑖∈[𝑛]

𝑡2

1 + 𝑔
(𝑖)
𝑡

(︁
𝐼 −𝐴(𝑖)

𝑡

)︁⎞⎠
= 2𝑡

(︂
1

𝑡2

)︂
∇2𝑓𝑡(𝑥𝑡) + 𝑡2

∑︁
𝑖∈[𝑛]

− 𝑑
𝑑𝑡𝑔

(𝑖)
𝑡

(1 + 𝑔
(𝑖)
𝑡 )2

(︁
𝐼 −𝐴(𝑖)

𝑡

)︁
−
∑︁
𝑖∈[𝑛]

𝑡2

1 + 𝑔
(𝑖)
𝑡

𝑑

𝑑𝑡
𝐴

(𝑖)
𝑡

Now, since 0 ⪯ 𝐴(𝑖)
𝑡 ⪯ 𝐼 we have 0 ⪯ ∇2𝑓𝑡(𝑥𝑡) ⪯ 𝑡2𝑤𝑡𝐼. For all unit vectors 𝑣, using Lemma 7.3.2
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yields

⃒⃒⃒⃒
𝑣⊤
(︂
𝑑

𝑑𝑡
∇2𝑓𝑡(𝑥𝑡)

)︂
𝑣

⃒⃒⃒⃒
≤ 2𝑡 · 𝑤𝑡 · ‖𝑣‖22 + 𝑡2

∑︁
𝑖∈[𝑛]

⃒⃒⃒
𝑑
𝑑𝑡𝑔

(𝑖)
𝑡

⃒⃒⃒
(1 + 𝑔

(𝑖)
𝑡 )2
‖𝑣‖22 +

∑︁
𝑖∈[𝑛]

𝑡2

1 + 𝑔
(𝑖)
𝑡

⃒⃒⃒⃒
𝑣⊤
(︂
𝑑

𝑑𝑡
𝐴

(𝑖)
𝑡

)︂
𝑣

⃒⃒⃒⃒

≤ 4𝑡 · 𝑤𝑡 +
∑︁
𝑖∈[𝑛]

𝑡2

1 + 𝑔
(𝑖)
𝑡

⃒⃒⃒⃒
𝑣⊤
(︂
𝑑

𝑑𝑡
𝐴

(𝑖)
𝑡

)︂
𝑣

⃒⃒⃒⃒
.

Next

𝑑

𝑑𝑡
𝐴

(𝑖)
𝑡 = 2𝑡

(︂
1

𝑡2

)︂
𝐴

(𝑖)
𝑡 −

(︃
𝑡

(1 + 𝑔
(𝑖)
𝑡 )𝑔

(𝑖)
𝑡

)︃2 [︂
(1 + 𝑔

(𝑖)
𝑡 )

𝑑

𝑑𝑡
𝑔
(𝑖)
𝑡 + 𝑔

(𝑖)
𝑡

𝑑

𝑑𝑡
𝑔
(𝑖)
𝑡

]︂
(𝑥𝑡 − 𝑎(𝑖))(𝑥𝑡 − 𝑎(𝑖))⊤

+
𝑡2

(1 + 𝑔
(𝑖)
𝑡 )𝑔

(𝑖)
𝑡

[︃
(𝑥𝑡 − 𝑎(𝑖))

(︂
𝑑

𝑑𝑡
𝑥𝑡

)︂⊤
+

(︂
𝑑

𝑑𝑡
𝑥𝑡

)︂
(𝑥𝑡 − 𝑎(𝑖))⊤

]︃
,

and therefore by Lemma 7.3.2 and the that 𝑡‖𝑥𝑡 − 𝑎(𝑖)‖2 ≤ 𝑔(𝑖)𝑡 we have

⃒⃒⃒⃒
𝑣⊤
(︂
𝑑

𝑑𝑡
𝐴

(𝑖)
𝑡

)︂
𝑣

⃒⃒⃒⃒
≤

⎛⎝2

𝑡
+

2𝑡2
⃒⃒⃒
𝑑
𝑑𝑡𝑔

(𝑖)
𝑡

⃒⃒⃒
(1 + 𝑔

(𝑖)
𝑡 )(𝑔

(𝑖)
𝑡 )2
‖𝑥𝑡 − 𝑎(𝑖)‖22 +

2𝑡2‖𝑥𝑡 − 𝑎(𝑖)‖2‖ 𝑑𝑑𝑡𝑥𝑡‖2
(1 + 𝑔

(𝑖)
𝑡 )𝑔

(𝑖)
𝑡

⎞⎠ ‖𝑣‖22
≤ 2

𝑡
+

2

𝑡
· 𝑔

(𝑖)
𝑡 + 𝑔𝑡

1 + 𝑔
(𝑖)
𝑡

+
2

𝑡
· 𝑔𝑡

1 + 𝑔
(𝑖)
𝑡

≤ 4

𝑡
+

4

𝑡

𝑔𝑡

1 + 𝑔
(𝑖)
𝑡

.

Consequently, we have⃒⃒⃒⃒
𝑣⊤
(︂
𝑑

𝑑𝑡
∇2𝑓𝑡(𝑥𝑡)

)︂
𝑣

⃒⃒⃒⃒
≤ 8𝑡 · 𝑤𝑡 + 4𝑡

∑︁
𝑖∈[𝑛]

𝑔𝑡

(1 + 𝑔
(𝑖)
𝑡 )2

≤ 12𝑡 · 𝑤𝑡

which completes the proof of (7.3). To prove (7.4), let 𝑣 be any unit vector and note that

⃒⃒⃒
𝑣⊤
(︀
∇2𝑓𝑡(1+𝛽)(𝑥)−∇2𝑓𝑡(𝑥)

)︀
𝑣
⃒⃒⃒
=

⃒⃒⃒⃒
⃒
ˆ 𝑡(1+𝛽)

𝑡
𝑣⊤

𝑑

𝑑𝑡

[︀
∇2𝑓𝛼(𝑥𝛼)

]︀
𝑣 · 𝑑𝛼

⃒⃒⃒⃒
⃒ ≤ 12

ˆ 𝑡(1+𝛽)

𝑡
𝛼 · 𝑤𝛼𝑑𝛼

≤ 12

ˆ 𝑡(1+𝛽)

𝑡
𝛼
(︁𝛼
𝑡

)︁2
𝑤𝑡𝑑𝛼 ≤

12

𝑡2

(︂
1

4
[𝑡(1 + 𝛽)]4 − 1

4
𝑡4
)︂
𝑤𝑡

= 3𝑡2
[︀
(1 + 𝛽)4 − 1

]︀
𝑤𝑡 ≤ 15𝑡2𝛽𝑤𝑡

where we used Lemma 7.3.3 and 0 ≤ 𝛽 ≤ 1
8 at the last line.

7.5.4 Where is the next Optimal Point?

Lemma 7.5.4. For all 𝑡 we have 1
2

[︀
𝑡2 · 𝑤𝑡𝐼 − (𝑡2 · 𝑤𝑡 − 𝜇𝑡)𝑣𝑡𝑣⊤𝑡

]︀
⪯ ∇2𝑓𝑡(𝑥𝑡) ⪯ 𝑡2 ·𝑤𝑡𝐼−(𝑡2 ·𝑤𝑡−𝜇𝑡)𝑣𝑡𝑣⊤𝑡

Proof of Lemma 7.5.4. This follows immediately from Lemma 7.5.2, regarding the hessian of the pe-
nalized objective function, and Lemma 7.9.1, regarding the sum of PSD matrices expressed as the
identity matrix minus a rank 1 matrix.

Lemma 7.3.5 (The Central Path is Almost Straight). For all 𝑡 ≥ 0, 𝛽 ∈ [0, 1
600 ], and any unit vector 𝑦

with |⟨𝑦, 𝑣𝑡⟩| ≤ 1
𝑡2·𝜅 where 𝜅 = max𝛿∈[𝑡,(1+𝛽)𝑡]

𝑤𝛿
𝜇𝛿
, we have 𝑦⊤(𝑥(1+𝛽)𝑡 − 𝑥𝑡) ≤ 6𝛽

𝑡 .
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Proof of Lemma 7.3.5. Clearly

𝑦⊤(𝑥(1+𝛽)𝑡 − 𝑥𝑡) =
ˆ (1+𝛽)𝑡

𝑡
𝑦⊤

𝑑

𝑑𝛼
𝑥𝛼𝑑𝛼 ≤

ˆ (1+𝛽)𝑡

𝛽

⃒⃒⃒⃒
𝑦⊤

𝑑

𝑑𝛼
𝑥𝛼

⃒⃒⃒⃒
𝑑𝛼

≤
ˆ (1+𝛽)𝑡

𝑡

⃒⃒⃒⃒
⃒⃒𝑦⊤ (︀∇2𝑓𝛼(𝑥𝛼)

)︀−1 ∑︁
𝑖∈[𝑛]

𝛼

(1 + 𝑔
(𝑖)
𝛼 )𝑔

(𝑖)
𝛼

(𝑥𝛼 − 𝑎(𝑖))

⃒⃒⃒⃒
⃒⃒ 𝑑𝛼

≤
ˆ (1+𝛽)𝑡

𝑡
‖
(︀
∇2𝑓𝛼(𝑥𝛼)

)︀−1
𝑦‖2 · ‖

∑︁
𝑖∈[𝑛]

𝛼

(1 + 𝑔
(𝑖)
𝛼 )𝑔

(𝑖)
𝛼

(𝑥𝛼 − 𝑎(𝑖))‖2𝑑𝛼

Now since clearly 𝛼‖𝑥𝛼 − 𝑎(𝑖)‖2 ≤ 𝑔(𝑖)𝛼 , invoking Lemma 7.3.2 yields that⃦⃦⃦⃦
⃦⃦∑︁
𝑖∈[𝑛]

𝛼(𝑥𝛼 − 𝑎(𝑖))
(1 + 𝑔

(𝑖)
𝛼 )𝑔

(𝑖)
𝛼

⃦⃦⃦⃦
⃦⃦
2

≤
∑︁
𝑖∈[𝑛]

1

1 + 𝑔
(𝑖)
𝛼

= 𝑤𝛼 ≤
(︁𝛼
𝑡

)︁2
𝑤𝑡 .

Now by invoking Lemma 7.3.3 and the Lemma 7.5.4, we have that

∇2𝑓𝛼(𝑥𝛼) ⪰ ∇2𝑓𝑡(𝑥𝑡)− 15𝛽𝑡2𝑤𝑡𝐼 ⪰
1

2

[︁
𝑡2 · 𝑤𝑡𝐼 − (𝑡2 · 𝑤𝑡 − 𝜇𝑡)𝑣𝑡𝑣⊤𝑡

]︁
− 15𝛽𝑡2𝑤𝑡𝐼.

For notational convenience let 𝐻𝑡
def
= ∇2𝑓𝑡(𝑥𝑡) for all 𝑡 > 0. Then Lemma 7.3.3 shows that 𝐻𝛼 =

𝐻𝑡 +Δ𝛼 where ‖Δ𝛼‖2 ≤ 15𝛽𝑡2𝑤𝑡. Using 𝐻2
𝛼 =𝐻2

𝑡 +Δ𝛼𝐻𝑡 +𝐻𝑡Δ𝛼 +Δ2
𝛼, we have

‖𝐻2
𝛼 −𝐻2

𝑡 ‖2 ≤ ‖Δ𝛼𝐻𝑡‖2 + ‖𝐻𝑡Δ𝛼‖2 + ‖Δ2
𝛼‖2

≤ 2‖Δ‖2‖𝐻𝑡‖2 + ‖Δ‖22 ≤ 40𝛽𝑡4𝑤2
𝑡 .

Let 𝑆 be the subspace orthogonal to 𝑣𝑡. Then, Lemma 7.5.4 shows that 𝐻𝑡 ⪰ 1
2 𝑡

2𝑤𝑡𝐼 on 𝑆 and hence
𝐻2

𝑡 ⪰ 1
4 𝑡

4𝑤2
𝑡 𝐼 on 𝑆.4 Since ‖𝐻2

𝛼 −𝐻2
𝑡 ‖2 ≤ 40𝛽𝑡4𝑤2

𝑡 , we have that

𝐻2
𝛼 ⪰

1

4
𝑡4𝑤2

𝑡 − 40𝛽𝑡4𝑤2
𝑡 𝐼 on 𝑆

and hence

𝐻−2
𝛼 ⪯

(︂
1

4
𝑡4𝑤2

𝑡 − 40𝛽𝑡4𝑤2
𝑡

)︂−1

𝐼 on 𝑆.

Therefore, for any 𝑧 ∈ 𝑆, we have⃦⃦⃦(︀
∇2𝑓𝛼(𝑥𝛼)

)︀−1
𝑧
⃦⃦⃦
2
=
⃦⃦
𝐻−1

𝛼 𝑧
⃦⃦
2
≤ ‖𝑧‖2√︁

1
4 𝑡

4𝑤2
𝑡 − 40𝛽𝑡4𝑤2

𝑡

.

Now, we split 𝑦 = 𝑧 + ⟨𝑦, 𝑣𝑡⟩𝑣𝑡 where 𝑧 ∈ 𝑆. Then, we have that⃦⃦⃦(︀
∇2𝑓𝛼(𝑥𝛼)

)︀−1
𝑦
⃦⃦⃦
2
≤
⃦⃦⃦(︀
∇2𝑓𝛼(𝑥𝛼)

)︀−1
𝑧
⃦⃦⃦
2
+ |⟨𝑦, 𝑣𝑡⟩|

⃦⃦⃦(︀
∇2𝑓𝛼(𝑥𝛼)

)︀−1
𝑣𝑡

⃦⃦⃦
2

≤ 1√︁
1
4 𝑡

4𝑤2
𝑡 − 40𝛽𝑡4𝑤2

𝑡

+
1

𝑡2 · 𝜅

⃦⃦⃦(︀
∇2𝑓𝛼(𝑥𝛼)

)︀−1
𝑣𝑡

⃦⃦⃦
2
.

Note that, we also know that 𝜆min(∇2𝑓𝛼(𝑥𝛼)) ≥ 𝜇𝛼 and hence 𝜆max(∇2𝑓𝛼(𝑥𝛼)
−2) ≤ 𝜇−2

𝛼 . Therefore,

4By 𝐴 ⪯ 𝐵 on 𝑆 we mean that for all 𝑥 ∈ 𝑆 we have 𝑥⊤𝐴𝑥 ≤ 𝑥⊤𝐵𝑥. The meaning of 𝐴 ⪰ 𝐵 on 𝑆 is analagous.



7.5. Analysis of the Central Path 141

we have

⃦⃦⃦(︀
∇2𝑓𝛼(𝑥𝛼)

)︀−1
𝑦
⃦⃦⃦
2
≤ 1

𝑡2𝑤𝑡

√︁
1
4 − 40𝛽

+
1

𝑡2
𝜇𝛼
𝑤𝛼

1

𝜇𝛼
≤ 1

𝑡2𝑤𝑡

⎛⎝2 +
1√︁

1
4 − 40𝛽

⎞⎠ ≤ 5

𝑡2𝑤𝑡
.

Combining these and using that 𝛽 ∈ [0, 1/600] yields that

𝑦⊤(𝑥(1+𝛽)𝑡 − 𝑥𝑡) ≤
ˆ (1+𝛽)𝑡

𝑡

5

𝑡2𝑤𝑡

(︁𝛼
𝑡

)︁2
𝑤𝑡𝑑𝛼 ≤

5

𝑡4

(︂
1

3
(1 + 𝛽)3𝑡3 − 1

3
𝑡3
)︂

≤ 5

3𝑡

[︀
(1 + 𝛽)3 − 1

]︀
≤ 6𝛽

𝑡
.

7.5.5 Where is the End?

Lemma 7.3.6. 𝑓(𝑥𝑡)− 𝑓(𝑥*) ≤ 2𝑛
𝑡 for all 𝑡 > 0.

Proof of Lemma 7.3.6. Clearly, ∇𝑓𝑡(𝑥𝑡) = 0 by definition of 𝑥𝑡. Consequently 1
𝑡∇𝑓𝑡(𝑥𝑡)

⊤(𝑥𝑡−𝑥*) = 0
and using Lemma 7.5.1 to give the formula for ∇𝑓𝑡(𝑥𝑡) yields

0 =
∑︁
𝑖∈[𝑛]

𝑡(𝑥𝑡 − 𝑎(𝑖))⊤(𝑥𝑡 − 𝑥*)
1 + 𝑔

(𝑖)
𝑡 (𝑥)

=
∑︁
𝑖∈[𝑛]

𝑡‖𝑥𝑡 − 𝑎(𝑖)‖22 + 𝑡(𝑥𝑡 − 𝑎(𝑖))⊤(𝑎(𝑖) − 𝑥*)
1 + 𝑔

(𝑖)
𝑡 (𝑥𝑡)

.

Therefore, by Cauchy Schwarz and the fact that 𝑡‖𝑥𝑡 − 𝑎(𝑖)‖2 ≤ 𝑔(𝑖)𝑡 (𝑥𝑡) ≤ 1 + 𝑔
(𝑖)
𝑡∑︁

𝑖∈[𝑛]

𝑡‖𝑥𝑡 − 𝑎(𝑖)‖22
1 + 𝑔

(𝑖)
𝑡 (𝑥𝑡)

≤
∑︁
𝑖∈[𝑛]

𝑡‖𝑥𝑡 − 𝑎(𝑖)‖2‖𝑎(𝑖) − 𝑥*‖2
1 + 𝑔

(𝑖)
𝑡 (𝑥𝑡)

≤ 𝑓(𝑥*) .

Furthermore, since 1 + 𝑔
(𝑖)
𝑡 (𝑥𝑡) ≤ 2 + 𝑡‖𝑥𝑡 − 𝑎(𝑖)‖2 we have∑︁

𝑖∈[𝑛]

𝑡‖𝑥𝑡 − 𝑎(𝑖)‖22
1 + 𝑔

(𝑖)
𝑡 (𝑥𝑡)

≥
∑︁
𝑖∈[𝑛]

‖𝑥𝑡 − 𝑎(𝑖)‖2 −
∑︁
𝑖∈[𝑛]

2‖𝑥𝑡 − 𝑎(𝑖)‖2
1 + 𝑔

(𝑖)
𝑡 (𝑥𝑡)

≥ 𝑓(𝑥𝑡)−
2𝑛

𝑡
.

Combining yields the result.

7.5.6 Simple Lemmas

Here we provide various small technical Lemmas that we will use to bound the accuracy with which
we need to carry out various operations in our algorithm. Here we use some notation from Section 7.4
to simplify our bounds and make them more readily applied.

Lemma 7.5.5. For any 𝑥, we have that ‖𝑥− 𝑥𝑡‖2 ≤ 𝑓(𝑥).

Proof of Lemma 7.5.5. Since
∑︀

𝑖∈[𝑛] ‖𝑥− 𝑎(𝑖)‖2 = 𝑓(𝑥), we have that ‖𝑥− 𝑎(𝑖)‖2 ≤ 𝑓(𝑥) for all 𝑖 ∈ [𝑛].

Since ∇𝑓(𝑥𝑡) = 0 by Lemma 7.5.1 we see that 𝑥𝑡 is a convex combination of the 𝑎(𝑖) and therefore
‖𝑥− 𝑥𝑡‖2 ≤ 𝑓(𝑥) by convexity.

Lemma 7.5.6. 𝑥(0) = 1
𝑛

∑︀
𝑖∈[𝑛] 𝑎

(𝑖) is a 2-approximate geometric median, i.e. 𝑓* ≤ 2 · 𝑓(𝑥*).
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Proof. For all 𝑥 ∈ R𝑑 we have

‖𝑥(0) − 𝑥‖2 =

⃦⃦⃦⃦
⃦⃦ 1𝑛 ∑︁

𝑖∈[𝑛]

𝑎(𝑖) − 1

𝑛

∑︁
𝑖∈[𝑛]

𝑥

⃦⃦⃦⃦
⃦⃦
2

≤ 1

𝑛

∑︁
𝑖∈[𝑛]

‖𝑎(𝑖) − 𝑥‖2 ≤
𝑓(𝑥)

𝑛
.

Consequently,

𝑓(𝑥(0)) ≤
∑︁
𝑖∈[𝑛]

‖𝑥(0) − 𝑎(𝑖)‖2 ≤
∑︁
𝑖∈[𝑛]

(︁
‖𝑥(0) − 𝑥*‖2 + ‖𝑥* − 𝑎(𝑖)‖2

)︁
≤ 2 · 𝑓(𝑥*)

Lemma 7.5.7. For all 𝑡 ≥ 0, we have

1 ≤ 𝑡2 · 𝑤𝑡(𝑥)
𝜇𝑡(𝑥)

≤ 𝑔𝑡(𝑥) ≤ max
𝑖∈[𝑛]

𝑔
(𝑖)
𝑡 (𝑥) ≤ 1 + 𝑡 · 𝑓(𝑥) .

In particular, if ‖𝑥− 𝑥𝑡‖2 ≤ 1
𝑡 + 𝛼 and 𝑡 ≤ 2𝑛

𝜀*·𝑓*
then 𝑔(𝑖)𝑡 (𝑥) ≤ 6𝑛𝜀−1

* + 𝑡 · 𝛼.

Proof of Lemma 7.5.7. The first claim 1 ≤ 𝑡2·𝑤𝑡(𝑥)
𝜇𝑡(𝑥)

≤ 𝑔𝑡(𝑥), follows from 𝜇𝑡(𝑥) ≥
∑︀

𝑖∈[𝑛]
𝑡2

𝑔
(𝑖)
𝑡 (𝑥)(1+𝑔

(𝑖)
𝑡 (𝑥))

and the fact that the largest eigenvalue of ∇2𝑓𝑡(𝑥) is at most 𝑡2 · 𝑤𝑡(𝑥). The second follows from the
fact that 𝑔𝑡(𝑥) is a weighted harmonic mean of 𝑔(𝑖)𝑡 (𝑥) and therefore

𝑔𝑡(𝑥) ≤ max
𝑖∈[𝑛]

𝑔
(𝑖)
𝑡 (𝑥) ≤ 1 + 𝑡 ·max

𝑖∈[𝑛]
‖𝑥− 𝑎(𝑖)‖2 ≤ 1 + 𝑡 · 𝑓(𝑥) .

The final inequality comes from the fact that ‖𝑥−𝑎(𝑖)‖2 ≤ ‖𝑥−𝑥𝑡‖2+‖𝑥𝑡−𝑎(𝑖)‖2 ≤ ‖𝑥−𝑥𝑡‖2+ 𝑓(𝑥𝑡)
and the fact that 𝑓(𝑥𝑡) ≤ 𝑓(𝑥*) + 2𝑛

𝑡 by Lemma 7.3.6.

Lemma 7.5.8. For all 𝑥 ∈ R𝑑 and 𝑡 > 0 such that ‖𝑥− 𝑥𝑡‖2 ≤ 1
𝑡 + 𝛼 and 𝑡 ≤ 2𝑛

𝜀*𝑓*
we have

𝑛

(︂
𝑡

7𝑛𝜀−1
* + 𝑡 · 𝛼

)︂2

‖𝑥− 𝑥𝑡‖22 ≤ 𝑓𝑡(𝑥)− 𝑓𝑡(𝑥𝑡) ≤
𝑛𝑡2

2
‖𝑥− 𝑥𝑡‖22

Proof of Lemma 7.5.8. For the first inequality, note that ∇2𝑓𝑡(𝑥) ⪯
∑︀

𝑖∈[𝑛]
𝑡2

1+𝑔
(𝑖)
𝑡 (𝑥)

𝐼 ⪯ 𝑛 · 𝑡2𝐼. Con-

sequently, if we let 𝑛 · 𝑡2𝐼 =𝐻 in Lemma 7.9.5, we have that

𝑓𝑡(𝑥)− 𝑓𝑡(𝑥𝑡) ≤
1

2
‖𝑥− 𝑥𝑡‖2𝐻 ≤

𝑛𝑡2

2
‖𝑥− 𝑥𝑡‖22 .

For the second inequality, note that Lemma 7.5.2 and Lemma 7.5.7 yields that

∇2𝑓𝑡(𝑥) ⪰
∑︁
𝑖∈[𝑛]

𝑡2

(1 + 𝑔
(𝑖)
𝑡 (𝑥))𝑔

(𝑖)
𝑡 (𝑥)

𝐼 ⪰ 𝑛
(︂

𝑡

7𝑛𝜀−1 + 𝑡 · 𝛼

)︂2

𝐼 .

Consequently, if we let 𝑆 denote the set of all 𝑥 ∈ R𝑛 with ‖𝑥 − 𝑥𝑡‖2 ≤ 1
𝑡 + 𝛼 then we see that

𝑆 is convex and contains the minimizer of 𝑓𝑡 and therefore by applying 7.9.5 again yields the lower
bound.
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7.6 Analysis of the Algorithm

Here we provide proofs, algorithms, and technical lemmas from Section 7.4.

7.6.1 Eigenvector Computation and Hessian Approximation

Below we prove that the power method can be used to compute an 𝜀-approximate top eigenvector of
a symmetric PSD matrix 𝐴 ∈ R𝑑×𝑑 with a non-zero eigenvalue gap 𝑔 = 𝜆1(𝐴)−𝜆2(𝐴)

𝜆1(𝐴) . While it is well

know that this can be by applying 𝐴 to a random initial vector 𝑂(𝛼𝑔 log(
𝑑
𝜀 )) times in the following

theorem we provide a slightly less known refinement that the dimension 𝑑 can be replaced with the
stable rank of 𝐴, 𝑠 =

∑︀
𝑖∈[𝑑]

𝜆𝑖(𝐴)
𝜆1(𝐴) . We use this fact to avoid a dependence on 𝑑 in our logarithmic

factors.

Algorithm 17: PowerMethod(𝐴, 𝑘)

Input: symmetric PSD matrix 𝐴 ∈ R𝑑×𝑑 and a number of iterations 𝑘 ≥ 1.
Let 𝑥 ∼ 𝒩 (0, 1) be drawn from a 𝑑 dimensional normal distribution.
Let 𝑦 = 𝐴𝑘𝑧
Output: 𝑢 = 𝑦/‖𝑦‖2

Lemma 7.6.1 (Power Method). Let 𝐴 ∈ R𝑑×𝑑 be a symmetric PSD matrix , let 𝑔 def
= 𝜆1(𝐴)−𝜆2(𝐴)

𝜆1(𝐴) ,

𝑠 =
∑︀

𝑖∈𝑑
𝜆𝑖
𝜆1
, and let 𝜀 > 0 and 𝑘 ≥ 𝛼

𝑔 log(
𝑛
𝜀 ) for large enough constant 𝛼. In time 𝑂(nnz(𝐴) · log(𝑛𝜀 )),

the algorithm PowerMethod(𝐴, 𝑘) outputs a vector 𝑢 such that ⟨𝑣1(𝐴), 𝑢⟩2 ≥ 1 − 𝜀 and 𝑢⊤𝐴𝑢 ≥
(1− 𝜀)𝜆1(𝐴)with high probability in 𝑛/𝜀.

Proof. We write 𝑢 =
∑︀

𝑖∈[𝑑] 𝛼𝑖𝑣𝑖(𝐴). Then, we have

⟨𝑣1(𝐴), 𝑢⟩2 =

⟨
𝑣1(𝐴),

∑︀
𝑖∈[𝑑] 𝛼𝑖𝜆𝑖(𝐴)𝑘𝑣𝑖(𝐴)√︁∑︀

𝑖∈[𝑑] 𝛼
2
𝑖𝜆𝑖(𝐴)2𝑘

⟩2

=
𝛼2
1

𝛼2
1 +

∑︀
𝑗 ̸=1 𝛼

2
𝑗

(︁
𝜆𝑗(𝐴)
𝜆1(𝐴)

)︁2𝑘 ≥ 1−
∑︁
𝑗 ̸=1

𝛼2
𝑗

𝛼2
1

(︂
𝜆𝑗(𝐴)

𝜆1(𝐴)

)︂2𝑘

Re arranging terms we have

1− ⟨𝑣1(𝐴), 𝑢⟩2 ≤
∑︁
𝑗 ̸=1

𝛼2
𝑗

𝛼2
1

(︂
𝜆𝑗(𝐴)

𝜆1(𝐴)

)︂(︂
𝜆𝑗(𝐴)

𝜆1(𝐴)

)︂2𝑘−1

≤
∑︁
𝑗 ̸=1

𝛼2
𝑗

𝛼2
1

(︂
𝜆𝑗(𝐴)

𝜆1(𝐴)

)︂(︂
𝜆2(𝐴)

𝜆1(𝐴)

)︂2𝑘−1

=
∑︁
𝑗 ̸=1,

𝛼2
𝑗

𝛼2
1

·
(︂
𝜆𝑗(𝐴)

𝜆1(𝐴)

)︂
· (1− 𝑔)2𝑘−1 ≤

∑︁
𝑗 ̸=1

𝛼2
𝑗

𝛼2
1

·
(︂
𝜆𝑗(𝐴)

𝜆1(𝐴)

)︂
· exp(−(2𝑘 − 1)𝑔)

where we used that 𝜆2
𝜆1

= 1− 𝑔 ≤ 𝑒−𝑔.
Now with high probability in 𝑛 we have that 𝛼2

1 ≥ 1
𝑂(poly(𝑛/𝜀)) by known properties of the chi-

squared distribution. All that remains is to upper bound
∑︀

𝑗 ̸=1 𝛼
2
𝑗 ·
(︁
𝜆𝑗(𝐴)
𝜆1(𝐴)

)︁
. To bound this consider

ℎ(𝛼)
def
=
√︁∑︀

𝑗 ̸=1 𝛼
2
𝑗 (𝜆𝑗(𝐴)/𝜆1(𝐴)). Note that

‖∇ℎ(𝛼)‖2 =

⃦⃦⃦⃦
⃦⃦⃦⃦∑︀𝑗 ̸=1 1⃗𝑗 · 𝛼𝑗

(︁
𝜆𝑗(𝐴)
𝜆1(𝐴

)︁
√︂∑︀

𝑗 ̸=1 𝛼
2
𝑗

(︁
𝜆𝑗(𝐴)
𝜆1(𝐴)

)︁
⃦⃦⃦⃦
⃦⃦⃦⃦
2

=

⎯⎸⎸⎸⎸⎷
∑︀

𝑗 ̸=1 𝛼
2
𝑗

(︁
𝜆𝑗(𝐴)
𝜆1(𝐴)

)︁2
∑︀

𝑗 ̸=1 𝛼
2
𝑗

(︁
𝜆𝑗(𝐴)
𝜆1(𝐴)

)︁ ≤ 1 .
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where 1⃗𝑗 is the indicator vector for coordinate 𝑗. Consequently ℎ is 1-Lipschitz and by Gaussian
concentration for Lipschitz functions we know there are absolute constants 𝐶 and 𝑐 such that

Pr [ℎ(𝛼) ≥ Eℎ(𝛼) + 𝜆] ≤ 𝐶 exp(−𝑐𝜆2) .
By the concavity of square root and the expected value of the chi-squared distribution we have

Eℎ(𝛼) ≤

⎯⎸⎸⎷E
∑︁
𝑗 ̸=𝑖

𝛼2
𝑗 ·
(︂
𝜆𝑗(𝐴)

𝜆1(𝐴)

)︂
=

⎯⎸⎸⎷∑︁
𝑗 ̸=𝑖

(︂
𝜆𝑗(𝐴)

𝜆1(𝐴)

)︂
≤
√
𝑠 .

Consequently, since 𝑠 ≥ 1 we have that Pr[ℎ(𝛼) ≥ (1 +
√
𝑡)2 · 𝑠] ≤ 𝐶 exp(−𝑐 · 𝑡) for 𝑡 ≥ 1 and that∑︀

𝑗 ̸=1 𝛼𝑗 ·
(︁
𝜆𝑗(𝐴)
𝜆1(𝐴)

)︁
= 𝑂(poly(𝑛/𝜀) · 𝑠) with high probability in 𝑛/𝜀. Since 𝑘 = Ω(1𝑔 log(

𝑛𝑠
𝜀 )), we have

⟨𝑣1(𝐴), 𝑢⟩2 ≥ 1− 𝜀 with high probability in 𝑛. Furthermore, this implies that

𝑢⊤𝐴𝑢 = 𝑢⊤

⎛⎝∑︁
𝑖∈[𝑑]

𝜆𝑖(𝐴)𝑣𝑖(𝐴)𝑣𝑖(𝐴)⊤

⎞⎠𝑢 ≥ 𝜆1(𝐴)⟨𝑣1(𝐴), 𝑢⟩2 ≥ (1− 𝜀)𝜆1(𝐴) .

Lemma 7.4.1 (Computing Hessian Approximation). Let 𝑥 ∈ R𝑑, 𝑡 > 0, and 𝜀 ∈ (0, 14). The algo-
rithm ApproxMinEig(𝑥, 𝑡, 𝜀) outputs (𝜆, 𝑢) in 𝑂(𝑛𝑑 log 𝑛

𝜀 ) time such that if 𝜇𝑡(𝑥) ≤ 1
4 𝑡

2𝑤𝑡(𝑥) then

⟨𝑣𝑡(𝑥), 𝑢⟩2 ≥ 1− 𝜀 with high probability in 𝑛. Furthermore, if 𝜀 ≤ 𝜇𝑡(𝑥)
8𝑡2·𝑤𝑡(𝑥)

then 1
4𝑄 ⪯ ∇

2𝑓𝑡(𝑥) ⪯ 4𝑄

with high probability in 𝑛 where 𝑄 def
= 𝑡2 · 𝑤𝑡(𝑥)−

(︀
𝑡2 · 𝑤𝑡(𝑥)− 𝜆

)︀
𝑢𝑢⊤.

Proof of Lemma 7.4.1. By Lemma 7.5.4 we know that 1
2𝑍 ⪯ ∇

2𝑓𝑡(𝑥) ⪯ 𝑍 where

𝑍 = 𝑡2 · 𝑤𝑡(𝑥)−
(︀
𝑡2 · 𝑤𝑡(𝑥)− 𝜇𝑡(𝑥)

)︀
𝑣𝑡(𝑥)𝑣𝑡(𝑥)

⊤.

Consequently, if 𝜇𝑡(𝑥) ≤ 1
4 𝑡

2𝑤𝑡(𝑥), then for all unit vectors 𝑤 ⊥ 𝑣𝑡(𝑥), we have that

𝑤⊤∇2𝑓𝑡(𝑥)𝑤 ≥
1

2
𝑤⊤𝑍𝑤 ≥ 1

2
𝑡2𝑤𝑡(𝑥).

Since ∇2𝑓𝑡(𝑥) = 𝑡2 · 𝑤𝑡(𝑥) −𝐴, for 𝐴 in the definition of ApproxMinEig (Algorithm 14) this implies
that 𝑣𝑡(𝑥)⊤𝐴𝑣𝑡(𝑥) ≥ 3

4 𝑡
2 · 𝑤𝑡(𝑥) and 𝑤⊤𝐴𝑤 ≤ 1

2 𝑡
2𝑤𝑡(𝑥). Furthermore, we see that

∑︁
𝑖∈[𝑑]

𝜆𝑖(𝐴) = Tr(𝐴) =
∑︁
𝑖∈[𝑛]

𝑡4‖𝑥− 𝑎(𝑖)‖22
(1 + 𝑔

(𝑖)
𝑡 (𝑥))2𝑔

(𝑖)
𝑡 (𝑥)

≤ 𝑡2 · 𝑤𝑡(𝑥)

Therefore, in this case,𝐴 has a constant multiplicative gap between its top two eigenvectors stable rank
at most a constant (i.e. 𝑔 = 𝑂(1) and 𝑠 = 𝑂(1) in Theorem 7.6.1). Consequently, by Theorem 7.6.1
we have ⟨𝑣𝑡(𝑥), 𝑢⟩2 ≥ 1− 𝜀.

For the second claim, we note that

𝑡2 · 𝑤𝑡(𝑥)− 𝜇𝑡(𝑥) ≥ 𝑢⊤𝐴𝑢 ≥ (1− 𝜀)𝜆1(𝐴) = (1− 𝜀)(𝑡2 · 𝑤𝑡(𝑥)− 𝜇𝑡(𝑥))
Therefore, since 𝜆 = 𝑢⊤∇2𝑓𝑡(𝑥)𝑢 = 𝑡2 · 𝑤𝑡(𝑥)− 𝑢⊤𝐴𝑢, we have

(1− 𝜀)𝜇𝑡(𝑥)− 𝜀 · 𝑡2𝑤𝑡(𝑥) ≤ 𝜆 ≤ 𝜇𝑡(𝑥). (7.7)



7.6. Analysis of the Algorithm 145

On the other hand, by Lemma 7.9.2, we have that

√
𝜀𝐼 ⪯ 𝑣𝑡(𝑥)𝑣𝑡(𝑥)⊤ − 𝑢𝑢⊤ ⪯

√
𝜀𝐼. (7.8)

Combining (7.7) and (7.8), we have 1
2𝑍 ⪯ 𝑄 ⪯ 2𝑍 if 𝜀 ≤ 𝜇𝑡(𝑥)

8𝑡2·𝑤𝑡(𝑥)
and 1

4𝑄 ⪯ ∇
2𝑓𝑡(𝑥) ⪯ 4𝑄 follows.

On the other hand, when 𝜇𝑡(𝑥) > 1
4 𝑡

2𝑤𝑡(𝑥). t is the case that 1
4 𝑡

2 ·𝑤𝑡(𝑥)𝐼 ⪯ ∇2𝑓𝑡(𝑥) ⪯ 𝑡2 ·𝑤𝑡(𝑥)𝐼 and
1
4 𝑡

2 · 𝑤𝑡(𝑥)𝐼 ⪯ 𝑄 ⪯ 𝑡2 · 𝑤𝑡(𝑥)𝐼 again yielding 1
4𝑄 ⪯ ∇

2𝑓𝑡(𝑥) ⪯ 4𝑄.

Lemma 7.4.2. Let 𝑢 = ApproxMinEig(𝑥, 𝑡, 𝜀𝑣) for 𝜀𝑣 < 1
8 and 𝑥 such that ‖𝑥−𝑥𝑡‖2 ≤

𝜀𝑐
𝑡 for 𝜀𝑐 ≤ ( 𝜀𝑣36)

3
2 .

𝜇𝑡 ≤ 1
4 𝑡

2 · 𝑤𝑡. For all unit vectors 𝑦 ⊥ 𝑢, we have ⟨𝑦, 𝑣𝑡⟩2 ≤ 8𝜀𝑣.

Proof of Lemma 7.4.2. By Lemma 7.4.1 we know that ⟨𝑣𝑡(𝑥), 𝑢⟩2 ≥ 1−𝜀𝑣. Since clearly ‖𝑥−𝑥𝑡‖2 ≤ 1
20𝑡 ,

by assumption, Lemma 7.3.1 swhows

(1− 6𝜀2/3𝑐 )∇2𝑓𝑡(𝑥𝑡) ⪯ ∇2𝑓𝑡(𝑥) ⪯ (1 + 6𝜀2/3𝑐 )∇2𝑓𝑡(𝑥𝑡).

Furthermore, since 𝜇𝑡 ≤ 1
4 𝑡

2 ·𝑤𝑡, as in Lemma 7.4.1 we know that the largest eigenvalue of 𝐴 defined
in ApproxMinEig(𝑥, 𝑡, 𝜀) is at least 3

4 𝑡
2 · 𝑤𝑡 while the second largest eigenvalue is at most 1

2 𝑡
2 · 𝑤𝑡.

Consequently, the eigenvalue gap, 𝑔, defined in Lemma 7.9.3 is at least 1
3 and this lemma shows that

⟨𝑣𝑡(𝑥), 𝑣𝑡⟩2 ≥ 1− 36𝜀
2/3
𝑐 ≥ 1− 𝜀𝑣. Consequently, by Lemma 7.9.4, we have that ⟨𝑢, 𝑣𝑡⟩2 ≥ 1− 4𝜀𝑣.

To prove the final claim, we write 𝑢 = 𝛼𝑣𝑡 + 𝛽𝑤 for an unit vector 𝑤 ⊥ 𝑣𝑡. Since 𝑦 ⊥ 𝑢, we have
that 0 = 𝛼⟨𝑣𝑡, 𝑦⟩ + 𝛽⟨𝑤, 𝑦⟩. Then, either ⟨𝑣𝑡, 𝑦⟩ = 0 and the result follows or 𝛼2⟨𝑣𝑡, 𝑦⟩2 = 𝛽2⟨𝑤, 𝑦⟩2
and since 𝛼2 + 𝛽2 = 1, we have

⟨𝑣𝑡, 𝑦⟩2 ≤
𝛽2⟨𝑤, 𝑦⟩2

𝛼2
≤ 1− 𝛼2

𝛼2
≤ 2(1− 𝛼2) ≤ 8𝜀𝑣

where in the last line we used that 𝛼2 ≥ 1− 4𝜀𝑣 >
1
2 since 𝜀𝑣 ≤ 1

8 .

Lemma 7.4.3. Suppose 𝜇𝑡 ≥ 1
4 𝑡

2 · 𝑤𝑡 and let 𝑡′ ∈ [𝑡, (1 + 1
600)𝑡] then ‖𝑥𝑡′ − 𝑥𝑡‖2 ≤

1
100𝑡 .

Proof of Lemma 7.4.3. Note that 𝑡′ = (1 + 𝛽)𝑡 where 𝛽 ∈ [0, 1
600 ]. Since 1

4 𝑡
2 · 𝑤𝑡𝐼 ⪯ 𝜇𝑡𝐼 ⪯ ∇2𝑓(𝑥𝑡)

applying Lemma 7.3.3 then yields that for all 𝑠 ∈ [𝑡, 𝑡′]

∇2𝑓(𝑥𝑠) ⪰ ∇2𝑓(𝑥𝑡)− 15𝛽𝑡2𝑤𝑡𝐼 ⪰
(︂
1

4
− 15𝛽

)︂
𝑡2 · 𝑤𝑡𝐼 ⪰

𝑡2 · 𝑤𝑡
6

𝐼 .

Consequently, by Lemma 7.5.1, the fact that 𝑡‖𝑥𝑡 − 𝑎(𝑖)‖2 ≤ 𝑔(𝑖)𝑡 , and Lemma 7.3.2 we have

‖𝑥𝑡′ − 𝑥𝑡‖2 ≤
ˆ 𝑡′

𝑡

⃦⃦⃦⃦
𝑑

𝑑𝑠
𝑥𝑠

⃦⃦⃦⃦
2

𝑑𝑠 =

ˆ 𝑡′

𝑡

⃦⃦⃦⃦
⃦⃦(︀∇2𝑓𝑠(𝑥𝑠)

)︀−1 ∑︁
𝑖∈[𝑛]

𝑠

(1 + 𝑔
(𝑖)
𝑠 )𝑔

(𝑖)
𝑠

(𝑥𝑠 − 𝑎(𝑖))

⃦⃦⃦⃦
⃦⃦
2

𝑑𝑠

≤
ˆ 𝑡′

𝑡

6

𝑡2 · 𝑤𝑡

∑︁
𝑖∈[𝑛]

𝑠‖𝑥𝑠 − 𝑎(𝑖)‖2
(1 + 𝑔

(𝑖)
𝑠 )𝑔

(𝑖)
𝑠

𝑑𝑠 ≤
ˆ 𝑡′

𝑡

6𝑤𝑠
𝑡2 · 𝑤𝑡

𝑑𝑠 ≤
ˆ 𝑡′

𝑡

6

𝑡2
·
(︁𝑠
𝑡

)︁2
𝑑𝑠

=
6

3𝑡4
[(𝑡′)2 − (𝑡)3] =

6

3𝑡

[︀
(1 + 𝛽)3 − 1

]︀
≤ 6𝛽

𝑡
≤ 1

100𝑡

where in the last line we used that for 𝛼 ≥ 0 we have 1 + 3𝛼 ≤ (1 + 𝛼)3.
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7.6.2 Line Searching

Here we prove the main results we use on centering, Lemma 7.4.4, and line searching Lemma 7.4.5.
These results are our main tools for computing approximations to the central path. To prove Lemma 7.4.5
we also include here two preliminary lemmas, Lemma 7.6.2 and Lemma 7.6.3, on the structure of 𝑔𝑡,𝑦,𝑣
defined in (7.5).

Lemma 7.4.4. Given some 𝑦 ∈ R𝑑, 𝑡 > 0 and 𝜀 ∈ (0,min{14 ,
𝜇𝑡(𝑥)

8𝑡2·𝑤𝑡(𝑥)
}). In 𝑂(𝑛𝑑 log(𝑛𝜀 )) time

LocalCenter(𝑦, 𝑡, 𝜀) computes 𝑥(𝑘) such that with high probability in 𝑛/𝜀.

𝑓𝑡(𝑥
(𝑘))− min

‖𝑥−𝑦‖2≤ 1
49𝑡

𝑓𝑡(𝑥) ≤ 𝜀

(︃
𝑓𝑡(𝑦)− min

‖𝑥−𝑦‖2≤ 1
49𝑡

𝑓𝑡(𝑥)

)︃
.

Proof of Lemma 7.4.4. By Lemma 7.4.1 we know that 1
4𝑄 ⪯ ∇

2𝑓𝑡(𝑦) ⪯ 4𝑄 with high probability in
𝑛/𝜀. Furthermore for 𝑥 such that ‖𝑥 − 𝑦‖2 ≤ 1

50𝑡 Lemma 7.3.1 shows that 1
2∇

2𝑓𝑡(𝑥) ⪯ ∇2𝑓𝑡(𝑦) ⪯
2∇2𝑓𝑡(𝑥). Combining these we have that 1

8𝑄 ⪯ ∇
2𝑓𝑡(𝑥) ⪯ 8𝑄 for all 𝑥 with ‖𝑥−𝑦‖2 ≤ 1

50𝑡 . Therefore,
Lemma 7.9.5 shows that

𝑓𝑡(𝑥
(𝑘))− min

‖𝑥−𝑦‖2≤ 1
49𝑡

𝑓𝑡(𝑥) ≤
(︂
1− 1

64

)︂𝑘(︃
𝑓𝑡(𝑥

(0))− min
‖𝑥−𝑦‖2≤ 1

49𝑡

𝑓𝑡(𝑥)

)︃
.

The guarantee on 𝑥(𝑘) then follows from our choice of 𝑘.
For the running time, Lemma 7.4.1 showed the cost of ApproxMinEig is 𝑂(𝑛𝑑 log(𝑛𝜀 )). Using

Lemma 7.9.7 we see that the cost per iteration is 𝑂(𝑛𝑑) and therefore, the total cost of the 𝑘 iterations
is 𝑂(𝑛𝑑 log(1𝜀 )). Combining yields the running time.

Lemma 7.6.2. For 𝑡 > 0, 𝑦 ∈ R𝑑, and unit vector 𝑣 ∈ R𝑑, the function 𝑔𝑡,𝑦,𝑣 : R→ R defined by (7.5)
is convex and 𝑛𝑡-Lipschitz.

Proof. Changing variables yields 𝑔𝑡,𝑦,𝑣(𝛼) = min𝑧∈𝑆 𝑓𝑡(𝑧 + 𝛼𝑣) for 𝑆 def
= {𝑧 ∈ R𝑑 : ‖𝑧 − 𝑦‖2 ≤ 1

49𝑡}.
Since 𝑓𝑡 is convex and 𝑆 is a convex set, by Lemma 7.9.6 we have that 𝑔𝑡,𝑦,𝑣 is convex.

Next, by Lemma 7.5.1, triangle inequality, and the fact that 𝑡‖𝑥− 𝑎(𝑖)‖2 ≤ 𝑔(𝑖)𝑡 (𝑥) we have

‖∇𝑓𝑡(𝑥)‖2 =

⃦⃦⃦⃦
⃦⃦∑︁
𝑖∈[𝑛]

𝑡2(𝑥− 𝑎(𝑖))
1 + 𝑔

(𝑖)
𝑡 (𝑥)

⃦⃦⃦⃦
⃦⃦
2

≤
∑︁
𝑖∈[𝑛]

𝑡2‖𝑥− 𝑎(𝑖)‖2
1 + 𝑔

(𝑖)
𝑡 (𝑥)

≤ 𝑡𝑛 . (7.9)

Consequently, 𝑓𝑡(𝑥) is 𝑛𝑡-Lipschitz and for all 𝑥, 𝑦 ∈ R𝑛 we have |𝑓𝑡(𝑥)− 𝑓𝑡(𝑦)| ≤ 𝑛𝑡‖𝑥− 𝑦‖2. Now if
we consider the set 𝑆𝛼

def
= {𝑥 ∈ R𝑑 : ‖𝑥 − (𝑦 + 𝛼𝑣)‖2 ≤ 1

49𝑡} then we see that for all 𝛼, 𝛽 ∈ R there
is a bijection from 𝑆𝛼 to 𝑆𝛽 were every point in the set moves by at most ‖(𝛼 − 𝛽)𝑣‖2 ≤ |𝛼 − 𝛽|.
Consequently, since 𝑔𝑡,𝑦,𝑣(𝛼) simply minimizes 𝑓𝑡 over 𝑆𝛼 we have that |𝑔𝑡,𝑦,𝑣(𝛼)− 𝑔𝑡,𝑦,𝑣(𝛽)| ≤ 𝑛𝑡|𝛼−𝛽|
for all 𝛼, 𝛽 ∈ R we have that 𝑔𝑡,𝑦𝑣 is 𝑛𝑡-Lipschitz as desired.

Lemma 7.6.3. Let 1
400𝑓(𝑥*)

≤ 𝑡 ≤ 𝑡′ ≤ (1 + 1
600)𝑡 ≤

2𝑛
𝜀·𝑓*

and let 𝑢 = ApproxMinEig(𝑦, 𝑡, 𝜀𝑣) for

𝜀𝑣 ≤ 1
8(

𝜀*
7𝑛)

2 and 𝑦 ∈ R𝑑 such that ‖𝑦 − 𝑥𝑡‖2 ≤ 1
𝑡 (
𝜀𝑣
36)

3
2 . The function 𝑔𝑡,′𝑦,𝑣 : R → R defined in (7.5)

satisfies 𝑔𝑡,𝑦,𝑣(𝛼*) = min𝛼 𝑔𝑡,𝑦,𝑣(𝛼) = 𝑓𝑡′(𝑥𝑡′) for some 𝛼* ∈ [−6𝑓(𝑥*), 6𝑓(𝑥*)].

Proof of Lemma 7.4.5. Let 𝑧 ∈ R𝑑 be an arbitrary unit vector. By Lemma 7.3.5 we know if |⟨𝑧, 𝑣𝑡⟩| ≤
min𝛿∈[𝑡,(1+𝛽)𝑡]

𝜇𝛿
𝑡2·𝑤𝛿

for 𝛽 ∈ [0, 1
600 ] then 𝑧

⊤(𝑥(1+𝛽)𝑡 − 𝑥𝑡) ≤ 6𝛽
𝑡 . Now by Lemma 7.5.7 and our bound

on 𝛽 we know that 𝛿2·𝑤𝛿
𝜇𝛿
≤ 7𝑛𝜀−1

* and consequently 𝜀*
6𝑛 ≤ min𝛿∈[𝑡,(1+𝛽)𝑡]

𝑤𝛿
𝑡2·𝜇𝛿

. Consequently, if 𝜇𝑡 ≤
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1
4 𝑡

2 · 𝑤𝑡 then by Lemma 7.4.2 and our choice of 𝜀𝑣 we have that if 𝑧 ⊥ 𝑢 then |⟨𝑧, 𝑣𝑡⟩|2 ≤ ( 𝜀*6𝑛)
2 and

𝑧⊤(𝑥𝑡′ − 𝑥𝑡) ≤ 6
600𝑡 =

1
100𝑡 . Otherwise, 𝜇𝑡 ≥

1
4 𝑡

2 · 𝑤𝑡 and by Lemma 7.4.3 we have ‖𝑥𝑡′ − 𝑥𝑡‖2 ≤ 1
100𝑡 .

In either case, since ‖𝑦 − 𝑥𝑡‖2 ≤ 1
100𝑡 , we can reach 𝑥𝑡′ from 𝑦 by first moving an Euclidean distance

of 1
100𝑡 to go from 𝑥 to 𝑥𝑡, then adding some multiple of 𝑣, then moving an Euclidean distance of 1

100𝑡
in a direction perpendicular to 𝑣. Since the total movement perpendicular to 𝑣 is 1

100𝑡 +
1

100𝑡 ≤
1

49𝑡′ we
have that min𝛼 𝑔𝑡′,𝑦,𝑣(𝛼) = 𝑓𝑡′(𝑥𝑡′) as desired.

All that remains is to show that there is a minimizer of 𝑔𝑡,𝑦,𝑣 in the range [−6𝑓(𝑥*), 6𝑓(𝑥*)].
However, by Lemma 7.3.6 and Lemma 7.5.5 we know that

‖𝑦 − 𝑥𝑡′‖2 ≤ ‖𝑦 − 𝑥𝑡‖2 + ‖𝑥𝑡 − 𝑥*‖2 + ‖𝑥* − 𝑥𝑡′‖2 ≤
1

100𝑡
+ 𝑓(𝑥*) + 𝑓(𝑥*) ≤ 6𝑓(𝑥*) .

Consequently, 𝛼* ∈ [−6𝑓(𝑥*), 6𝑓(𝑥*)] as desired.

Lemma 7.4.5. Let 1
400𝑓(𝑥*)

≤ 𝑡 ≤ 𝑡′ ≤ (1 + 1
600)𝑡 ≤

2𝑛
𝜀·𝑓*

and let 𝑢 = ApproxMinEig(𝑦, 𝑡, 𝜀𝑣) for 𝜀𝑣 ≤
1
8(

𝜀*
7𝑛)

2 and 𝑦 ∈ R𝑑 such that ‖𝑦 − 𝑥𝑡‖2 ≤ 1
𝑡 (
𝜀𝑣
36)

3
2 . In 𝑂(𝑛𝑑 log2( 𝑛

𝜀·𝜀·𝜀𝑣 )) time, LineSearch(𝑦, 𝑡, 𝑡′, 𝑢, 𝜀)
outputs 𝑥′ such that ‖𝑥′ − 𝑥𝑡′‖2 ≤ 𝜀

𝑡′ with high probability in 𝑛.

By (7.9) we know that 𝑓𝑡′ is 𝑛𝑡′ Lipschitz and therefore

𝑓𝑡(𝑦)− min
‖𝑥−𝑦‖2≤ 1

49𝑡′

𝑓𝑡′(𝑥) ≤
𝑛𝑡′

49𝑡′
=

𝑛

49
.

Furthermore, for 𝛼 ∈ [−6𝑓*, 6𝑓*] we know that by Lemma 7.5.5

‖𝑦 + 𝛼𝑢− 𝑥𝑡′‖2 ≤ ‖𝑦 − 𝑥𝑡‖2 + |𝛼|+ ‖𝑥𝑡 − 𝑥*‖2 + ‖𝑥𝑡′ − 𝑥*‖2 ≤
1

𝑡′
+ 14𝑓(𝑥*)

consequently by Lemma 7.5.7 we have

(𝑡′)2 · 𝑤𝑡′(𝑦 + 𝛼𝑢)

𝜇𝑡′(𝑦 + 𝛼𝑢)
≤ 6𝑛𝜀−1 + 𝑡′ · 14𝑓(𝑥*) ≤ 34𝑛𝜀−1 .

Since 𝜀𝑂 ≤ 1
8 ·

𝜀*
34𝑛 invoking Lemma 7.4.4 yields that |𝑞(𝛼) − 𝑔𝑡′,𝑦,𝑢(𝛼) ≤ 𝑛𝜀𝑂

49 with high probability
in 𝑛/𝜀* by and each call to LocalCenter takes 𝑂(𝑛𝑑 log 𝑛

𝜀𝑂
) time. Furthermore, by Lemma 7.6.2 we

have that 𝑔𝑡′,𝑦,𝑢 is a 𝑛𝑡’-Lipschitz convex function and by Lemma 7.6.3 we have that the minimizer
has value 𝑓𝑡′(𝑥𝑡′) and is achieved in the range [−12𝑓*, 12𝑓*]. Consequently, combining all these facts
and invoking Lemma 7.9.3, i.e. our result on on one dimensional function minimization, we have
𝑓𝑡′(𝑥

′)− 𝑓𝑡′(𝑥𝑡′) ≤ 𝜀𝑂
49𝑡′ using only 𝑂(log 𝑛𝑡′𝑓(𝑥*)

𝜀𝑂
) calls to LocalCenter.

Finally, by Lemma 7.5.8 and Lemma 7.3.6 we have

‖𝑥− 𝑥𝑡′‖ ≤
1√
𝑛
·
(︂
7𝑛𝜀−1 + 𝑡′𝛼

𝑡′

)︂
·
√︂
𝑛𝜀𝑂
49
≤ 34𝑛

7 · 𝜀* · 𝑡′
√
𝜀𝑂 ≤

6𝑛

𝜀* · 𝑡′
√
𝜀𝑂 .

Since 𝜀𝑂 ≤ 𝜀2·𝜀2*
36𝑛2 we have that ‖𝑥− 𝑥𝑡′‖2 ≤ 𝜀

𝑡′ as desired.

Lemma 7.4.6. Let 1
400𝑓(𝑥*)

≤ 𝑡 ≤ 𝑡′ ≤ (1+ 1
600)𝑡 ≤

2𝑛
𝜀*·𝑓*

and let 𝑥 ∈ R𝑑 satisfy ‖𝑥− 𝑥𝑡‖2 ≤ 1
100𝑡 . Then,

in 𝑂(𝑛𝑑 log2( 𝑛
𝜀·𝜀* )) time, LineSearch(𝑥, 𝑡, 𝑡, 𝑢, 𝜀) output 𝑦 such that ‖𝑦 − 𝑥𝑡‖2 ≤ 𝜀

𝑡 for any vector
𝑢 ∈ R𝑑.

Proof of Lemma 7.4.6. The proof is strictly easier than the proof of Lemma 7.4.5 as ‖𝑥−𝛼*𝑢−𝑥𝑡‖2 ≤
1

100𝑡 is satisfied automatically for 𝛼* = 0. Note that this lemma assume less for the initial point.
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7.6.3 Putting It All Together

Theorem 7.4.1. In 𝑂(𝑛𝑑 log3(𝑛𝜀 )) time, Algorithm 13 outputs an (1 + 𝜀)-approximate geometric
median with constant probability.

Proof of Theorem 7.4.1. By Lemma 7.5.6 we know that 𝑥(0) is a 2-approximate geometric median and
therefore 𝑓(𝑥(0)) = 𝑓* ≤ 2 · 𝑓(𝑥*). Furthermore, since ‖𝑥(0) − 𝑥𝑡1‖2 ≤ 𝑓(𝑥(0)) by Lemma 7.5.5 and
𝑡1 =

1
400𝑓*

we have ‖𝑥(0)− 𝑥𝑡1‖2 ≤ 1
400𝑡1

. Hence, by Lemma 7.4.6, we have ‖𝑥(1)− 𝑥𝑡1‖2 ≤ 𝜀𝑐
𝑡1

with high

probability in 𝑛/𝜀. Consequently, by Lemma 7.4.5 we have that‖𝑥(𝑘) − 𝑥𝑡𝑖‖2 ≤ 𝜀𝑐
𝑡𝑖

for all 𝑖 with high
probability in 𝑛/𝜀.

Now, Lemma 7.3.6 shows that

𝑓(𝑥𝑡𝑘)− 𝑓(𝑥
*) ≤ 2𝑛

𝑡𝑘
≤ 2𝑛

𝑡*

(︂
1 +

1

600

)︂
≤ 𝜀* · 𝑓*

(︂
1 +

1

600

)︂
≤ 2

3

(︂
1 +

1

600

)︂
𝜀 · 𝑓(𝑥*) .

Since ‖𝑥(𝑘)−𝑥𝑡𝑘‖2 ≤ 𝜀𝑐
𝑡𝑘
≤ 400 ·𝑓* ·𝜀𝑐 we have that 𝑓(𝑥𝑘) ≤ 𝑓(𝑥𝑡𝑘)+400𝑛 ·𝑓* ·𝜀𝑐 by triangle inequality.

Combining these facts and using that 𝜀𝑐 is sufficiently small yields that 𝑓(𝑥(𝑘)) ≤ (1 + 𝜀)𝑓(𝑥*) as
desired.

To bound the running time, Lemma 7.4.1 shows ApproxMinEvec takes 𝑂(𝑛𝑑 log(𝑛𝜀 )) per iteration
and Lemma 7.4.5 shows LineSearch takes 𝑂

(︀
𝑛𝑑 log2

(︀
𝑛
𝜀

)︀)︀
time per iteration, using that 𝜀𝑣 and 𝜀𝑐 are

𝑂(Ω(𝜀/𝑛)). Since for 𝑙 = Ω(log 𝑛
𝜀 ) we have that 𝑡𝑙 > 𝑡* we have that 𝑘 = 𝑂(log 𝑛

𝜀 ). 𝑡𝑖+1 ≤ 1
400 . Since

there are 𝑂(log(𝑛𝜀 )) iterations taking time 𝑂
(︀
𝑛𝑑 log2

(︀
𝑛
𝜀

)︀)︀
the running time follows.

7.7 Pseudo Polynomial Time Algorithm

Here we provide a self-contained result on computing a 1+𝜀 approximate geometric median in 𝑂(𝑑𝜀−2)
time. Note that it is impossible to achieve such approximation for the mean, min𝑥∈R𝑑

∑︀
𝑖∈[𝑛] ‖𝑥−𝑎(𝑖)‖22,

because the mean can be changed arbitrarily by changing only 1 point. However, [172] showed that
the geometric median is far more stable. In Section 7.7.1, we show how this stability property allows
us to get an constant approximate in 𝑂(𝑑) time. In Section 7.7.2, we show how to use stochastic
subgradient descent to then improve the accuracy.

7.7.1 A Constant Approximation of Geometric Median

We first prove that the geometric median is stable even if we are allowed to modify up to half of the
points. The following lemma is a strengthening of the robustness result in [172].

Lemma 7.7.1. Let 𝑥* be a geometric median of {𝑎(𝑖)}𝑖∈[𝑛] and let 𝑆 ⊆ [𝑛] with ‖𝑆‖ < 𝑛
2 . For all 𝑥

‖𝑥* − 𝑥‖2 ≤
(︂
2𝑛− 2|𝑆|
𝑛− 2|𝑆|

)︂
max
𝑖/∈𝑆
‖𝑎(𝑖) − 𝑥‖2 .

Proof. For notational convenience let 𝑟 = ‖𝑥* − 𝑥‖2 and let 𝑀 = max𝑖/∈𝑆 ‖𝑎(𝑖) − 𝑥‖2.
For all 𝑖 /∈ 𝑆, we have that ‖𝑥− 𝑎(𝑖)‖2 ≤𝑀 , hence, we have

‖𝑥* − 𝑎(𝑖)‖2 ≥ 𝑟 − ‖𝑥− 𝑎(𝑖)‖2
≥ 𝑟 − 2𝑀 + ‖𝑥− 𝑎(𝑖)‖2 .

Furthermore, by triangle inequality for all 𝑖 ∈ 𝑆, we have

‖𝑥* − 𝑎(𝑖)‖2 ≥ ‖𝑥− 𝑎(𝑖)‖2 − 𝑟 .
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Hence, we have that∑︁
𝑖∈[𝑛]

‖𝑥* − 𝑎(𝑖)‖2 ≥
∑︁
𝑖∈[𝑛]

‖𝑥− 𝑎(𝑖)‖2 + (𝑛− |𝑆|)(𝑟 − 2𝑀)− |𝑆|𝑟 .

Since 𝑥* is a minimizer of
∑︀

𝑖∈[𝑛] ‖𝑥* − 𝑎(𝑖)‖2, we have that

(𝑛− |𝑆|)(𝑟 − 2𝑀)− |𝑆|𝑟 ≤ 0.

Hence, we have

‖𝑥* − 𝑥‖2 = 𝑟 ≤ 2𝑛− 2|𝑆|
𝑛− 2|𝑆|

𝑀.

Now, we use Lemma 7.7.1 to show that the algorithm CrudeApproximate outputs a constant
approximation of the geometric median with high probability.

Algorithm 18: CrudeApproximate𝐾

Input: 𝑎(1), 𝑎(2), · · · , 𝑎(𝑛) ∈ R𝑑.
Sample two independent random subset of [𝑛] of size 𝐾. Call them 𝑆1 and 𝑆2.
Let 𝑖* ∈ argmin𝑖∈𝑆2

𝛼𝑖 where 𝛼𝑖 is the 65 percentile of the numbers {‖𝑎(𝑖) − 𝑎(𝑗)‖2}𝑗∈𝑆1 .
Output: Output 𝑎(𝑖

*) and 𝛼𝑖* .

Lemma 7.7.2. Let 𝑥* be a geometric median of {𝑎(𝑖)}𝑖∈[𝑛] and (̃︀𝑥, 𝜆) be the output of CrudeApproximate𝐾 .
We define 𝑑𝑘𝑇 (𝑥) be the 𝑘-percentile of

{︀
‖𝑥− 𝑎(𝑖)‖

}︀
𝑖∈𝑇 . Then, we have that ‖𝑥*− ̃︀𝑥‖2 ≤ 6𝑑60[𝑛](̃︀𝑥). Fur-

thermore, with probability 1− 𝑒−Θ(𝐾), we have

𝑑60[𝑛](̃︀𝑥) ≤ 𝜆 = 𝑑60𝑆1
(̃︀𝑥) ≤ 2𝑑70[𝑛](𝑥*).

Proof. Lemma 7.7.1 shows that for all 𝑥 and 𝑇 ⊆ [𝑛] with |𝑇 | ≤ 𝑛
2

‖𝑥* − 𝑥‖2 ≤
(︂
2𝑛− 2|𝑇 |
𝑛− 2|𝑇 |

)︂
max
𝑖/∈𝑇
‖𝑎(𝑖) − 𝑥‖2 .

Picking 𝑇 to be the indices of largest 40% of ‖𝑎(𝑖) − ̃︀𝑥‖2, we have
‖𝑥* − ̃︀𝑥‖2 ≤ (︂2𝑛− 0.8𝑛

𝑛− 0.8𝑛

)︂
𝑑60[𝑛](̃︀𝑥) = 6𝑑60[𝑛](̃︀𝑥). (7.10)

For any point 𝑥, we have that 𝑑60[𝑛](𝑥) ≤ 𝑑
65
𝑆1
(𝑥) with probability 1− 𝑒−Θ(𝐾) because 𝑆1 is a random

subset of [𝑛] with size 𝐾. Taking union bound over elements on 𝑆2, with probability 1−𝐾𝑒−Θ(𝐾) =
1− 𝑒−Θ(𝐾), for all points 𝑥 ∈ 𝑆2

𝑑60[𝑛](𝑥) ≤ 𝑑
65
𝑆1
(𝑥). (7.11)

yielding that 𝑑60[𝑛](̃︀𝑥) ≤ 𝜆.
Next, for any 𝑖 ∈ 𝑆2, we have

‖𝑎(𝑖) − 𝑎(𝑗)‖2 ≤ ‖𝑎(𝑖) − 𝑥*‖2 + ‖𝑥* − 𝑎(𝑗)‖2.
and hence

𝑑70[𝑛](𝑎
(𝑖)) ≤ ‖𝑎(𝑖) − 𝑥*‖2 + 𝑑70[𝑛](𝑥*).



150 CHAPTER 7. GEOMETRIC MEDIAN IN NEARLY-LINEAR TIME

Again, since 𝑆1 is a random subset of [𝑛] with size𝐾, we have that 𝑑65𝑆1
(𝑎(𝑖)) ≤ 𝑑70[𝑛](𝑎

(𝑖)) with probability

1−𝐾𝑒−Θ(𝐾) = 1− 𝑒−Θ(𝐾). Therefore,

𝑑65𝑆1
(𝑎(𝑖)) ≤ ‖𝑎(𝑖) − 𝑥*‖2 + 𝑑70[𝑛](𝑥*).

Since 𝑆2 is an independent random subset, with probability 1 − 𝑒−Θ(𝐾), there is 𝑖 ∈ 𝑆2 such that
‖𝑎(𝑖) − 𝑥*‖2 ≤ 𝑑70[𝑛](𝑥*). In this case, we have

𝑑65𝑆1
(𝑎(𝑖)) ≤ 2𝑑70[𝑛](𝑥*).

Since 𝑖* minimize 𝑑65𝑆1
(𝑎(𝑖)) over all 𝑖 ∈ 𝑆2, we have that

𝜆
def
= 𝑑65𝑆1

(̃︀𝑥) def
= 𝑑65𝑆1

(𝑎(𝑖
*)) ≤ 𝑑65𝑆1

(𝑎(𝑖)) ≤ 2𝑑70[𝑛](𝑥*) .

7.7.2 A 1 + 𝜀 Approximation of Geometric Median

Here we show how to improve the constant approximation in the previous section to a 1 + 𝜀 approx-
imation. Our algorithm is essentially stochastic subgradient where we use the information from the
previous section to bound the domain in which we need to search for a geometric median.

Algorithm 19: ApproximateMedian(𝜀)

Input: 𝑎(1), 𝑎(2), · · · , 𝑎(𝑛) ∈ R𝑑.
Let 𝑇 = (120/𝜀)2 and let 𝜂 = 6𝜆

𝑛

√︁
2
𝑇 .

Let (𝑥(1), 𝜆) = CrudeApproximate√𝑇 (𝑎
(1), 𝑎(2), · · · , 𝑎(𝑛)) .

for 𝑘 ← 1, 2, · · · , 𝑇 do
Sample 𝑖𝑘 from [𝑛] and let

𝑔(𝑘) =

{︃
𝑛(𝑥(𝑘) − 𝑎(𝑖𝑘))/‖𝑥(𝑘) − 𝑎(𝑖𝑘)‖2 if 𝑥(𝑖) ̸= 𝑎(𝑖𝑘)

0 otherwise

Let 𝑥(𝑘+1) = argmin‖𝑥−𝑥(1)‖2≤6𝜆 𝜂
⟨︀
𝑔(𝑘), 𝑥− 𝑥(𝑘)

⟩︀
+ 1

2‖𝑥− 𝑥
(𝑘)‖22.

end

Output: Output 1
𝑇

∑︀𝑇
𝑖=1 𝑥

(𝑘).

Theorem 7.7.1. Let 𝑥 be the output of ApproximateMedian(𝜀). With probability 1 − 𝑒−Θ(1/𝜀), we
have

E𝑓(𝑥) ≤ (1 + 𝜀) min
𝑥∈R𝑑

𝑓(𝑥).

Furthermore, the algorithm takes 𝑂(𝑑/𝜀2) time.

Proof. After computing 𝑥(1) and 𝜆 the remainder of our algorithm is the stocastic subgradient descent
method applied to 𝑓(𝑥). It is routine to check that E𝑖(𝑘)𝑔

(𝑘) is a subgradient of 𝑓 at 𝑥(𝑘) . Furthermore,
since the diameter of the domain,

{︀
𝑥 : ‖𝑥− 𝑥(1)‖2 ≤ 6𝜆

}︀
, is clearly 𝜆 and the norm of sampled

gradient, 𝑔(𝑘), is at most 𝑛, we have that

E𝑓

(︃
1

𝑇

𝑇∑︁
𝑖=1

𝑥(𝑘)

)︃
− min

‖𝑥−𝑥(1)‖2≤6𝜆
𝑓(𝑥) ≤ 6𝑛𝜆

√︂
2

𝑇
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(see [41, Thm 6.1]). Lemma 7.7.2 shows that ‖𝑥* − 𝑥(1)‖2 ≤ 6𝜆 and 𝜆 ≤ 2𝑑70[𝑛](𝑥
*) with probability

1−
√
𝑇𝑒−Θ(

√
𝑇 ). In this case, we have

E𝑓

(︃
1

𝑇

𝑇∑︁
𝑖=1

𝑥(𝑘)

)︃
− 𝑓(𝑥*) ≤

12
√
2𝑛𝑑70[𝑛](𝑥*)√

𝑇
.

Since 𝑑70[𝑛](𝑥
*) ≤ 1

0.3𝑛𝑓(𝑥
*), we have

E𝑓

(︃
1

𝑇

𝑇∑︁
𝑖=1

𝑥(𝑘)

)︃
≤

(︂
1 +

60√
𝑇

)︂
𝑓(𝑥*) ≤

(︁
1 +

𝜀

2

)︁
𝑓(𝑥*) .

7.8 Derivation of Penalty Function

Here we derive our penalized objective function. Consider the following optimization problem:

min
𝑥∈R𝑑,𝛼≥0∈R𝑛

𝑓𝑡(𝑥, 𝛼) where 𝑡 · 1𝑇𝛼+
∑︁
𝑖∈[𝑛]

− ln
(︁
𝛼2
𝑖 − ‖𝑥− 𝑎(𝑖)‖22

)︁
.

Since 𝑝𝑖(𝛼, 𝑥)
def
= − ln

(︀
𝛼2
𝑖 − ‖𝑥− 𝑎(𝑖)‖22

)︀
is a barrier function for the set 𝛼2

𝑖 ≥ ‖𝑥 − 𝑎(𝑖)‖22, i.e. as
𝛼𝑖 → ‖𝑥 − 𝑎(𝑖)‖2we have 𝑝𝑖(𝛼, 𝑥) → ∞, we see that as we minimize 𝑓𝑡(𝑥, 𝛼) for increasing values
of 𝑡 the 𝑥 values converge to a solution to the geometric median problem. Our penalized objective
function, 𝑓𝑡(𝑥), is obtain simply by minizing the 𝛼𝑖 in the above formula and dropping terms that do
not affect the minimizing 𝑥. In the remainder of this section we show this formally.

Fix some 𝑥 ∈ R𝑑 and 𝑡 > 0. Note that for all 𝑗 ∈ [𝑛] we have

𝜕

𝜕𝛼𝑗
𝑓𝑡(𝑥, 𝛼) = 𝑡−

(︃
1

𝛼2
𝑗 − ‖𝑥− 𝑎(𝑖)‖22

)︃
2𝛼𝑗 .

Since 𝑓(𝑥, 𝛼) is convex in 𝛼, the minimum 𝛼*
𝑗 must satisfy

𝑡
(︁(︀
𝛼*
𝑗

)︀2 − ‖𝑥− 𝑎(𝑖)‖22)︁− 2𝛼*
𝑗 = 0 . (7.12)

Solving for such 𝛼*
𝑗 under the restriction 𝛼

*
𝑗 ≥ 0 we obtain

𝛼*
𝑗 =

2 +
√︁
4 + 4𝑡2‖𝑥− 𝑎(𝑖)‖22

2𝑡
=

1

𝑡

[︂
1 +

√︁
1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22

]︂
. (7.13)

Using (7.12) and (7.13) we have that

min
𝛼≥0∈R𝑛

𝑓𝑡(𝑥, 𝛼) =
∑︁
𝑖∈[𝑛]

[︂
1 +

√︁
1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22 − ln

[︂
2

𝑡2

(︂
1 +

√︁
1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22

)︂]︂]︂
.

If we drop the terms that do not affect the minimizing 𝑥 we obtain our penalty function 𝑓𝑡 :

𝑓𝑡(𝑥) =
∑︁
𝑖∈[𝑛]

[︂√︁
1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22 − ln

(︂
1 +

√︁
1 + 𝑡2‖𝑥− 𝑎(𝑖)‖22

)︂]︂
.
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7.9 Technical Lemmas

Here we provide various technical lemmas we use through this chapter.

7.9.1 Linear Algebra

First we provide the following lemma that shows that any matrix obtained as a non-negative linear
combination of the identity minus a rank 1 matrix less than the identity results in a matrix that is well
approximated spectrally by the identity minus a rank 1 matrix. We use this lemma to characterize the
Hessian of our penalized objective function and thereby imply that it is possible to apply the inverse
of the Hessian to a vector with high precision.

Lemma 7.9.1. Let 𝐴 =
∑︀

𝑖

(︀
𝛼𝑖𝐼 − 𝛽𝑖𝑎𝑖𝑎⊤𝑖

)︀
∈ R𝑑×𝑑 where the 𝑎𝑖 are unit vectors and 0 ≤ 𝛽𝑖 ≤ 𝛼𝑖 for

all 𝑖. Let 𝑣 denote a unit ector that is the maximum eigenvector of
∑︀

𝑖 𝛽𝑖𝑎𝑖𝑎
⊤
𝑖 and let 𝜆 denote the

corresponding eigenvalue. Then,

1

2

(︃∑︁
𝑖

𝛼𝑖𝐼 − 𝜆𝑣𝑣⊤
)︃
⪯ 𝐴 ⪯

∑︁
𝑖

𝛼𝑖𝐼 − 𝜆𝑣𝑣⊤ .

Proof. Let 𝛼 def
=
∑︀

𝑖 𝛼𝑖. Since clearly 𝑣
⊤𝐴𝑣 = 𝑣⊤

(︀∑︀
𝑖 𝛼𝑖𝐼 − 𝜆𝑣𝑣⊤

)︀
𝑣 it suffices to show that for 𝑤 ⊥ 𝑣 it

is the case that 1
2𝛼‖𝑤‖

2
2 ⪯ 𝑤⊤𝐴𝑤 ⪯ 𝛼‖𝑤‖22 or equivalently, that 𝜆𝑖(𝐴) ∈ [12𝛼, 𝛼] for 𝑖 ̸= 𝑑. However we

know that
∑︀

𝑖∈[𝑑] 𝜆𝑖(𝐴) = Tr(𝐴) = 𝑑𝛼−
∑︀

𝑖 𝛽𝑖 ≥ (𝑑−1)𝛼 and 𝜆𝑖(𝐴) ≤ 𝛼 for all 𝑖 ∈ [𝑑]. Consequently,
since 𝜆𝑑(𝐴) ∈ [0, 𝜆𝑑−1] we have

2 · 𝜆𝑑−1(𝐴) ≥ (𝑑− 1)𝛼−
𝑑−2∑︁
𝑖=1

𝜆𝑖(𝐴) ≥ (𝑑− 1)𝛼− (𝑑− 2)𝛼 = 𝛼 .

Consequently, 𝜆𝑑−1(𝐴) ∈ [𝛼2 , 𝛼] and the result holds by the monotonicity of 𝜆𝑖.

Next we bound the spectral difference between the outer product of two unit vectors by their
inner product. We use this lemma to bound the amount of precision required in our eigenvector
computations.

Lemma 7.9.2. For unit vectors 𝑢1 and 𝑢2 we have

‖𝑢1𝑢⊤1 − 𝑢2𝑢⊤2 ‖22 = 1− (𝑢⊤1 𝑢2)
2 (7.14)

Consequently if
(︀
𝑢⊤1 𝑢2

)︀2 ≥ 1− 𝜀 for 𝜀 ≤ 1 we have that

−
√
𝜀𝐼 ⪯ 𝑢1𝑢⊤1 − 𝑢2𝑢⊤2 ⪯

√
𝜀𝐼

Proof. Note that 𝑢1𝑢⊤1 − 𝑢2𝑢⊤2 is a symmetric matrix and all eigenvectors are either orthogonal to
both 𝑢1 and 𝑢2 (with eigenvalue 0) or are of the form 𝑣 = 𝛼𝑢1 + 𝛽𝑢2 where 𝛼 and 𝛽 are real numbers
that are not both 0. Thus, if 𝑣 is an eigenvector of eigenvalue 𝜆 it must be that

𝜆 (𝛼𝑢1 + 𝛽𝑢2) =
(︁
𝑢1𝑢

⊤
1 − 𝑢2𝑢⊤2

)︁
(𝛼𝑢1 + 𝛽𝑢2)

= (𝛼+ 𝛽(𝑢⊤1 𝑢2))𝑢1 − (𝛼(𝑢⊤1 𝑢2) + 𝛽)𝑢2

or equivalently (︂
(1− 𝜆) 𝑢⊤1 𝑢2
−(𝑢⊤1 𝑢2) −(1 + 𝜆)

)︂(︂
𝛼
𝛽

)︂
=

(︂
0
0

)︂
.
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By computing the determinant we see this has a solution only when

−(1− 𝜆2) + (𝑢⊤1 𝑢2)
2 = 0

Solving for 𝜆 then yields (7.14) and completes the proof.

Next we show how the top eigenvectors of two spectrally similar matrices are related. We use this to
bound the amount of spectral approximation we need to obtain accuracate eigenvector approximations.

Lemma 7.9.3. Let 𝐴 and 𝐵 be symmetric PSD matrices such that (1− 𝜀)𝐴 ⪯ 𝐵 ⪯ (1 + 𝜀)𝐴. Then
if 𝑔 def

= 𝜆1(𝐴)−𝜆2(𝐴)
𝜆1(𝐴) satisfies 𝑔 > 0 we have [𝑣1(𝐴)⊤𝑣1(𝐵)]2 ≥ 1− 2(𝜀/𝑔).

Proof. Without loss of generality 𝑣1(𝐵) = 𝛼𝑣1(𝐴) + 𝛽𝑣 for some unit vector 𝑣 ⊥ 𝑣1(𝐴) and 𝛼, 𝛽 ∈ R
such that 𝛼2 + 𝛽2 = 1. Now we know that

𝑣1(𝐵)⊤𝐵𝑣1(𝐵) ≤ (1 + 𝜀)𝑣1(𝐵)⊤𝐴𝑣1(𝐵) ≤ (1 + 𝜀)
[︀
𝛼2𝜆1(𝐴) + 𝛽2𝜆2(𝐴)

]︀
Furthermore, by the optimality of 𝑣1(𝐵) we have that

𝑣1(𝐵)⊤𝐵𝑣1(𝐵) ≥ (1− 𝜀)𝑣1(𝐴)⊤𝐴𝑣1(𝐴) ≥ (1− 𝜀)𝜆1(𝐴) .

Now since 𝛽2 = 1− 𝛼2 combining these inequalities yields

(1− 𝜀)𝜆1(𝐴) ≤ (1 + 𝜀)𝛼2 (𝜆1(𝐴)− 𝜆2(𝐴)) + (1 + 𝜀)𝜆2(𝐴) .

Rearranging terms, using the definition of 𝑔, and that 𝑔 ∈ (0, 1] and 𝜀 ≥ 0yields

𝛼2 ≥ 𝜆1(𝐴)− 𝜆2(𝐴)− 𝜀(𝜆1(𝐴) + 𝜆2(𝐴))

(1 + 𝜀)(𝜆1(𝐴)− 𝜆2(𝐴))
= 1− 2𝜀𝜆1(𝐴)

(1 + 𝜀)(𝜆1(𝐴)− 𝜆2(𝐴))
≥ 1− 2(𝜀/𝑔) .

Here we prove a an approximate transitivity lemma for inner products of vectors. We use this to
bound the accuracy need for certain eigenvector computations.

Lemma 7.9.4. Suppose that we have vectors 𝑣1, 𝑣2, 𝑣3 ∈ R𝑛 such that ⟨𝑣1, 𝑣2⟩2 ≥ 1− 𝜀 and ⟨𝑣2, 𝑣3⟩2 ≥
1− 𝜀 for 0 < 𝜀 ≤ 1

2 then ⟨𝑣1, 𝑣3⟩2 ≥ 1− 4𝜀.

Proof. Without loss of generality, we can write 𝑣1 = 𝛼1𝑣2 + 𝛽1𝑤1 for 𝛼2
1 + 𝛽21 = 1 and unit vector

𝑤1 ⊥ 𝑣2. Similarly we can write 𝑣3 = 𝛼3𝑣2 + 𝛽3𝑤3 for 𝛼2
3 + 𝛽23 = 1 and unit vector 𝑤3 ⊥ 𝑣2. Now, by

the inner products we know that 𝛼2
1 ≥ 1 − 𝜀 and 𝛼2

3 ≥ 1 − 𝜀 and therefore |𝛽1| ≤
√
𝜀 and |𝛽3| ≤

√
𝜀.

Consequently, since 𝜀 ≤ 1
2 , |𝛽1𝛽3| ≤ 𝜀 ≤ 1− 𝜀 ≤ |𝛼1𝛼3|, and we have

⟨𝑣1, 𝑣3⟩2 ≥ ⟨𝛼1𝑣2 + 𝛽1𝑤1, 𝛼3𝑣2 + 𝛽3𝑤3⟩2 ≥ (|𝛼1𝛼3| − |𝛽1𝛽3|)2

≥ (1− 𝜀− 𝜀)2 = (1− 2𝜀)2 ≥ 1− 4𝜀.

7.9.2 Convex Optimization

First we provide a single general lemma about about first order methods for convex optimization. We
use this lemma for multiple purposes including bounding errors and quickly compute approximations
to the central path.
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Lemma 7.9.5. [206]Let 𝑓 : R𝑛 → R be a twice differentiable function, let 𝐵 ⊆ R be a convex set, and
let 𝑥* be a point that achieves the minimum value of 𝑓 restricted to 𝐵. Further suppose that for a
symmetric positive definite matrix 𝐻 ∈ R𝑛×𝑛 we have that 𝜇𝐻 ⪯ ∇2𝑓(𝑦) ⪯ 𝐿𝐻 for all 𝑦 ∈ 𝐵.Then
for all 𝑥 ∈ 𝐵 we have

1

2𝐿
‖∇𝑓(𝑥)‖2

𝐻−1 ≤ 𝑓(𝑥)− 𝑓(𝑥*) ≤
𝐿

2
‖𝑥− 𝑥*‖2𝐻

and
𝜇

2
‖𝑥− 𝑥*‖2𝐻 ≤ 𝑓(𝑥)− 𝑓(𝑥*) ≤

1

2𝜇
‖∇𝑓(𝑥)‖2

𝐻−1 .

Furthermore, if

𝑥1 = argmin
𝑥∈𝐵

[︂
𝑓(𝑥0) + ⟨∇𝑓(𝑥0), 𝑥− 𝑥0⟩+

𝐿

2
‖𝑥0 − 𝑥‖2𝐻

]︂
then

𝑓(𝑥1)− 𝑓(𝑥*) ≤
(︁
1− 𝜇

𝐿

)︁
(𝑓(𝑥0)− 𝑓(𝑥*)) . (7.15)

Next we provide a short technical lemma about the convexity of functions that arises naturally in
our line searching procedure.

Lemma 7.9.6. Let 𝑓 : R𝑛 → R ∪ {∞} be a convex function and and let 𝑔(𝛼) def
= min𝑥∈𝑆 𝑓(𝑥+ 𝛼𝑑) for

any convex set 𝑆 and 𝑑 ∈ R𝑛. Then 𝑔 is convex.

Proof. Let 𝛼, 𝛽 ∈ R and define 𝑥𝛼 = argmin𝑥∈𝑆 𝑓(𝑥 + 𝛼𝑑) and 𝑥𝛽 = argmin𝑥∈𝑆 𝑓(𝑥 + 𝛽𝑑). For any
𝑡 ∈ [0, 1] we have

𝑔 (𝑡𝛼+ (1− 𝑡)𝛽) = min
𝑥∈𝑆

𝑓 (𝑥+ (𝑡𝛼+ (1− 𝑡)𝛽)

≤ 𝑓(𝑡𝑥𝛼 + (1− 𝑡)𝑥𝛽 + (𝑡𝛼+ (1− 𝑡)𝛽)𝑑) (Convexity of 𝑆)

≤ 𝑡 · 𝑓(𝑥𝛼 + 𝛼𝑑) + (1− 𝑡) · 𝑓(𝑥𝛽 + 𝛽 · 𝑑) (Convexity of 𝑓)

= 𝑡 · 𝑔(𝛼) + (1− 𝑡) · 𝑔(𝛽)

Lemma 7.9.7. For any vectors 𝑦, 𝑧, 𝑣 ∈ R𝑑 and scalar 𝛼, we can minimize min‖𝑥−𝑦‖22≤𝛼 ‖𝑥 − 𝑧‖
2
𝐼−𝑣𝑣⊤

exactly in time 𝑂(𝑑).

Proof. Let 𝑥* be the solution of this problem. If ‖𝑥* − 𝑦‖22 < 𝛼, then 𝑥* = 𝑧. Otherwise, there is
𝜆 > 0 such that 𝑥* is the minimizer of

min
𝑥∈R𝑑

‖𝑥− 𝑧‖2𝐼−𝑣𝑣⊤ + 𝜆‖𝑥− 𝑦‖22 .

Let 𝑄 = 𝐼 − 𝑣𝑣⊤. Then, the optimality condition of the above equation shows that

𝑄(𝑥* − 𝑧) + 𝜆(𝑥* − 𝑦) = 0⃗ .

Therefore,
𝑥* = (𝑄+ 𝜆𝐼)−1(𝑄𝑧 + 𝜆𝑦) . (7.16)

Hence,
𝛼 = ‖𝑥− 𝑦‖22 = (𝑧 − 𝑦)⊤𝑄(𝑄+ 𝜆𝐼)−2𝑄(𝑧 − 𝑦).

Let 𝜂 = 1 + 𝜆, then we have (𝑄+ 𝜆𝐼) = 𝜂𝐼 − 𝑣𝑣⊤and hence Sherman–Morrison formula shows that

(𝑄+ 𝜆𝐼)−1 = 𝜂−1𝐼 +
𝜂−2𝑣𝑣⊤

1− ‖𝑣‖2𝜂−1
= 𝜂−1

(︂
𝐼 +

𝑣𝑣⊤

𝜂 − ‖𝑣‖2

)︂
.
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Hence, we have

(𝑄+ 𝜆𝐼)−2 = 𝜂−2

(︂
𝐼 +

2𝑣𝑣⊤

𝜂 − ‖𝑣‖2
+

𝑣𝑣⊤‖𝑣‖2

(𝜂 − ‖𝑣‖2)2

)︂
= 𝜂−2

(︂
𝐼 +

2𝜂 − ‖𝑣‖2

(𝜂 − ‖𝑣‖2)2
𝑣𝑣⊤

)︂
.

Let 𝑐1 = ‖𝑄(𝑧 − 𝑦)‖22 and 𝑐2 =
(︀
𝑣⊤𝑄(𝑧 − 𝑦)

)︀2
, then we have

𝛼 = 𝜂−2

(︂
𝑐1 +

2𝜂 − ‖𝑣‖2

(𝜂 − ‖𝑣‖2)2
𝑐2

)︂
.

Hence, we have
𝛼𝜂2

(︀
𝜂 − ‖𝑣‖2

)︀2
= 𝑐1

(︀
𝜂 − ‖𝑣‖2

)︀2
+ 𝑐2

(︀
2𝜂 − ‖𝑣‖2

)︀
.

Note that this is a polynomial of degree 4 in 𝜂 and all coefficients can be computed in 𝑂(𝑑) time.
Solving this by explicit formula, one can test all 4 possible 𝜂’s into the formula (7.16) of 𝑥. Together
with trivial case 𝑥* = 𝑧, we simply need to check among 5 cases to check which is the solution.

7.9.3 Noisy One Dimensional Convex Optimization

Here we show how to minimize a one dimensional convex function giving a noisy oracle for evaluating
the function. While this could possibly be done using general results on convex optimization with a
membership oracle, the proof in one dimension is much simpler and we provide it here for completeness.

Algorithm 20: OneDimMinimizer(ℓ, 𝑢, 𝜀, 𝑔, 𝐿)

Input: Interval [ℓ, 𝑢] ⊆ R and target additive error 𝜀 ∈ R
Input: noisy additive evaluation oracle 𝑔 : R→ R and Lipschitz bound 𝐿 > 0

Let 𝑥 = ℓ, 𝑦
(0)
ℓ = ℓ, 𝑦

(0)
𝑢 = 𝑢

for 𝑖 = 1, ...,
⌈︁
log3/2(

𝐿(𝑢−ℓ)
𝜀 )

⌉︁
do

Let 𝑧(𝑖)ℓ =
2𝑦

(𝑖−1)
ℓ +𝑦

(𝑖−1)
𝑢

3 and 𝑧(𝑖)𝑢 =
𝑦
(𝑖−1)
ℓ +2𝑦

(𝑖−1)
𝑢

3

if 𝑔(𝑧
(𝑖)
ℓ ) ≤ 𝑔(𝑧(𝑖)𝑢 ) then

Let (𝑦(𝑖)ℓ , 𝑦
(𝑖)
𝑢 ) = (𝑦

(𝑖−1)
ℓ , 𝑧

(𝑖)
𝑢 ).

If 𝑔(𝑧(𝑖)ℓ ) ≤ 𝑔(𝑥(𝑖−1)) update 𝑥 := 𝑧
(𝑖)
ℓ ..

else if 𝑔(𝑧
(𝑖)
ℓ ) > 𝑔(𝑧

(𝑖)
𝑢 ) then

Let (𝑦(𝑖)ℓ , 𝑦
(𝑖)
𝑢 ) = (𝑧

(𝑖)
ℓ , 𝑦

(𝑖−1)
𝑢 ).

If 𝑔(𝑧(𝑖)𝑢 ) ≤ 𝑔(𝑥(𝑖−1)) update 𝑥 := 𝑧
(𝑖)
𝑢 .

end

end

Output: 𝑥

Lemma 7.9.8. Let 𝑓 : R → R be an 𝐿-Lipschitz convex function defined on the [ℓ, 𝑢] interval and
let 𝑔 : R → R be an oracle such that |𝑔(𝑦)− 𝑓(𝑦)| ≤ 𝜀 for all 𝑦. In 𝑂(log(𝐿(𝑢−ℓ)𝜀 )) time and with

𝑂(log(𝐿(𝑢−ℓ)𝜀 )) calls to 𝑔, the algorithm OneDimMinimizer(ℓ, 𝑢, 𝜀, 𝑔, 𝐿) outputs a point 𝑥 such that

𝑓(𝑥)− min
𝑦∈[ℓ,𝑢]

𝑓(𝑦) ≤ 4𝜀.

Proof. First, note that for any 𝑦, 𝑦′ ∈ R if 𝑓(𝑦) < 𝑓(𝑦′) − 2𝜀 then𝑔(𝑦) < 𝑔(𝑦′). This directly follows
from our assumption on on 𝑔. Second, note that the output of the algorithm, 𝑥, is simply the point
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queried by the algorithm (i.e. ℓ and the 𝑧𝑖ℓ and 𝑧
𝑖
𝑢) with the smallest value of 𝑔. Combining these facts

implies that 𝑓(𝑥) is within 2𝜀 of the minimum value of 𝑓 among the points queried. It thus suffices to
show that the algorithm queries some point within 2𝜀 of optimal.

To do this, we break into two cases. First, consider the case where the intervals [𝑦
(𝑖)
ℓ , 𝑦

(𝑖)
𝑢 ] all

contain a minimizer of 𝑓 . In this case, the final interval contains an optimum, and is of size at most
𝜀
𝐿 . Thus, by the Lipschitz property, all points in the interval are within 𝜀 ≤ 2𝜀 of optimal, and at least
one endpoint of the interval must have been queried by the algorithm.

For the other case, consider the last 𝑖 for which this interval does contain an optimum of 𝑓 . This
means that 𝑔(𝑧(𝑖)ℓ ) ≤ 𝑔(𝑧

(𝑖)
𝑢 ) while a minimizer 𝑥* is to the right of 𝑧(𝑖)𝑢 , or the symmetric case with

a minimizer is to the left of 𝑧(𝑖)ℓ . Without loss of generality, we assume the former. We then have

𝑧
(𝑖)
ℓ ≤ 𝑧

(𝑖)
𝑢 ≤ 𝑥* and 𝑥*−𝑧(𝑖)𝑢 ≤ 𝑧(𝑖)𝑢 −𝑧(𝑖)ℓ . Consequently 𝑧(𝑖)𝑢 = 𝛼𝑧

(𝑖)
𝑙 +(1−𝛼)𝑥* where 𝛼 ∈ [0, 12 ] and the

convexity of 𝑓 implies 𝑓(𝑧(𝑖)𝑢 ) ≤ 1
2𝑓(𝑧

(𝑖)
𝑙 ) + 1

2𝑓(𝑥
*)) or equivalently 𝑓(𝑧(𝑖)𝑢 )− 𝑓(𝑥*) ≤ 𝑓(𝑧

(𝑖)
ℓ )− 𝑓(𝑧(𝑖)𝑢 ).

But 𝑓(𝑧(𝑖)ℓ )− 𝑓(𝑧(𝑖)𝑢 ) ≤ 2𝜀 since 𝑔(𝑧(𝑖)ℓ ) ≤ 𝑔(𝑧(𝑖)𝑢 ). Thus, 𝑓(𝑧(𝑖)𝑢 )− 𝑓(𝑥*) ≤ 2𝜀, and 𝑧(𝑖)𝑢 is queried by the
algorithm, as desired.

7.10 Weighted Geometric Median

In this section, we show how to extend our results to the weighted geometric median problem, also
known as the Weber problem: given a set of 𝑛 points in 𝑑 dimensions, 𝑎(1), . . . , 𝑎(𝑛) ∈ R𝑑, with
corresponding weights 𝑤(1), . . . , 𝑤(𝑛) ∈ R>0, find a point 𝑥* ∈ R𝑑 that minimizes the weighted sum of
Euclidean distances to them:

𝑥* ∈ argmin
𝑥∈R𝑑

𝑓(𝑥) where 𝑓(𝑥)
def
=
∑︁
𝑖∈[𝑛]

𝑤(𝑖)‖𝑥− 𝑎(𝑖)‖2.

As in the unweighted problem, our goal is to compute (1 + 𝜀)-approximate solution, i.e. 𝑥 ∈ R𝑑 with
𝑓(𝑥) ≤ (1 + 𝜀)𝑓(𝑥*).

First, we show that it suffices to consider the case where the weights are integers with bounded
sum (Lemma 7.10.1). Then, we show that such an instance of the weighted geometric median problem
can be solved using the algorithms developed for the unweighted problem.

Lemma 7.10.1. Given points 𝑎(1), 𝑎(2), . . . , 𝑎(𝑛) ∈ R𝑑, non-negative weights 𝑤(1), 𝑤(2), . . . , 𝑤(𝑛) ∈ R>0,
and 𝜀 ∈ (0, 1), we can compute in linear time weights 𝑤(1)

1 , 𝑤
(2)
1 , . . . , 𝑤

(𝑛)
1 such that:

∙ Any (1+𝜀/5)-approximate weighted geometric median of 𝑎(1), . . . , 𝑎(𝑛) with the weights 𝑤(1)
1 , . . . , 𝑤

(𝑛)
1

is also a (1 + 𝜀)-approximate weighted geometric median of 𝑎(1), . . . , 𝑎(𝑛) with the weights
𝑤(1), . . . , 𝑤(𝑛), and

∙ 𝑤(1)
1 , . . . , 𝑤

(𝑛)
1 are nonnegative integers and

∑︀
𝑖∈[𝑛]𝑤

(𝑖)
1 ≤ 5𝑛𝜀−1.

Proof. Let
𝑓(𝑥) =

∑︁
𝑖∈[𝑛]

𝑤(𝑖)‖𝑎(𝑖) − 𝑥‖

and 𝑊 =
∑︀

𝑖∈[𝑛]𝑤
(𝑖). Furthermore, let 𝜀′ = 𝜀/5 and for each 𝑖 ∈ [𝑛], define 𝑤(𝑖)

0 = 𝑛
𝜀′𝑊 𝑤(𝑖), 𝑤(𝑖)

1 =⌊︁
𝑤

(𝑖)
0

⌋︁
, and 𝑤(𝑖)

2 = 𝑤
(𝑖)
0 − 𝑤

(𝑖)
1 . We also define 𝑓0, 𝑓1, 𝑓2,𝑊0,𝑊1,𝑊2 analogously to 𝑓 and 𝑊 .

Now, assume 𝑓1(𝑥) ≤ (1 + 𝜀′)𝑓1(𝑥*), where 𝑥* is the minimizer of 𝑓 and 𝑓0. Then:

𝑓0(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥) ≤ 𝑓1(𝑥) + 𝑓2(𝑥*) +𝑊2‖𝑥− 𝑥*‖2



and

𝑊2‖𝑥− 𝑥*‖2 =
𝑊2

𝑊1

∑︁
𝑖∈[𝑛]

𝑤
(𝑖)
1 ‖𝑥− 𝑥*‖2 ≤

𝑊2

𝑊1

∑︁
𝑖∈[𝑛]

𝑤
(𝑖)
1

(︁
‖𝑥− 𝑎(𝑖)‖2 + ‖𝑎(𝑖) − 𝑥*‖

)︁
≤ 𝑊2

𝑊1
(𝑓1(𝑥) + 𝑓1(𝑥*)) .

Now, since 𝑊0 =
𝑛
𝜀′ and 𝑊1 ≥𝑊0 − 𝑛 we have

𝑊2

𝑊1
=
𝑊0 −𝑊1

𝑊1
=
𝑊0

𝑊1
− 1 ≤ 𝑊0

𝑊0 − 𝑛
− 𝑊0 − 𝑛
𝑊0 − 𝑛

=
𝑛

𝑛
𝜀′ − 𝑛

=
𝜀′

1− 𝜀′
.

Combining these yields that

𝑓0(𝑥) ≤ 𝑓1(𝑥) + 𝑓2(𝑥*) +
𝜀′

1− 𝜀′
(𝑓1(𝑥) + 𝑓1(𝑥*))

≤
(︂
1 +

𝜀′

1− 𝜀′

)︂
(1 + 𝜀′)𝑓1(𝑥

*) +
𝜀′

1− 𝜀′
𝑓1(𝑥*) + 𝑓2(𝑥*)

≤ (1 + 5𝜀′)𝑓0(𝑥*) = (1 + 𝜀)𝑓0(𝑥*) .

We now proceed to show the main result of this section.

Lemma 7.10.2. A (1 + 𝜀)-approximate weighted geometric median of 𝑛 points in R𝑑 can be computed
in 𝑂(𝑛𝑑 log3 𝜀−1) time.

Proof. By applying Lemma 7.10.1, we can assume that the weights are integer and their sum does
not exceed 𝑛𝜀−1. Note that computing the weighted geometric median with such weights is equivalent
to computing an unweighted geometric median of 𝑂(𝑛𝜀−1) points (where each point of the original
input is repeated with the appropriate multiplicity). We now show how to simulate the behavior of
our unweighted geometric median algorithms on such a set of points without computing it explicitly.

If 𝜀 > 𝑛−1/2, we will apply the algorithm ApproximateMedian(𝜀), achieving a runtime of 𝑂(𝑑𝜀−2) =
𝑂(𝑛𝑑). It is only necessary to check that we can implement weighted sampling from our points with
𝑂(𝑛) preprocessing and 𝑂(1) time per sample. This is achieved by the alias method [154].

Now assume 𝜀 < 𝑛−1/2. We will employ the algorithm AccurateMedian(𝜀). Note that the ini-
tialization using ApproximateMedian(2) can be performed as described in the previous paragraph.
It remains to check that we can implement the subroutines LineSearch and ApproxMinEig on the
implicitly represented multiset of 𝑂(𝑛𝜀−1) points. It is enough to observe only 𝑛 of the points are
distinct, and all computations performed by these subroutines are identical for identical points. The
total runtime will thus be 𝑂(𝑛𝑑 log3(𝑛/𝜀2)) = 𝑂(𝑛𝑑 log3 𝜀−1).
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Cutting



Chapter 8

Convex Minimization In Nearly-Cubic Time

8.1 Introduction

Throughout this chapter, we study the following feasibility problem:

Definition 8.1.1 (Feasibility Problem). Given a separation oracle (see Definition 2.3.5) for a set
𝐾 ⊆ R𝑛 contained in a box of radius 𝑅 either find a point 𝑥 ∈ 𝐾 or prove that 𝐾 does not contain a
ball of radius 𝜀.

This feasibility problem is one of the most fundamental and classic problems in optimization. Since
the celebrated result of Shor [236], Yudin and Nemirovski [274] and Khachiyan [142] in 1970s essentially
proving that it can be solved in time 𝑂(poly(𝑛) · SO · log(𝑅/𝜀)), this problem has served as one of the
key primitives for solving numerous problems in both combinatorial and convex optimization.

Despite the prevalence of this feasibility problem, the best known running time for solving this
problem has not been improved in over 25 years. In a seminal paper of Vaidya in 1989 [253], he
showed how to solve the problem in ̃︀𝑂(𝑛 · SO · log(𝑛𝑅/𝜀) + 𝑛𝜔+1 log(𝑛𝑅/𝜀)) time. Despite interesting
generalizations and practical improvements [11, 226, 101, 20, 103, 204, 272, 102], the best theoretical
guarantees for solving this problem have not been improved since.

In this chapter, we show how to improve upon Vaidya’s running time in certain regimes. We
provide a cutting plane algorithm which achieves an expected running time of 𝑂(𝑛 · SO · log(𝑛𝑅/𝜀) +
𝑛3 log𝑂(1)(𝑛𝑅/𝜀)), improving upon the previous best known running time for the current known value
of 𝜔 < 2.373 [269, 99] when 𝑅/𝜀 = 𝑂(poly(𝑛)).

We achieve our results by the combination of multiple techniques. First we show how to use
techniques from the work of Vaidya and Atkinson to modify Vaidya’s scheme so that it is able to
tolerate random noise in the computation in each iteration. We then show how to use known numerical
machinery [257, 242, 164] in combination with some new techniques (Section 8.4.1 and Section 8.4.2) to
implement each of these relaxed iterations efficiently. We hope that both these numerical techniques
as well as our scheme for approximating complicated methods, such as Vaidya’s, may find further
applications.

8.1.1 Previous Work

Throughout this chapter, we restrict our attention to algorithms for the feasibility problem that have
a polynomial dependence on SO, 𝑛, and log(𝑅/𝜀). Such “efficient” algorithms typically follow the
following iterative framework. First, they compute some trivial region Ω that contains 𝐾. Then,
they call the separation oracle at some point 𝑥 ∈ Ω. If 𝑥 ∈ 𝐾, the algorithm successfully solved the
problem. If 𝑥 /∈ 𝐾 then the separation oracle must return a half-space containing 𝐾. The algorithm
then uses this half-space to shrink the region Ω while maintaining the invariant that 𝐾 ⊆ Ω. The
algorithm then repeats this process until it finds a point 𝑥 ∈ 𝐾 or the region Ω becomes too small to
contain a ball with radius 𝜀.
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Year Algorithm Complexity

1979 Ellipsoid Method [236, 274, 142] 𝑂(𝑛2SO log 𝜅+ 𝑛4 log 𝜅)

1988 Inscribed Ellipsoid [144, 213] 𝑂(𝑛SO log 𝜅+ (𝑛 log 𝜅)4.5)

1989 Volumetric Center [253] 𝑂(𝑛SO log 𝜅+ 𝑛1+𝜔 log 𝜅)

1995 Analytic Center [20] 𝑂

(︂
𝑛SO log2 𝜅+ 𝑛𝜔+1 log2 𝜅

+(𝑛 log 𝜅)2+𝜔/2

)︂
2004 Random Walk [36] → 𝑂(𝑛SO log 𝜅+ 𝑛7 log 𝜅)

- This Chapter 𝑂(𝑛SO log 𝜅+ 𝑛3 log𝑂(1) 𝜅)

Table 8.1: Algorithms for the Feasibility Problem. 𝜅 indicates 𝑛𝑅/𝜀. The arrow, →, indicates that it solves a
more general problem where only a membership oracle is given.

Previous works on efficient algorithms for the feasibility problem all follow this iterative framework.
They vary in terms of what set Ω they maintain, how they compute the center to query the separation
oracle, and how they update the set. In Table 8.1, we list the previous running times for solving the
feasibility problem. As usual SO indicates the cost of the separation oracle.

The first efficient algorithm for the feasibility problem is the ellipsoid method, due to Shor [236],
Nemirovksii and Yudin [274], and Khachiyan [142]. The ellipsoid method maintains an ellipsoid as Ω
and uses the center of the ellipsoid as the next query point. It takes Θ(𝑛2 log(𝑛𝑅/𝜀)) calls of oracle
which is far from the lower bound Ω(𝑛 log(𝑅/𝜀)) calls [201].

To alleviate the problem, the algorithm could maintain all the information from the oracle, i.e.,
the polytope created from the intersection of all half-spaces obtained. The center of gravity method
[168] achieves the optimal oracle complexity using this polytope and the center of gravity of this
polytope as the next point. However, computing center of gravity is computationally expensive and
hence we do not list its running time in Table 8.1. The Inscribed Ellipsoid Method [144] also achieved
an optimal oracle complexity using this polytope as Ω but instead using the center of the maximal
inscribed ellipsoid in the polytope to query the separation oracle. We listed it as occurring in year
1988 in Table 8.1 because it was [213] that yielded the first polynomial time algorithm to actually
compute this maximal inscribed ellipsoid for polytope.

Vaidya [253] obtained a faster algorithm by maintaining an approximation of this polytope and
using a different center, namely the volumetric center. Although the oracle complexity of this volu-
metric center method is very good, the algorithm is not extremely efficient as each iteration involves
matrix inversion. Atkinson and Vaidya [20] showed how to avoid this computation in certain settings.
However, they were unable to achieve the desired convergence rate from their method.

Bertsimas and Vempala [36] also gives an algorithm that avoids these expensive linear algebra
operations while maintaining the optimal convergence rate by using techniques in sampling convex
sets. Even better, this result works for a much weaker oracle, the membership oracle. However, the
additional cost of this algorithm is relatively high. We remark that while there are considerable im-
provemenst on the sampling techniques [180, 133, 164], the additional cost is still quite high compared
to standard linear algebra.

8.1.2 Challenges in Improving Previous Work

Our algorithm builds upon the previous fastest algorithm of Vaidya [253]. Ignoring implementation
details and analysis, Vaidya’s algorithm is quite simple. This algorithm simply maintains a polytope
𝑃 (𝑘) = {𝑥 ∈ R𝑛 : 𝐴𝑥− 𝑏 > 0} as the current Ω and uses the volumetric center, the minimizer of the
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following volumetric barrier function

argmin
𝑥

1

2
log det

(︀
𝐴𝑇𝑆−2

𝑥 𝐴
)︀

where 𝑆𝑥
def
= 𝐷𝑖𝑎𝑔(𝐴𝑥− 𝑏) (8.1)

as the point at which to query the separation oracle. The polytope is then updated by adding shifts of
the half-spaces returned by the separation oracle and dropping unimportant constraints. By choosing
the appropriate shift, picking the right rule for dropping constraints, and using Newton’s method to
compute the volumetric center he achieved a running time of 𝑂(𝑛 · 𝑆𝑂 · log 𝜅+ 𝑛1+𝜔 log 𝜅).

While Vaidya’s algorithm’s dependence on SO is essentially optimal, the additional per-iteration
costs of his algorithm could possibly be improved. The computational bottleneck in each iteration
of Vaidya’s algorithm is computing the gradient of log det which in turn involves computing the
leverage scores 𝜎(𝑥) def

= 𝑑𝑖𝑎𝑔(𝑆−1
𝑥 𝐴

(︀
𝐴𝑇𝑆−2

𝑥 𝐴
)︀−1

𝐴𝑇𝑆−1
𝑥 ), a key concept in part I. As the best known

algorithms for computing leverage scores exactly in this setting take time 𝑂(𝑛𝜔), directly improving
the running time of Vaidya’s algorithm seems challenging.

However, similar to previous chapters, these leverage scores can be computed up to a multiplicative
(1±𝜀) error by solving 𝑂(𝜀−2 log 𝑛) linear systems involving 𝐴𝑇𝑆−2

𝑥 𝐴. While in general this still takes
time 𝑂(𝜀−2𝑛𝜔), there are known techniques for efficiently maintaining the inverse of a matrix so that
solving linear systems take amortized 𝑂(𝑛2) time [257, 164]. Consequently if it could be shown that
computing approximate leverage scores sufficed, this would potentially decrease the amortized cost
per iteration of Vaidya’s method.

Unfortunately, Vaidya’s method does not seem to tolerate this type of multiplicative error. If
we compute compute gradients for (8.1) using this approximation of leverage scores, it seems that
the point computed would be far from the true center. Moreover, without being fairly close to the
true volumetric center, it is difficult to argue that such a cutting plane method would make sufficient
progress.

To overcome this issue, it is tempting to directly use the linear program result in Chapter 6. In
this chapter, we faced a similar issue where a volumetric, i.e. log det, potential function had the right
analytic and geometric properties, however was computational expensive to minimize. To overcome
this issue the authors instead computed a weighted analytic center:

argmin
𝑥

−
∑︁
𝑖∈[𝑚]

𝑤𝑖 log 𝑠𝑖(𝑥) where 𝑠(𝑥)
def
= 𝐴𝑥− 𝑏 .

For carefully chosen weights this center provides the same convergence guarantees as the volumetric
potential function, while each step can be computed by solving few linear systems (rather than forming
the matrix inverse).

Unfortunately, it is unclear how to directly extend the work in Chapter 6 on solving an explicit
linear program to the feasibility problem specified by a separation oracle. While it is possible to
approximate the volumetric barrier by a weighted analytic center in many respects, proving that this
approximation suffices for fast convergence remains open. In fact, the volumetric barrier function as
used in Vaidya’s algorithm is well approximated simply by the standard analytic center

argmin
𝑥

−
∑︁
𝑖∈[𝑚]

log 𝑠𝑖(𝑥) where 𝑠(𝑥)
def
= 𝐴𝑥− 𝑏 .

as all the unimportant constraints are dropped during the algorithm. However, despite decades of
research, the best running times known for solving the feasibility problem using the analytic center
are Vaidya and Atkinson algorithm from 1995 [20]. While the running time of this algorithm could
possibly be improved using approximate leverage score computations and amortized efficient linear
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system solvers, unfortunately at best, without further insight this would yield an algorithm which
requires a suboptimal 𝑂(𝑛 log𝑂(1) 𝜅) queries to the separation oracle.

As pointed out in [20], the primary difficulty in using any sort of analytic center is quantifying
the amount of progress made in each step. We still believe providing direct near-optimal analysis
of weighted analytic center is a tantalizing open question warranting further investigation. However,
rather than directly address the question of the performance of weighted analytic centers for the
feasibility problem, we take a slightly different approach that side-steps this issue. We provide a
partial answer that still sheds some light on the performance of the weighted analytic center while still
providing our desired running time improvements.

8.1.3 Our Approach

To overcome the shortcoming of the volumetric and analytic centers we instead consider a hybrid
barrier function

argmin
𝑥

−
∑︁
𝑖∈[𝑚]

𝑤𝑖 log 𝑠𝑖(𝑥) + log det(𝐴𝑇𝑆−1
𝑥 𝐴) where 𝑠(𝑥)

def
= 𝐴𝑥− 𝑏 .

for careful chosen weights. Our key observation is that for correct choice of weights, we can compute
the gradient of this potential function. In particular if we let 𝑤 = 𝜏 − 𝜎(𝑥) then the gradient of this
potential function is the same as the gradients of

∑︀
𝑖∈[𝑚] 𝜏𝑖 log 𝑠𝑖(𝑥), which we can compute efficiently.

Moreover, since we are using log det, we can use analysis similar to Vaidya’s algorithm [253] to analyze
the convergence rate of this algorithm.

Unfortunately, this is a simple observation and does not immediately change the problem substan-
tially. It simply pushes the problem of computing gradients of log det to computing 𝑤. Therefore,
for this scheme to work, we would need to ensure that the weights do not change too much and that
when they change, they do not significantly hurt the progress of our algorithm. In other words, for
this scheme to work, we would still need very precise estimates of leverage scores.

However, we note that the leverage scores 𝜎(𝑥) do not change too much between iterations. More-
over, we provide what we believe is an interesting technical result that an unbiased estimates to the
changes in leverage scores can be computed using linear system solvers such that the total error of the
estimate is bounded by the total change of the leverage scores (See Section 8.4.1). Using this result
our scheme simply follows Vaidya’s basic scheme in [253], however instead of minimizing the hybrid
barrier function directly we alternate between taking Newton steps we can compute, changing the
weights so that we can still compute Newton steps, and computing accurate unbiased estimates of the
changes in the leverage scores so that the weights do not change adversarially by too much.

To make this scheme work, there are two additional details that need to be dealt with. First,
we cannot let the weights vary too much as this might ultimately hurt the rate of progress of our
algorithm. Therefore, in every iteration we compute a single leverage score to high precision to control
the value of 𝑤𝑖 and we show that by careful choice of the index we can ensure that no weight gets too
large (See Section 8.4.2).

Second, we need to show that changing weights does not affect our progress by much more than
the progress we make with respect to log det. To do this, we need to show the slacks are bounded
above and below. We enforce this by adding regularization terms and consider the potential function

𝑝𝑒(𝑥) = −
∑︁
𝑖∈[𝑚]

𝑤𝑖 log 𝑠𝑖(𝑥) +
1

2
log det

(︀
𝐴𝑇𝑆−2

𝑥 𝐴+ 𝜆𝐼
)︀
+
𝜆

2
‖𝑥‖22

This allows us to ensure that the entries of 𝑠(𝑥) do not get too large or too small and therefore
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changing the weighting of the analytic center cannot affect the function value too much.
Third, we need to make sure our potential function is convex. If we simply take 𝑤 = 𝜏 − 𝜎(𝑥)

with 𝜏 as an estimator of 𝜎(𝑥), 𝑤 can be negative and the potential function could be non-convex.
To circumvent this issue, we use 𝑤 = 𝑐𝑒 + 𝜏 − 𝜎(𝑥) and make sure ‖𝜏 − 𝜎(𝑥)‖∞ < 𝑐𝑒.

Combining these insights, using efficient algorithms for solving a sequence of slowly changing linear
systems [257, 164], and providing careful analysis ultimately allows us to achieve a running time of
𝑂(𝑛SO log 𝜅 + 𝑛3 log𝑂(1) 𝜅) for the feasibility problem. Furthermore, in the case that 𝐾 does not
contain a ball of radius 𝜀, our algorithm provides a proof that the polytope does not contain a ball of
radius 𝜀. This proof ultimately allows us to achieve running time improvements for strongly polynomial
submodular minimization in Chapter 10.

8.1.4 Organization

The rest of Chapter 8 is organized as follows. In Section 8.2 we provide some preliminary information
and notation we use throughout Chapter 8. In Section 8.3 we then provide and analyze our cutting
plane method. In Section 8.4 we provide key technical tools which may be of independent interest.

8.2 Preliminaries

Here we introduce some notation and concepts we use throughout this chapter.

8.2.1 Hybrid Barrier Function

As explained in Section 8.1.3 our cutting plane method maintains a polytope 𝑃 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≥ 𝑏}
for 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑛 that contains some target set 𝐾. We then maintain a minimizer of the
following hybrid barrier function:

𝑝𝑒(𝑥)
def
= −

∑︁
𝑖∈[𝑚]

(𝑐𝑒 + 𝑒𝑖) log (𝑠𝑖(𝑥)/𝑅) +
1

2
log det

(︀
𝑅2
(︀
𝐴𝑇𝑆−2

𝑥 𝐴+ 𝜆𝐼
)︀)︀

+
𝜆

2
‖𝑥‖22

where 𝑒 ∈ R𝑚 is a variable we maintain, 𝑐𝑒 ≥ 0 and 𝜆 ≥ 0 are constants we fix later, 𝑠(𝑥) def
= 𝐴𝑥− 𝑏,

𝑆𝑥 = 𝐷𝑖𝑎𝑔(𝑠(𝑥)), and 𝑅 is the radius of the box containing 𝑃 . When the meaning is clear from
context we often use the shorthand 𝐴𝑥

def
= 𝑆−1

𝑥 𝐴. The 𝑅 term is only used in the proof and can be
ignored in the algorithm because it only affects a constant term in the potential function.

Rather than maintaining 𝑒 explicitly, we instead maintain a vector 𝜏 ∈ R𝑚 that approximates the
leverage score

𝜓(𝑥)
def
= 𝑑𝑖𝑎𝑔

(︁
𝐴𝑥

(︀
𝐴𝑇
𝑥𝐴𝑥 + 𝜆𝐼

)︀−1
𝐴𝑇
𝑥

)︁
.

and pick 𝑒 using the function 𝑒𝑃 (𝜏 ,𝑥)
def
= 𝜏 − 𝜓(𝑥). Note that 𝜓(𝑥) is simply the leverage scores of

certain rows of the matrix [︂
𝐴𝑥√
𝜆𝐼

]︂
.

and therefore the usual properties of leverage scores hold, i.e. 𝜓𝑖(𝑥) ∈ (0, 1) and ‖𝜓𝑖(𝑥)‖1 ≤ 𝑛. We
write 𝜓(𝑥) equivalently as 𝜓𝑥 or 𝜓𝑃 when we want the matrix to be clear. Furthermore, we let
Ψ𝑥

def
= 𝐷𝑖𝑎𝑔(𝜓(𝑥)) and 𝜇(𝑥) def

= min𝑖 𝜓𝑖(𝑥). Again, we use the subscripts of 𝑥 and 𝑃 interchangeably
and often drop them when the meaning is clear from context.

We remark that the last term 𝜆
2‖𝑥‖

2
2 ensures that our point is always within a certain region

(Lemma 8.3.18) and hence the term (𝑐𝑒 + 𝑒𝑖) log 𝑠𝑖(𝑥)𝑖 never gets too large. However, this ℓ2 term
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changes the Hessian of the potential function and hence we need to put a 𝜆𝐼 term inside both the
log det and the leverage score to reflect this. This is the reason why we use 𝜓 instead of the standard
leverage score.

8.3 Our Cutting Plane Method

In this section we develop and prove the correctness of our cutting plane method. We break the
presentation and proof of correctness of our cutting plane methods into multiple parts. First in
Section 8.3.1 we describe how we maintain a center of the hybrid barrier function 𝑝𝑒 and analyze this
procedure. Then, in Section 8.3.2 we carefully analyze the effect of changing constraints on the hybrid
barrier function and in Section 8.3.3 we prove properties of an approximate center of hybrid barrier
function, which we call a hybrid center. In Section 8.3.4 we then provide our cutting plane method
and in Section 8.3.5 we prove that the cutting plane method solves the feasibility problem as desired.

8.3.1 Centering

In this section we show how to compute approximate centers or minimizers of the hybrid barrier
function for the current polytope 𝑃 = {𝑥 : 𝐴𝑥 ≥ 𝑏}. We split this proof up into multiple parts. First
we simply bound the gradient and Hessian of the hybrid barrier function, 𝑝𝑒, as follows.

Lemma 8.3.1. For 𝑓(𝑥)
def
= 1

2 log det
(︀
𝐴𝑇𝑆−2

𝑥 𝐴+ 𝜆𝐼
)︀
, we have that

∇𝑓(𝑥) = −𝐴𝑇
𝑥𝜓(𝑥) and 𝐴𝑇

𝑥Ψ(𝑥)𝐴𝑥 ⪯ ∇2𝑓(𝑥) ⪯ 3𝐴𝑇
𝑥Ψ(𝑥)𝐴𝑥 .

Proof. Our proof is similar to [10, Appendix] which proved the statement when 𝜆 = 0. This case does
not change the derivation significantly, however for completeness we include the proof below.

We take derivatives on 𝑠 first and then apply chain rule. Let 𝑓(𝑠) = 1
2 log det

(︀
𝐴𝑇𝑆−2𝐴+ 𝜆𝐼

)︀
.

We use the notation 𝐷𝑓(𝑥)[ℎ] to denote the directional derivative of 𝑓 along the direction ℎ at the
point 𝑥. Using the standard formula for the derivative of log det, i.e. 𝑑

𝑑𝑡 log det𝐵𝑡 = Tr((𝐵𝑡)
−1(𝑑𝐵𝑡

𝑑𝑡 )),
we have

𝐷𝑓(𝑠)[ℎ] =
1

2
Tr((𝐴𝑇𝑆−2𝐴+ 𝜆𝐼)−1(𝐴𝑇 (−2)𝑆−3𝐻𝐴)) (8.2)

= −
∑︁
𝑖

ℎ𝑖
𝑠𝑖
1𝑇𝑖 𝑆

−1𝐴
(︀
𝐴𝑇𝑆−2𝐴+ 𝜆𝐼

)︀−1
𝐴𝑆−11𝑖 = −

∑︁
𝑖

𝜓𝑖ℎ𝑖
𝑠𝑖

.

Applying chain rules, we have ∇𝑓(𝑥) = −𝐴𝑇
𝑥𝜓. Now let 𝑃 def

= 𝑆−1𝐴
(︀
𝐴𝑇𝑆−2𝐴+ 𝜆𝐼

)︀−1
𝐴𝑇𝑆−1.

Taking the derivative of (8.2) again and using the cyclic property of trace, we have

𝐷2𝑓(𝑠)[ℎ1,ℎ2] = Tr
(︁(︀
𝐴𝑇𝑆−2𝐴+ 𝜆𝐼

)︀−1 (︀
𝐴𝑇 (−2)𝑆−3𝐻2𝐴

)︀ (︀
𝐴𝑇𝑆−2𝐴+ 𝜆𝐼

)︀−1 (︀
𝐴𝑇𝑆−3𝐻1𝐴

)︀)︁
−Tr

(︁(︀
𝐴𝑇𝑆−2𝐴+ 𝜆𝐼

)︀−1 (︀
𝐴𝑇 (−3)𝑆−4𝐻2𝐻1𝐴

)︀)︁
= 3Tr

(︀
𝑃𝑆−2𝐻2𝐻1

)︀
− 2Tr

(︀
𝑃𝑆−1𝐻2𝑃𝑆

−1𝐻1

)︀
= 3

∑︁
𝑖

𝑃𝑖𝑖
ℎ1(𝑖)ℎ2(𝑖)

𝑠2𝑖
− 2

∑︁
𝑖𝑗

𝑃𝑖𝑗
ℎ2(𝑗)

𝑠𝑗
𝑃𝑗𝑖
ℎ2(𝑖)

𝑠𝑖

= 3
∑︁
𝑖

𝜓𝑖
ℎ1(𝑖)ℎ2(𝑖)

𝑠2𝑖
− 2

∑︁
𝑖𝑗

𝑃 2
𝑖𝑗

ℎ2(𝑗)

𝑠𝑗

ℎ2(𝑖)

𝑠𝑖
.
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Consequently, 𝐷2𝑓(𝑥)[1𝑖,1𝑗 ] = [𝑆−1
(︁
3Ψ− 2𝑃 (2)

)︁
𝑆−1]𝑖𝑗 where 𝑃 (2) is the Schur product of 𝑃 with

itself.
Now note that∑︁

𝑖

𝑃 2
𝑖𝑗 = 1𝑗𝑆

−1𝐴
(︀
𝐴𝑇𝑆−2𝐴+ 𝜆𝐼

)︀−1
𝐴𝑇𝑆−2𝐴

(︀
𝐴𝑇𝑆−2𝐴+ 𝜆𝐼

)︀−1
𝐴𝑇𝑆−11𝑗

≤ 1𝑗𝑆
−1𝐴

(︀
𝐴𝑇𝑆−2𝐴+ 𝜆𝐼

)︀−1
𝐴𝑇𝑆−11𝑗 = 𝑃𝑗𝑗 = Ψ𝑗𝑗 .

Hence, the Gershgorin circle theorem shows that the eigenvalues of Ψ − 𝑃 (2) are lies in union of the
interval [0, 2𝜓𝑗 ] over all 𝑗. Hence, Ψ − 𝑃 (2) ⪰ 0. On the other hand, Schur product theorem shows
that 𝑃 (2) ⪰ 0 as 𝑃 ⪰ 0. Hence, the result follows by chain rule.

Lemma 8.3.1 immediately shows that under our choice of 𝑒 = 𝑒𝑃 (𝑥, 𝜏 ) we can compute the
gradient of the hybrid barrier function, 𝑝𝑒(𝑥) efficiently. Formally, Lemma 8.3.1 immediately implies
the following:

Lemma 8.3.2 (Gradient). For 𝑥 ∈ 𝑃 = {𝑦 ∈ R𝑛 : 𝐴𝑦 ≥ 𝑏} and 𝑒 ∈ R𝑚 we have

∇𝑝𝑒(𝑥) = −𝐴𝑇
𝑥 (𝑐𝑒1+ 𝑒+𝜓𝑃 (𝑥)) + 𝜆𝑥

and therefore for all 𝜏 ∈ R𝑚, we have

∇𝑝𝑒(𝜏 ,𝑥)(𝑥) = −𝐴𝑇
𝑥 (𝑐𝑒1+ 𝜏 ) + 𝜆𝑥.

Remark 8.3.3. To be clear, the vector ∇𝑝𝑒(𝜏 ,𝑥)(𝑥) is defined as the vector such that

[∇𝑝𝑒(𝜏 ,𝑥)(𝑥)]𝑖 = lim
𝑡→0

1

𝑡

(︀
𝑝𝑒(𝜏 ,𝑥)(𝑥+ 𝑡1𝑖)− 𝑝𝑒(𝜏 ,𝑥)(𝑥)

)︀
.

In other words, we treat the parameter 𝑒(𝜏 ,𝑥) as fixed. This is the reason we denote it by subscript
to emphasize that 𝑝𝑒(𝑥) is a family of functions, 𝑝𝑒(𝜏 ,𝑥) is one particular function, and ∇𝑝𝑒(𝜏 ,𝑥) means
taking gradient on that particular function.

Consequently, we can always compute ∇𝑝𝑒(𝜏 ,𝑥)(𝑥) efficiently. Now, we measure centrality or how
close we are to the hybrid center as follows.

Definition 8.3.4 (Centrality). For 𝑥 ∈ 𝑃 = {𝑦 ∈ R𝑛 : 𝐴𝑦 ≥ 𝑏} and 𝑒 ∈ R𝑚, we define the centrality
of 𝑥 by

𝛿𝑒(𝑥)
def
= ‖∇𝑝𝑒(𝑥)‖𝐻(𝑥)−1

where𝐻(𝑥)
def
= 𝐴𝑇

𝑥 (𝑐𝑒𝐼 +Ψ(𝑥))𝐴𝑥+𝜆𝐼. Often, we use weights 𝑤 ∈ R𝑚>0 to approximate this Hessian

and consider 𝑄(𝑥,𝑤)
def
= 𝐴𝑇

𝑥 (𝑐𝑒𝐼 +𝑊 )𝐴𝑥 + 𝜆𝐼.
Next, we bound how much slacks can change in a region close to a nearly central point.

Lemma 8.3.5. Let 𝑥 ∈ 𝑃 = {𝑦 ∈ R𝑛 : 𝐴𝑦 ≥ 𝑏} and 𝑦 ∈ R𝑛 such that ‖𝑥− 𝑦‖𝐻(𝑥) ≤ 𝜀
√︀
𝑐𝑒 + 𝜇(𝑥)

for 𝜀 < 1. Then 𝑦 ∈ 𝑃 and (1− 𝜀)𝑆𝑥 ⪯ 𝑆𝑦 ⪯ (1 + 𝜀)𝑆𝑥 .

Proof. Direct calculation reveals the following:

‖𝑆−1
𝑥 (𝑠𝑦 − 𝑠𝑥)‖∞ ≤ ‖𝐴𝑥(𝑦 − 𝑥)‖2 ≤

1√︀
𝑐𝑒 + 𝜇(𝑥)

‖𝐴𝑥(𝑦 − 𝑥)‖𝑐𝑒𝐼+Ψ(𝑥)

≤ 1√︀
𝑐𝑒 + 𝜇(𝑥)

‖𝑦 − 𝑥‖𝐻(𝑥) ≤ 𝜀 .

Consequently, (1− 𝜀)𝑆𝑥 ⪯ 𝑆𝑦 ⪯ (1 + 𝜀)𝑆𝑥. Since 𝑦 ∈ 𝑃 if and only if 𝑆𝑦 ⪰ 0 the result follows.
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Combining the previous lemmas we obtain the following.

Lemma 8.3.6. Let 𝑥 ∈ 𝑃 = {𝑦 ∈ R𝑛 : 𝐴𝑦 ≥ 𝑏} and 𝑒,𝑤 ∈ R𝑚 such that ‖𝑒‖∞ ≤ 1
2𝑐𝑒 ≤ 1 and

Ψ(𝑥) ⪯𝑊 ⪯ 4
3Ψ(𝑥). If 𝑦 ∈ R𝑛 satisfies ‖𝑥− 𝑦‖𝑄(𝑥,𝑤) ≤ 1

10

√︀
𝑐𝑒 + 𝜇(𝑥), then

1

4
𝑄(𝑥,𝑤) ⪯ ∇2𝑝𝑒(𝑦) ⪯ 8𝑄(𝑥,𝑤) and

1

2
𝐻(𝑥) ⪯𝐻(𝑦) ⪯ 2𝐻(𝑥) .

Also, we have that 𝐻(𝑥) ⪯ 𝑄(𝑥,𝑤) ⪯ 4
3𝐻(𝑥).

Proof. Lemma 8.3.1 shows that

𝐴𝑇
𝑦 (𝑐𝑒𝐼 +𝐸 +Ψ(𝑦))𝐴𝑦 + 𝜆𝐼 ⪯ ∇2𝑝𝑒(𝑦) ⪯ 𝐴𝑇

𝑦 (𝑐𝑒𝐼 +𝐸 + 3Ψ(𝑦))𝐴𝑦 + 𝜆𝐼 . (8.3)

Since𝑊 ⪰ Ψ, we have that 𝑄(𝑥,𝑤) ⪰𝐻(𝑥) and therefore ‖𝑥−𝑦‖𝐻(𝑥) ≤ 𝜀
√︀
𝑐𝑒 + 𝜇(𝑥) with 𝜀 = 0.1.

Consequently, by Lemma 8.3.5 we have (1− 𝜀)𝑆𝑥 ⪯ 𝑆𝑦 ⪯ (1 + 𝜀)𝑆𝑥 and therefore

(1− 𝜀)2

(1 + 𝜀)2
Ψ(𝑥) ⪯ Ψ(𝑦) ⪯ (1 + 𝜀)2

(1− 𝜀)2
Ψ(𝑥)

and
1

2
𝐻(𝑥) ⪯ (1− 𝜀)2

(1 + 𝜀)4
𝐻(𝑥) ⪯𝐻(𝑦) ⪯ (1 + 𝜀)2

(1− 𝜀)4
𝐻(𝑥) ⪯ 2𝐻(𝑥)

Furthermore, (8.3) shows that

∇2𝑝𝑒(𝑦) ⪯ 𝐴𝑇
𝑦 (𝑐𝑒𝐼 +𝐸 + 3Ψ(𝑦))𝐴𝑦 + 𝜆𝐼

⪯ (1 + 𝜀)2

(1− 𝜀)4
𝐴𝑇
𝑥 (𝑐𝑒𝐼 +𝐸 + 3Ψ(𝑥))𝐴𝑥 + 𝜆𝐼

⪯ 2𝐴𝑇
𝑥

(︂
3

2
𝑐𝑒𝐼 + 3𝑊

)︂
𝐴𝑥 + 𝜆𝐼 ⪯ 8𝑄(𝑥,𝑤)

and

∇2𝑝𝑒(𝑦) ⪰ 𝐴𝑇
𝑦 (𝑐𝑒𝐼 +𝐸 +Ψ(𝑦))𝐴𝑦 + 𝜆𝐼

⪰ (1− 𝜀)4

(1 + 𝜀)2
𝐴𝑇
𝑥 (𝑐𝑒𝐼 +𝐸 +Ψ(𝑥))𝐴𝑥 + 𝜆𝐼

⪰ 1

2
𝐴𝑇
𝑥

(︂
1

2
𝑐𝑒𝐼 +

3

4
𝑊

)︂
𝐴𝑥 + 𝜆𝐼 ⪰ 1

4
𝑄(𝑥,𝑤).

The last inequality follows from the definition of 𝐻(𝑥) and 𝑄(𝑥,𝑤) and the fact Ψ(𝑥) ⪯ 𝑊 ⪯
4
3Ψ(𝑥).

To analyze our centering scheme we use standard facts about gradient descent we prove in Lemma 8.3.7.

Lemma 8.3.7 (Gradient Descent). Let 𝑓 : R𝑛 → R be twice differentiable and 𝑄 ∈ R𝑛×𝑛 be positive

definite. Let 𝑥0 ∈ R𝑛 and 𝑥1
def
= 𝑥0 − 1

𝐿𝑄
−1∇𝑓(𝑥0). Furthermore, let 𝑥𝛼 = 𝑥0 + 𝛼(𝑥1 − 𝑥) and

suppose that 𝜇𝑄 ⪯ ∇2𝑓(𝑥𝛼) ⪯ 𝐿𝑄 for all 𝛼 ∈ [0, 1]. Then,

1. ‖∇𝑓(𝑥1)‖𝑄−1 ≤
(︀
1− 𝜇

𝐿

)︀
‖∇𝑓(𝑥0)‖𝑄−1

2. 𝑓(𝑥1) ≥ 𝑓(𝑥0)− 1
𝐿‖∇𝑓(𝑥0)‖2𝑄−1
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Proof. Integrating we have that

∇𝑓(𝑥1) = ∇𝑓(𝑥0) +

ˆ 1

0
∇2𝑓(𝑥𝛼)(𝑥1 − 𝑥0)𝑑𝛼 =

ˆ 1

0

(︂
𝑄− 1

𝐿
∇2𝑓(𝑥𝛼)

)︂
𝑄−1∇𝑓(𝑥0)𝑑𝛼

Consequently, by applying Jensen’s inequality we have

‖∇𝑓(𝑥1)‖𝑄−1 =

⃦⃦⃦⃦ˆ 1

0

(︂
𝑄− 1

𝐿
∇2𝑓(𝑥𝛼)

)︂
𝑄−1∇𝑓(𝑥0)𝑑𝛼

⃦⃦⃦⃦
𝑄−1

≤
ˆ 1

0

⃦⃦⃦⃦(︂
𝑄− 1

𝐿
∇2𝑓(𝑥𝛼)

)︂
𝑄−1∇𝑓(𝑥0)

⃦⃦⃦⃦
𝑄−1

𝑑𝛼

≤ ‖𝑄−1/2∇𝑓(𝑥0)‖[𝑄−1/2(𝑄− 1
𝐿
∇2𝑓(𝑥𝛼))𝑄−1/2]

2

Now we know that by assumption that

0 ⪯ 𝑄−1/2

(︂
𝑄− 1

𝐿
∇2𝑓(𝑥𝛼)

)︂
𝑄−1/2 ⪯

(︁
1− 𝜇

𝐿

)︁
𝐼

and therefore combining these (1) holds.
Using the convexity of 𝑓 , we have

𝑓(𝑥1) ≥ 𝑓(𝑥0) + ⟨∇𝑓(𝑥0),𝑥1 − 𝑥0⟩
≥ 𝑓(𝑥0)− ‖∇𝑓(𝑥0)‖𝑄−1‖𝑥1 − 𝑥0‖𝑄

and since ‖𝑥1 − 𝑥0‖𝑄 = 1
𝐿‖∇𝑓(𝑥0)‖𝑄−1 , (2) holds as well.

Next we bound the effect of changing 𝑒 on the hybrid barrier function 𝑝𝑒(𝑥).

Lemma 8.3.8. For 𝑥 ∈ 𝑃 = {𝑦 ∈ R𝑛 : 𝐴𝑦 ≥ 𝑏}, 𝑒,𝑓 ∈ R𝑚, and 𝑤 ∈ R𝑚>0 such that 𝑊 ⪰ Ψ(𝑥)

‖∇𝑝𝑓 (𝑥)‖𝑄(𝑥,𝑤)−1 ≤ ‖∇𝑝𝑒(𝑥)‖𝑄(𝑥,𝑤)−1 +
1√︀

𝑐𝑒 + 𝜇(𝑥)
‖𝑓 − 𝑒‖2

Proof. Direct calculation shows the following

‖∇𝑝𝑓 (𝑥)‖𝑄(𝑥,𝑤)−1 = ‖ −𝐴𝑇
𝑥 (𝑐𝑒1+ 𝑓 +𝜓𝑃 (𝑥)) + 𝜆𝑥‖𝑄(𝑥,𝑤)−1 (Formula for ∇𝑝𝑓 (𝑥))

≤ ‖∇𝑝𝑒(𝑥)‖𝑄(𝑥,𝑤)−1 + ‖𝐴𝑇
𝑥 (𝑓 − 𝑒)‖𝑄(𝑥,𝑤)−1 (Triangle inequality)

≤ ‖∇𝑝𝑒(𝑥)‖𝑄(𝑥,𝑤)−1 +
1√︀

𝑐𝑒 + 𝜇(𝑥)
‖𝐴𝑇

𝑥 (𝑓 − 𝑒)‖(𝐴𝑇
𝑥𝐴𝑥)

−1 (Bound on 𝑄(𝑥,𝑤))

≤ ‖∇𝑝𝑒(𝑥)‖𝑄(𝑥,𝑤)−1 +
1√︀

𝑐𝑒 + 𝜇(𝑥)
‖𝑓 − 𝑒‖2 (Property of projection matrix)

where in the second to third line we used 𝑄(𝑥,𝑤) ⪰𝐻(𝑥) ⪰ (𝑐𝑒 + 𝜇(𝑥))𝐴𝑇
𝑥𝐴𝑥.

We now have everything we need to analyze our centering algorithm.

Lemma 8.3.9. Let 𝑥(0) ∈ 𝑃 = {𝑦 ∈ R𝑛 : 𝐴𝑦 ≥ 𝑏} and let 𝜏 (0) ∈ R𝑚 such that ‖𝑒(𝜏 (0),𝑥(0))‖∞ ≤
1
3𝑐𝑒 ≤

1
3 . Assume that 𝑟 is a positive integer, 0 ≤ 𝑐Δ ≤ 0.01𝑐𝑒 and 𝛿𝑒(0)(𝑥

(0)) ≤ 1
100

√︀
𝑐𝑒 + 𝜇(𝑥(0)).

With high probability in 𝑛, the algorithm Centering(𝑥(0), 𝜏 (0), 𝑟, 𝑐Δ) outputs (𝑥(𝑟), 𝜏 (𝑟)) such that

1. 𝛿𝑒(𝑟)(𝑥
(𝑟)) ≤ 2

(︀
1− 1

64

)︀𝑟
𝛿𝑒(0)(𝑥

(0)).

2. E[𝑝𝑒(𝑘)(𝑥
(𝑟))] ≥ 𝑝𝑒(0)(𝑥(0))− 8

(︀
𝛿𝑒(0)(𝑥

(0))
)︀2
.
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Algorithm 21: (𝑥(𝑟), 𝜏 (𝑟)) = Centering(𝑥(0), 𝜏 (0), 𝑟, 𝑐Δ)

Input: Initial point 𝑥(0) ∈ 𝑃 = {𝑦 ∈ R𝑛 : 𝐴𝑦 ≥ 𝑏}, Estimator of leverage scores 𝜏 (0) ∈ R𝑛
Input: Number of iterations 𝑟 > 0, Accuracy of the estimator 0 ≤ 𝑐Δ ≤ 0.01𝑐𝑒.
Given: ‖𝑒(0)‖∞ ≤ 1

3𝑐𝑒 ≤
1
3 where 𝑒(0) = 𝑒(𝜏 (0),𝑥(0)).

Given: 𝛿𝑒(0)(𝑥
(0)) = ‖∇𝑝𝑒(0)(𝑥(0))‖𝐻(𝑥(0))−1 ≤ 1

100

√︀
𝑐𝑒 + 𝜇(𝑥(0)).

Compute 𝑤 such that Ψ(𝑥(0)) ⪯𝑊 ⪯ 4
3Ψ(𝑥(0)) (Similar to Lemma 2.3.4)

Let 𝑄 def
= 𝑄(𝑥(0),𝑤).

for 𝑘 = 1 to 𝑟 do

𝑥(𝑘) := 𝑥(𝑘−1) − 1
8𝑄

−1∇𝑝𝑒(𝑘−1)(𝑥(𝑘−1)).

Sample Δ(𝑘) ∈ R𝑛 s.t.
E[Δ(𝑘)] = 𝜓(𝑥(𝑘))−𝜓(𝑥(𝑘−1)) and
with high probability in 𝑛,
‖Δ(𝑘) − (𝜓(𝑥(𝑘))−𝜓(𝑥(𝑘−1)))‖2 ≤ 𝑐Δ‖𝑆−1

𝑥(𝑘−1)(𝑠𝑥(𝑘) − 𝑠𝑥(𝑘−1))‖2 (See Section 8.4.1)

𝜏 (𝑘) := 𝜏 (𝑘−1) +Δ(𝑘).
𝑒(𝑘) := 𝑒(𝜏 (𝑘),𝑥(𝑘)).

end

Output: (𝑥(𝑟), 𝜏 (𝑟))

3. E𝑒(𝑟) = 𝑒(0) and ‖𝑒(𝑟) − 𝑒(0)‖2 ≤ 1
10𝑐Δ.

4.
⃦⃦⃦
𝑆−1
𝑥(0)(𝑠(𝑥

(𝑟))− 𝑠(𝑥(0)))
⃦⃦⃦
2
≤ 1

10 .

where 𝑒(𝑟) = 𝑒(𝜏 (𝑟),𝑥(𝑟)).

Proof. Let 𝜂 = ‖∇𝑝𝑒(0)(𝑥(0))‖𝑄−1 . First, we use induction to prove that ‖𝑥(𝑟) − 𝑥(0)‖𝑄 ≤ 8𝜂,
‖∇𝑝𝑒(𝑟)(𝑥(𝑟))‖𝑄−1 ≤

(︀
1− 1

64

)︀𝑟
𝜂 and ‖𝑒(𝑟) − 𝑒(0)‖2 ≤ 1

10𝑐Δ for all 𝑟.

Clearly the claims hold for 𝑟 = 0. We now suppose they hold for all 𝑟 ≤ 𝑡 and show that
they hold for 𝑟 = 𝑡 + 1. Now, since ‖𝑥(𝑡) − 𝑥(0)‖𝑄 ≤ 8𝜂, 𝑥(𝑡+1) = 𝑥(𝑡) − 1

8𝑄
−1∇𝑝𝑒(𝑡)(𝑥(𝑡)), and

‖∇𝑝𝑒(𝑡)(𝑥(𝑡))‖𝑄−1 ≤
(︀
1− 1

64

)︀𝑡
𝜂 ≤ 𝜂, we have

‖𝑥(𝑡+1) − 𝑥(0)‖𝑄 ≤ ‖𝑥(𝑡) − 𝑥(0)‖𝑄 +
1

8
‖∇𝑝𝑒(𝑡)(𝑥

(𝑡))‖𝑄−1 ≤ 9𝜂.

We will improve this estimate later in the proof to finish the induction on ‖𝑥(𝑡+1)−𝑥(0)‖𝑄, but using
this, 𝜂 ≤ 0.01

√︀
𝑐𝑒 + 𝜇(𝑥(0)), and ‖𝑒(𝑡)‖∞ ≤ ‖𝑒(𝑡)−𝑒(0)‖∞+‖𝑒(0)‖∞ ≤ 𝑐𝑒

2 , we can invoke Lemma 8.3.6
and Lemma 8.3.7 and therefore

‖∇𝑝𝑒(𝑡)(𝑥
(𝑡+1))‖𝑄−1 ≤

(︂
1− 1

32

)︂
‖∇𝑝𝑒(𝑡)(𝑥

(𝑡))‖𝑄−1 .

By Lemma 8.3.8 we have

‖∇𝑝𝑒(𝑡+1)(𝑥(𝑡+1))‖𝑄−1 ≤
(︂
1− 1

32

)︂
‖∇𝑝𝑒(𝑡)(𝑥

(𝑡))‖𝑄−1 +
1√︀

𝑐𝑒 + 𝜇(𝑥(0))
‖𝑒(𝑡+1) − 𝑒(𝑡)‖2. (8.4)
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To bound ‖𝑒(𝑡+1) − 𝑒(𝑡)‖2, we use the definition of Δ to shows that

‖𝑒(𝑡+1) − 𝑒(𝑡)‖2 =
⃦⃦⃦(︁
𝜏 (𝑡+1) −𝜓(𝑥(𝑡+1))

)︁
−
(︁
𝜏 (𝑡) −𝜓(𝑥(𝑡))

)︁⃦⃦⃦
2

=
⃦⃦⃦
Δ(𝑡+1) −

(︁
𝜓(𝑥(𝑡+1))−𝜓(𝑥(𝑡))

)︁⃦⃦⃦
2

≤ 𝑐Δ
⃦⃦⃦
𝑆−1
𝑥(𝑡)

(𝑠𝑥(𝑡+1) − 𝑠𝑥(𝑡))
⃦⃦⃦
2

with high probability in 𝑛. Now, we note that Lemma 8.3.5 and the induction hypothesis ‖𝑥(𝑡) −
𝑥(0)‖𝐻(𝑥(0)) ≤ ‖𝑥(𝑡) − 𝑥(0)‖𝑄 ≤ 8𝜂 shows that (1− 0.1)𝑆𝑥(0) ⪯ 𝑆𝑥(𝑡) ⪯ (1 + 0.1)𝑆𝑥(0) and therefore

‖𝑒(𝑡+1) − 𝑒(𝑡)‖2 ≤ 𝑐Δ‖𝑆−1
𝑥(𝑡)

(𝑠𝑥(𝑡) − 𝑠𝑥(𝑡+1))‖2

≤ 𝑐Δ
1− 0.1

‖𝑆−1
𝑥(0)
𝐴
(︁
𝑥(𝑡) − 𝑥(𝑡+1)

)︁
‖2

=
𝑐Δ

1− 0.1

⃦⃦⃦⃦
1

8
𝑄−1∇𝑝𝑒(𝑡)(𝑥

(𝑡))

⃦⃦⃦⃦
𝐴𝑇𝑆−2

𝑥(0)
𝐴

≤ 𝑐Δ

8 (1− 0.1)
√︀
𝑐𝑒 + 𝜇(𝑥(0))

‖∇𝑝𝑒(𝑡)(𝑥
(𝑡))‖𝑄−1 (8.5)

where in the last line we used min𝑖∈[𝑚]𝑤𝑖 ≥ 𝜇(𝑥(0)). Since 𝑐Δ < 0.01𝑐𝑒 ≤ 0.01, by (8.4), we have

‖∇𝑝𝑒(𝑡+1)(𝑥(𝑡+1))‖𝑄−1 ≤
(︂
1− 1

32

)︂
‖∇𝑝𝑒(𝑡)(𝑥

(𝑡))‖𝑄−1 +
0.01

8 (1− 0.1)
‖∇𝑝𝑒(𝑡)(𝑥

(𝑡))‖𝑄−1

≤
(︂
1− 1

64

)︂
‖∇𝑝𝑒(𝑡)(𝑥

(𝑡))‖𝑄−1 .

Furthermore, this implies that

‖𝑥(𝑡+1) − 𝑥(0)‖𝑄 ≤

⃦⃦⃦⃦
⃦

𝑡∑︁
𝑘=0

1

8
𝑄−1∇𝑝𝑒(𝑘)(𝑥

(𝑘))

⃦⃦⃦⃦
⃦
𝑄−1

≤ 1

8

∞∑︁
𝑖=0

(︂
1− 1

64

)︂𝑘
𝜂 ≤ 64

8
𝜂 = 8𝜂 .

Similarly, we have that

‖𝑒(𝑡+1) − 𝑒(0)‖2 ≤
𝑡∑︁

𝑘=0

𝑐Δ

8 (1− 0.1)
√︀
𝑐𝑒 + 𝜇(𝑥(0))

(︂
1− 1

64

)︂𝑘
‖∇𝑝𝑒(0)(𝑥

(0))‖𝑄−1

≤ 8𝑐Δ𝜂

(1− 0.1)
√︀
𝑐𝑒 + 𝜇(𝑥(0))

≤ 8𝑐Δ

(1− 0.1)
√︀
𝑐𝑒 + 𝜇(𝑥(0))

𝛿𝑒(0)(𝑥
(0)) ≤ 1

10
𝑐Δ

where we used 𝜂 = ‖∇𝑝𝑒(0)(𝑥(0))‖𝑄−1 ≤ ‖∇𝑝𝑒(0)(𝑥(0))‖𝐻−1 = 𝛿𝑒(0)(𝑥
(0)) and this finishes the induction

on ‖∇𝑝𝑒(𝑡)(𝑥(𝑡))‖𝑄−1 , ‖𝑥(𝑡) − 𝑥(0)‖𝑄 and ‖𝑒(𝑡) − 𝑒(0)‖2.
Hence, for all 𝑟, Lemma 8.3.6 shows that

𝛿𝑒(𝑟)(𝑥
(𝑟)) = ‖∇𝑝𝑒(𝑟)(𝑥

(𝑟))‖𝐻(𝑥(𝑟))−1 ≤
√
2‖∇𝑝𝑒(𝑟)(𝑥

(𝑟))‖𝐻(𝑥(0))−1

≤
√︂

8

3
‖∇𝑝𝑒(𝑟)(𝑥

(𝑟))‖𝑄−1 ≤
√︂

8

3

(︂
1− 1

64

)︂𝑟
‖∇𝑝𝑒(0)(𝑥

(0))‖𝑄−1

≤ 2

(︂
1− 1

64

)︂𝑟
𝛿𝑒(0)(𝑥

(0)).

Using that E𝑒(𝑡+1) = 𝑒(𝑡), we see that the expected change in function value is only due to the change
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while taking centering steps and therefore Lemma 8.3.7 shows that

E[𝑝𝑒(𝑟)(𝑥
(𝑟))] ≥ 𝑝𝑒(0)(𝑥

(0))− 1

8

∞∑︁
𝑘=0

(︂
1− 1

64

)︂2𝑘

‖∇𝑝𝑒(0)(𝑥
(0))‖2

𝑄−1 ≥ 𝑝𝑒(0)(𝑥
(0))− 8

(︁
𝛿𝑒(0)(𝑥

(0))
)︁2
.

Finally, for (4), we note that⃦⃦⃦⃦
⃦𝑠(𝑥(𝑟))− 𝑠(𝑥(0))

𝑠(𝑥(0))

⃦⃦⃦⃦
⃦
2

=
⃦⃦⃦
𝑥(𝑟) − 𝑥(0)

⃦⃦⃦
𝐴𝑇𝑆−2

𝑥(0)
𝐴
≤ 1√︀

𝜇(𝑥(0)) + 𝑐𝑒

⃦⃦⃦
𝑥(𝑟) − 𝑥(0)

⃦⃦⃦
𝑄−1
≤ 1

10
.

8.3.2 Changing Constraints

Here we bound the effect that adding or a removing a constraint has on the hybrid barrier function.
Much of the analysis in this section follows from the following lemma which follows easily from the
Sherman Morrison Formula.

Lemma 8.3.10 (Sherman Morrison Formula Implications). Let 𝐵 ∈ R𝑛×𝑛 be an invertible symmetric
matrix and let 𝑎 ∈ R𝑛 be arbitrary vector satisfying 𝑎𝑇𝐵−1𝑎 < 1. The following hold:

1.
(︀
𝐵 ± 𝑎𝑎𝑇

)︀−1
= 𝐵−1 ∓ 𝐵−1𝑎𝑎𝑇𝐵−1

1±𝑎𝑇𝐵−1𝑎
.

2. 0 ⪯ 𝐵−1𝑎𝑎𝑇𝐵−1

1±𝑎𝑇𝐵−1𝑎
⪯ 𝑎𝑇𝐵−1𝑎

1±𝑎𝑇𝐵−1𝑎
𝐵−1.

3. log det
(︀
𝐵 ± 𝑎𝑎𝑇

)︀
= ln det𝐵 + ln

(︀
1± 𝑎𝑇𝐵−1𝑎

)︀
.

Proof. (1) follows immediately from Sherman Morrison Formula (Lemma 2.3.7). (2) follows since 𝑎𝑎𝑇

is PSD,

𝐵−1𝑎𝑎𝑇𝐵−1

1± 𝑎𝑇𝐵−1𝑎
= 𝐵−1/2

[︃
𝐵−1/2𝑎𝑎𝑇𝐵−1/2

1± 𝑎𝑇𝐵−1𝑎

]︃
𝐵−1/2 ,

and 𝑦𝑦𝑇 ⪯ ‖𝑦‖22𝐼 for any vector 𝑦. (3) follows immediately from the Matrix Determinant Lemma.

We also make use of the following technical helper lemma.

Lemma 8.3.11. For 𝐴 ∈ R𝑛×𝑚 and all 𝑎 ∈ R𝑛 we have∑︁
𝑖∈[𝑚]

1

𝜓𝐴[𝑖]

(︁
𝐴
(︀
𝐴𝑇𝐴+ 𝜆𝐼

)︀−1
𝑎
)︁4
𝑖
≤
(︁
𝑎𝑇
(︀
𝐴𝑇𝐴+ 𝜆𝐼

)︀−1
𝑎
)︁2

Proof. We have by Cauchy Schwarz that(︁
1𝑇𝑖 𝐴

(︀
𝐴𝑇𝐴+ 𝜆𝐼

)︀−1
𝑎
)︁2
≤ 𝜓𝐴[𝑖] · 𝑎𝑇

(︀
𝐴𝑇𝐴+ 𝜆𝐼

)︀−1
𝑎

and consequently

∑︁
𝑖∈[𝑚]

(︁
1𝑇𝑖 𝐴

(︀
𝐴𝑇𝐴+ 𝜆𝐼

)︀−1
𝑎
)︁4

𝜓𝐴[𝑖]
≤
(︁
𝑎𝑇
(︀
𝐴𝑇𝐴+ 𝜆𝐼

)︀−1
𝑎
)︁ ∑︁
𝑖∈[𝑚]

(︁
1𝑖𝐴

(︀
𝐴𝑇𝐴+ 𝜆𝐼

)︀−1
𝑎
)︁2

.
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Since ∑︁
𝑖∈[𝑚]

(︁
1𝑇𝑖 𝐴

(︀
𝐴𝑇𝐴+ 𝜆𝐼

)︀−1
𝑎
)︁2

= 𝑎𝑇
(︀
𝐴𝑇𝐴+ 𝜆𝐼

)︀−1
𝐴𝑇𝐴

(︀
𝐴𝑇𝐴+ 𝜆𝐼

)︀−1
𝑎

≤ 𝑎𝑇
(︀
𝐴𝑇𝐴+ 𝜆𝐼

)︀−1
𝑎,

we have the desired result.

We now bound the effect of adding a constraint.

Lemma 8.3.12. Let 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, 𝜏 ∈ R𝑚, and 𝑥 ∈ 𝑃
def
= {𝑦 ∈ R𝑛 : 𝐴𝑦 ≥ 𝑏}. Let 𝐴 ∈

R(𝑚+1)×𝑛 be 𝐴 with a row 𝑎𝑚+1 added, let 𝑏 ∈ R𝑚+1 be the vector 𝑏 with an entry 𝑏𝑚+1 added, and

let 𝑃
def
=
{︀
𝑦 ∈ R𝑛 : 𝐴𝑦 ≥ 𝑏

}︀
. Let 𝑠𝑚+1 = 𝑎

𝑇
𝑚+1𝑥− 𝑏𝑚+1 > 0, 𝜓𝑎 =

𝑎𝑇𝑚+1(𝐴
𝑇
𝑥𝐴𝑥+𝜆𝐼)−1𝑎𝑚+1

𝑠2𝑚+1
.

Now, let 𝜐 ∈ R𝑚+1 be defined so that 𝜐𝑚+1 =
𝜓𝑎

1+𝜓𝑎
and for all 𝑖 ∈ [𝑚]

𝜐𝑖 = 𝜏𝑖 −
1

1 + 𝜓𝑎

[︂
𝐴𝑥

(︀
𝐴𝑇
𝑥𝐴𝑥 + 𝜆𝐼

)︀−1 𝑎𝑚+1

𝑠𝑚+1

]︂2
𝑖

.

Then, the following hold

∙ [Leverage Score Estimation] 𝑒𝑃 (�⃗�,𝑥)𝑚+1 = 0 and 𝑒𝑃 (�⃗�,𝑥)𝑖 = 𝑒𝑃 (𝜏 ,𝑥)𝑖 for all 𝑖 ∈ [𝑚].

∙ [Function Value Increase] 𝑝𝑒𝑃 (𝜐,𝑥)(𝑥) = 𝑝𝑒𝑃 (𝜏 ,𝑥)(𝑥)− 𝑐𝑒 ln (𝑠(𝑥)𝑚+1/𝑅) + ln(1 + 𝜓𝑎).

∙ [Centrality Increase] 𝛿𝑒𝑃 (𝜐,𝑥)(𝑥) ≤
√
1 + 𝜓𝑎𝛿𝑒𝑃 (𝜏 ,𝑥)(𝑥) +

(︀
𝑐𝑒
√
1 + 𝜓𝑎 + 𝜓𝑎

)︀√︁ 𝜓𝑎

𝜇(𝑥) + 𝜓𝑎.

Proof. By (1) in Lemma 8.3.10, we have that for all 𝑖 ∈ [𝑚]

𝜓𝑃 (𝑥)𝑖 = 𝜓𝑃 (𝑥)𝑖 −
1

1 + 𝜓𝑎

[︂
𝐴𝑥

(︀
𝐴𝑇
𝑥𝐴𝑥 + 𝜆𝐼

)︀−1 𝑎𝑚+1

𝑠𝑚+1

]︂2
𝑖

and that

𝜓𝑃 (𝑥)𝑚+1 = 𝜓𝑎 −
𝜓2
𝑎

1 + 𝜓𝑎
=

𝜓𝑎
1 + 𝜓𝑎

.

Consequently [Leverage Score Estimation] holds.
By (3) in Lemma 8.3.10 we have that [Function Value Change] holds.
To bound the change in centrality, we first note that

𝜓𝑃 (𝑥)𝑖 ≥ 𝜓𝑃 (𝑥)𝑖 −
1

1 + 𝜓𝑎

[︂
𝑎𝑇𝑖
𝑠𝑖

(︀
𝐴𝑇
𝑥𝐴𝑥 + 𝜆𝐼

)︀−1 𝑎𝑖
𝑠𝑖

]︂[︃
𝑎𝑇𝑚+1

𝑠𝑚+1

(︀
𝐴𝑇
𝑥𝐴𝑥 + 𝜆𝐼

)︀−1 𝑎𝑚+1

𝑠𝑚+1

]︃

=
𝜓𝑃 (𝑥)𝑖
1 + 𝜓𝑎

.

Therefore, we have that the approximate Hessian for 𝑃 , denoted 𝐻(𝑥), is bounded by 𝐻
−1 ⪯ (1 +

𝜓𝑎)𝐻
−1.

To bound the change in centrality note that by (2) in Lemma 8.3.10 we have that 𝐻
−1 ⪯ 𝐻−1.

Therefore if let 𝜐′ ∈ R𝑚 be defined so that 𝜐′
𝑖 = 𝜐𝑖 for all 𝑖 ∈ [𝑚] then by triangle inequality we have
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𝛿𝑒𝑝(𝜐,𝑥)(𝑥) = ‖𝐴
𝑇
𝑥 (𝑐𝑒1+ 𝜐)‖

𝐻
−1 ≤

√︀
1 + 𝜓𝑎‖𝐴

𝑇
𝑥 (𝑐𝑒1+ 𝜐)‖𝐻−1

≤
√︀
1 + 𝜓𝑎

(︂
‖𝐴𝑇

𝑥 (𝑐𝑒1+ 𝜏 )‖𝐻−1 +

⃦⃦⃦⃦
𝑎𝑚+1

𝑠𝑚+1
(𝑐𝑒 + 𝜐𝑚+1)

⃦⃦⃦⃦
𝐻−1

+ ‖𝐴𝑇
𝑥 (𝜐

′ − 𝜏 )‖𝐻−1

)︂
=
√︀
1 + 𝜓𝑎

(︂
𝛿𝑒𝑃 (𝜏 ,𝑥)(𝑥) +

(︂
𝑐𝑒 +

𝜓𝑎
1 + 𝜓𝑎

)︂ ⃦⃦⃦⃦
𝑎𝑚+1

𝑠𝑚+1

⃦⃦⃦⃦
𝐻−1

+ ‖𝐴𝑇
𝑥 (𝜐

′ − 𝜏 )‖𝐻−1

)︂
Now, since 𝐻−1 ⪯ 1

𝜇(𝑥)

(︀
𝐴𝑇
𝑥𝐴𝑥 + 𝜆𝐼

)︀−1
, we have that

⃦⃦⃦⃦
𝑎𝑚+1

𝑠𝑚+1

⃦⃦⃦⃦
𝐻−1

≤ 1√︀
𝜇(𝑥)

⃦⃦⃦⃦
𝑎𝑚+1

𝑠𝑚+1

⃦⃦⃦⃦
(𝐴𝑇

𝑥𝐴𝑥+𝜆𝐼)
−1

=

√︃
𝜓𝑎
𝜇(𝑥)

.

Since Ψ1/2𝐴𝑥

(︀
𝐴𝑇
𝑥Ψ𝐴𝑥

)︀−1
𝐴𝑇
𝑥Ψ

1/2 is a projection matrix, we have Ψ−1 ⪰ 𝐴𝑥

(︀
𝐴𝑇
𝑥Ψ𝐴𝑥

)︀−1
𝐴𝑇
𝑥 ⪰

𝐴𝑥𝐻
−1𝐴𝑇

𝑥 . By Lemma 8.3.11, we have

‖𝐴𝑇
𝑥

(︀
𝜏 ′ − 𝜐

)︀
‖2
𝐻−1 ≤ ‖𝜏 ′ − 𝜐‖2

Ψ−1

=
∑︁
𝑖∈[𝑚]

1

𝜓(𝑥)𝑖

(︃
1

1 + 𝜓𝑎

(︂
1𝑖𝐴𝑥

(︀
𝐴𝑇
𝑥𝐴𝑥 + 𝜆𝐼

)︀−1 𝑎𝑚+1

𝑠𝑚+1

)︂2
)︃2

≤
(︂

1

1 + 𝜓𝑎

)︂2
(︃
𝑎𝑇𝑚+1

(︀
𝐴𝑇
𝑥𝐴𝑥 + 𝜆𝐼

)︀−1
𝑎𝑚+1

𝑠2𝑚+1

)︃2

=

(︂
𝜓𝑎

1 + 𝜓𝑎

)︂2

Combining, we have that

𝛿𝑒𝑃 (𝜐,𝑥)(𝑥) ≤
√︀
1 + 𝜓𝑎

(︃
𝛿𝑒𝑃 (𝜏 ,𝑥)(𝑥) +

(︂
𝑐𝑒 +

𝜓𝑎
1 + 𝜓𝑎

)︂√︃
𝜓𝑎
𝜇(𝑥)

+
𝜓𝑎

1 + 𝜓𝑎

)︃

≤
√︀

1 + 𝜓𝑎𝛿𝑒𝑃 (𝜏 ,𝑥)(𝑥) +
(︁
𝑐𝑒
√︀

1 + 𝜓𝑎 + 𝜓𝑎

)︁√︃ 𝜓𝑎
𝜇(𝑥)

+ 𝜓𝑎.

We now bound the effect of removing a constraint.

Lemma 8.3.13 (Removing a Constraint). Let 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, 𝜏 ∈ R𝑚, and 𝑥 ∈ 𝑃
def
= {𝑦 ∈

R𝑛 : 𝐴𝑦 ≥ 𝑏}. Let 𝐴 ∈ R(𝑚−1)×𝑛 be 𝐴 with row 𝑚 removed, let 𝑏 ∈ R𝑚−1 denote the first 𝑚 − 1

coordinates of 𝑏, and let 𝑃
def
= {𝑦 ∈ R𝑛 : 𝐴𝑦 ≥ 𝑏}. Let 𝜓𝑑 = 𝜓𝑃 (𝑥)𝑚.

Now, let 𝜐 ∈ R𝑚−1 be defined so that for all 𝑖 ∈ [𝑚− 1]

𝜐𝑖 = 𝜏𝑖 +
1

1− 𝜓𝑑

(︁
𝐴𝑥

(︀
𝐴𝑇
𝑥𝐴𝑥 + 𝜆𝐼

)︀−1
𝐴𝑇
𝑥1𝑚

)︁2
𝑖
.

Assume 𝜓𝑑 ≤ 1.1𝜇(𝑥) ≤ 1
10 and ‖𝑒𝑃 (𝜏 ,𝑥)‖∞ ≤ 𝑐𝑒 ≤ 1

2 , we have the following:

∙ [Leverage Score Estimation] 𝑒𝑃 (�⃗�,𝑥)𝑖 = 𝑒𝑃 (𝜏 ,𝑥)𝑖 for all 𝑖 ∈ [𝑚− 1].

∙ [Function Value Decrease] 𝑝𝑒𝑝(𝜐,𝑥)(𝑥) = 𝑝𝑒𝑃 (𝜏 ,𝑥)(𝑥) + [𝑐𝑒 + 𝑒𝑃 (𝜏 ,𝑥)𝑚] ln (𝑠(𝑥)𝑚/𝑅) + ln(1−𝜓𝑑)

∙ [Centrality Increase] 𝛿𝑒𝑝(𝜐,𝑥)(𝑥) ≤
1√

1−2𝜇(𝑥)
𝛿𝑒𝑃 (𝜏 ,𝑥)(𝑥) + 3(𝑐𝑒 + 𝜇(𝑥)).
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Proof. By (1) in Lemma 8.3.10, we have that for all 𝑖 ∈ [𝑚− 1]

𝜓𝑃 (𝑥)𝑖 = 𝜓𝑃 (𝑥)𝑖 +
1

1− 𝜓𝑑

(︁
1𝑇𝑖 𝐴𝑥

(︀
𝐴𝑇
𝑥𝐴𝑥 + 𝜆𝐼

)︀−1
𝐴𝑇
𝑥1𝑚

)︁2
.

Consequently, [Leverage Score Estimation] holds. Furthermore, by (3) in Lemma 8.3.10, this then
implies that [Function Value Change] holds.

To bound the change in centrality, we first note that by (1) and (2) in Lemma 8.3.10 and the fact
𝜓𝑃 (𝑥)𝑖 ≥ 𝜓𝑃 (𝑥)𝑖, we have that the approximate Hessian for 𝑃 , denoted 𝐻(𝑥), is bounded by

𝐻(𝑥)−1 ⪯
(︁
𝐻(𝑥)−𝐴𝑇

𝑥 (𝑐𝑒𝐼 +Ψ𝑥)
1/2 1𝑚1

𝑇
𝑚 (𝑐𝑒𝐼 +Ψ𝑥)

1/2𝐴𝑥

)︁−1

⪯
(︂
1 +

𝛼

1− 𝛼

)︂
𝐻(𝑥)−1 =

(︂
1

1− 𝛼

)︂
𝐻(𝑥)−1

where 𝛼 def
= 1𝑇𝑚 (𝑐𝑒𝐼 +Ψ𝑥)

1/2𝐴𝑥𝐻(𝑥)−1𝐴𝑇
𝑥 (𝑐𝑒𝐼 +Ψ𝑥)

1/2 1𝑚. Using 𝑐𝑒 + 𝜇(𝑥) ≤ 1
2 +

1
10 ≤ 1, we have

𝐻(𝑥)−1 ⪯
(︀
𝐴𝑇
𝑥 (𝑐𝑒 + 𝜇(𝑥))𝐴𝑥 + 𝜆𝐼

)︀−1 ⪯ (𝑐𝑒 + 𝜇(𝑥))−1
(︀
𝐴𝑇
𝑥𝐴𝑥 + 𝜆𝐼

)︀−1
. (8.6)

Using this, we have

𝛼 ≤
(︂

𝑐𝑒 + 𝜓𝑑
𝑐𝑒 + 𝜇(𝑥)

)︂
1𝑇𝑚𝐴𝑥

(︀
𝐴𝑇
𝑥𝐴𝑥 + 𝜆𝐼

)︀−1
𝐴𝑇
𝑥1𝑚 =

(︂
𝑐𝑒 + 𝜓𝑑
𝑐𝑒 + 𝜇(𝑥)

)︂
𝜓𝑑 . (8.7)

Now let 𝜏 ′ ∈ R𝑚−1 be defined so that 𝜏 ′𝑖 = 𝜏𝑖 for all 𝑖 ∈ [𝑚− 1]. We have by above that

𝛿𝑒𝑝(𝜐,𝑥)(𝑥) = ‖𝐴
𝑇
𝑥 (𝑐𝑒1+ 𝜐)‖

𝐻
−1 ≤

1√
1− 𝛼

‖𝐴𝑇
𝑥 (𝑐𝑒1+ 𝜐)‖𝐻−1

and therefore, by triangle inequality

‖𝐴𝑇
𝑥 (𝑐𝑒1+ 𝜐)‖𝐻−1 ≤ ‖𝐴𝑇

𝑥 (𝑐𝑒1+ 𝜏 )‖𝐻−1 + ‖𝐴𝑇
𝑥1𝑚(𝑐𝑒 + 𝜏𝑚)‖𝐻−1 + ‖𝐴𝑇

𝑥 (𝜏
′ − 𝜐)‖𝐻−1

= 𝛿𝑒𝑃 (𝜏 ,𝑥)(𝑥) + (𝑐𝑒 + 𝜏𝑚)‖𝐴𝑇
𝑥1𝑚‖𝐻−1 + ‖𝐴𝑇

𝑥 (𝜏
′ − 𝜐)‖𝐻−1 .

Now, (8.6) shows that

‖𝐴𝑇
𝑥1𝑚‖𝐻−1 ≤

1√︀
𝑐𝑒 + 𝜇(𝑥)

‖𝐴𝑇
𝑥1𝑚‖(𝐴𝑇

𝑥𝐴𝑥+𝜆𝐼)
−1 ≤

√︃
𝜓𝑑

𝑐𝑒 + 𝜇(𝑥)

Furthermore, since Ψ−1 ⪰ 𝐴𝑥

(︀
𝐴𝑇
𝑥Ψ𝐴𝑥

)︀−1
𝐴𝑇
𝑥 ⪰ 𝐴𝑥𝐻

−1𝐴𝑇
𝑥 , by Lemma 8.3.11 we have

‖𝐴𝑇
𝑥

(︀
𝜏 ′ − 𝜐

)︀
‖2
𝐻−1 ≤ ‖𝜏 ′ − 𝜐‖2

Ψ−1

=
∑︁
𝑖∈[𝑚]

1

𝜓(𝑥)𝑖

(︂
1

1− 𝜓𝑑

(︁
1𝑇𝑖 𝐴𝑥

(︀
𝐴𝑇
𝑥𝐴𝑥 + 𝜆𝐼

)︀−1
𝐴𝑇
𝑥1𝑚

)︁2)︂2

≤
(︂

1

1− 𝜓𝑑

)︂2 (︁
1𝑇𝑚𝐴𝑥

(︀
𝐴𝑇
𝑥𝐴𝑥 + 𝜆𝐼

)︀−1
𝐴𝑇
𝑥1𝑚

)︁2
=

(︂
𝜓𝑑

1− 𝜓𝑑

)︂2

Combining, we have that

𝛿𝑒𝑝(𝜐,𝑥)(𝑥) ≤
1√

1− 𝛼

[︃
𝛿𝑒𝑃 (𝜏 ,𝑥)(𝑥) + (𝑐𝑒 + 𝜏𝑚)

√︃
𝜓𝑑

𝑐𝑒 + 𝜇(𝑥)
+

𝜓𝑑
1− 𝜓𝑑

]︃
.
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Using the assumption 𝜓𝑑 ≤ 1.1𝜇(𝑥) ≤ 1
10 , ‖𝑒𝑃 (𝜏 ,𝑥)‖∞ ≤ 𝑐𝑒 and (8.7), we have 𝛼 ≤ 1.1𝜓𝑑 ≤ 1.21𝜇(𝑥)

and 𝜏𝑚 ≤ 𝜓𝑑 + 𝑐𝑒, and

𝛿𝑒𝑝(𝜐,𝑥)(𝑥) ≤
1√︀

1− 1.3𝜇(𝑥)

[︁
𝛿𝑒𝑃 (𝜏 ,𝑥)(𝑥) + (𝑐𝑒 + 𝜏𝑚)

√
1.1 + 1.2𝜓𝑑

]︁
≤ 1√︀

1− 2𝜇(𝑥)
𝛿𝑒𝑃 (𝜏 ,𝑥)(𝑥) +

1√︁
1− 1.3

10

(︁√
1.1 · 2𝑐𝑒 + 1.1(

√
1.1 + 1.2)𝜇(𝑥)

)︁

8.3.3 Hybrid Center Properties

Here we prove properties of points near the hybrid center. First we bound the distance between points
in the 𝐻(𝑥) norm in terms of the ℓ2 norm of the points.

Lemma 8.3.14. For 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚 suppose that 𝑥 ∈ 𝑃 = {𝑦 : 𝐴𝑦 ≥ 𝑏} and 𝑒 ∈ R𝑚 such
that ‖𝑒‖∞ ≤ 1

2𝑐𝑒 <
1
20 and 𝛿𝑒 ≤ 0.1

√︀
𝑐𝑒 + 𝜇(𝑥). Then for all 𝑦 ∈ 𝑃 we have

‖𝑥− 𝑦‖𝐻(𝑥) ≤
12𝑚𝑐𝑒 + 6𝑛+ 2𝜆‖𝑦‖22√︀

𝑐𝑒 + 𝜇(𝑥)
(8.8)

and
‖𝑥‖22 ≤ 4𝜆−1(𝑚𝑐𝑒 + 𝑛) + 2‖𝑦‖22 .

Proof. For notational simplicity let 𝑡 def
= 𝑐𝑒1 + 𝑒 + 𝜓𝑥, 𝑇

def
= 𝐷𝑖𝑎𝑔(𝑡), and 𝑀 def

= 𝐴𝑇
𝑥 (𝑐𝑒𝐼 + Ψ𝑥)𝐴𝑥.

We have

‖𝑥− 𝑦‖2
𝐴𝑇

𝑥 𝑇𝐴𝑥
=
∑︁
𝑖∈[𝑚]

𝑡𝑖
[𝑠𝑥 − 𝑠𝑦]2𝑖

[𝑠𝑥]2𝑖
=
∑︁
𝑖∈[𝑚]

𝑡𝑖

(︂
1− 2

[𝑠𝑦]𝑖
[𝑠𝑥]𝑖

+
[𝑠𝑦]

2
𝑖

[𝑠𝑥]2𝑖

)︂
(8.9)

and

∑︁
𝑖∈[𝑚]

𝑡𝑖
[𝑠𝑦]

2
𝑖

[𝑠𝑥]2𝑖
≤

⎛⎝∑︁
𝑖∈[𝑚]

𝑡𝑖
[𝑠𝑦]𝑖
[𝑠𝑥]𝑖

⎞⎠max
𝑖∈[𝑚]

[𝑠𝑦]𝑖
[𝑠𝑥]𝑖

≤

⎛⎝∑︁
𝑖∈[𝑚]

𝑡𝑖
[𝑠𝑦]𝑖
[𝑠𝑥]𝑖

⎞⎠(︀1 + ‖𝑆−1
𝑥 (𝑠𝑦 − 𝑠𝑥)‖∞

)︀
(8.10)

and

‖𝑆−1
𝑥 (𝑠𝑥 − 𝑠𝑦) ‖∞ = max

𝑖∈[𝑚]

⃒⃒
1𝑖𝑆

−1
𝑥 𝐴 (𝑥− 𝑦)

⃒⃒
≤ ‖𝑥− 𝑦‖𝐻(𝑥)

√︂
max
𝑖∈[𝑚]

[︀
𝑆−1
𝑥 𝐴𝐻(𝑥)−1𝐴𝑇𝑆−1

𝑥

]︀
𝑖𝑖

≤ (𝑐𝑒 + 𝜇(𝑥))−1/2 ‖𝑥− 𝑦‖𝐻(𝑥) . (8.11)

Now, clearly
∑︀

𝑖∈[𝑚] 𝑡𝑖[𝑠𝑦]𝑖/[𝑠𝑥]𝑖 is positive and since ‖𝑒‖∞ ≤ 1
2𝑐𝑒 we know that 1

2𝑀 ⪯ 𝐴𝑇
𝑥𝑇𝐴𝑥.

Therefore, by combining, (8.9), (8.10), and (8.11) we have

1

2
‖𝑥− 𝑦‖2𝑀 ≤ ‖𝑡‖1 −

∑︁
𝑖∈[𝑚]

𝑡𝑖
[𝑠𝑦]𝑖
[𝑠𝑥]𝑖

+

⎛⎝∑︁
𝑖∈[𝑚]

𝑡𝑖
[𝑠𝑦]𝑖
[𝑠𝑥]𝑖

⎞⎠ ‖𝑥− 𝑦‖𝐻(𝑥)√︀
𝑐𝑒 + 𝜇(𝑥)

≤ ‖𝑡‖1 +

⎛⎝∑︁
𝑖∈[𝑚]

𝑡𝑖
[𝑠𝑦]𝑖
[𝑠𝑥]𝑖

⎞⎠ ‖𝑥− 𝑦‖𝐻(𝑥)√︀
𝑐𝑒 + 𝜇(𝑥)

(8.12)
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Now since ∇𝑝𝑒(𝑥) = −𝐴𝑇𝑆−1
𝑥 𝑇1+ 𝜆𝑥 we have

⟨𝑥− 𝑦,∇𝑝𝑒(𝑥)⟩ = −
∑︁
𝑖∈[𝑚]

𝑡𝑖
[𝑠𝑥 − 𝑠𝑦]𝑖

[𝑠𝑥]𝑖
+ 𝜆𝑥𝑇 (𝑥− 𝑦)

and therefore by Cauchy Schwarz and 𝑥𝑇𝑦 ≤ ‖𝑥‖22 + 1
4‖𝑦‖

2
2,∑︁

𝑖∈[𝑚]

𝑡𝑖
[𝑠𝑦]𝑖
[𝑠𝑥]𝑖

= ‖𝑡‖1 − 𝜆‖𝑥‖22 + 𝜆𝑥𝑇𝑦 + ⟨𝑥− 𝑦,∇𝑝𝑒(𝑥)⟩ (8.13)

≤ ‖𝑡‖1 +
𝜆

4
‖𝑦‖22 + ‖𝑥− 𝑦‖𝐻(𝑥)𝛿𝑒(𝑥) . (8.14)

Now, using (8.12), (8.14) and the definition of 𝐻(𝑥), we have

1

2
‖𝑥− 𝑦‖2𝐻(𝑥) =

1

2
‖𝑥− 𝑦‖2𝑀 +

𝜆

2
‖𝑥− 𝑦‖22

≤ ‖𝑡‖1 +

⎛⎝∑︁
𝑖∈[𝑚]

𝑡𝑖
[𝑠𝑦]𝑖
[𝑠𝑥]𝑖

⎞⎠ ‖𝑥− 𝑦‖𝐻(𝑥)√︀
𝑐𝑒 + 𝜇(𝑥)

+
𝜆

2
‖𝑥− 𝑦‖22

≤ ‖𝑡‖1 +
‖𝑡‖1 + 𝜆

4‖𝑦‖
2
2√︀

𝑐𝑒 + 𝜇(𝑥)
‖𝑥− 𝑦‖𝐻(𝑥) + 𝛿𝑒(𝑥)

‖𝑥− 𝑦‖2𝐻(𝑥)√︀
𝑐𝑒 + 𝜇(𝑥)

+
𝜆

2
‖𝑥− 𝑦‖22.

Using the fact that 𝛿𝑒(𝑥) ≤ 0.1
√︀
𝑐𝑒 + 𝜇(𝑥), we have

1

4
‖𝑥− 𝑦‖2𝐻(𝑥) ≤ ‖𝑡‖1 +

𝜆

2
‖𝑥− 𝑦‖22 +

‖𝑡‖1 + 𝜆
4‖𝑦‖

2
2√︀

𝑐𝑒 + 𝜇(𝑥)
‖𝑥− 𝑦‖𝐻(𝑥). (8.15)

Furthermore, since
∑︀

𝑖∈[𝑚] 𝑡𝑖[𝑠𝑦]𝑖/[𝑠𝑥]𝑖 is positive, (8.13) shows that

𝜆𝑥𝑇 (𝑥− 𝑦) = 𝜆‖𝑥‖22 − 𝜆𝑥𝑇𝑦 ≤ ‖𝑡‖1 + ⟨𝑥− 𝑦,∇𝑝𝑒(𝑥)⟩ ≤ ‖𝑡‖1 + ‖𝑥− 𝑦‖𝐻(𝑥)𝛿𝑒(𝑥)

and hence

𝜆

2
‖𝑥− 𝑦‖22 ≤

𝜆

2
‖𝑥− 𝑦‖22 +

𝜆

2
‖𝑥‖22 = 𝜆𝑥𝑇 (𝑥− 𝑦) + 𝜆

2
‖𝑦‖22

≤ ‖𝑡‖1 +
𝜆

2
‖𝑦‖22 + ‖𝑥− 𝑦‖𝐻(𝑥)𝛿𝑒(𝑥) . (8.16)

Putting (8.16) into (8.15) and using the fact that 𝛿𝑒(𝑥) ≤ 0.1
√︀
𝑐𝑒 + 𝜇(𝑥), we have

1

4
‖𝑥− 𝑦‖2𝐻(𝑥) ≤ 2‖𝑡‖1 +

𝜆

2
‖𝑦‖22 +

(︃
0.1 +

‖𝑡‖1 + 𝜆
4‖𝑦‖

2
2√︀

𝑐𝑒 + 𝜇(𝑥)

)︃
‖𝑥− 𝑦‖𝐻(𝑥).

Now, using ‖𝑡‖1 ≤ 2𝑚𝑐𝑒 + 𝑛 and
√︀
𝑐𝑒 + 𝜇(𝑥) ≤ 1.05, we have

1

4
‖𝑥− 𝑦‖2𝐻(𝑥) ≤ 2.2𝛼+ (0.1 + 𝛼) ‖𝑥− 𝑦‖𝐻(𝑥) for 𝛼 =

2𝑚𝑐𝑒 + 𝑛+ 𝜆
4‖𝑦‖

2
2√︀

𝑐𝑒 + 𝜇(𝑥)
.

Since 𝛼 ≥ 1/
√
1.1, we have that

‖𝑥− 𝑦‖𝐻(𝑥) ≤
0.1 + 𝛼+

√︀
(𝛼+ 0.1)2 + 2.2𝛼

2 · 14
≤ 6𝛼
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yielding (8.8).
We also have by (8.13) and the fact that 𝛿𝑒(𝑥) ≤ 0.1

√︀
𝑐𝑒 + 𝜇(𝑥),

𝜆‖𝑥‖22 = ‖𝑡‖1 + 𝜆𝑥𝑇𝑦 + ⟨𝑥− 𝑦,∇𝑝𝑒(𝑥)⟩ −
∑︁
𝑖∈[𝑚]

𝑡𝑖
[𝑠𝑦]𝑖
[𝑠𝑥]𝑖

≤ ‖𝑡‖1 +
𝜆

2
‖𝑥‖22 +

𝜆

2
‖𝑦‖22 + ‖𝑥− 𝑦‖𝐻(𝑥)𝛿𝑒(𝑥)

≤ ‖𝑡‖1 +
𝜆

2
‖𝑥‖22 +

𝜆

2
‖𝑦‖22 + 0.1

√︀
𝑐𝑒 + 𝜇(𝑥)‖𝑥− 𝑦‖𝐻(𝑥)

Hence, using ‖𝑡‖1 ≤ 2𝑚𝑐𝑒 + 𝑛 and ‖𝑥− 𝑦‖𝐻(𝑥) ≤ 6𝛼, we have

𝜆

2
‖𝑥‖22 ≤ ‖𝑡‖1 +

𝜆

2
‖𝑦‖22 + 0.6

(︂
2𝑚𝑐𝑒 + 𝑛+

𝜆

4
‖𝑦‖22

)︂
≤ 𝜆‖𝑦‖22 + 2(𝑚𝑐𝑒 + 𝑛).

In the following lemma we show how we can write one hyperplane in terms of the others provided
that we are nearly centered and show there is a constraint that the central point is close to.

Lemma 8.3.15. Let 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚 such that ‖𝑎𝑖‖2 = 1 for all 𝑖. Suppose that 𝑥 ∈ 𝑃 = {𝑦 :
𝐴𝑦 ≥ 𝑏} and 𝑒 ∈ R𝑚 such that ‖𝑒‖∞ ≤ 1

2𝑐𝑒 ≤
1
2 . Furthermore, let 𝜀 = min𝑗∈[𝑚] 𝑠𝑗(𝑥) and suppose

that 𝑖 = argmin𝑗∈[𝑚] 𝑠𝑗(𝑥) then⃦⃦⃦⃦
⃦⃦𝑎𝑖 +∑︁

𝑗 ̸=𝑖

(︂
𝑠(𝑥)𝑖
𝑠(𝑥)𝑗

)︂(︂
𝑐𝑒 + 𝑒𝑗 + 𝜓𝑗(𝑥)

𝑐𝑒 + 𝑒𝑖 + 𝜓𝑖(𝑥)

)︂
𝑎𝑗

⃦⃦⃦⃦
⃦⃦
2

≤ 2𝜀

(𝑐𝑒 + 𝜇(𝑥))

[︃
𝜆‖𝑥‖2 + 𝛿𝑒(𝑥)

√︂
𝑚𝑐𝑒 + 𝑛

𝜀2
+ 𝜆

]︃
.

Proof. We know that

∇𝑝𝑒(𝑥) = −𝐴𝑇𝑆−1
𝑥 (𝑐𝑒1+ 𝑒+𝜓𝑥) + 𝜆𝑥

= 𝜆𝑥−
∑︁
𝑖∈[𝑚]

(𝑐𝑒 + 𝑒𝑖 + 𝜓𝑖)

𝑠(𝑥)𝑖
𝑎𝑖

Consequently, by ‖𝑒‖∞ ≤ 1
2𝑐𝑒, and 𝜓𝑖(𝑥) ≥ 𝜇(𝑥), we have⃦⃦⃦⃦

⃦⃦𝑎𝑖 +∑︁
𝑗 ̸=𝑖

(︂
𝑠(𝑥)𝑖
𝑠(𝑥)𝑗

)︂(︂
𝑐𝑒 + 𝑒𝑗 + 𝜓𝑗(𝑥)

𝑐𝑒 + 𝑒𝑖 + 𝜓𝑖(𝑥)

)︂
𝑎𝑗

⃦⃦⃦⃦
⃦⃦
2

=
𝑠𝑖(𝑥)

𝑐𝑒 + 𝑒𝑖 + 𝜓𝑖(𝑥)

⃦⃦
𝐴𝑇𝑆−1

𝑥 (𝑐𝑒1+ 𝑒+𝜓𝑥)
⃦⃦
2

≤ 2𝜀

𝑐𝑒 + 𝜇(𝑥)
[𝜆‖𝑥‖2 + ‖∇𝑝𝑒(𝑥)‖2] .

Using ‖𝑎𝑖‖ = 1,
∑︀

𝑖 𝜓𝑖 ≤ 𝑛, and 𝑠𝑖(𝑥) ≥ 𝜀, we have

Tr(𝐴𝑇
𝑥 (𝑐𝑒𝐼 +Ψ𝑥)𝐴𝑥) = Tr(𝐴𝑥𝐴

𝑇
𝑥 (𝑐𝑒𝐼 +Ψ𝑥))

=
∑︁
𝑖

(𝑐𝑒 + 𝜓𝑖)
‖𝑎𝑖‖22
𝑠2𝑖 (𝑥)

≤ 𝑚𝑐𝑒 + 𝑛

𝜀2
. (8.17)

Hence, we have 𝐻(𝑥) ⪯
(︀
𝑚𝑐𝑒+𝑛
𝜀2

+ 𝜆
)︀
𝐼 and ‖∇𝑝𝑒(𝑥)‖2 ≤ 𝛿𝑒(𝑥)

√︁
𝑚𝑐𝑒+𝑛
𝜀2

+ 𝜆 yielding the result.
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8.3.4 The Algorithm

Here, we put all the results in the previous sections to get our ellipsoid algorithm. Below is a sketch
of the pseudocode; we use 𝑐𝑎, 𝑐𝑑, 𝑐𝑒, 𝑐Δ to denote parameters we decide later.

Algorithm 22: Our Cutting Plane Method

Input: 𝐴(0) ∈ R𝑚×𝑛, 𝑏(0) ∈ R𝑚, 𝜀 > 0, and radius 𝑅 > 0.
Input: A separation oracle for a non-empty set 𝐾 ⊂ 𝐵∞(𝑅).
Check: Throughout the algorithm, if 𝑠𝑖(𝑥(𝑘)) < 𝜀 output 𝑃 (𝑘).
Check: Throughout the algorithm, if 𝑥(𝑘) ∈ 𝐾, output 𝑥(𝑘).
Set 𝑃 (0) = 𝐵∞(𝑅).
Set 𝑥(0) := 0 and compute 𝜏 (0)𝑖 = 𝜓𝑃 (0)(𝑥(0))𝑖 for all 𝑖 ∈ [𝑚] exactly.
for 𝑘 = 0 to ∞ do

Let 𝑚(𝑘) be the number of constraints in 𝑃 (𝑘).
Compute 𝑤(𝑘) such that Ψ𝑃 (𝑘)(𝑥(𝑘)) ⪯𝑊 (𝑘) ⪯ (1 + 𝑐Δ)Ψ𝑃 (𝑘)(𝑥(𝑘)).

Let 𝑖(𝑘) ∈ argmax𝑖∈[𝑚(𝑘)]

⃒⃒⃒
𝑤

(𝑘)
𝑖 − 𝜏

(𝑘)
𝑖

⃒⃒⃒
.

Set 𝜏
(𝑘+ 1

3
)

𝑖(𝑘)
= 𝜓𝑃 (𝑘)(𝑥(𝑘))𝑖(𝑘) and 𝜏

(𝑘+ 1
3
)

𝑗 = 𝜏
(𝑘)
𝑗 for all 𝑗 ̸= 𝑖(𝑘).

if min𝑖∈[𝑚(𝑘)]𝑤
(𝑘)
𝑖 ≤ 𝑐𝑑 then

Remove constraint with minimum 𝑤
(𝑘)
𝑖 yielding polytope 𝑃 (𝑘+1).

Update 𝜏 according to Lemma 8.3.13 to get 𝜏
(𝑘+ 2

3
)

𝑗 .
else

Use separation oracle at 𝑥(𝑘) to get a constraint {𝑥 : 𝑎𝑇𝑥 ≥ 𝑎𝑇𝑥(𝑘)} with ‖𝑎‖2 = 1.

Add constraint {𝑥 : 𝑎𝑇𝑥 ≥ 𝑎𝑇𝑥(𝑘) − 𝑐−1/2
𝑎

√︁
𝑎𝑇 (𝐴𝑇𝑆−2

𝑥(𝑘)𝐴+ 𝜆𝐼)−1𝑎} yielding polytope
𝑃 (𝑘+1).

Update 𝜏 according to Lemma 8.3.12 to get 𝜏
(𝑘+ 2

3
)

𝑗 .

(𝑥(𝑘+1), 𝜏 (𝑘+1)) = Centering(𝑥(𝑘), 𝜏 (𝑘+ 2
3
), 200, 𝑐Δ).

end

In the algorithm, there are two main invariants we maintain. First, we maintain that the centrality
𝛿𝑃,𝑒(𝑥), which indicates how close 𝑥 is to the minimum point of 𝑝𝑒, is small. Second, we maintain that
‖𝑒(𝜏 ,𝑥)‖∞, which indicates how accurate the leverage score estimate 𝜏 is, is small. In the following
lemma we show that we maintain both invariants throughout the algorithm.

Lemma 8.3.16. Assume that 𝑐𝑒 ≤ 𝑐𝑑 ≤ 1
106

, 𝑐𝑎
√
𝑐𝑎 ≤ 𝑐𝑑

103
, 𝑐𝑑 ≤ 𝑐𝑎, and 𝑐Δ ≤ 𝐶𝑐𝑒/ log(𝑛 log(𝑅/𝜀))

for some small enough universal constant 𝐶. During our cutting plane method, for all 𝑘, with high
probability in 𝑛, we have

1. ‖𝑒(𝜏 (𝑘+ 1
3
),𝑥(𝑘))‖∞ ≤ 1

1000𝑐𝑒, ‖𝑒(𝜏
(𝑘+ 2

3
),𝑥(𝑘))‖∞ ≤ 1

1000𝑐𝑒, ‖𝑒(𝜏
(𝑘+1),𝑥(𝑘+1))‖∞ ≤ 1

400𝑐𝑒.

2. 𝛿
𝑃 (𝑘),𝑒(𝜏 (𝑘+

2
3 ),𝑥(𝑘))

(𝑥(𝑘)) ≤ 1
100

√︁
𝑐𝑒 +min

(︀
𝜇(𝑥(𝑘)), 𝑐𝑑

)︀
.

3. 𝛿𝑃 (𝑘+1),𝑒(𝜏 (𝑘+1),𝑥(𝑘+1))(𝑥
(𝑘+1)) ≤ 1

400

√︁
𝑐𝑒 +min

(︀
𝜇(𝑥(𝑘+1)), 𝑐𝑑

)︀
.

Proof. Some statements of the proof hold only with high probability in 𝑛; we omit mentioning this
for simplicity.
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We prove by induction on 𝑘. Note that the claims are written in order consistent with the algorithm
and proving the statement for 𝑘 involves bounding centrality at the point 𝑥(𝑘+1). Trivially we define,
𝜏 (−1) = 𝜏 (− 2

3
) = 𝜏 (− 1

3
) = 𝜏 (0), 𝑥(−1) = 𝑥(0) and note that the claims then hold for 𝑘 = −1 as

we compute the initial leverage scores, 𝜏 (0), exactly and since the polytope is symmetric we have
𝛿𝑒(𝜏 (0),𝑥(0))(0) = 0. We now suppose they hold for all 𝑡 < 𝑘 and show that they hold for 𝑡 = 𝑘.

We first bound 𝛿. For notational simplicity, let 𝜂𝑡
def
=
√︀
𝑐𝑒 +min(𝜇(𝑥(𝑡)), 𝑐𝑑). By the induction

hypothesis we know that 𝛿𝑃 (𝑡),𝑒(𝜏 (𝑡),𝑥(𝑡))(𝑥
(𝑡)) ≤ 1

400𝜂𝑡. Now, when we update 𝜏 (𝑡) to 𝜏 (𝑡+
1
3
), we set 𝑒𝑖(𝑡)

to 0. Consequently, Lemma 8.3.8 and the induction hypothesis ‖𝑒(𝜏 (𝑡),𝑥(𝑡))‖∞ ≤ 1
400𝑐𝑒 show that

𝛿
𝑃 (𝑡),𝑒(𝜏 (𝑡+

1
3 ),𝑥(𝑡))

(𝑥(𝑡)) ≤ 𝛿𝑃 (𝑡),𝑒(𝜏 (𝑡),𝑥(𝑡))(𝑥
(𝑡)) +

1√︀
𝑐𝑒 + 𝜇(𝑥(𝑡))

𝑒𝑖(𝑡)(𝜏
(𝑡),𝑥(𝑡))

≤ 1

400
𝜂𝑡 +

√
𝑐𝑒

400
≤ 𝜂𝑡

200
(8.18)

Next, we estimate the 𝛿 changes when we remove or add a constraint.

For the case of removal, we note that it happens only if 𝜇(𝑥(𝑡)) ≤ min𝑖𝑤𝑖 ≤ 𝑐𝑑 ≤ 1
106

. Also, the
row we remove has leverage score at most 1.1𝜇(𝑥(𝑡)) because we pick the row with minimum 𝑤. Hence,
Lemma 8.3.13 show that

𝛿
𝑃 (𝑡+1),𝑒(𝜏 (𝑡+

2
3 ),𝑥(𝑡))

(𝑥(𝑡)) ≤ 1√︀
1− 2𝜇(𝑥(𝑡))

𝛿
𝑃 (𝑡),𝑒(𝜏 (𝑡+

1
3 ),𝑥(𝑡))

(𝑥(𝑡)) + 3(𝑐𝑒 + 𝜇(𝑥(𝑡)))

≤ 1√
1− 2 · 10−6

(︁ 𝜂𝑡
200

)︁
+ 3(𝑐𝑒 + 𝜇(𝑥(𝑡))) ≤ 𝜂𝑡

100

where we used the fact 𝜇(𝑥(𝑡)) ≤ 𝑐𝑑 and hence 𝑐𝑒 + 𝜇(𝑥(𝑡)) ≤
√
2𝑐𝑑𝜂𝑡 ≤

√
2

1000𝜂𝑡.

For the case of addition, we note that it happens only if 2𝜇(𝑥(𝑡)) ≥ min𝑖𝑤𝑖 ≥ 𝑐𝑑. Furthermore,
in this case the hyperplane we add is chosen precisely so that 𝜓𝑎 = 𝑐𝑎. Furthermore, since 𝑐𝑒 ≤ 𝑐𝑑 ≤
𝑐𝑎 ≤ 1

100 by Lemma 8.3.12 we have that

𝛿
𝑃 (𝑡+1),𝑒(𝜏 (𝑡+

2
3 ),𝑥(𝑡))

(𝑥(𝑡)) ≤
√
1 + 𝑐𝑎𝛿

𝑃 (𝑡),𝑒(𝜏 (𝑡+
1
3 ),𝑥(𝑡))

+
(︀
𝑐𝑒
√
1 + 𝑐𝑎 + 𝑐𝑎

)︀√︂ 𝑐𝑎

𝜇(𝑥(𝑡))
+ 𝑐𝑎

≤ 𝜂𝑡
190

+ 4𝑐𝑎

√︂
𝑐𝑎
𝑐𝑑

.

Furthermore, since 𝑐𝑎
√
𝑐𝑎 ≤ 𝑐𝑑

1000 , 𝜇(𝑥
(𝑡)) ≥ 𝑐𝑑/2, and 𝑐𝑑 ≤ 10−6 we know that 4𝑐𝑎

√︀
𝑐𝑎/𝑐𝑑 ≤ 1

250𝜂𝑡 and
consequently in both cases we have 𝛿

𝑃 (𝑡+1),𝑒(𝜏 (𝑡+
2
3 ),𝑥(𝑡))

(𝑥(𝑡)) ≤ 1
100𝜂𝑡.

Now, note that Lemmas 8.3.12 and 8.3.13 show that 𝑒 does not change during the addition or
removal of an constraint. Hence, we have ‖𝑒(𝜏 (𝑡+ 2

3
),𝑥(𝑡))‖∞ ≤ ‖𝑒(𝜏 (𝑡+ 1

3
),𝑥(𝑡))‖∞. Furthermore, we

know the step “𝜏
(𝑘+ 1

3
)

𝑖(𝑘)
= 𝜓𝑃 (𝑘)(𝑥(𝑘))𝑖(𝑘)” only decreases ‖𝑒‖∞ and hence we have ‖𝑒(𝜏 (𝑡+ 2

3
),𝑥(𝑡))‖∞ ≤

‖𝑒(𝜏 (𝑡),𝑥(𝑡))‖∞ ≤ 𝑐𝑒
400 . Thus, we have all the conditions needed for Lemma 8.3.9 and consequently

𝛿𝑃 (𝑡+1),𝑒(𝜏 (𝑡+1),𝑥(𝑡+1))(𝑥
(𝑡+1)) ≤ 2

(︂
1− 1

64

)︂200

𝛿
𝑃 (𝑡+1),𝑒(𝜏 (𝑡+

2
3 ),𝑥(𝑡))

(𝑥(𝑡)) ≤ 1

1000
𝜂𝑡 .

Lemma 8.3.9 also shows that that
⃦⃦⃦
𝑠(𝑥(𝑡+1))−𝑠(𝑥(𝑡))

𝑠(𝑥(𝑡))

⃦⃦⃦
2
≤ 1

10 and hence 𝜓𝑖(𝑥(𝑡)) ≤ 2𝜓𝑖(𝑥
(𝑡+1)) for all 𝑖.
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Therefore, 𝜂𝑡 ≤ 2𝜂𝑡+1 and thus

𝛿𝑃 (𝑡+1),𝑒(𝜏 (𝑡+1),𝑥(𝑡+1))(𝑥
(𝑡+1)) ≤

√︁
𝑐𝑒 +min

(︀
𝑐𝑑, 𝜇(𝑥(𝑡+1))

)︀
400

.

completing the induction case for 𝛿.
Now, we bound ‖𝑒‖∞. Lemma 8.3.12 and 8.3.13 show that 𝑒 does not change during the addition

or removal of an constraint. Hence, 𝑒 is affected by only the update step “𝜏
(𝑘+ 1

2
)

𝑖(𝑘)
= 𝜓𝑃 (𝑘)(𝑥(𝑘))𝑖(𝑘)” and

the centering step. Using the induction hypothesis 𝛿
𝑃 (𝑡),𝑒(𝜏 (𝑡+

2
3 ),𝑥(𝑡))

(𝑥(𝑡)) ≤ 1
100𝜂𝑡 and Lemma 8.3.9

shows that E𝑒(𝜏 (𝑡+1),𝑥(𝑡+1)) = 𝑒(𝜏 (𝑡+ 2
3
),𝑥(𝑡)) and ‖𝑒(𝜏 (𝑡+1),𝑥(𝑡+1))− 𝑒(𝜏 (𝑡+ 2

3
),𝑥(𝑡))‖2 ≤ 1

10𝑐Δ. The
goal for the update step is to decrease 𝑒 by updating 𝜏 . In Section 8.4.2, we give a self-contained
analysis of the effect of this step as a game. In each round, the vector 𝑒 is corrupted by some
mean 0 and bounded variance noise and the problem is how to update 𝑒 such that ‖𝑒‖∞ is bounded.
Theorem 8.4.3 shows that we can do this by setting the 𝑒𝑖 = 0 for the almost maximum coordinate
in each iteration. This is exactly what the update step is doing. Since our algorithm would run only
𝑂(𝑛 log(𝑛𝑅/𝜀)) many iterations, Theorem 8.4.3 shows that this strategy guarantees that after the
update step, we have ⃦⃦⃦

𝑒(𝜏 (𝑡+
1
3
),𝑥(𝑡))

⃦⃦⃦
∞

= 𝑂 (𝑐Δ log (𝑛 log(𝑅/𝜀))) .

Now, by our choice of 𝑐Δ, we have ‖𝑒(𝜏 (𝑡+ 1
3
),𝑥(𝑡))‖∞ ≤ 1

1000𝑐𝑒. Lemma 8.3.12 and 8.3.13 show that 𝑒

does not change during the addition or removal of an constraint. Hence, we have ‖𝑒(𝜏 (𝑡+ 2
3
),𝑥(𝑡))‖∞ ≤

1
1000𝑐𝑒. Now, we note that again Lemma 8.3.9 shows ‖𝑒(𝜏 (𝑡+1),𝑥(𝑡+1)) − 𝑒(𝜏 (𝑡+ 2

3
),𝑥(𝑡))‖2 ≤ 1

10𝑐Δ ≤
1

1000𝑐𝑒, and we have ‖𝑒(𝜏 (𝑡+1),𝑥(𝑡+1))‖∞ ≤ 𝑐𝑒
400 . This finishes the induction case for ‖𝑒‖∞ and proves

this lemma.

Next, we show the number of constraints is always linear to 𝑛.

Lemma 8.3.17. Throughout our cutting plane method, there are at most 1 + 2𝑛
𝑐𝑑

constraints.

Proof. We only add a constraint if min𝑖𝑤𝑖 ≥ 𝑐𝑑. Since 2𝜓𝑖 ≥ 𝑤𝑖, we have 𝜓𝑖 ≥ 𝑐𝑑
2 for all 𝑖. Letting 𝑚

denote the number of constraints after we add that row, we have 𝑛 ≥
∑︀

𝑖 𝜓𝑖 ≥ (𝑚− 1)(𝑐𝑑/2).

Using 𝐾 ̸= ∅ and 𝐾 ⊂ 𝐵∞(𝑅), here we show that the points are bounded.

Lemma 8.3.18. During our Cutting Plane Method, for all 𝑘, we have ‖𝑥(𝑘)‖2 ≤ 6
√︀
𝑛/𝜆+ 2

√
𝑛𝑅.

Proof. By Lemma 8.3.16 and Lemma 8.3.14 we know that ‖𝑥(𝑘)‖22 ≤ 4𝜆−1(𝑚𝑐𝑒 + 𝑛) + 2‖𝑦‖22 for any
𝑦 ∈ 𝑃 (𝑘). Since our method never cuts out any point in 𝐾 and since 𝐾 is nonempty, there is some
𝑦 ∈ 𝐾 ⊂ 𝑃 (𝑘). Since 𝐾 ⊂ 𝐵∞(𝑅), we have ‖𝑦‖22 ≤ 𝑛𝑅2. Furthermore, by Lemma 8.3.17 we have that
𝑚𝑐𝑒 ≤ 𝑐𝑒 + 2𝑛 ≤ 3𝑛 yielding the result.

Lemma 8.3.19. 𝑠𝑖
(︀
𝑥(𝑘)

)︀
≤ 12

√︀
𝑛/𝜆+4

√
𝑛𝑅+

√︁
1
𝑐𝑎𝜆

for all 𝑖 and 𝑘 in the our cutting plane method.

Proof. Let 𝑥(𝑗) be the current point at the time that the constraint corresponding to 𝑠𝑖, denoted
{𝑥 : 𝑎𝑇𝑖 𝑥 ≥ 𝑎𝑇𝑖 𝑥(𝑗) − 𝑠𝑖(𝑥(𝑗))}, was added. Clearly

𝑠𝑖(𝑥
(𝑘)) = 𝑎𝑇𝑖 𝑥

(𝑘) − 𝑎𝑇𝑖 𝑥(𝑗) + 𝑠𝑖(𝑥
(𝑗)) ≤ ‖𝑎𝑖‖ · ‖𝑥(𝑘)‖+

⃒⃒⃒
𝑎𝑇𝑖 𝑥

(𝑗) − 𝑠𝑖(𝑥(𝑗))
⃒⃒⃒

.
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On the one hand, if the constraint for 𝑠𝑖 comes from the initial symmetric polytope 𝑃 (0) = 𝐵∞(𝑅),
we know

⃒⃒
𝑎𝑇𝑥(𝑗) − 𝑠𝑖(𝑥(𝑗))

⃒⃒
≤ 𝑅 . On the other hand, if the constraint was added later then we know

that
𝑠𝑖(𝑥

(𝑗)) = 𝑐−1/2
𝑎

√︁
𝑎𝑇 (𝐴𝑇𝑆−2

𝑥(𝑗)𝐴+ 𝜆𝐼)−1𝑎 ≤ (𝑐𝑎𝜆)
−1/2

and
⃒⃒
𝑎𝑇𝑥(𝑗) − 𝑠𝑖(𝑥(𝑗))

⃒⃒
≤ ‖𝑎𝑖‖ · ‖𝑥(𝑗)‖+

⃒⃒
𝑠𝑖(𝑥

(𝑗))
⃒⃒
. Since ‖𝑎𝑖‖2 = 1 by design and ‖𝑥(𝑗)‖2 and ‖𝑥(𝑘)‖2

are upper bounded by 6
√︀
𝑛/𝜆+ 2

√
𝑛𝑅 by Lemma 8.3.18, in either case the result follows.

Now, we have everything we need to prove that the potential function is increasing in expectation.

Lemma 8.3.20. Under the assumptions of Lemma 8.3.16 if 𝜆 = 1
𝑐𝑎𝑅2 , 𝑐𝑒 = 𝑐𝑑

4 ln(6𝑛𝑅/𝜀) , and 24𝑐𝑑 ≤
𝑐𝑎 ≤ 1

1000 then for all 𝑘 we have

E𝑝𝑒(𝜏 (𝑘+1),𝑥(𝑘+1))(𝑥
(𝑘+1)) ≥ 𝑝𝑒(𝜏 (𝑘),𝑥(𝑘))(𝑥

(𝑘))− 𝑐𝑑 + ln(1 + 𝛽)

where 𝛽 = 𝑐𝑎 for the case of adding a constraint and 𝛽 = −𝑐𝑑 for the case of removal.

Proof. Note that there are three places which affect the function value, namely the update step for
𝜏 (𝑘+

1
3
), the addition/removal of constraints, and the centering step. We bound the effect of each

separately.

First, for the update step, we have

𝑝
𝑒(𝜏 (𝑘+

1
3 ),𝑥(𝑘))

(𝑥(𝑘)) = (𝑐+ 𝑒𝑖(𝑘)) log(𝑠𝑖(𝑘)(𝑥
(𝑘))/𝑅) + 𝑝𝑒(𝜏 (𝑘),𝑥(𝑘))(𝑥

(𝑘)).

Lemma 8.3.19, the termination condition, 𝜆 = 1
𝑐𝑎𝑅2 and 𝑐𝑎 < 1

1000 ensure that

𝜀 ≤ 𝑠𝑖(𝑘)(𝑥
(𝑘)) ≤ 12

√︀
𝑛/𝜆+ 4

√
𝑛𝑅+

√︂
1

𝑐𝑎𝜆
≤ 6
√
𝑛𝑅 (8.19)

and Lemma 8.3.16 shows that |𝑒𝑖(𝑘) | ≤ 𝑐𝑒. Hence, we have

𝑝
𝑒(𝜏 (𝑘+

1
3 ),𝑥(𝑘))

(𝑥(𝑘)) ≥ 𝑝𝑒(𝜏 (𝑘),𝑥(𝑘))(𝑥
(𝑘)) + 2𝑐𝑒 log(𝜀/𝑅).

For the addition step, Lemma 8.3.12 shows that

𝑝
𝑒(𝜏 (𝑘+

2
3 ),𝑥(𝑘))

(𝑥(𝑘)) = 𝑝
𝑒(𝜏 (𝑘+

1
3 ),𝑥(𝑘))

(𝑥(𝑘))− 𝑐𝑒 ln (𝑠(𝑥)𝑚+1/𝑅) + ln(1 + 𝑐𝑎)

≥ 𝑝
𝑒(𝜏 (𝑘+

1
3 ),𝑥(𝑘))

(𝑥(𝑘))− 𝑐𝑒 log(6
√
𝑛) + ln(1 + 𝑐𝑎)

and for the removal step, Lemma 8.3.13 and |𝑒𝑖| ≤ 𝑐𝑒 shows that

𝑝
𝑒(𝜏 (𝑘+

2
3 ),𝑥(𝑘))

(𝑥(𝑘)) ≥ 𝑝
𝑒(𝜏 (𝑘+

1
3 ),𝑥(𝑘))

(𝑥(𝑘)) + [𝑐𝑒 + 𝑒𝑃 (𝜏 ,𝑥)𝑚] ln (𝑠(𝑥)𝑚/𝑅) + ln(1− 𝑐𝑑)

≥ 𝑝
𝑒(𝜏 (𝑘+

1
3 ),𝑥(𝑘))

(𝑥(𝑘))− 2𝑐𝑒 log(𝑅/𝜀) + ln(1− 𝑐𝑑)

After the addition or removal of a constraint, Lemma 8.3.16 shows that

𝛿
𝑃 (𝑘),𝑒(𝜏 (𝑘+

2
3 ),𝑥(𝑘))

(𝑥(𝑘)) ≤ 1

100

√︁
𝑐𝑒 +min

(︀
𝜇(𝑥(𝑘)), 𝑐𝑑

)︀
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and therefore Lemma 8.3.9 and 𝑐𝑒 ≤ 𝑐𝑑 show that

E𝑝𝑒(𝜏 (𝑘+1),𝑥(𝑘+1))(𝑥
(𝑘+1)) ≥ 𝑝

𝑒(𝜏 (𝑘+
2
3 ),𝑥(𝑘))

(𝑥(𝑘))− 8

⎛⎝
√︁
𝑐𝑒 +min

(︀
𝜇(𝑥(𝑘)), 𝑐𝑑

)︀
100

⎞⎠2

≥ 𝑝
𝑒(𝜏 (𝑘+

2
3 ),𝑥(𝑘))

(𝑥(𝑘))− 𝑐𝑑
625

.

Combining them with 𝑐𝑒 =
𝑐𝑑

4 ln(6𝑛𝑅/𝜀) , we have

E𝑝𝑒(𝜏 (𝑘+1),𝑥(𝑘+1))(𝑥
(𝑘+1)) ≥ 𝑝𝑒(𝜏 (𝑘),𝑥(𝑘))(𝑥

(𝑘))− 2𝑐𝑒 log(6𝑛𝑅/𝜀)−
𝑐𝑑
625

+ ln(1 + 𝛽)

≥ 𝑝𝑒(𝜏 (𝑘),𝑥(𝑘))(𝑥
(𝑘))− 𝑐𝑑 + ln(1 + 𝛽)

where 𝛽 = 𝑐𝑎 for the case of addition and 𝛽 = −𝑐𝑑 for the case of removal.

Theorem 8.3.21. For 𝑐𝑎 = 1
1010

, 𝑐𝑑 = 1
1012

, 𝑐𝑒 = 𝑐𝑑
4 ln(6𝑛𝑅/𝜀) , 𝑐Δ = 𝐶𝑐𝑒

log(𝑛 log(𝑅/𝜀)) and 𝜆 = 1
𝑐𝑎𝑅2 for

some small enough universal constant 𝐶, then we have

E𝑝𝑒(𝜏 (𝑘+1),𝑥(𝑘+1))(𝑥
(𝑘+1)) ≥ 𝑝𝑒(𝜏 (𝑘),𝑥(𝑘))(𝑥

(𝑘))− 1

1011
+

9𝛽

1011

where 𝛽 = 1 for the case of addition and 𝛽 = 0 for the case of removal.

Proof. It is easy to see that these parameters satisfy the requirements of Lemma 8.3.20.

8.3.5 Guarantees of the Algorithm

In this section we put everything together to prove Theorem 8.3.26, the main result of this section,
providing the guarantees of our cutting plane method.

For the remainder of this section we assume that 𝑐𝑎 = 1
1010

, 𝑐𝑑 = 1
1012

, 𝑐𝑒 = 𝑐𝑑
4 ln(6𝑛𝑅/𝜀) , 𝑐Δ =

𝐶𝑐𝑒
log(𝑛 ln(𝑅/𝜀)) and 𝜆 = 1

𝑐𝑎𝑅2 . Consequently, throughout the algorithm we have

‖𝑥‖2 ≤ 6
√︀
𝑛/𝜆+ 2

√
𝑛𝑅 ≤ 3

√
𝑛𝑅. (8.20)

Lemma 8.3.22. If 𝑠𝑖(𝑥
(𝑘)) < 𝜀 for some 𝑖 and 𝑘 during our Cutting Plane Method then

max
𝑦∈𝑃 (𝑘)∩𝐵∞(𝑅)

⟨𝑎𝑖,𝑦⟩ − min
𝑦∈𝑃 (𝑘)∩𝐵∞(𝑅)

⟨𝑎𝑖,𝑦⟩ ≤
8𝑛𝜀

𝑐𝑎𝑐𝑒
.

Proof. Let 𝑦 ∈ 𝑃 (𝑘) ∩ 𝐵∞(𝑅) be arbitrary. Since 𝑦 ∈ 𝐵∞(𝑅) clearly ‖𝑦‖22 ≤ 𝑛𝑅2. Furthermore, by
Lemma 8.3.17 and the choice of parameters 𝑚𝑐𝑒 + 𝑛 ≤ 3𝑛. Consequently, by Lemma 8.3.14 and the
fact that 𝜆 = 1

𝑐𝑎𝑅2 and 𝑐𝑎 < 1 we have

‖𝑥− 𝑦‖𝐻(𝑥) ≤
12𝑚𝑐𝑒 + 6𝑛+ 2𝜆‖𝑦‖22√︀

𝑐𝑒 + 𝜇(𝑥)
≤

30𝑛+ 2 𝑛𝑐𝑎√︀
𝑐𝑒 + 𝜇(𝑥)

≤ 4𝑛

𝑐𝑎
√
𝑐𝑒

and therefore ⃦⃦⃦
𝑆−1
𝑥(𝑘)

(𝑠(𝑥(𝑘))− 𝑠(𝑦))
⃦⃦⃦
∞
≤ 1
√
𝑐𝑒

⃦⃦⃦
𝑆−1
𝑥(𝑘)

(𝑠(𝑥(𝑘))− 𝑠(𝑦))
⃦⃦⃦
𝑐𝑒𝐼+Ψ

≤ 4𝑛

𝑐𝑎𝑐𝑒
.

Consequently, we have (1− 4𝑛
𝑐𝑎𝑐𝑒

)𝑠𝑖(𝑥
(𝑘)) ≤ 𝑠𝑖(𝑦) ≤ (1 + 4𝑛

𝑐𝑎𝑐𝑒
)𝑠𝑖(𝑥

(𝑘)) for all 𝑦 ∈ 𝑃 (𝑘) ∩𝐵∞(𝑅).
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Now let us show how to compute a proof (or certificate) that the feasible region has small width
on the direction 𝑎𝑖.

Lemma 8.3.23. Suppose that during some iteration 𝑘 for 𝑖 = argmin𝑗 𝑠𝑗(𝑥
(𝑘)) we have 𝑠𝑖(𝑥

(𝑘)) ≤ 𝜀.
Let (𝑥*, 𝜏 *) = Centering(𝑥(𝑘), 𝜏 (𝑘), 64 log(2𝑅/𝜀), 𝑐Δ) where 𝜏

(𝑘) is the 𝜏 at that point in the algorithm
and let

𝑎* =
∑︁
𝑗 ̸=𝑖

𝑡𝑗𝑎𝑗 where 𝑡𝑗 =

(︂
𝑠(𝑥*)𝑖
𝑠(𝑥*)𝑗

)︂(︂
𝑐𝑒 + 𝑒𝑗(𝑥*, 𝜏 *) + 𝜓𝑗(𝑥*)

𝑐𝑒 + 𝑒𝑖(𝑥*, 𝜏 *) + 𝜓𝑖(𝑥*)

)︂
.

Then, we have that ‖𝑎𝑖 + 𝑎*‖2 ≤ 8
√
𝑛𝜀

𝑐𝑎𝑐𝑒𝑅
and 𝑡𝑗 ≥ 0 for all 𝑗. Furthermore, we have⎛⎝𝑂(𝑛)∑︁

𝑗 ̸=𝑖
𝑡𝑗𝑎𝑗

⎞⎠𝑇

𝑥* −
𝑂(𝑛)∑︁
𝑗 ̸=𝑖

𝑡𝑗𝑏𝑗 ≤
4𝑛𝜀

𝑐𝑒
.

Proof. By Lemma 8.3.9 and Lemma 8.3.16 we know that 𝑒(𝑥*, 𝜏 *) ≤ 1
2𝑐𝑒 and 𝛿𝑒(𝑥*,𝜏*) ≤

𝜀
𝑅

√︀
𝑐𝑒 + 𝜇(𝑥*).

Since 𝑒(𝑥*, 𝜏 *) ≤ 1
2𝑐𝑒, we have 𝑡𝑗 ≥ 0 for all 𝑗. Furthermore, by Lemma 8.3.15 and (8.20), we then

have that with high probability in 𝑛

‖𝑎𝑖 + 𝑎*‖2 ≤
2𝜀

(𝑐𝑒 + 𝜇(𝑥*))

[︃
𝜆‖𝑥*‖2 + 𝛿𝑒(𝑥*)

√︂
𝑚𝑐𝑒 + 𝑛

𝜀2
+ 𝜆

]︃

≤ 2𝜀

𝑐𝑒

[︂
1

𝑐𝑎𝑅2
(3
√
𝑛𝑅) +

2𝜀

𝑅

√︂
3𝑛

𝜀2
+

1

𝑐𝑎𝑅2

]︂
≤ 2𝜀

𝑐𝑒

[︃
3
√
𝑛

𝑐𝑎𝑅
+

2
√
3𝑛

𝑅
+

2
√
𝑐𝑎𝑅

]︃
≤ 8
√
𝑛𝜀

𝑐𝑎𝑐𝑒𝑅
.

By Lemma 8.3.16 we know that 𝑒(𝑥*, 𝜏 *) ≤ 1
2𝑐𝑒 and hence⎛⎝𝑂(𝑛)∑︁

𝑗 ̸=𝑖
𝑡𝑗𝑎𝑗

⎞⎠𝑇

𝑥* −
𝑂(𝑛)∑︁
𝑗 ̸=𝑖

𝑡𝑗𝑏𝑗 =

𝑂(𝑛)∑︁
𝑗 ̸=𝑖

𝑡𝑗𝑠(𝑥*)𝑗 = 𝑠𝑖(𝑥*)

𝑂(𝑛)∑︁
𝑗 ̸=𝑖

(︂
𝑐𝑒 + 𝑒𝑗(𝑥*, 𝜏 *) + 𝜓𝑗(𝑥*)

𝑐𝑒 + 𝑒𝑖(𝑥*, 𝜏 *) + 𝜓𝑖(𝑥*)

)︂

≤ 𝑠𝑖(𝑥*)

𝑂(𝑛)∑︁
𝑗 ̸=𝑖

(︃
3
2𝑐𝑒 + 𝜓𝑗(𝑥*)
1
2𝑐𝑒 + 𝜓𝑖(𝑥*)

)︃
≤ 𝑠𝑖(𝑥*)

3𝑚𝑐𝑒 + 2𝑛

𝑐𝑒

≤ 3𝑛

𝑐𝑒
𝑠𝑖(𝑥*) ≤

4𝑛𝜀

𝑐𝑒

where the last line follows the fact that 𝑠𝑖(𝑥*) ≤ 1.1𝑠𝑖(𝑥
(𝑘)) ≤ 1.1𝜀 (Lemma 8.3.9).

Lemma 8.3.24. During our Cutting Plane Method, if 𝑝𝑒(𝑥
(𝑘)) ≥ 2𝑛 log(𝑛𝑅𝑐𝑎𝜀) +

6𝑛
𝑐𝑎
, then we have

𝑠𝑖(𝑥
(𝑘)) ≤ 𝜀 for some 𝑖.

Proof. Recall that

𝑝𝑒(𝑥
(𝑘)) = −

∑︁
𝑖∈[𝑚]

(𝑐𝑒 + 𝑒𝑖) log
(︁
𝑠𝑖(𝑥

(𝑘))𝑖/𝑅
)︁
+

1

2
log det

(︁
𝑅2
(︁
𝐴𝑇𝑆−2

𝑥(𝑘)
𝐴+ 𝜆𝐼

)︁)︁
+
𝜆

2
‖𝑥(𝑘)‖22.
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Using ‖𝑥(𝑘)‖ ≤ 3
√
𝑛𝑅 (8.20) and 𝜆 = 1

𝑐𝑎𝑅2 , we have

𝑝𝑒(𝑥
(𝑘)) ≤ −

∑︁
𝑖∈[𝑚]

(𝑐𝑒 + 𝑒𝑖) log(𝑠(𝑥
(𝑘))𝑖/𝑅) +

1

2
log det

(︁
𝑅2
(︁
𝐴𝑇𝑆−2

𝑥(𝑘)
𝐴+ 𝜆𝐼

)︁)︁
+

5𝑛

𝑐𝑎
.

Next, we note that ‖𝑒𝑖‖∞ ≤ 𝑐𝑒 ≤ 1
4 ln(6𝑛𝑅/𝜀) and 𝑠𝑖

(︀
𝑥(𝑘)

)︀
≤ 12

√︀
𝑛/𝜆+4

√
𝑛𝑅+

√︁
1
𝑐𝑎𝜆
≤ 6
√
𝑛𝑅 (Lemma

8.3.19). Hence, we have

𝑝𝑒(𝑥
(𝑘)) ≤ 1

2
log det

(︁
𝑅2
(︁
𝐴𝑇𝑆−2

𝑥(𝑘)
𝐴+ 𝜆𝐼

)︁)︁
+

6𝑛

𝑐𝑎
− 𝑛

2
log(

min𝑖 𝑠𝑖
𝑅

).

We prove 𝑠𝑖(𝑥(𝑘)) ≤ 𝜀 by contradiction. Since 𝑝𝑒(𝑥(𝑘)) ≥ 2𝑛 log(𝑛𝑅𝑐𝑎𝜀) +
6𝑛
𝑐𝑎

and 𝑠𝑖(𝑥(𝑘)) > 𝜀 for all

𝑖, we have that 1
2 log det

(︁
𝑅2
(︁
𝐴𝑇𝑆−2

𝑥(𝑘)
𝐴+ 𝜆𝐼

)︁)︁
≥ 𝑛 log(𝑛𝑅𝑐𝑎𝜀). Using 𝜀 < 𝑅, we have that

∑︁
𝑖

log 𝜆𝑖

(︁
𝑅2
(︁
𝐴𝑇𝑆−2

𝑥(𝑘)
𝐴+ 𝜆𝐼

)︁)︁
≥ 𝑛 log

(︂
𝑛2𝑅2

𝑐2𝑎𝜀
2

)︂
≥ 𝑛 log

(︂
𝑛𝑅2

2𝑐2𝑎𝜀
2
+𝑅2𝜆

)︂
.

Therefore, we have log 𝜆max

(︁
𝑅2
(︁
𝐴𝑇𝑆−2

𝑥(𝑘)
𝐴+ 𝜆𝐼

)︁)︁
≥ log

(︁
𝑛𝑅2

2𝑐2𝑎𝜀
2 +𝑅2𝜆

)︁
. Hence, we have some unit

vector v such that v𝐴𝑇𝑆−2
𝑥 𝐴v + 𝜆v𝑇v ≥ 𝑛

2𝑐2𝑎𝜀
2 + 𝜆. Thus,

∑︁
𝑖

(𝐴v)2𝑖
𝑠(𝑥(𝑘))2𝑖

≥ 𝑛

2𝑐2𝑎𝜀
2
.

Lemma 8.3.17 shows that the number of constraints is bounded by 1+2𝑛/𝑐𝑑 ≤ 𝑛/(2𝑐2𝑎) and hence there
is some 𝑖 such that (𝐴v)2𝑖

𝑠(𝑥(𝑘))2𝑖
≥ 1

𝜀2
. Since 𝑎𝑖 and v are unit vectors, we have 1 ≥ ⟨𝑎𝑖, v⟩2 ≥ 𝑠(𝑥(𝑘))2𝑖 /𝜀

2

and hence 𝑠(𝑥(𝑘))𝑖 ≤ 𝜀 (contradiction).

Lemma 8.3.25. With constant probability, the algorithm ends in 1024𝑛 log(𝑛𝑅𝜀 ) iterations. 1

Proof. Theorem 8.3.21 shows that for all 𝑘

E𝑝𝑒(𝜏 (𝑘+1),𝑥(𝑘+1))(𝑥
(𝑘+1)) ≥ 𝑝𝑒(𝜏 (𝑘),𝑥(𝑘))(𝑥

(𝑘))− 1

1011
+

9𝛽

1011
(8.21)

where 𝛽 = 1 for the case of adding a constraint and 𝛽 = 0 for the case of removing a constraint. Now,
for all 𝑡 consider the random variable

𝑋𝑡 = 𝑝𝑒(𝜏 (𝑡),𝑥(𝑡))(𝑥
(𝑡))− 4.5𝑚(𝑡)

1011
− 3.5𝑡

1011

where 𝑚(𝑡) is the number of constraints in iteration 𝑡 of the algorithm. Then, since 𝑚(𝑡+1) = 𝑚(𝑡) −
1 + 2𝛽, (8.21) shows that

E𝑋𝑡+1 ≥ 𝑝𝑒(𝜏 (𝑡),𝑥(𝑡))(𝑥
(𝑡))− 1

1011
+

9𝛽

1011
− 4.5𝑚(𝑡+1)

1011
− 3.5(𝑡+ 1)

1011

=𝑋𝑡 −
1

1011
+

9𝛽

1011
− 4.5(−1 + 2𝛽)

1011
− 3.5

1011
=𝑋𝑡.

1We have made no effort on improving this constant and we believe it can be improved to less than 300 using techniques
in [11, 14].
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Hence, it is a sub-martingale. Let 𝑇 be the iteration the algorithm outputs 𝑥(𝑘) or 𝑃 (𝑘). Optional
stopping theorem shows that

E𝑋min(𝑇,𝑡) ≥ E𝑋0. (8.22)

Since the polytope is 𝐵∞(𝑅), we have

𝑝0(0) = −
∑︁

𝑖∈[𝑚(0)]

𝑐𝑒 log (𝑠𝑖(0)/𝑅) +
1

2
log det

(︀
𝑅2
(︀
𝐴𝑇𝑆−2

0 𝐴+ 𝜆𝐼
)︀)︀

+
𝜆

2
‖0‖22

≥ 1

2
log det

(︂
𝑅2

(︂
2

𝑅2
𝐼 +

1

𝑐𝑎𝑅2
𝐼

)︂)︂
≥ −15𝑛

where we used 𝑐𝑎 = 1/1010 on the last line. Hence, we have

𝑋0 ≥ −15𝑛− 4.5𝑚(0)

1011

≥ −20𝑛.
Therefore, (8.22) shows that for all 𝑡 we have

−20𝑛 ≤ E𝑋min(𝑇,𝑡)

= 𝑝E
[︀
𝑋min(𝑇,𝑡)|𝑇 < 𝑡

]︀
+ (1− 𝑝)E

[︀
𝑋min(𝑇,𝑡)|𝑇 ≥ 𝑡

]︀
(8.23)

where 𝑝 def
= P(𝑇 < 𝑡).

Note that

E
[︀
𝑋min(𝑇,𝑡)|𝑇 ≥ 𝑡

]︀
≤ E

[︁
𝑝𝑒(𝜏 (𝑡),𝑥(𝑡))(𝑥

(𝑡))|𝑇 ≥ 𝑡
]︁
− 4.5𝑚(𝑡)

1011
− 3.5𝑡

1011
.

≤ E
[︁
𝑝𝑒(𝜏 (𝑡),𝑥(𝑡))(𝑥

(𝑡))|𝑇 ≥ 𝑡
]︁
− 3.5𝑡

1011
.

Furthermore, by Lemma 8.3.24 we know that when 𝑝𝑒(𝜏 (𝑡),𝑥(𝑡))(𝑥
(𝑡)) ≥ 2𝑛 log(𝑛𝑅𝑐𝑎𝜀)+

6𝑛
𝑐𝑎
, there is a slack

that is too small and the algorithm terminates. Hence, we have

E
[︀
𝑋min(𝑇,𝑡)|𝑇 ≥ 𝑡

]︀
≤ 2𝑛 log(

𝑛𝑅

𝑐𝑎𝜀
) +

6𝑛

𝑐𝑎
− 3.5𝑡

1011
.

The proof of Lemma 8.3.16 shows that the function value does not change by more than 1 in one
iteration by changing 𝑥 and can change by at most𝑚𝑐𝑒 log(3𝑛𝑅𝜀 ) by changing 𝜏 . Since by Lemma 8.3.17
we know that 𝑚 ≤ 1 + 2𝑛

𝑐𝑎
and 𝑐𝑒 =

𝑐𝑑
4 ln(6𝑛𝑅/𝜀) , we have that 𝑝𝑒(𝑥) ≤ 2𝑛 log(𝑛𝑅𝑐𝑎𝜀) +

7𝑛
𝑐𝑎

throughout the
execution of the algorithm. Therefore, we have

E
[︀
𝑋min(𝑇,𝑡)|𝑇 ≤ 𝑡

]︀
≤ E𝑇<𝑡𝑝𝑒(𝜏 (𝑡),𝑥(𝑡))(𝑥

(𝑡)) ≤ 2𝑛 log(
𝑛𝑅

𝑐𝑎𝜀
) +

7𝑛

𝑐𝑎
.

Therefore, (8.23) shows that

−20𝑛 ≤ 2𝑛 log

(︂
𝑛𝑅

𝑐𝑎𝜀

)︂
+

7𝑛

𝑐𝑎
− (1− 𝑝) 3.5𝑡

1011
.
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Hence, we have

(1− 𝑝) 3.5𝑡
1011

≤ 2𝑛 log

(︂
𝑛𝑅

𝑐𝑎𝜀

)︂
+

7𝑛

𝑐𝑎
+ 20𝑛

≤ 2𝑛 log

(︂
𝑛𝑅

𝑐𝑎𝜀

)︂
+

7𝑛

𝑐𝑎
+ 20𝑛

= 2𝑛 log

(︂
𝑅𝑛

𝑐𝑎𝜀

)︂
+ 8 · 1010𝑛.

Thus, we have

P(𝑇 < 𝑡) = 𝑝 ≥ 1− 1

𝑡

(︂
1011𝑛 log

(︂
𝑛𝑅

𝜀

)︂
+ 1022𝑛

)︂
.

Now, we gather all the result as follows:

Theorem 8.3.26 (Our Cutting Plane Method). Let 𝐾 ⊆ R𝑛 be a non-empty set contained in a box
of radius 𝑅, i.e. 𝐾 ⊆ 𝐵∞(𝑅). For any 𝜀 ∈ (0, 𝑅) in expected time 𝑂(𝑛SOΩ(𝜀/

√
𝑛)(𝐾) log(𝑛𝑅/𝜀) +

𝑛3 log𝑂(1)(𝑛𝑅/𝜀)) our cutting plane method either outputs 𝑥 ∈ 𝐾 or finds a polytope 𝑃 = {𝑥 : 𝐴𝑥 ≥
𝑏} ⊇ 𝐾 such that

1. 𝑃 has 𝑂(𝑛) many constraints (i.e. 𝐴 ∈ R𝑂(𝑛)×𝑛 and 𝑏 ∈ R𝑂(𝑛)).

2. Each constraint of 𝑃 is either an initial constraint from 𝐵∞(𝑅) or of the form ⟨𝑎,𝑥⟩ ≥ 𝑏 − 𝛿
where ⟨𝑎,𝑥⟩ ≥ 𝑏 is a normalized hyperplane (i.e. ‖𝑎‖2 = 1) returned by the separation oracle

and 𝛿 = Ω
(︁

𝜀√
𝑛

)︁
.

3. The polytope 𝑃 has small width with respect to some direction 𝑎1 given by one of the constraints,
i.e.

max
𝑦∈𝑃∩𝐵∞(𝑅)

⟨𝑎1,𝑦⟩ − min
𝑦∈𝑃∩𝐵∞(𝑅)

⟨𝑎1,𝑦⟩ ≤ 𝑂 (𝑛𝜀 ln(𝑛𝑅/𝜀))

4. Furthermore, the algorithm produces a proof of the fact above involving convex combination of
the constraints, namely, non-negatives 𝑡2, ..., 𝑡𝑂(𝑛) and 𝑥 ∈ 𝑃 such that

(a) ‖𝑥‖2 = 𝑂 (
√
𝑛𝑅),

(b)
⃦⃦⃦
𝑎1 +

∑︀𝑂(𝑛)
𝑖=2 𝑡𝑖𝑎𝑖

⃦⃦⃦
2
= 𝑂

(︀
𝜀
𝑅

√
𝑛 log(𝑛𝑅/𝜀)

)︀
,

(c) 𝑎𝑇1 𝑥− 𝑏1 ≤ 𝜀,

(d)
(︁∑︀𝑂(𝑛)

𝑖=2 𝑡𝑖𝑎𝑖

)︁𝑇
𝑥−

∑︀𝑂(𝑛)
𝑖=2 𝑡𝑖𝑏𝑖 ≤ 𝑂(𝑛𝜀 log(𝑛𝑅/𝜀)) .

Proof. Our algorithm either finds 𝑥 ∈ 𝐾 or we have 𝑠𝑖(𝑥(𝑘)) < 𝜀. When 𝑠𝑖(𝑥(𝑘)) < 𝜀, we apply Lemma
8.3.23 to construct the polytope 𝑃 and the linear combination

∑︀𝑂(𝑛)
𝑖=2 𝑡𝑖𝑎𝑖.

Notice that each iteration of our algorithm needs to solve constant number of linear systems and
implements the sampling step to find Δ(𝑘) ∈ R𝑛 s.t. E[Δ(𝑘)] = 𝜓(𝑥(𝑘)) − 𝜓(𝑥(𝑘−1)). Theorem 8.4.2
shows how to do the sampling in �̃�(1) many linear systems. Hence, in total, each iterations needs to
solve �̃�(1) many linear systems plus nearly linear work. To output the proof for (4), we use Lemma
8.3.23.
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Note that the linear systems the whole algorithm need to solve is of the form

(𝐴𝑇𝑆−2
𝑥 𝐴+ 𝜆𝐼)−1𝑥 = 𝑦.

where the matrix 𝐴𝑇𝑆−2
𝑥 𝐴 + 𝜆𝐼 can be written as 𝐴

𝑇
𝐷𝐴 for the matrix 𝐴 = [𝐴 𝐼] and diagonal

matrix

𝐷 =

[︂
𝑆−2 0
0 𝜆𝐼

]︂
.

Note that Lemma 8.3.9 shows that ‖
(︁
𝑆(𝑘)

)︁−1
(𝑠(𝑘+1) − 𝑠(𝑘))‖2 ≤ 1

10 for the 𝑘𝑡ℎ and (𝑘 + 1)𝑡ℎ linear

systems we solved in the algorithm. Hence, we have ‖
(︁
𝐷(𝑘)

)︁−1
(𝑑(𝑘+1) − 𝑑(𝑘))‖2 ≤ 1

10 . In [164], they

showed how to solve such sequence of systems in �̃�(𝑛2) amortized cost. Moreover, since our algorithm
always changes the constraints by 𝛿 amount where 𝛿 = Ω( 𝜀√

𝑛
) an inexact separation oracle SOΩ(𝜀/

√
𝑛)

suffices. (see Def 2.3.5). Consequently, the total work𝑂(𝑛SOΩ(𝜀/
√
𝑛)(𝐾) log(𝑛𝑅/𝜀)+𝑛3 log𝑂(1)(𝑛𝑅/𝜀)).

Note that as the running time holds with only constant probability, we can restart the algorithm
whenever the running time is too large.

To prove (2), we note that from the algorithm description, we know the constraints are either from
𝐵∞(𝑅) or of the form 𝑎𝑇𝑥 ≥ 𝑎𝑇𝑥(𝑘) − 𝛿 where

𝛿 =

√︃
𝑎𝑇 (𝐴𝑇𝑆−2

𝑥(𝑘)𝐴+ 𝜆𝐼)−1𝑎

𝑐𝑎
.

From the proof of Lemma 8.3.24, we know that if 𝜆max(𝐴
𝑇𝑆−2

𝑥 𝐴 + 𝜆𝐼) ≥ 𝑛
𝑐2𝑎𝜀

2 , then there is 𝑠𝑖 < 𝜀.

Hence, we have 𝜆min((𝐴
𝑇𝑆−2

𝑥 𝐴+ 𝜆𝐼)−1) ≥ 𝑐2𝑎𝜀
2

𝑛 . Since 𝑎 is a unit vector, we have√︃
𝑎𝑇 (𝐴𝑇𝑆−2

𝑥(𝑘)𝐴+ 𝜆𝐼)−1𝑎

𝑐𝑎
≥
√︂
𝑐𝑎𝜀2

𝑛
.

8.4 Technical Tools

In this section we provide stand-alone technical tools we use in our cutting plane method in Section 8.3.
In Section 8.4.1 we show how to efficiently compute accurate estimates of changes in leverage scores
using access to a linear system solver. In Section 8.4.2 we study what we call the “Stochastic Chasing
0 Game” and show how to maintain that a vector is small in ℓ∞ norm by making small coordinate
updates while the vector changes randomly in ℓ2.

8.4.1 Estimating Changes in Leverage Scores

In previous sections, we needed to compute leverage scores accurately and efficiently for use in our
cutting plane method. Note that the leverage score definition we used was

𝜓(𝑤)𝑖 = 1𝑇𝑖
√
𝑊𝐴

(︀
𝐴𝑇𝑊𝐴+ 𝜆𝐼

)︀−1
𝐴𝑇
√
𝑊1𝑖

for some 𝜆 > 0 which is different from the standard definition

𝜎(𝑤)𝑖 = 1𝑇𝑖
√
𝑊𝐴

(︀
𝐴𝑇𝑊𝐴

)︀−1
𝐴𝑇
√
𝑊1𝑖.
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However, note that the matrix 𝐴𝑇𝑊𝐴 + 𝜆𝐼 can be written as 𝐴
𝑇
𝐷𝐴 for the matrix 𝐴

𝑇
= [𝐴𝑇 𝐼]

and diagonal matrix

𝐷 =

[︂
𝑊 0
0 𝜆𝐼

]︂
.

and therefore computing 𝜓 is essentially same as computing typical leverage scores. Consequently, we
use the standard definition 𝜎 to simplify notation.

We explained in Section 2.3.1 that leverage scores can be approximated efficiently using dimension
reduction. Unfortunately, the error incurred by this approximation is too large to use inside the cutting
point method. In this section, we show how to efficiently approximate the change of leverage score
more accurately.

In particular, we show how to approximate 𝜎(𝑤) − 𝜎(v) for any given 𝑤, v with ‖ log(𝑤) −
log(v)‖2 ≪ 1. Our algorithm breaks 𝜎(𝑤)𝑖 − 𝜎(v)𝑖 into the sum of the norm of small vectors and
then uses the Johnson-Lindenstrauss dimension reduction to approximate the norm of each vector
separately. Our algorithm makes use of the following version of Johnson-Lindenstrauss.

Lemma 8.4.1 ([2]). Let 0 ≤ 𝜀 ≤ 1
2 and let 𝑥1, ...,𝑥𝑚 ∈ R𝑛 be arbitrary 𝑚 points. For 𝑘 =

𝑂(𝜀−2 log(𝑚)) let 𝑄 be a 𝑘 × 𝑛 random matrix with each entry sampled from {− 1√
𝑘
, 1√

𝑘
} uniformly

and independently. Then, E ‖𝑄𝑥𝑖‖2 = ‖𝑥𝑖‖2 for all 𝑖 ∈ [𝑚] and with high probability in 𝑚 we have
that for all 𝑖 ∈ [𝑚]

(1− 𝜀)‖𝑥𝑖‖2 ≤ ‖𝑄𝑥𝑖‖2 ≤ (1 + 𝜀)‖𝑥𝑖‖2 .

Algorithm 23: ̂︀ℎ = LeverageChange(𝐴, v ,𝑤, 𝜀)

Input: 𝐴 ∈ R𝑚×𝑛, v ,𝑤 ∈ R𝑚>0, 𝜀 ∈ (0, 0.5).
Given: ‖𝑉 −1(v −𝑤)‖2 ≤ 1

10 ; 𝐴
𝑇𝑉 𝐴 and 𝐴𝑇𝑊𝐴 are invertible.

Sample 𝑄𝑑 ∈ R𝑂(𝜀−2 log(𝑚))×𝑛 as in Lemma 8.4.1.
Let 𝑑𝑖 = ‖𝑄𝑑

√
𝑊𝐴

(︀
𝐴𝑇𝑊𝐴

)︀−1
𝐴𝑇1𝑖‖22 for all 𝑖 ∈ [𝑛].

Let 𝑡 = 𝑂
(︀
log(𝜀−1)

)︀
.

Sample 𝑄𝑓 ∈ R𝑂(𝜀−2 log(𝑚𝑡))×𝑛 as in Lemma 8.4.1.
Pick positive integer 𝑢 randomly such that Pr[𝑢 = 𝑖] = (12)

𝑖.
for 𝑗 ∈ {1, 2, · · · , 𝑡} ∪ {𝑡+ 𝑢} do

if 𝑗 is even then

Let 𝑓 (𝑗)𝑖 = ‖𝑄𝑓

√
𝑉 𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1
(︁
𝐴𝑇 (𝑉 −𝑊 )𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1
)︁ 𝑗

2
𝐴𝑇1𝑖‖22.

else

Let Δ+ def
= (𝑉 −𝑊 )+, i.e. the matrix 𝑉 −𝑊 with negative entries set to 0.

Let Δ− def
= (𝑊 − 𝑉 )+, i.e. the matrix 𝑊 − 𝑉 with negative entries set to 0.

Let �̂�(𝑗)
𝑖 = ‖𝑄𝑓

√
Δ+𝐴(𝐴𝑇𝑉 𝐴)−1(𝐴𝑇 (𝑉 −𝑊 )𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1
)
𝑗−1
2 𝐴𝑇1𝑖‖22.

Let 𝛽(𝑗)𝑖 = ‖𝑄𝑓

√
Δ−𝐴(𝐴𝑇𝑉 𝐴)−1(𝐴𝑇 (𝑉 −𝑊 )𝐴(𝐴𝑇𝑉 𝐴)−1)

𝑗−1
2 𝐴𝑇1𝑖‖22.

Let 𝑓 (𝑗)𝑖 = �̂�
(𝑗)
𝑖 − 𝛽

(𝑗)
𝑖 .

end

end

Let 𝑓𝑖 = 2𝑢𝑓
(𝑡+𝑢)
𝑖 +

∑︀𝑡
𝑗=1 𝑓

(𝑗)
𝑖 .

Output: ℎ̂𝑖 = (𝑤𝑖 − 𝑣𝑖)𝑑𝑖 + 𝑣𝑖𝑓𝑖. for all 𝑖 ∈ [𝑚]

Theorem 8.4.2. Let 𝐴 ∈ R𝑚×𝑛 and v ,𝑤 ∈ R𝑚>0 be such that 𝛼
def
= ‖𝑉 −1(v − 𝑤)‖2 ≤ 1

10 and both

𝐴𝑇𝑉 𝐴 and 𝐴𝑇𝑊𝐴 are invertible. For any 𝜀 ∈ (0, 0.5), Algorithm 23 generates a random variable ̂︀ℎ



188 CHAPTER 8. CONVEX MINIMIZATION IN NEARLY-CUBIC TIME

such that Eℎ̂ = 𝜎(𝑤)− 𝜎(v) and with high probability in 𝑚, we have ‖̂︀ℎ− (𝜎(𝑤)− 𝜎(v)) ‖2 ≤ 𝑂 (𝛼𝜀).
Furthermore, the expected running time is ̃︀𝑂((nnz(𝐴) + LO)/𝜀2) where LO is the amount of time

needed to apply
(︀
𝐴𝑇𝑉 𝐴

)︀−1
and

(︀
𝐴𝑇𝑊𝐴

)︀−1
to a vector.

Proof. First we bound the running time. To compute 𝑑𝑖, 𝑓
(𝑗)
𝑖 , �̂�

(𝑗)
𝑖 , 𝛽

(𝑗)
𝑖 , we simply perform matrix

multiplications from the left and then consider the dot products with each of the rows of 𝐴. Naively
this would take time ̃︀𝑂((𝑡 + 𝑢)2 log(𝑚𝑡)(nnz(𝐴) + LO)). However, we can reuse the computation
in computing high powers of 𝑗 to only take time ̃︀𝑂((𝑡 + 𝑢) log(𝑚𝑡)(nnz(𝐴) + LO)). Now since E[𝑢]
is constant we see that the total running time is as desired. It only remains to prove the desired
properties of ℎ̂.

First we note that we can re-write leverage score differences using

𝜎(𝑤)𝑖 − 𝜎(v)𝑖 = (𝑤𝑖 − 𝑣𝑖)
[︁
𝐴
(︀
𝐴𝑇𝑊𝐴

)︀−1
𝐴𝑇
]︁
𝑖𝑖
+ 𝑣𝑖

[︁
𝐴
(︁(︀
𝐴𝑇𝑊𝐴

)︀−1 −
(︀
𝐴𝑇𝑉 𝐴

)︀−1
)︁
𝐴𝑇
]︁
𝑖𝑖

.

Consequently, for all 𝑖 ∈ [𝑚], if we let

𝑑𝑖
def
= 1𝑇𝑖 𝐴

(︀
𝐴𝑇𝑊𝐴

)︀−1
𝐴𝑇1𝑖,

𝑓𝑖
def
= 1𝑇𝑖 𝐴

[︁(︀
𝐴𝑇𝑊𝐴

)︀−1 −
(︀
𝐴𝑇𝑉 𝐴

)︀−1
]︁
𝐴𝑇1𝑖.

then
𝜎(𝑤)𝑖 − 𝜎(v)𝑖 = (𝑤𝑖 − 𝑣𝑖)𝑑𝑖 + (𝑣𝑖)𝑓𝑖 . (8.24)

We show that 𝑑𝑖 approximates 𝑑 and 𝑓𝑖 approximate 𝑓 well enough to satisfy the statements in the
Theorem.

First we bound the quality of 𝑑𝑖. Note that 𝑑𝑖 = ‖
√
𝑊𝐴

(︀
𝐴𝑇𝑊𝐴

)︀−1
𝐴𝑇1𝑖‖22. Consequently,

Lemma 8.4.1 shows thatE[𝑑𝑖] = 𝑑𝑖 and that with high probability in𝑚 we have (1−𝜀)𝑑𝑖 ≤ 𝑑𝑖 ≤ (1+𝜀)𝑑𝑖
for all 𝑖 ∈ [𝑚]. Therefore, with high probability in 𝑚, we have

‖ (𝑤 − v) ̂︀𝑑− (𝑤 − v)𝑑‖22 =
∑︁
𝑖∈[𝑚]

(𝑤𝑖 − 𝑣𝑖)2
(︁̂︀𝑑𝑖 − 𝑑𝑖)︁2 ≤ 𝜀2 ∑︁

𝑖∈[𝑚]

(𝑤𝑖 − 𝑣𝑖)2𝑑2𝑖

= 𝜀2
∑︁
𝑖∈[𝑚]

(𝑤𝑖 − 𝑣𝑖)2
(︂
𝜎(𝑤)𝑖
𝑤𝑖

)︂2

≤ 2𝜀2
∑︁
𝑖∈[𝑚]

(︂
𝑤𝑖 − 𝑣𝑖
𝑣𝑖

)︂2

.

Next we show how to estimate 𝑓 . Let 𝑋 def
=
(︀
𝐴𝑇𝑉 𝐴

)︀−1/2
𝐴𝑇 (𝑉 −𝑊 )𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1/2
. By the

assumption on 𝛼 we know −1
2𝑉 ≺ 𝑉 −𝑊 ≺ 1

2𝑉 and therefore −1
2𝐼 ≺ 𝑋 ≺

1
2𝐼. Consequently we

have that (︀
𝐴𝑇𝑊𝐴

)︀−1
=

(︀
𝐴𝑇𝑉 𝐴

)︀−1/2
(𝐼 −𝑋)−1 (︀𝐴𝑇𝑉 𝐴

)︀−1/2

=

∞∑︁
𝑗=0

(︀
𝐴𝑇𝑉 𝐴

)︀−1/2
𝑋𝑗

(︀
𝐴𝑇𝑉 𝐴

)︀−1/2
.

and therefore

𝑓𝑖 = 1𝑇𝑖 𝐴

⎛⎝ ∞∑︁
𝑗=0

(︀
𝐴𝑇𝑉 𝐴

)︀−1/2
𝑋𝑗

(︀
𝐴𝑇𝑉 𝐴

)︀−1/2 −
(︀
𝐴𝑇𝑉 𝐴

)︀−1

⎞⎠𝐴𝑇1𝑖

=
∞∑︁
𝑗=1

𝑓
(𝑗)
𝑖 where 𝑓

(𝑗)
𝑖

def
= 1𝑇𝑖 𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1/2
𝑋𝑗

(︀
𝐴𝑇𝑉 𝐴

)︀−1/2
𝐴𝑇1𝑖 .
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Furthermore, using the definition of 𝑋 we have that for even j

𝑓
(𝑗)
𝑖 =

⃦⃦⃦
𝑋

𝑗
2
(︀
𝐴𝑇𝑉 𝐴

)︀−1/2
𝐴𝑇1𝑖

⃦⃦⃦2
2

=

⃦⃦⃦⃦(︀
𝐴𝑇𝑉 𝐴

)︀−1/2
(︁
𝐴𝑇 (𝑉 −𝑊 )𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1
)︁ 𝑗

2
𝐴𝑇1𝑖

⃦⃦⃦⃦2
2

=

⃦⃦⃦⃦√
𝑉 𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1
(︁
𝐴𝑇 (𝑉 −𝑊 )𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1
)︁ 𝑗

2
𝐴𝑇1𝑖

⃦⃦⃦⃦2
2

For odd 𝑗, using our definition of Δ+ and Δ− we have that

𝑓
(𝑗)
𝑖 = 1𝑇𝑖 𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1/2
𝑋𝑗

(︀
𝐴𝑇𝑉 𝐴

)︀−1/2
𝐴𝑇1𝑖

= 1𝑇𝑖 𝐴
(︁(︀
𝐴𝑇𝑉 𝐴

)︀−1
𝐴𝑇 (𝑉 −𝑊 )𝐴

)︁ 𝑗−1
2 (︀

𝐴𝑇𝑉 𝐴
)︀−1

𝐴𝑇 (𝑉 −𝑊 )

×𝐴
(︀
𝐴𝑇𝑉 𝐴

)︀−1
(︁
𝐴𝑇 (𝑉 −𝑊 )𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1
)︁ 𝑗−1

2
𝐴𝑇1𝑖

= 𝛼
(𝑗)
𝑖 − 𝛽

(𝑗)
𝑖

where

𝛼
(𝑗)
𝑖

def
=

⃦⃦⃦⃦√
Δ+𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1
(︁
𝐴𝑇 (𝑊 − 𝑉 )𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1
)︁ 𝑗−1

2
𝐴𝑇1𝑖

⃦⃦⃦⃦2
2

,

𝛽
(𝑗)
𝑖

def
=

⃦⃦⃦⃦√
Δ−𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1
(︁
𝐴𝑇 (𝑊 − 𝑉 )𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1
)︁ 𝑗−1

2
𝐴𝑇1𝑖

⃦⃦⃦⃦2
2

.

Consequently, by Lemma 8.4.1 and the construction, we see that

E𝑓𝑖 =

∞∑︁
𝑗=1

𝑓
(𝑗)
𝑖 = 𝑓𝑖

and therefore Eℎ̂ = 𝜎(𝑤)− 𝜎(v) as desired. All that remains is to bound the variance of 𝑓𝑖.

To bound the variance of 𝑓 , let |𝑋| =
(︀
𝐴𝑇𝑉 𝐴

)︀−1/2
𝐴𝑇 |𝑊 − 𝑉 |𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1/2
. Note that

−1
4𝐼 ⪯ − |𝑋| ⪯𝑋 ⪯ |𝑋| ⪯

1
4𝐼 and consequently for all 𝑗

𝑔
(𝑗)
𝑖

def
= 1𝑇𝑖 𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1/2 |𝑋|𝑗
(︀
𝐴𝑇𝑉 𝐴

)︀−1/2
𝐴𝑇1𝑖

≤ 1

4𝑗−1
1𝑇𝑖 𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1/2 |𝑋|
(︀
𝐴𝑇𝑉 𝐴

)︀−1/2
𝐴𝑇1𝑖

def
=

1

𝑣𝑖4𝑗−1
1𝑇𝑖 𝑃 𝑣Δ𝑃 𝑣1𝑖

where 𝑃 𝑣 =
√
𝑉 𝐴

(︀
𝐴𝑇𝑉 𝐴

)︀−1/2
𝐴𝑇
√
𝑉 and Δ is a diagonal matrix with Δ𝑖𝑖 =

⃒⃒⃒
𝑤𝑖−𝑣𝑖
𝑣𝑖

⃒⃒⃒
. Using that

0 ⪯ 𝑃 𝑣 ⪯ 𝐼, we have that for all 𝑗
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(4𝑗−1)2
𝑚∑︁
𝑖=1

(︁
𝑣𝑖𝑔

(𝑗)
𝑖

)︁2
=

𝑚∑︁
𝑖=1

(︀
1𝑇𝑖 𝑃 𝑣Δ𝑃 𝑣1𝑖

)︀2
= Tr (𝑃 𝑣Δ𝑃 𝑣𝑃 𝑣Δ𝑃 𝑣)

≤ Tr (𝑃 𝑣ΔΔ𝑃 𝑣) = Tr (Δ𝑃 𝑣𝑃 𝑣Δ)

≤ Tr
(︀
Δ2
)︀
=

𝑚∑︁
𝑖=1

(︂
𝑤𝑖 − 𝑣𝑖
𝑣𝑖

)︂2

≤ 𝛼2

and thus ‖𝑉 𝑔(𝑗)‖2 ≤ 4𝛼
4𝑗
. Furthermore, since Δ+ ⪯ |𝑊 − 𝑉 | and Δ− ⪯ |𝑊 − 𝑉 | we have that⃒⃒⃒

𝛼
(𝑗)
𝑖

⃒⃒⃒
≤ 𝑔(𝑗)𝑖 and

⃒⃒⃒
𝛽
(𝑗)
𝑖

⃒⃒⃒
≤ 𝑔(𝑗)𝑖 . Consequently, by Lemma 8.4.1 again, we have

‖𝑉 𝑓 (𝑗) − 𝑉 𝑓 (𝑗)‖22 =
∑︁
𝑖

𝑣2𝑖

(︁
𝑓
(𝑗)
𝑖 − 𝑓

(𝑗)
𝑖

)︁2
≤ 2

∑︁
𝑖

𝑣2𝑖

(︁
�̂�
(𝑗)
𝑖 − 𝛼

(𝑗)
𝑖

)︁2
+ 2

∑︁
𝑖

𝑣2𝑖

(︁
𝛽
(𝑗)
𝑖 − 𝛽

(𝑗)
𝑖

)︁2
≤ 2𝜀2

∑︁
𝑖

𝑣2𝑖

(︂(︁
𝛼
(𝑗)
𝑖

)︁2
+
(︁
𝛽
(𝑗)
𝑖

)︁2)︂
≤ 4𝜀2

∑︁
𝑖

(︁
𝑣𝑖𝑔

(𝑗)
𝑖

)︁2
≤ 4𝛼2𝜀2

(4𝑗−1)2
.

Putting this all together we have that

‖𝑉 𝑓 − 𝑉 𝑓‖2 ≤ ‖2𝑢𝑉 𝑓 (𝑡+𝑢) +
𝑡∑︁

𝑗=1

𝑉 𝑓 (𝑗) −
∞∑︁
𝑗=1

𝑉 𝑓 (𝑗)‖2

≤ 2𝑢‖𝑉 𝑓 (𝑡+𝑢)‖2 +
𝑡∑︁

𝑗=1

‖𝑉 𝑓 (𝑗) − 𝑉 𝑓 (𝑗)‖2 +
∞∑︁

𝑗=𝑡+1

‖𝑉 𝑓 (𝑗)‖2

≤ 2𝑢
4𝛼

4𝑡+𝑢−1
+

𝑡∑︁
𝑗=1

2𝛼𝜀

4𝑗−1
+

∞∑︁
𝑗=𝑡+1

2𝛼

4𝑗−1

= 𝑂
(︁
𝛼𝜀+

𝛼

4𝑡

)︁
.

Consequently, since 𝑡 = 𝑂(log(𝜀−1)) we have the desired result.

8.4.2 The Stochastic Chasing 0 Game

To avoid computing leverage scores exactly, in Section 8.4.1 we showed how to estimate the difference of
leverage scores and use these to update the leverage scores. However, if we only applied this technique,
the error of leverage scores would accumulate in the algorithm and we need to fix it. Naturally, one
may wish to use dimension reduction to compute a multiplicative approximation to the leverage scores
and update our computed value if the error is too large. However, this strategy would fail if there are
too many rows with inaccurate leverage scores in the same iteration. In this case, we would change
the central point too much that we are not able to recover. In this section, we present this update
problem in a general form that we call Stochastic Chasing 0 game and provide an effective strategy
for playing this game.

The Stochastic chasing 0 game is as follows. There is a player, a stochastic adversary, and a point
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𝑥 ∈ R𝑚. The goal of the player is to keep the point close to 0 ∈ R𝑚 in ℓ∞ norm and the goal of the
stochastic adversary is to move 𝑥 away from 0. The game proceeds for an infinite number of iterations
where in each iteration the stochastic adversary moves the current point 𝑥(𝑘) ∈ R𝑚 to some new point
𝑥(𝑘) +Δ(𝑘) ∈ R𝑚 and the player needs to respond. The stochastic adversary cannot move the Δ(𝑘)

arbitrarily, instead he is only allowed to choose a probability distribution 𝒟(𝑘) and sample Δ(𝑘) from
it. Furthermore, it is required that E𝒟(𝑘)Δ = 0 and ‖Δ‖22 ≤ 𝑐 for some fixed 𝑐 and all Δ ∈ 𝒟(𝑘).
The player does not know 𝑥(𝑘) or the distribution 𝒟(𝑘) or the move Δ(𝑘) of the stochastic adversary.
All the player knows is some 𝑦(𝑘) ∈ R𝑛 that is close to 𝑥(𝑘) in ℓ∞ norm. With this information,
the player is allowed to choose one coordinate 𝑖 and set 𝑥(𝑘+1)

𝑖 to be zero and for other 𝑗, we have

𝑥
(𝑘+1)
𝑗 = 𝑥

(𝑘)
𝑗 +Δ

(𝑘)
𝑗 .

The question we would like to address is, what strategy the player should choose to keep 𝑥(𝑘) close
to 0 in ℓ∞ norm? We show that there is a trivial strategy that performs well: simply pick the largest
coordinate and set it to 0.

Algorithm 24: Stochastic chasing 0 game
Constant: 𝑐 > 0, 𝑅 > 0.
Let 𝑥(1) = 0 ∈ R𝑚.
for 𝑘 = 1 to ∞ do

Stochastic Adversary: Pick 𝒟(𝑘) such that E𝒟(𝑘)Δ = 0 and ‖Δ‖2 ≤ 𝑐 all Δ ∈ 𝒟(𝑘).
Stochastic Adversary: Pick 𝑦(𝑘) ∈ R𝑚 such that ‖𝑦(𝑘) − 𝑥(𝑘)‖∞ ≤ 𝑅.
Player: Pick a coordinate 𝑖(𝑘) using only 𝑦(𝑘).
Sample Δ(𝑘) from 𝒟(𝑘).
Set 𝑥(𝑘+1)

𝑖(𝑘)
= 0 and 𝑥(𝑘+1)

𝑗 = 𝑥
(𝑘)
𝑗 +Δ

(𝑘)
𝑗 for all 𝑗 ̸= 𝑖(𝑘).

end

Theorem 8.4.3. Using the strategy 𝑖(𝑘) = argmax𝑖

⃒⃒⃒
𝑦
(𝑘)
𝑖

⃒⃒⃒
, with probability at least 1− 𝑝, we have

‖𝑥(𝑘)‖∞ ≤ 2(𝑐+𝑅) log
(︀
4𝑚𝑘2/𝑝

)︀
for all 𝑘 in the Stochastic Chasing 0 Game.

Proof. Consider the potential function Φ(𝑥) =
∑︀

𝑖 𝑒
𝛼𝑥𝑖 +

∑︀
𝑖 𝑒

−𝛼𝑥𝑖 where 𝛼 is to be determined. Now
for all 𝑥 we know that 𝑒𝑥 ≤ 1 + 𝑥+ 𝑥2

2 𝑒
|𝑥| and therefore for all |𝛿| ≤ 𝑐, 𝑥 and 𝛼, we have

𝑒𝛼𝑥+𝛼𝛿 ≤ 𝑒𝛼𝑥 + 𝛼𝛿𝑒𝛼𝑥 +
1

2
𝛼2𝛿2𝑒𝛼𝑥+|𝛼|𝑐 .

Consequently,

EΔ∈𝒟(𝑘)Φ(𝑥(𝑘) +Δ) ≤ Φ(𝑥(𝑘)) + 𝛼EΔ∈𝒟(𝑘)

⎛⎝∑︁
𝑖∈[𝑚]

𝑒𝛼𝑥
(𝑘)
𝑖 Δ𝑖 −

∑︁
𝑖∈[𝑚]

𝑒−𝛼𝑥
(𝑘)
𝑖 Δ𝑖

⎞⎠
+
𝛼2

2
𝑒𝛼‖Δ‖∞EΔ∈𝒟(𝑘)

⎛⎝∑︁
𝑖∈[𝑚]

𝑒𝛼𝑥
(𝑘)
𝑖 Δ2

𝑖 +
∑︁
𝑖∈[𝑚]

𝑒−𝛼𝑥
(𝑘)
𝑖 Δ2

𝑖

⎞⎠ .
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Since E𝒟(𝑘)Δ = 0 and ‖Δ‖2 ≤ 𝑐, we have EΔ∈𝒟(𝑘)

(︁∑︀
𝑖 𝑒
𝛼𝑥

(𝑘)
𝑖 Δ𝑖 −

∑︀
𝑖 𝑒

−𝛼𝑥(𝑘)𝑖 Δ𝑖

)︁
= 0 and

EΔ∈𝒟(𝑘)

(︃∑︁
𝑖

𝑒𝛼𝑥
(𝑘)
𝑖 Δ2

𝑖 +
∑︁
𝑖

𝑒−𝛼𝑥
(𝑘)
𝑖 Δ2

𝑖

)︃
≤ EΔ∈𝒟(𝑘)

(︃∑︁
𝑖

Δ2
𝑖

)︃(︂
max
𝑖
𝑒𝛼𝑥

(𝑘)
𝑖 +max

𝑖
𝑒−𝛼𝑥

(𝑘)
𝑖

)︂
≤ 2𝑐2max

𝑖
𝑒
𝛼
⃒⃒⃒
𝑥
(𝑘)
𝑖

⃒⃒⃒
.

Letting 𝜂(𝑘) = max𝑖 𝑒
𝛼
⃒⃒⃒
𝑥
(𝑘)
𝑖

⃒⃒⃒
, we then have

EΔ∈𝒟(𝑘)Φ(𝑥(𝑘) +Δ) ≤ Φ(𝑥(𝑘)) + 𝛼2𝑒𝛼𝑐𝑐2𝜂(𝑘).

Since 𝑖(𝑘) = argmax𝑖

⃒⃒⃒
𝑦
(𝑘)
𝑖

⃒⃒⃒
and ‖𝑦(𝑘) − 𝑥(𝑘)‖∞ ≤ 𝑅, the player setting 𝑥(𝑘+1)

𝑖(𝑘)
= 0 decreases Φ by at

least 𝑒−𝛼(𝑅+𝑐)𝜂(𝑘). Hence, we have

EΔ∈𝒟(𝑘)Φ(𝑥(𝑘+1)) ≤ Φ(𝑥(𝑘)) + 𝛼2𝑒𝛼𝑐𝑐2𝜂(𝑘) − 𝑒−𝛼(𝑅+𝑐)𝜂(𝑘).

Picking 𝛼 = 1
2(𝑐+𝑅) , we have 𝑒

2𝛼(𝑐+𝑅)(𝛼(𝑐 + 𝑅))2 ≤ 1 and hence 𝛼2𝑒𝛼𝑐𝑐2 ≤ 𝑒−𝛼(𝑅+𝑐). Therefore, we
have that

EΔ∈𝒟(𝑘)Φ(𝑥(𝑘+1)) ≤ EΦ(𝑥(𝑘)) ≤ ... ≤ Φ(𝑥(1)) = 2𝑚.

Consequently, by Markov’s inequality we have that Pr[Φ(𝑥(𝑘)) ≥ 𝜆𝑘] ≤ 2𝑚
𝜆𝑘

for any 𝜆𝑘. Furthermore,

since clearly Φ(𝑥) ≥ 𝑒𝛼‖𝑥‖∞ we have that Pr[‖𝑥(𝑘)‖∞ ≥ log(𝜆𝑘)/𝛼] ≤ 2𝑚
𝜆𝑘

for all 𝑘. Choosing 𝜆𝑘 = 4𝑚𝑘2

𝑝
and taking a union bound over all 𝑘, we have that

‖𝑥(𝑘)‖∞ ≤ 2(𝑐+𝑅) log
(︀
4𝑚𝑘2/𝑝

)︀
for all 𝑘 with probability at least

1−
∞∑︁
𝑖=1

2𝑚

𝜆𝑘
= 1−

∞∑︁
𝑘=1

𝑝

2𝑘2
≥ 1− 𝑝 .

8.5 Glossary

Here we summarize problem specific notation we use throughout this section. For many quantities we
included the typical order of magnitude as they appear during our algorithms.

∙ Our algorithm maintains a polytope {𝐴𝑥 ≥ 𝑏} which contains the set of solution 𝐾.

∙ Slacks 𝑠(𝑥) = 𝐴𝑥 − 𝑏, 𝑆(𝑥) is the diagonal matrix corresponds to 𝑠(𝑥). Rescaled constraint
matrix 𝐴𝑠 = 𝑆

−1𝐴.

∙ Leverage Score: 𝜓(𝑥) = 𝑑𝑖𝑎𝑔
(︁
𝐴𝑥

(︀
𝐴𝑇
𝑥𝐴𝑥 + 𝜆𝐼

)︀−1
𝐴𝑇
𝑥

)︁
, 𝜇(𝑥) = min𝜓𝑖(𝑥), 𝜆 = 1

𝑐𝑎𝑅2 and

𝑐𝑎 =
1

1010
.

∙ Each iteration, if there is a constraint with leverage score less than 𝑐𝑑 = 1
1012

, then we delete
that constraint. Otherwise, we add a constraint and put the leverage score 𝑐𝑎.

∙ Each iteration, our algorithm computes the change of leverage score with accuracy 𝑐Δ = 𝐶𝑐𝑒
log(𝑛 log(𝑅/𝜀))

where 𝑐𝑒 =
𝑐𝑑

4 ln(6𝑛𝑅/𝜀) and 𝑅 is the diameter of the box containing 𝐾.
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∙ Potential function 𝑝𝑒(𝑥) = −
∑︀

𝑖∈[𝑚] (𝑐𝑒 + 𝑒𝑖) log (𝑠𝑖(𝑥)/𝑅) +
1
2 log det

(︀
𝑅2
(︀
𝐴𝑇𝑆−2

𝑥 𝐴+ 𝜆𝐼
)︀)︀

+
𝜆
2‖𝑥‖

2
2.

∙ The algorithm starts with 𝑝𝑒(𝑥) ∼ −Θ(1)𝑛 and ends when 𝑝𝑒(𝑥) ∼ Θ(1)𝑛 log(𝑛𝑅/𝜀).

∙ Centrality 𝛿𝑒(𝑥) = ‖∇𝑝𝑒(𝑥)‖𝐻(𝑥)−1 where 𝐻(𝑥) = 𝐴𝑇
𝑥 (𝑐𝑒𝐼 +Ψ(𝑥))𝐴𝑥 + 𝜆𝐼. 𝛿𝑒(𝑥) ≈

Θ(
√︀
𝑐𝑒 + 𝜇(𝑥)).

∙ Approximate Hessian 𝑄(𝑥,𝑤) = 𝐴𝑇
𝑥 (𝑐𝑒𝐼 +𝑊 )𝐴𝑥 + 𝜆𝐼.
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Chapter 9

Effective Use of Cutting Plane Method

9.1 Introduction

Cutting plane methods have long been employed to obtain polynomial time algorithms for solving
optimization problems. However, for many problems cutting plane methods are often regarded as
inefficient both in theory and in practice. Here, in this chapter, we provide several techniques for
applying cutting plane methods efficiently. Moreover, we illustrate the efficacy and versatility of these
techniques by applying them to achieve improved running times for solving multiple problems including
semidefinite programming, matroid intersection, and submodular flow.

We hope these results revive interest in ellipsoid and cutting plane methods. We believe these
results demonstrate how cutting plan methods are often useful not just for showing that a problem
is solvable in polynomial time, but in many yield substantial running time improvements. We stress
that while some results in this chapter are problem-specific, the techniques introduced here are quite
general and are applicable to a wide range of problems.

In the remainder of this introduction we survey the key techniques we use to apply our cutting
plane method (Section 9.1.1) and the key results we obtain on improving the running time for solving
various optimization problems (Section 9.1.2). We conclude in Section 9.1.3 by providing an overview
of where to find additional technical result in this chapter.

9.1.1 Techniques

Although cutting plane methods are typically introduced as algorithms for finding a point in a convex
set (as we did with the feasibility problem in Chapter 8), this is often not the easiest way to apply the
methods. Moreover, improperly applying results on the feasibility problem to solve convex optimization
problems can lead to vastly sub-optimal running times. Our central goal, here, in this chapter is to
provide tools that allow cutting plane methods to be efficiently applied to solve complex optimization
problems. Some of these tools are new and some are extensions of previously known techniques. Here
we briefly survey the techniques we cover in Section 9.3 and Section 9.4.

Technique 0: From Feasibility to Optimization

In Section 9.3.1, we explain how to use our cutting plane method to solve convex optimization problems
using an approximate subgradient oracle. Our result is based on a result of Nemirovski [202] in which he
showed how to use a cutting plane method to solve convex optimization problems without smoothness
assumptions on the function and with minimal assumptions on the size of the function’s domain. We
adopt his proof to accommodate for an approximate separation oracle, an extension which is essential
for our applications. We use this result as the starting point for two new techniques we discuss below.



196 CHAPTER 9. EFFECTIVE USE OF CUTTING PLANE METHOD

Technique 1: Dimension Reduction through Duality

In Section 9.3.2, we discuss how cutting plane methods can be applied to obtain both primal and
dual solutions to convex optimization problems. Moreover, we show how this can be achieved while
only applying the cutting plane method in the space, primal or dual, which has a fewer number of
variables. Thus we show how to use duality to improve the convergence of cutting plane methods
while still solving the original problem.

To illustrate this idea consider the following very simple linear program (LP)

min
𝑥𝑖≥0,

∑︀
𝑥𝑖=1

𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖

where 𝑥 ∈ R𝑛 and 𝑤 ∈ R𝑛. Although this LP has 𝑛 variables, it should to be easy to solve purely on
the grounds that it only has one equality constraint and thus dual linear program is simply

max
𝑦≤𝑤𝑖∀𝑖

𝑦 ,

i.e. a LP with only one variable. Consequently, we can apply our cutting plane method to solve it
efficiently.

However, while this simple example demonstrates how we can use duality to decrease dimensions,
it is not always obvious how to recover the optimal primal solution 𝑥 variable given the optimal dual
solution 𝑦. Indeed, for many problems their dual is significantly simpler than itself (primal), so some
work is required to show that working in the space suffices to require a primal solution.

One such recent example of this approach proving successful is the linear program result explained
in Chapter 6. In this result, the authors show how to take advantage of this observation and get a
faster LP solver and maximum flow algorithm. It is interesting to study how far this technique can
extend, that is, in what settings can one recover the solution to a more difficult dual problem from
the solution to its easier primal problem?

There is in fact another precedent for such an approach. Grötschel, Lovász and Schrijver[109]
showed how to obtain the primal solution for linear program by using a cutting plane method to solve
the linear program exactly. This is based on the observation that cutting plane methods are able to
find the active constraints of the optimal solution and hence one can take dual of the linear program
to get the dual solution. This idea was further extended in [151] which also observed that cutting
plane methods are incrementally building up a LP relaxation of the optimization problem. Hence, one
can find a dual solution by taking the dual of that relaxation.

In Section 9.3.2, we provide a fairly general technique to recover a dual optimal solution from an
approximately optimal primal solution. Unfortunately, the performance of this technique seems quite
problem-dependent. We therefore only analyze this technique for semidefinite programming (SDP), a
classic and popular convex optimization problem. As a result, we obtain a faster SDP solver in both
the primal and dual formulations of the problem.

Technique 2: Using Optimization Oracles Directly

In the seminal works of Grötschel, Lovász, Schrijver and independently Karp and Papadimitriou [110,
138], they showed the equivalence between optimization oracles and separation oracles, and gave a
general method to construct a separation oracle for a convex set given an optimization oracle for that
set, that is an oracle for minimizing linear functionals over the set. This seminal result led to the first
weakly polynomial time algorithm for many algorithms such as submodular function minimization.
Since then, this idea has been used extensively in various settings [127, 44, 45, 65].
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Unfortunately, while this equivalence of separation and optimization is a beautiful and powerful
tool for polynomial time solvability of problems, in many case it may lead to inefficient algorithms. In
order to use this reduction to get a separation oracle, the optimization oracle may need to be called
multiple times – essentially the number of times needed to run a cutting plane method and hence may
be detrimental to obtaining small asymptotic running times. Therefore, it is an interesting question
of whether there is a way of using an optimization oracle more directly.

In Section 9.4 we provide a partial answer to this question for the case of a broad class of problems,
that we call the intersection problem. For these problems we demonstrate how to achieve running time
improvements by using optimization oracles directly. The problem we consider is as follows. We wish
to solve the problem for some cost vector 𝑐 ∈ R𝑛 and convex set 𝐾. We assume that the convex set 𝐾
can be decomposed as 𝐾 = 𝐾1 ∩𝐾2 such that max𝑥∈𝐾1 ⟨𝑐,𝑥⟩ and max𝑥∈𝐾2 ⟨𝑐,𝑥⟩ can each be solved
efficiently. Our goal is to obtain a running time for this problem comparable to that of minimizing 𝐾
given only a separation oracle for it.

We show that by considering a carefully regularized variant, we obtain a problem such that op-
timization oracles for 𝐾1 and 𝐾2 immediately yield a separation oracle for this regularized problem.
By analyzing the regularizer and bounding the domains of the problem we are able to show that this
allows us to efficiently compute highly accurate solutions to the intersection problem by applying our
cutting plane method once. In other words, we do not need to use a complicated iterative scheme
or directly invoke the equivalence between separation and optimization and thereby save 𝑂(poly(𝑛))
factors in our running times.

We note that this intersection problem can be viewed as a generalization of the matroid intersection
problem and in Section 9.4.2, we show our reduction gives a faster algorithm in certain parameter
regimes. As another example, in Section 9.4.3 we show our reduction gives a substantial polynomial
improvement for the submodular flow problem. Furthermore, in Section 9.4.4 we show how our
techniques allow us to minimize a linear function over the intersection of a convex set and an affine
subspace in a number of iterations that depends only on the co-dimension of the affine space.

9.1.2 Applications

Our main goal in this chapter is to provide general techniques for efficiently using cutting plane
methods for various problems. Hence, in this chapter, we use minimally problem-specific techniques
to achieve the best possible running time. However, we also demonstrate the efficacy of our approach
by showing how techniques improve upon the previous best known running times for solve several
classic problems in combinatorial and continuous optimization. Here we provide a brief overview of
these applications, previous work on these problems, and our results.

In order to avoid deviating from our main discussion, our coverage of previous methods and tech-
niques is brief. Given the large body of prior works on SDP, matroid intersection and submodular
flow, it would be impossible to have an in-depth discussion on all of them. Therefore, this section
focuses on running time comparisons and explanations of relevant preivous techniques.

Semidefinite Programming

In Section 9.3.2 we consider the classic semidefinite programming (SDP) problem:

max
𝑋⪰0

𝐶 ∙𝑋 s.t. 𝐴𝑖 ∙𝑋 = 𝑏𝑖 (primal) min
𝑦
𝑏𝑇𝑦 s.t.

𝑛∑︁
𝑖=1

𝑦𝑖𝐴𝑖 ⪰ 𝐶 (dual)

where 𝑋, 𝐶, 𝐴𝑖 are 𝑚 × 𝑚 symmetric matrices, 𝑏,𝑦 ∈ R𝑛, and 𝐴 ∙ 𝐵 def
= Tr(A𝑇B). For many

problems, 𝑛≪ 𝑚2 and hence the dual problem has fewer variables than the primal. There are many
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Years Authors Running times

1992 Nesterov, Nemirovsky[210] �̃�(
√
𝑛(𝑛𝑚𝜔 + 𝑛𝜔−1𝑚2))

2000 Anstreicher [13] �̃�((𝑚𝑛)1/4(𝑛𝑚𝜔 + 𝑛𝜔−1𝑚2))

2003 Krishnan, Mitchell [152] �̃�(𝑚(𝑛𝜔 +𝑚𝜔 + 𝑆)) (dual SDP)
- This Chapter �̃�(𝑚(𝑛2 +𝑚𝜔 + 𝑆))

Table 9.1: Previous algorithms for solving a 𝑛× 𝑛 SDP with 𝑚 constraints and 𝑆 non-zeros entries

results and applications of SDP; see [259, 248, 196] for a survey on this topic. Since our focus is
on polynomial time algorithms, we do not discuss pseudo-polynomial algorithms such as the spectral
bundle method [115], multiplicative weight update methods [17, 19, 126, 8], etc.

Currently, there are two competing approaches for solving SDP problems, namely interior point
methods (IPM) and cutting plane methods. Typically, IPMs require fewer iterations than the cutting
plane methods, however each iteration of these methods is more complicated and possibly more com-
putationally expensive. For SDP problems, interior point methods require the computations of the
Hessian of the function − log det (𝐶 −

∑︀𝑛
𝑖=1 𝑦𝑖𝐴𝑖) whereas cutting plane methods usually only need

to compute minimum eigenvectors of the slack matrix 𝐶 −
∑︀𝑛

𝑖=1 𝑦𝑖𝐴𝑖.
In [13], Anstreicher provided the current fastest IPM for solving the dual SDP problem using a

method based on the volumetric barrier function. This method takes 𝑂((𝑚𝑛)1/4) iterations and each
iteration is as cheap as usual IPMs. For general matrices 𝐶,𝑋,𝐴𝑖, each iteration takes 𝑂(𝑛𝑚𝜔 +
𝑛𝜔−1𝑚2) time where 𝜔 is the fast matrix multiplication exponent. If the constraint matrices 𝐴𝑖 are
rank one matrices, the iteration cost can be improved to 𝑂(𝑚𝜔 + 𝑛𝑚2 + 𝑛2𝑚) [153]. If the matrices
are sparse, then [97, 197] show how to use matrix completion inside the IPM. However, the running
time depends on the extended sparsity patterns which can be much larger than the total number of
non-zeros.

In [152], Krishnan and Mitchell observed that the separation oracle for dual SDP takes only
𝑂(𝑚𝜔 + 𝑆) time, where 𝑆 =

∑︀𝑛
𝑖=1 nnz(𝐴𝑖) be the total number of non-zeros in the constant matrix.

Hence, the cutting plane method by [253] gives a faster algorithm for SDP for many regimes. For
𝜔 = 2.38, the cutting plane method is faster when 𝐴𝑖 is not rank 1 and the problem is not too dense,
i.e.

∑︀𝑛
𝑖=1 nnz(𝐴𝑖) < 𝑛0.63𝑚2.25. While there are previous methods for using cutting plane methods

to obtain primal solutions[151] , to the best of our knowledge, there are no worst case running time
analysis for these techniques.

In Section 9.3.2, show how to alleviate this issue. We provide an improved algorithm for finding
the dual solution and prove carefully how to obtain a comparable primal solution as well. See Figure
9.1 for a summary of the algorithms for SDP and their running times.

Matroid Intersection

In Section 9.4.2 we show how our optimization oracle technique can be used to improve upon the
previous best known running times for matroid intersection. Matroid intersection is one of the most
fundamental problems in combinatorial optimization. The first algorithm for matroid intersection
is due to the seminal paper by Edmonds [81]. In Figures 9.2 and 9.3 we provide a summary of the
previous algorithms for unweighted and weighted matroid intersection as well as the new running times
we obtain in this chapter. While there is no total ordering on the running times of these algorithms
due to the different dependence on various parameters, we would like to point out that our algorithms
outperform the previous ones in regimes where 𝑟 is close to 𝑛 and/or the oracle query costs are
relatively expensive. In particular, in terms of oracle query complexity our algorithms are the first to
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Years Authors Running times

1968 Edmonds [81] not stated
1971 Aigner, Dowling [6] 𝑂(𝑛𝑟2𝒯ind)
1974 Tomizawa, Iri [249] not stated
1975 Lawler [157] 𝑂(𝑛𝑟2𝒯ind)
1979 Edmonds [80] not stated
1986 Cunningham [60] 𝑂(𝑛𝑟1.5𝒯ind)

- This Chapter
𝑂(𝑛2 log 𝑛𝒯ind + 𝑛3 log𝑂(1) 𝑛)

𝑂(𝑛𝑟 log2 𝑛𝒯rank + 𝑛3 log𝑂(1) 𝑛)

Table 9.2: Previous algorithms for (unweighted) matroid intersection. Here 𝑛 is the size of the ground set,
𝑟 = max{𝑟1, 𝑟2} is the maximum rank of the two matroids, 𝒯ind is the time needed to check if a set is independent
(independence oracle), and 𝒯rank is the time needed to compute the rank of a given set (rank oracle).

Years Authors Running times

1968 Edmonds [81] not stated
1974 Tomizawa, Iri [249] not stated
1975 Lawler [157] 𝑂(𝑛𝑟2𝒯ind + 𝑛𝑟3)

1979 Edmonds [80] not stated
1981 Frank [90] 𝑂(𝑛2𝑟(𝒯circuit + 𝑛))

1983 Orlin, Ahuja [219] not stated
1986 Brezovec, Cornuéjols, Glover[39] 𝑂(𝑛𝑟(𝒯circuit + 𝑟 + log 𝑛))

1995 Fujishige, Zhang [96] 𝑂(𝑛2𝑟0.5 log 𝑟𝑀 · 𝒯ind)
1995 Shigeno, Iwata [234] 𝑂((𝑛+ 𝒯circuit)𝑛𝑟0.5 log 𝑟𝑀)

- This Chapter
𝑂((𝑛2 log 𝑛𝒯ind + 𝑛3 log𝑂(1) 𝑛) log 𝑛𝑀)

𝑂((𝑛𝑟 log2 𝑛𝒯rank + 𝑛3 log𝑂(1) 𝑛) log 𝑛𝑀)

Table 9.3: Previous algorithms for weighted matroid intersection. In additions to the notations used in the
unweighted table, 𝒯circuit is the time needed to find a fundamental circuit and 𝑀 is the bit complexity of the
weights.

achieve the quadratic bounds of �̃�(𝑛2) and �̃�(𝑛𝑟) for independence and rank oracles. We hope our
work will revive the interest in the problem of which progress has been mostly stagnated for the past
20-30 years.

Minimum-Cost Submodular Flow

In Section 9.4.3 we show how our optimization oracle technique can be used to improve upon the
previous best known running times for (Minimum-cost) Submodular Flow. Submodular flow is a very
general problem in combinatorial optimization which generalizes many problems such as minimum
cost flow, the graph orientation, polymatroid intersection, directed cut covering [94]. In Figure 9.4 we
provide an overview of the previous algorithms for submodular flow as well as the new running times
we obtain in this chapter.

Many of the running times are in terms of a parameter ℎ, which is the time required for computing
an “exchange capacity”. To the best of our knowledge, the most efficient way of computing an exchange
capacity is to solve an instance of submodular minimization which previously took time �̃�(𝑛4EO+𝑛5)
(and now takes �̃�(𝑛2EO + 𝑛3) time using our result in Chapter 10). Readers may wish to substitute
ℎ = �̃�(𝑛2EO+ 𝑛3) when reading the table.
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Years Authors Running times

1978 Fujishige [92] not stated
1981 Grötschel, Lovász, Schrijver[110] weakly polynomial
1982 Zimmermann [276] not stated
1984 Barahona, Cunningham [30] not stated
1985 Cunningham, Frank [62] → 𝑂(𝑛4ℎ log𝐶)

1987 Fujishige [93] not stated
1987 Frank, Tardos [91] strongly polynomial
1988 Cui, Fujishige [265] not stated
1989 Fujishige, Röck, Zimmermann[95] → 𝑂(𝑛6ℎ log 𝑛)

1991 Chung, Tcha [52] not stated
1992 Zimmermann [277] not stated
1993 McCormick, Ervolina [190] 𝑂(𝑛7ℎ* log 𝑛𝐶𝑈)

1994 Wallacher, Zimmermann [266] 𝑂(𝑛8ℎ log 𝑛𝐶𝑈)

1997 Iwata [117] 𝑂(𝑛7ℎ log𝑈)

1998 Iwata, McCormick, Shigeno [123] 𝑂
(︀
𝑛4ℎmin

{︀
log 𝑛𝐶, 𝑛2 log 𝑛

}︀)︀
1999 Iwata, McCormick, Shigeno [124] 𝑂

(︀
𝑛6ℎmin

{︀
log 𝑛𝑈, 𝑛2 log 𝑛

}︀)︀
1999 Fleischer, Iwata, McCormick[89] 𝑂

(︀
𝑛4ℎmin

{︀
log𝑈, 𝑛2 log 𝑛

}︀)︀
1999 Iwata, McCormick, Shigeno [122] 𝑂

(︀
𝑛4ℎmin

{︀
log𝐶, 𝑛2 log 𝑛

}︀)︀
2000 Fleischer, Iwata [88] 𝑂(𝑚𝑛5 log 𝑛𝑈 · EO)

- This Chapter 𝑂(𝑛2 log 𝑛𝐶𝑈 · EO+ 𝑛3 log𝑂(1) 𝑛𝐶𝑈)

Figure 9-1: Previous algorithms for Submodular Flow with 𝑛 vertices, maximum cost 𝐶 and maximum capacity
𝑈 . The factor ℎ is the time for an exchange capacity oracle, ℎ* is the time for a “more complicated exchange
capacity oracle” and EO is the time for evaluation oracle of the submodular function. The arrow,→, indicates
that it used currently best maximum submodular flow algorithm as subroutine which was non-existent at the
time of the publication.

The previous fastest weakly polynomial algorithms for submodular flow are by [122, 88, 89], which
take time �̃�(𝑛6EO + 𝑛7) and 𝑂(𝑚𝑛5 log 𝑛𝑈 · EO), assuming ℎ = �̃�(𝑛2EO + 𝑛3). Our algorithm for
submodular flow has a running time of �̃�(𝑛2EO+𝑛3), which is significantly faster by roughly a factor
of �̃�(𝑛4).

For strongly polynomial algorithms, our results do not yield a speedup but we remark that our
faster strongly polynomial algorithm for submodular minimization in Chapter 10 improves the previous
algorithms by a factor of �̃�(𝑛2) as a corollary (because ℎ requires solving an instance of submodular
minimization).

9.1.3 Overview

After providing covering some preliminaries on convex analysis in Section 9.2 we split the remainder of
Chapter 9 into Section 9.3 and Section 9.4. In Section 9.3 we cover our algorithm for convex optimiza-
tion using an approximate subgradient oracle (Section 9.3.1) as well as our technique on using duality
to decrease dimensions and improve the running time of semidefinite programming (Section 9.3.2).
In Section 9.4 we provide our technique for using minimization oracles to minimize functions over
the intersection of convex sets and provide several applications including matroid intersection (Sec-
tion 9.4.2), submodular flow (Section 9.4.3), and minimizing a linear function over the intersection of
an affine subspace and a convex set (Section 9.4.4).
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9.2 Preliminaries

In this section we review basic facts about convex functions that we use throughout Chapter 9. We also
introduce two oracles that we use throughout Chapter 9, i.e. subgradient and optimization oracles,
and provide some basic reductions between them. Note that we have slightly extended some definitions
and facts to accommodate for the noisy separation oracles used in this chapter.

First we recall the definition of strong convexity

Definition 9.2.1 (Strong Convexity ). A real valued function 𝑓 on a convex set Ω is 𝛼-strongly convex
if for any 𝑥,𝑦 ∈ Ω and 𝑡 ∈ [0, 1], we have

𝑓(𝑡𝑥+ (1− 𝑡)𝑦) + 1

2
𝛼𝑡(1− 𝑡)‖𝑥− 𝑦‖2 ≤ 𝑡𝑓(𝑥) + (1− 𝑡)𝑓(𝑦).

Next we define an approximate subgradient.

Definition 9.2.2 (Subgradient). For any convex function 𝑓 on a convex set Ω, the 𝛿-subgradients of
𝑓 at 𝑥 are defined to be

𝜕𝛿𝑓(𝑥)
def
= {𝑔 ∈ Ω : 𝑓(𝑦) + 𝛿 ≥ 𝑓(𝑥) + ⟨𝑔,𝑦 − 𝑥⟩ for all 𝑦 ∈ Ω}.

Here we provide some basic facts regarding convexity and subgradients. These statements are
natural extensions of well known facts regarding convex functions and their proof can be found in any
standard textbook on convex optimization.

Fact 9.2.3. For any convex set Ω and 𝑥 be a point in the interior of Ω, we have the following:

1. If 𝑓 is convex on Ω, then 𝜕0𝑓(𝑥) ̸= ∅ and 𝜕𝑠𝑓(𝑥) ⊆ 𝜕𝑡𝑓(𝑥) for all 0 ≤ 𝑠 ≤ 𝑡.Otherwise, we have
‖𝑔‖2 > 1

2

√︁
𝛿
𝐷 . For any 𝑓(𝑦) ≤ 𝑓(𝑥), we have 𝛿 ≥ ⟨𝑔,𝑦 − 𝑥⟩ and hence

2. If 𝑓 is a differential convex function on Ω, then ∇𝑓(𝑥) ∈ 𝜕0𝑓(𝑥).

3. If 𝑓1 and 𝑓2 are convex function on Ω, 𝑔1 ∈ 𝜕𝛿1𝑓1(𝑥) and 𝑔2 ∈ 𝜕𝛿2𝑓1(𝑥), then 𝛼𝑔1 + 𝛽𝑔2 ∈
𝜕𝛼𝛿1+𝛽𝛿2(𝑔1 + 𝑔2)(𝑥).

4. If 𝑓 is 𝛼-strongly convex on Ω with minimizer 𝑥*, then for any 𝑦 with 𝑓(𝑦) ≤ 𝑓(𝑥*) + 𝜀, we
have 1

2𝛼‖𝑥
* − 𝑦‖2 ≤ 𝜀.

Next we provide a reduction from subgradients to separation oracles. We will use this reduction
several times in Chapter 9 to simplify our construction of separation oracles.

Lemma 9.2.4. Let 𝑓 be a convex function. Suppose we have 𝑥 and 𝑔 ∈ 𝜕𝛿𝑓(𝑥) with ‖𝑥‖2 ≤ 1 ≤ 𝐷

and 𝛿 ≤ 1. If ‖𝑔‖2 ≤ 1
2

√︁
𝛿
𝐷 , then 𝑓(𝑥) ≤ min‖𝑦2‖2≤𝐷 𝑓(𝑦) + 2

√
𝛿𝐷 and if ‖𝑔‖2 ≤ 1

2

√︁
𝛿
𝐷 then

{‖𝑦‖2 ≤ 𝐷 : 𝑓(𝑦) ≤ 𝑓(𝑥)} ⊂ {𝑦 : 𝑑𝑇𝑦 ≤ 𝑑𝑇𝑥+ 2
√
𝛿𝐷}

with 𝑑 = 𝑔/‖𝑔‖2. Hence, this gives a (2
√
𝛿𝐷, 2

√
𝛿𝐷)-separation oracle on the set {‖𝑥‖2 ≤ 𝐷}.

Proof. Let 𝑦 such that ‖𝑦‖2 ≤ 𝐷. By the definition of 𝛿-subgradient, we have

𝑓(𝑦) + 𝛿 ≥ 𝑓(𝑥) + ⟨𝑔,𝑦 − 𝑥⟩ .
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If ‖𝑔‖ ≤ 1
2

√︁
𝛿
𝐷 , then, we have |⟨𝑔,𝑦 − 𝑥⟩| ≤

√
𝛿𝐷 because ‖𝑥‖ ≤ 𝐷 and ‖𝑦‖2 ≤ 𝐷. Therefore,

min
‖𝑦‖2≤𝐷

𝑓(𝑦) + 2
√
𝛿𝐷 ≥ 𝑓(𝑥).

Otherwise, we have ‖𝑔‖2 > 1
2

√︁
𝛿
𝐷 . For any 𝑓(𝑦) ≤ 𝑓(𝑥), we have 𝛿 ≥ ⟨𝑔,𝑦 − 𝑥⟩ and hence

2
√
𝛿𝐷 ≥

⟨
𝑔

‖𝑔‖
,𝑦 − 𝑥

⟩
.

At several times in Chapter 9 we will wish to construct subgradient oracles or separation oracles
given only the ability to approximately maximize a linear function over a convex set. In the remainder
of this section we formally define such a optimization oracle and prove this equivalence.

Definition 9.2.5 (Optimization Oracle). Given a convex set 𝐾 and 𝛿 > 0 a 𝛿-optimization oracle for
𝐾 is a function on R𝑛 such that for any input 𝑐 ∈ R𝑛, it outputs 𝑦 such that

max
𝑥∈𝐾
⟨𝑐,𝑥⟩ ≤ ⟨𝑐,𝑦⟩+ 𝛿.

We denote by OO𝛿(𝐾) the time complexity of this oracle.

Lemma 9.2.6. Given a convex set 𝐾, any 𝜀-optimization oracle for 𝐾 is a 𝜀-subgradient oracle for
𝑓(𝑐)

def
= max𝑥∈𝐾 ⟨𝑐,𝑥⟩ .

Proof. Let 𝑥𝑐 be the output of 𝜀-optimization oracle on the cost vector 𝑐. We have

max
𝑥∈𝐾
⟨𝑐,𝑥⟩ ≤ ⟨𝑐,𝑥𝑐⟩+ 𝜀.

Hence, for all 𝑑, we have and therefore

⟨𝑥𝑐,𝑑− 𝑐⟩+ 𝑓(𝑐) ≤ 𝑓(𝑑) + 𝜀.

Hence, 𝑥𝑐 ∈ 𝜕𝛿𝑓(𝑐).

Combining these lemmas shows that having an 𝜀-optimization oracle for a convex set 𝐾 contained
in a ball of radius 𝐷 yields a 𝑂(

√
𝐷𝜀,
√
𝐷𝜀) separation oracle for max𝑥∈𝐾⟨𝑐,𝑥⟩. We use these ideas

to construction separation oracles throughout Chapter 9.

9.3 Convex Optimization

In this section we show how to apply our cutting plane method to efficiently solve problems in convex
optimization. First, in Section 9.3.1 we show how to use our result to minimize a convex function given
an approximate subgradient oracle. Then, in Section 9.3.2 we illustrate how this result can be used
to obtain both primal and dual solutions for a standard convex optimization problems. In particular,
we show how our result can be used to obtain improved running times for semidefinite programming
across a range of parameters.

9.3.1 From Feasibility to Optimization

In this section we consider the following standard optimization problem. We are given a convex
function 𝑓 : R𝑛 → R∪{+∞} and we want to find a point 𝑥 that approximately solves the minimization
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problem
min
𝑥∈R𝑛

𝑓(𝑥)

given only a subgradient oracle for 𝑓 .
Here we show how to apply the cutting plane method from Chapter 8 turning the small width

guarantee of the output of that algorithm into a tool to find an approximate minimizer of 𝑓 . Our
result is applicable to any convex optimization problem armed with a separation or subgradient oracle.
This result will serve as the foundation for many of our applications in this chapter.

Our approach is an adaptation of Nemiroski’s method [202] which applies the cutting plane method
to solve convex optimiziation problems, with only minimal assumption on the cutting plane method.
The proof here is a generalization that accommodates for the noisy separation oracle. In the remainder
of this subsection we provide a key definition we will use in our algorithm (Defintion 9.3.1), provide
our main result (Theorem 9.3.2), and conclude with a brief discussion of this result.

Definition 9.3.1. For any compact set 𝐾, we define the minimum width by MinWidth(𝐾)
def
=

min‖𝑎‖2=1max𝑥,𝑦∈𝐾 ⟨𝑎,𝑥− 𝑦⟩ .

Theorem 9.3.2. Let 𝑓 be a convex function on R𝑛 and Ω be a convex set that contains a minimizer of
𝑓 . Suppose we have a (𝜂, 𝛿)-separation oracle for 𝑓 and Ω is contained inside 𝐵∞(𝑅). Using 𝐵∞(𝑅)
as the initial polytope for our Cutting Plane Method, for any 0 < 𝛼 < 1, we can compute 𝑥 ∈ R𝑛 such
that

𝑓(𝑥)−min
𝑦∈Ω

𝑓(𝑦) ≤ 𝜂 + 𝛼

(︂
max
𝑦∈Ω

𝑓(𝑦)−min
𝑦∈Ω

𝑓(𝑦)

)︂
. (9.1)

with an expected running time of

𝑂
(︁
𝑛SO𝜂,𝛿(𝑓) log

(︁𝑛𝜅
𝛼

)︁
+ 𝑛3 log𝑂(1)

(︁𝑛𝜅
𝛼

)︁)︁
,

where 𝛿 = Θ
(︁
𝛼MinWidth(Ω)

𝑛3/2 ln(𝜅)

)︁
and 𝜅 = 𝑅

MinWidth(Ω) . Furthermore, we only need the oracle defined on

the set 𝐵∞(𝑅).

Proof. Let 𝑥* ∈ argmin𝑥∈Ω 𝑓(𝑥). Since 𝐵∞(𝑅) ⊃ Ω contains a minimizer of 𝑓 , by the definition of
(𝜂, 𝛿)-separation oracles, our Cutting Plane Method (Theorem 8.3.26) either returns a point 𝑥 that is
almost optimal or returns a polytope 𝑃 of small width. In the former case we have a point 𝑥 such
that 𝑓(𝑥) ≤ min𝑦 𝑓(𝑦) + 𝜂. Hence, the error is clearly at most 𝜂+ 𝛼 (max𝑧∈Ω 𝑓(𝑧)−min𝑥∈Ω 𝑓(𝑥)) as
desired. Consequently, we assume the latter case.

Theorem 8.3.26 shows MinWidth(𝑃 ) < 𝐶𝑛𝜀 ln(𝑅/𝜀) for some universal constant 𝐶. Picking

𝜀 = 𝐶 ′𝛼MinWidth(Ω)

𝑛 ln
(︀
𝑛𝜅
𝛼

)︀ (9.2)

for small enough constant 𝐶 ′, we have MinWidth(𝑃 (𝑖)) < 𝛼MinWidth(Ω). Let Ω𝛼 = 𝑥* + 𝛼(Ω− 𝑥*),
namely, Ω𝛼 = {𝑥* + 𝛼(𝑧 − 𝑥*) : 𝑧 ∈ Ω}. Then, we have

MinWidth(Ω𝛼) = 𝛼MinWidth(Ω) > MinWidth(𝑃 ).

Therefore, Ω𝛼 is not a subset of 𝑃 (𝑖) and hence there is some point 𝑦 ∈ Ω𝛼∖𝑃 . Since Ω𝛼 ⊆ Ω ⊆ 𝐵∞(𝑅),
we know that 𝑦 does not violate any of the constraints of 𝑃 (0) and therefore must violate one of the
constraints added by querying the separation oracle. Therefore, for some 𝑗 ≤ 𝑖, we have⟨

𝑐(𝑗−1),𝑦
⟩
>
⟨
𝑐(𝑗−1),𝑥(𝑗−1)

⟩
+ 𝑐𝑠𝜀/

√
𝑛 .
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By the definition of (𝜂, 𝑐𝑠𝜀/
√
𝑛)-separation oracle (Definition 2.3.6), we have 𝑓(𝑦) > 𝑓(𝑥(𝑗−1)). Since

𝑦 ∈ Ω𝛼, we have 𝑦 = (1− 𝛼)𝑥* + 𝛼𝑧 for some 𝑧 ∈ Ω. Thus, the convexity of 𝑓 implies that

𝑓(𝑦) ≤ (1− 𝛼)𝑓(𝑥*) + 𝛼𝑓(𝑧).

Therefore, we have

min
1≤𝑘≤𝑖

𝑓(𝑥(𝑘))−min
𝑥∈Ω

𝑓(𝑥) < 𝑓(𝑦)− 𝑓(𝑥*) ≤ 𝛼
(︂
max
𝑧∈Ω

𝑓(𝑧)−min
𝑥∈Ω

𝑓(𝑥)

)︂
.

Hence, we can simply output the best 𝑥 among all 𝑥(𝑗) and in either case 𝑥 satisfies (9.1).
Note that we need to call (𝜂, 𝛿)-separation oracle with 𝛿 = Ω(𝜀/

√
𝑛) to ensure we do not cut out 𝑥*.

Theorem 8.3.26 shows that the algorithm takes 𝑂(𝑛SO𝜂,𝛿(𝑓) log(𝑛𝑅/𝜀) + 𝑛3 log𝑂(1)(𝑛𝑅/𝜀)) expected
time, as promised. Furthermore, the oracle needs only be defined on 𝐵∞(𝑅) as our cutting plane
method guarantees 𝑥(𝑘) ∈ 𝐵∞(𝑅) for all 𝑘 (although if needed, an obvious separating hyperplane can
be returned for a query point outside 𝐵∞(𝑅) ).

Observe that this algorithm requires no information about Ω (other than that Ω ⊆ 𝐵∞(𝑅)) and
does not guarantee that the output is in Ω. Hence, even though Ω can be complicated to describe,
the algorithm still gives a guarantee related to the gap max𝑥∈Ω 𝑓(𝑥) − min𝑥∈Ω 𝑓(𝑥). For specific
applications, it is therefore advantageous to pick a Ω as large as possible while the bound on function
value is as small as possible.

Before indulging into specific applications, we remark on the dependence on 𝜅. Using John’s
ellipsoid, it can be shown that any convex set Ω can be transformed linearly such that (1) 𝐵∞(1)
contains Ω and, (2) MinWidth(Ω) = Ω(𝑛−3/2). In other words, 𝜅 can be effectively chosen as
𝑂(𝑛3/2). Therefore if we are able to find such a linear transformation, the running time is simply

𝑂
(︁
𝑛SO(𝑓) log (𝑛/𝛼) + 𝑛3 log𝑂(1) (𝑛/𝛼)

)︁
. Often this can be done easily using the structure of the

particular problem and the running time does not depend on the size of domain at all.

9.3.2 Duality and Semidefinite Programming

In this section we illustrate how our result in Section 9.3.1 can be used to obtain both primal and
dual solutions for standard problems in convex optimization. In particular we show how to obtain
improved running times for semidefinite programming.

To explain our approach, consider the following minimax problem

min
𝑦∈𝑌

max
𝑥∈𝑋
⟨𝐴𝑥,𝑦⟩+ ⟨𝑐,𝑥⟩+ ⟨𝑑,𝑦⟩ (9.3)

where 𝑥 ∈ R𝑚 and 𝑦 ∈ R𝑛. When 𝑚 ≫ 𝑛, solving this problem by directly using Chapter 8 could
lead to an inefficient algorithm with running time at least 𝑚3. In many situations, for any fixed 𝑦,
the problem max𝑥∈𝑋 ⟨𝐴𝑥,𝑦⟩ is very easy and hence one can use it as a separation oracle and apply
Chapter 8 and this would gives a running time almost independent of 𝑚. However, this would only
give us the 𝑦 variable and it is not clear how to recover 𝑥 variable from it.

In this section we show how to alleviate this issue and give semidefinite programming (SDP) as a
concrete example of how to apply this general technique. We do not write down the general version as
the running time of the technique seems to be problem specific and faster SDP is already an interesting
application.

For the remainder of this section we focus on the semidefinite programming (SDP) problem:

max
𝑋⪰0

𝐶 ∙𝑋 s.t. 𝐴𝑖 ∙𝑋 = 𝑏𝑖 (9.4)
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and its dual

min
𝑦
𝑏𝑇𝑦 s.t.

𝑛∑︁
𝑖=1

𝑦𝑖𝐴𝑖 ⪰ 𝐶 (9.5)

where 𝑋, 𝐶, 𝐴𝑖 are 𝑚×𝑚 symmetric matrices and 𝑏,𝑦 ∈ R𝑛. Our approach is partially inspired by
one of the key ideas of [115, 152]. These results write down the dual SDP in the form

min
𝑦
𝑏𝑇𝑦 −𝐾min(𝜆min(

𝑛∑︁
𝑖=1

𝑦𝑖𝐴𝑖 −𝐶), 0) (9.6)

for some large number 𝐾 and use non-smooth optimization techniques to solve the dual SDP problem.
Here, we follow the same approach but instead write it as a max-min problem min𝑦 𝑓𝐾(𝑦) where

𝑓𝐾(𝑦) = max
Tr𝑋≤𝐾,𝑋⪰0

(︃
𝑏𝑇𝑦 +

⟨
𝑋,𝐶 −

𝑛∑︁
𝑖=1

𝑦𝑖𝐴𝑖

⟩)︃
. (9.7)

Thus the SDP problem in fact assumes the form (9.3) and many ideas in this section can be generalized
to the minimax problem (9.3).

To get a dual solution, we notice that the cutting plane method maintains a subset of the primal
feasible solution conv(𝑋𝑖) such that

min
𝑦
𝑏𝑇𝑦 + max

Tr𝑋≤𝐾,𝑋⪰0

⟨
𝑋,𝐶 −

𝑛∑︁
𝑖=1

𝑦𝑖𝐴𝑖

⟩
∼ min

𝑦
𝑏𝑇𝑦 + max

𝑋∈conv(𝑋𝑖)

⟨
𝑋,𝐶 −

𝑛∑︁
𝑖=1

𝑦𝑖𝐴𝑖

⟩
.

Applying minimax theorem, this shows that there exists an approximation solution𝑋 in conv(𝑋𝑖) for
the primal problem. Hence, we can restrict the primal SDP on the polytope conv(𝑋𝑖), this reduces the
primal SDP into a linear program which can be solved very efficiently. This idea of getting primal/dual
solution from the cutting plane method is quite general and is the main purpose of this example. As a
by-product, we have a faster SDP solver in both primal and dual! We remark that this idea has been
used as a heuristic to obtain [151] for getting the primal SDP solution and our contribution here is
mainly the asymptotic time analysis.

We first show how to construct the separation oracle for SDP. For that we need to compute smallest
eigenvector of a matrix. Below, for completeness we provide a folklore result showing we can do this
using fast matrix multiplication.

Lemma 9.3.3. Given a 𝑛 × 𝑛 symmetric matrix 𝑌 such that −𝑅𝐼 ⪯ 𝑌 ⪯ 𝑅𝐼, for any 𝜀 > 0, with
high probability in 𝑛 in time 𝑂(𝑛𝜔+𝑜(1) log𝑂(1)(𝑅/𝜀)) we can find a unit vector 𝑢 such that 𝑢𝑇𝑌 𝑢 ≥
𝜆max(𝑌 )− 𝜀.

Proof. Let 𝐵 def
= 1

𝑅𝑌 + 𝐼. Note that 𝐵 ⪰ 0. Now, we consider the repeated squaring 𝐵0 = 𝐵 and

𝐵𝑘+1 =
𝐵2

𝑘

Tr𝐵2
𝑘
. Let 0 ≤ 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑛 be the eigenvalues of 𝐵 and v 𝑖 be the corresponding

eigenvectors. Then, it is easy to see the the eigenvalues of 𝐵𝑘 are
𝜆2

𝑘

𝑖∑︀𝑛
𝑖=1 𝜆

2𝑘
𝑖

.

Let 𝑞 be a random unit vector and 𝑟 def
= 𝐵𝑘𝑞. Now 𝑞 =

∑︀
𝛼𝑖v 𝑖 for some 𝛼𝑖 such that

∑︀
𝛼2
𝑖 = 1.

Letting

𝑝 =

∑︀
𝜆𝑖>(1−𝛿)𝜆𝑛 𝛼𝑖𝜆

2𝑘
𝑖 v 𝑖∑︀𝑛

𝑖=1 𝜆
2𝑘
𝑖
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we have

‖𝑟 − 𝑝‖2 =

⃦⃦⃦⃦
⃦
∑︀

𝜆𝑖≤(1−𝛿)𝜆𝑛 𝛼𝑖𝜆
2𝑘
𝑖 v 𝑖∑︀𝑛

𝑖=1 𝜆
2𝑘
𝑖

⃦⃦⃦⃦
⃦
2

≤
∑︀

𝜆𝑖≤(1−𝛿)𝜆𝑛 𝜆
2𝑘
𝑖∑︀𝑛

𝑖=1 𝜆
2𝑘
𝑖

≤ (1− 𝛿)2𝑘𝑛.

Letting 𝑘 = log2

(︁
log(𝑛3/2/𝛿)

𝛿

)︁
, we have ‖𝑟 − 𝑝‖2 ≤ 𝛿/

√
𝑛. Since 0 ⪯ 𝐵 ⪯ 2𝐼, we have

√
𝑟𝑇𝐵𝑟 ≥

√︀
𝑝𝑇𝐵𝑝−

√︁
(𝑟 − 𝑝)𝑇𝐵(𝑟 − 𝑝)

≥
√︀
𝑝𝑇𝐵𝑝− 2𝛿/

√
𝑛.

Note that 𝑝 involves only eigenvectors between (1− 𝛿)𝜆𝑛 to 𝜆𝑛. Hence, we have
√
𝑟𝑇𝐵𝑟 ≥

√︀
(1− 𝛿)𝜆𝑛‖𝑝‖2 − 2𝛿/

√
𝑛.

With constant probability, we have 𝛼𝑛 = Ω(1/
√
𝑛). Hence, we have ‖𝑝‖2 = Ω(1/

√
𝑛). Using 𝐵 ⪯ 2𝐼

and ‖𝑝‖2 ≥ ‖𝑟‖2 − 𝛿/
√
𝑛 we have that so long as 𝛿 is a small enough universal constant

√
𝑟𝑇𝐵𝑟

‖𝑟‖2
≥

√︀
(1− 𝛿)𝜆𝑛‖𝑝‖2 − 2𝛿/

√
𝑛

‖𝑝‖2 + 𝛿/
√
𝑛

= (1−𝑂(𝛿))
√︀
𝜆𝑛 −𝑂(𝛿)

=
√︀
𝜆𝑛 −𝑂(𝛿

√
𝑅).

Therefore, we have 𝑟𝑇𝑌 𝑟
‖𝑟‖2 ≥ 𝜆max(𝑌 ) − 𝑂(𝑅𝛿). Hence, we can find vector 𝑟 by computing 𝑘 matrix

multiplications. [66] showed that fast matrix multiplication is stable under Frobenius norm, i.e., for
any 𝜂 > 0, using 𝑂(log(𝑛/𝑏)) bits, we can find 𝐶 such that ‖𝐶−𝐴𝐵‖𝐹 ≤ 1

𝑏‖𝐴‖‖𝐵‖ in time 𝑂(𝑛𝜔+𝜂)

where 𝜔 is the matrix multiplicative constant. Hence, this algorithm takes only 𝑂(𝑛𝜔+𝑜(1) log𝑂(1)(𝛿−1))
time. The result follows from renormalizing the vector 𝑟, repeating the algorithm 𝑂(log 𝑛) times to
boost the probability and taking 𝛿 = Ω(𝜀/𝑅).

The following lemma shows how to compute a separation for 𝑓𝐾 defined in (9.7).

Lemma 9.3.4. Suppose that ‖𝐴𝑖‖𝐹 ≤ 𝑀 and ‖𝐶‖𝐹 ≤ 𝑀 . For any 0 < 𝜀 < 1 and 𝑦 with ‖𝑦‖2 =
𝑂(𝐿), with high probability in 𝑚, we can compute a (𝜀, 𝜀)-separation of 𝑓𝐾 on {‖𝑥‖2 ≤ 𝐿} at 𝑦
in time 𝑂(𝑆 + 𝑚𝜔+𝑜(1) log𝑂(1)(𝑛𝐾𝑀𝐿/𝜀)) where where 𝑆 is the sparsity of the problem defined as
nnz(𝐶) +

∑︀𝑛
𝑖=1 nnz(𝐴𝑖).

Proof. Note that −𝑂(𝑛𝑀𝐿)𝐼 ⪯ 𝐶 −
∑︀𝑛

𝑖=1 𝑦𝑖𝐴𝑖 ⪯ 𝑂(𝑛𝑀𝐿)𝐼. Using Lemma 9.3.3, we can find a
vector v with ‖v‖2 = 𝐾 in time 𝑂(𝑚𝜔+𝑜(1) log𝑂(1)(𝑛𝐾𝑀𝐿/𝛿)) such that

v𝑇

(︃
𝐶 −

𝑛∑︁
𝑖=1

𝑦𝑖𝐴𝑖

)︃
v ≥ max

Tr𝑋≤𝐾,𝑋⪰0

⟨
𝑋,𝐶 −

𝑛∑︁
𝑖=1

𝑦𝑖𝐴𝑖

⟩
− 𝛿. (9.8)

In other words, we have a 𝛿-optimization oracle for the function 𝑓𝐾 . Lemma 9.2.6 shows this yields a

𝛿-subgradient oracle and Lemma 9.2.4 then shows this yields a
(︁
𝑂(
√
𝛿𝐿), 𝑂(

√
𝛿𝐿)
)︁
-separation oracle

on the set {‖𝑥‖2 ≤ 𝐿}. By picking 𝛿 = 𝜀2/𝐿, we have the promised oracle.

With the separation oracle in hand, we are ready to give the algorithm for SDP:

Theorem 9.3.5. Given a primal-dual semidefinite programming problem in the form (9.4) and (9.5),
suppose that for some 𝑀 ≥ 1 we have
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1. ‖𝑏‖2 ≤𝑀 , ‖𝐶‖𝐹 ≤𝑀 and ‖𝐴𝑖‖𝐹 ≤𝑀 for all 𝑖.

2. The primal feasible set lies inside the region Tr𝑋 ≤𝑀 .

3. The dual feasible set lies inside the region ‖𝑦‖∞ ≤𝑀 .

Let OPT be the optimum solution of (9.4) and (9.5). Then, with high probability, we can find 𝑋 and
𝑦 such that

1. 𝑋 ⪰ 0, Tr𝑋 = 𝑂(𝑀),
∑︀

𝑖 |𝑏𝑖 − ⟨𝑋,𝐴𝑖⟩| ≤ 𝜀 for all 𝑖 and 𝐶 ∙𝑋 ≥ OPT− 𝜀.

2. ‖𝑦‖∞ = 𝑂(𝑀),
∑︀𝑛

𝑖=1 𝑦𝑖𝐴𝑖 ⪰ 𝐶 − 𝜀𝐼 and 𝑏𝑇𝑦 ≤ OPT+ 𝜀.

in expected time 𝑂
(︁(︀
𝑛𝑆 + 𝑛3 + 𝑛𝑚𝜔+𝑜(1)

)︀
log𝑂(1)

(︀
𝑛𝑀
𝜀

)︀)︁
where 𝑆 is the sparsity of the problem defined

as nnz(𝐶) +
∑︀𝑛

𝑖=1 nnz(𝐴𝑖) and 𝜔 is the fast matrix multiplication constant.

Proof. Let 𝐾 ≥ 𝑀 be some parameter to be determined. Since the primal feasible set is lies inside
the region Tr𝑋 ≤𝑀 ≤ 𝐾, we have

min∑︀𝑛
𝑖=1 𝑦𝑖𝐴𝑖⪰𝐶

𝑏𝑇𝑦 = max
𝑋⪰0,Tr𝑋≤𝐾,𝐴𝑖∙𝑋=𝑏𝑖

𝐶 ∙𝑋

= max
𝑋⪰0,Tr𝑋≤𝐾

min
𝑦
𝐶 ∙𝑋 −

∑︁
𝑖

𝑦𝑖 (𝐴𝑖 ∙𝑋 − 𝑏𝑖)

= min
𝑦

max
𝑋⪰0,Tr𝑋≤𝐾

(︃
𝑏𝑇𝑦 + (𝐶 −

∑︁
𝑖

𝑦𝑖𝐴𝑖) ∙𝑋

)︃
= min

𝑦
𝑓𝐾(𝑦).

Lemma 9.3.4 shows that it takes SO𝛿,𝛿(𝑓𝐾) = 𝑂(𝑆 +𝑚𝜔+𝑜(1) log(𝑛𝐾𝑀𝐿/𝛿)) time to compute a
(𝛿, 𝛿)-separation oracle of 𝑓𝐾 for any point 𝑦 with ‖𝑦‖∞ = 𝑂(𝐿) where 𝐿 is some parameter with 𝐿 ≥
𝑀 . Taking the radius𝑅 = 𝐿, Theorem 9.3.2 shows that it takes𝑂

(︁
𝑛SO𝛿,𝛿(𝑓𝐾) log

(︀
𝑛
𝛼

)︀
+ 𝑛3 log𝑂(1)

(︀
𝑛
𝛼

)︀)︁
expected time with 𝛿 = Θ

(︀
𝛼𝑛−3/2𝐿

)︀
to find 𝑦 such that

𝑓𝐾(𝑦)− min
‖𝑦‖∞≤𝐿

𝑓𝐾(𝑦) ≤ 𝛿 + 𝛼

(︂
max

‖𝑦‖∞≤𝐿
𝑓𝐾(𝑦)− min

‖𝑦‖∞≤𝐿
𝑓𝐾(𝑦)

)︂
≤ 𝛿 + 2𝛼 (𝑛𝑀𝐿+ 2𝑛𝐾𝑀𝐿) .

Picking 𝛼 = 𝜀
7𝑛𝑀𝐾𝐿 , we have 𝑓𝐾(𝑦) ≤ min𝑦 𝑓𝐾(𝑦) + 𝜀. Therefore,

𝑏𝑇𝑦 +𝐾max(𝜆max(𝐶 −
𝑛∑︁
𝑖=1

𝑦𝑖𝐴𝑖), 0) ≤ OPT+ 𝜀.

Let 𝛽 = max(𝜆max(𝐶 −
∑︀𝑛

𝑖=1 𝑦𝑖𝐴𝑖), 0). Then, we have that
∑︀𝑛

𝑖=1 𝑦𝑖𝐴𝑖 ⪰ 𝐶 − 𝛽𝐼 and

𝑏𝑇𝑦 ≥ min∑︀𝑛
𝑖=1 𝑦𝑖𝐴𝑖⪰𝐶−𝛽𝐼

𝑏𝑇𝑦

= max
𝑋⪰0𝐴𝑖∙𝑋=𝑏𝑖

(𝐶 − 𝛽𝐼) ∙𝑋

≥ OPT− 𝛽𝑀
because Tr𝑋 ≤𝑀 . Hence, we have

OPT− 𝛽𝑀 + 𝛽𝐾 ≤ 𝑏𝑇𝑦 +𝐾max(𝜆max(𝐶 −
𝑛∑︁
𝑖=1

𝑦𝑖𝐴𝑖), 0) ≤ OPT+ 𝜀
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Putting 𝐾 =𝑀 + 1, we have 𝛽 ≤ 𝜀. Thus,
𝑛∑︁
𝑖=1

𝑦𝑖𝐴𝑖 ⪰ 𝐶 − 𝜀𝐼.

This gives the result for the dual with the running time 𝑂
(︁(︀
𝑛𝑆 + 𝑛3 + 𝑛𝑚𝜔+𝑜(1)

)︀
log𝑂(1)

(︀
𝑛𝑀𝐿
𝜀

)︀)︁
.

Our Cutting Plane Method accesses the sub-problem

max
𝑋⪰0,Tr𝑋≤𝐾

(𝐶 −
∑︁
𝑖

𝑦𝑖𝐴𝑖) ∙𝑋

only through the separation oracle. Let 𝑧 be the output of our Cutting Plane Method and {v 𝑖v𝑇𝑖 }
𝑂(𝑛)
𝑖=1

be the matrices used to construct the separation for the 𝑂(𝑛) hyperplanes the algorithm maintains at
the end. Let 𝑢 be the maximum eigenvector of 𝐶 −

∑︀𝑛
𝑖=1 𝑧𝑖𝐴𝑖. Now, we consider a realization of 𝑓𝐾

𝑓𝐾(𝑦) = 𝑏𝑇𝑦 + max
𝑋∈conv(𝐾𝑢𝑢𝑇 ,v 𝑖v𝑇

𝑖 )

⟨
𝑋,𝐶 −

𝑛∑︁
𝑖=1

𝑦𝑖𝐴𝑖

⟩
.

Since applying our Cutting Plane Method to either 𝑓𝐾 or 𝑓𝐾 gives the same result, the correctness of
the our Cutting Plane Method shows that

𝑓𝐾(𝑧) ≤ min
‖𝑦‖∞≤𝐿

𝑓𝐾(𝑦) + 𝜀.

Note that the function 𝑓𝐾 is defined such that 𝑓𝐾(𝑧) = 𝑓𝐾(𝑧). Hence, we have

min
‖𝑦‖∞≤𝐿

𝑓𝐾(𝑦) ≤ 𝑓𝐾(𝑧) ≤ 𝑓𝐾(𝑧) ≤ min
‖𝑦‖∞≤𝐿

𝑓𝐾(𝑦) + 𝜀.

Also, note that 𝑓𝐾(𝑥) ≤ 𝑓𝐾(𝑥) for all 𝑥. Hence, we have

min
‖𝑦‖∞≤𝐿

𝑓𝐾(𝑦)− 𝜀 ≤ min
‖𝑦‖∞≤𝐿

𝑓(𝑦) ≤ min
‖𝑦‖∞≤𝐿

𝑓𝐾(𝑦).

Now, we consider the primal version of 𝑓 , namely

𝑔(𝑋)
def
= min

‖𝑦‖∞≤𝐿
𝑏𝑇𝑦 +

⟨
𝑋,𝐶 −

𝑛∑︁
𝑖=1

𝑦𝑖𝐴𝑖

⟩
.

Sion’s minimax theorem [239] shows that

OPT ≥ max
𝑋∈conv(𝐾𝑢𝑢𝑇 ,v 𝑖v𝑇

𝑖 )
𝑔(𝑋) = min

‖𝑦‖∞≤𝐿
𝑓(𝑦) ≥ OPT− 𝜀.

Therefore, to get the primal solution, we only need to find 𝑢 by Lemma 9.3.3 and solve the maximiza-
tion problem on 𝑔. Note that

𝑔(𝑋) = min
‖𝑦‖∞≤𝐿

𝑛∑︁
𝑖=1

𝑦𝑖 (𝑏𝑖 − ⟨𝑋,𝐴𝑖⟩) + ⟨𝑋,𝐶⟩

= −𝐿
∑︁
𝑖

|𝑏𝑖 − ⟨𝑋,𝐴𝑖⟩|+ ⟨𝑋,𝐶⟩ .

For notation simplicity, we write 𝐾𝑢𝑢𝑇 = v0v
𝑇
0 . Then, 𝑋 =

∑︀𝑂(𝑛)
𝑗=0 𝛼𝑗v 𝑗v

𝑇
𝑗 for some

∑︀
𝛼𝑗 = 1 and
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𝛼𝑗 ≥ 0. Substituting this into the function 𝑔, we have

𝑔(𝛼) = −𝐿
∑︁
𝑗

⃒⃒⃒⃒
⃒⃒𝑏𝑖 −∑︁

𝑗

𝛼𝑗v
𝑇
𝑗 𝐴𝑖v 𝑗

⃒⃒⃒⃒
⃒⃒+∑︁

𝑗

𝛼𝑗v
𝑇
𝑗 𝐶v 𝑗 .

Hence, this can be easily written as a linear program with 𝑂(𝑛) variables and 𝑂(𝑛) constraints in time
𝑂(𝑛𝑆). Now, we can apply interior point method to find 𝛼 such that

𝑔(𝛼) ≥ max
𝑋∈conv(𝐾𝑢𝑢𝑇 ,v 𝑖v𝑇

𝑖 )
𝑔(𝑋)− 𝜀 ≥ OPT− 2𝜀.

Let the corresponding approximate solution be ̃︁𝑋 =
∑︀
𝛼𝑗v 𝑗v

𝑇
𝑗 . Then, we have⟨̃︁𝑋,𝐶

⟩
− 𝐿

∑︁
𝑖

|𝑏𝑖 − ⟨𝑋,𝐴𝑖⟩| ≥ OPT− 2𝜀.

Now, we let �̃�𝑖 =
⟨̃︁𝑋,𝐴𝑖

⟩
. Then, we note that⟨̃︁𝑋,𝐶

⟩
≤ max

𝑋⪰0𝐴𝑖∙𝑋=�̃�𝑖

𝐶 ∙𝑋

= min∑︀𝑛
𝑖=1 𝑦𝑖𝐴𝑖⪰𝐶

�̃�𝑇𝑖 𝑦

≤ OPT+𝑀
∑︁
𝑖

⃒⃒⃒
𝑏𝑖 −

⟨̃︁𝑋,𝐴𝑖

⟩⃒⃒⃒
because ‖𝑦‖∞ ≤𝑀 . Hence, we have

OPT+ (𝑀 − 𝐿)
∑︁
𝑖

⃒⃒⃒
𝑏𝑖 −

⟨̃︁𝑋,𝐴𝑖

⟩⃒⃒⃒
≥
⟨̃︁𝑋,𝐶

⟩
− 𝐿

∑︁
𝑖

⃒⃒⃒
𝑏𝑖 −

⟨̃︁𝑋,𝐴𝑖

⟩⃒⃒⃒
≥ OPT− 2𝜀.

Now, we put 𝐿 =𝑀 + 2, we have ∑︁
𝑖

⃒⃒⃒
𝑏𝑖 −

⟨̃︁𝑋,𝐴𝑖

⟩⃒⃒⃒
≤ 𝜀.

This gives the result for the primal. Note that it only takes 𝑂(𝑛5/2 log𝑂(1)(𝑛𝑀/𝜀)) to solve a linear
program with 𝑂(𝑛) variables and 𝑂(𝑛) constraints because we have an explicit interior point deep
inside the feasible set, i.e. 𝛼𝑖 = 1

𝑚 for some parameter 𝑚 [164].1 Hence, the running time is dominated

by the cost of cutting plane method which is 𝑂
(︁(︀
𝑛𝑆 + 𝑛3 + 𝑛𝑚𝜔+𝑜(1)

)︀
log𝑂(1)

(︀
𝑛𝑀
𝜀

)︀)︁
by putting

𝐿 =𝑀 + 2.

We leave it as an open problem if it is possible to improve this result by reusing the computation

in the separation oracle and achieve a running time of 𝑂
(︁(︀
𝑛𝑆 + 𝑛3 + 𝑛𝑚2

)︀
log𝑂(1)

(︀
𝑛𝑀
𝜀

)︀)︁
.

9.4 Intersection of Convex Sets

In this section we introduce a general technique to optimize a linear function over the intersection of
two convex sets, whenever the linear optimization problem on each of them can be done efficiently. At
the very high level, this is accomplished by applying cutting plane to a suitably regularized version
of the problem. In Section 9.4.1 we present the technique and in the remaining sections we provide

1Without this, the running time of interior point method depends on the bit complexity of the linear programs.
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several applications including, matroid intersection (Section 9.4.2), submodular flow (Section 9.4.3),
and minimizing over the intersection of an affine subspace and a convex set (Section 9.4.4).

9.4.1 The Technique

Throughout this section we consider variants of the following general optimization problem

max
𝑥∈𝐾1∩𝐾2

⟨𝑐,𝑥⟩ (9.9)

where 𝑥, 𝑐 ∈ R𝑛, 𝐾1 and 𝐾2 are convex subsets of R𝑛. We assume that

max
𝑥∈𝐾1

‖𝑥‖2 < 𝑀, max
𝑥∈𝐾2

‖𝑥‖2 < 𝑀, ‖𝑐‖2 ≤𝑀 (9.10)

for some constant 𝑀 ≥ 1 and we assume that

𝐾1 ∩𝐾2 ̸= ∅. (9.11)

Instead of a separation oracle, we assume that 𝐾1 and 𝐾2 each have optimization oracles (see
Section 9.2).

To solve this problem we first introduce a relaxation for the problem (9.9) that we can optimize
efficiently. Because we have only the optimization oracles for 𝐾1 and 𝐾2, we simply have variables 𝑥
and 𝑦 for each of them in the objective. Since the output should (approximately) be in the intersection
of 𝐾1 and 𝐾2, a regularization term −𝜆

2‖𝑥 − 𝑦‖
2
2 is added to force 𝑥 ≈ 𝑦 where 𝜆 is a large number

to be determined later. Furthermore, we add terms to make the problem strong concave.

Lemma 9.4.1. Assume (9.10) and (9.11). For 𝜆 ≥ 1, let

𝑓𝜆(𝑥,𝑦)
def
=

1

2
⟨𝑐,𝑥⟩+ 1

2
⟨𝑐,𝑦⟩ − 𝜆

2
‖𝑥− 𝑦‖22 −

1

2𝜆
‖𝑥‖22 −

1

2𝜆
‖𝑦‖22 . (9.12)

There is an unique maximizer (𝑥𝜆,𝑦𝜆) for the problem max𝑥∈𝐾1,𝑦∈𝐾2 𝑓𝜆(𝑥,𝑦). The maximizer (𝑥𝜆,𝑦𝜆)

is a good approximation of the solution of (9.9), i.e. ‖𝑥𝜆 − 𝑦𝜆‖22 ≤ 6𝑀2

𝜆 and

max
𝑥∈𝐾1∩𝐾2

⟨𝑐,𝑥⟩ ≤ 𝑓𝜆(𝑥𝜆,𝑦𝜆) +
𝑀2

𝜆
. (9.13)

Proof. Let 𝑥* be a maximizer of max𝑥∈𝐾1∩𝐾2 ⟨𝑐,𝑥⟩. By assumption (9.10), ‖𝑥*‖2 ≤𝑀 , and therefore

𝑓𝜆(𝑥
*,𝑥*) = ⟨𝑐,𝑥*⟩ − ‖𝑥

*‖22
𝜆
≥ max
𝑥∈𝐾1∩𝐾2

⟨𝑐,𝑥⟩ − 𝑀2

𝜆
. (9.14)

This shows (9.13). Since 𝑓𝜆 is strongly concave in 𝑥 and 𝑦, there is a unique maximizer (𝑥𝜆,𝑦𝜆). Let
OPT𝜆 = 𝑓𝜆(𝑥𝜆,𝑦𝜆). Then, we have

OPT𝜆 ≤ 1

2
‖𝑐‖2‖𝑥𝜆‖2 +

1

2
‖𝑐‖2‖𝑦𝜆‖2 −

𝜆

2
‖𝑥𝜆 − 𝑦𝜆‖22

≤ 𝑀2

2
+
𝑀2

2
− 𝜆

2
‖𝑥𝜆 − 𝑦𝜆‖22.

On the other hand, using 𝜆 ≥ 1, (9.14) shows that

OPT𝜆 ≥ 𝑓𝜆(𝑥*,𝑥*) ≥ max
𝑥∈𝐾1∩𝐾2

⟨𝑐,𝑥⟩ − 𝑀2

𝜆
≥ −2𝑀2.
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Hence, we have

‖𝑥𝜆 − 𝑦𝜆‖22 ≤
2
(︀
𝑀2 −OPT𝜆

)︀
𝜆

≤ 6𝑀2

𝜆
. (9.15)

Now we write max 𝑓𝜆(𝑥,𝑦) as a max-min problem. The reason for doing this is that the dual
approximate solution is much easier to obtain and there is a way to read off a primal approximate
solution from a dual approximate solution. This is analogous to the idea in [161] which showed how
to convert a cut solution to a flow solution by adding regularization terms into the problem.

Lemma 9.4.2. Assume (9.10) and (9.11). Let 𝜆 ≥ 2. For any 𝑥 ∈ 𝐾1 and 𝑦 ∈ 𝐾2, the function 𝑓𝜆
can be represented as

𝑓𝜆(𝑥,𝑦) = min
(𝜃1,𝜃2,𝜃3)∈Ω

𝑔𝜆(𝑥,𝑦,𝜃1,𝜃2,𝜃3) (9.16)

where Ω = {(𝜃1,𝜃2,𝜃3) : ‖𝜃1‖2 ≤ 2𝑀, ‖𝜃2‖2 ≤𝑀, ‖𝜃3‖2 ≤𝑀} and

𝑔𝜆(𝑥,𝑦,𝜃1,𝜃2,𝜃3) =

⟨
𝑐

2
+ 𝜆𝜃1 +

𝜃2
𝜆
,𝑥

⟩
+

⟨
𝑐

2
− 𝜆𝜃1 +

𝜃3
𝜆
,𝑦

⟩
+
𝜆

2
‖𝜃1‖22+

1

2𝜆
‖𝜃2‖22+

1

2𝜆
‖𝜃3‖22. (9.17)

Let ℎ𝜆(𝜃1,𝜃2,𝜃3) = max𝑥∈𝐾1,𝑦∈𝐾2 𝑔𝜆(𝑥,𝑦,𝜃1,𝜃2,𝜃3). For any (𝜃
′
1,𝜃

′
2,𝜃

′
3) such that ℎ𝜆(𝜃

′
1,𝜃

′
2,𝜃

′
3) ≤

min(𝜃1,𝜃2,𝜃3)∈Ω ℎ𝜆(𝜃1,𝜃2,𝜃3) + 𝜀, we know 𝑧 = 1
2(𝜃

′
2 + 𝜃

′
3) satisfies

max
𝑥∈𝐾1∩𝐾2

⟨𝑐,𝑥⟩ ≤ ⟨𝑐, 𝑧⟩+ 20𝑀2

𝜆
+ 20𝜆3𝜀.

and ‖𝑧−𝑥𝜆‖2 + ‖𝑧− 𝑦𝜆‖2 ≤ 4
√
2𝜆𝜀+

√︁
6𝑀2

𝜆 where (𝑥𝜆,𝑦𝜆) is the unique maximizer for the problem

max𝑥∈𝐾1,𝑦∈𝐾2 𝑓𝜆(𝑥,𝑦).

Proof. Note that for any ‖𝜁‖2 ≤ 𝛼, we have

−1

2
‖𝜁‖22 = min

‖𝜃‖2≤𝛼
⟨𝜃, 𝜁⟩+ 1

2
‖𝜃‖22

Using this and (9.10), we have (9.16) for all 𝑥 ∈ 𝐾1 and 𝑦 ∈ 𝐾2 as desired. Since Ω is closed and
bounded set and the function 𝑔𝜆 is concave in (𝑥,𝑦) and convex in (𝜃1,𝜃2,𝜃3), Sion’s minimax theorem
[239] shows that

max
𝑥∈𝐾1,𝑦∈𝐾2

𝑓𝜆(𝑥,𝑦) = min
(𝜃1,𝜃2,𝜃3)∈Ω

ℎ𝜆(𝜃1,𝜃2,𝜃3) (9.18)

Since 𝑓𝜆 is strongly concave, there is an unique maximizer (𝑥𝜆,𝑦𝜆) of 𝑓𝜆. Since ℎ𝜆 is strongly convex,
there is a unique minimizer (𝜃*1,𝜃

*
2,𝜃

*
3). By the definition of 𝑓𝜆 and ℎ𝜆, we have

ℎ𝜆(𝜃
*
1,𝜃

*
2,𝜃

*
3) ≥ 𝑔𝜆(𝑥𝜆,𝑦𝜆,𝜃*1,𝜃*2,𝜃*3) ≥ 𝑓𝜆(𝑥𝜆,𝑦𝜆) .

Using (9.18), the equality above holds and hence (𝜃*1,𝜃
*
2,𝜃

*
3) is the minimizer of 𝑔𝜆(𝑥𝜆,𝑦𝜆,𝜃1,𝜃2,𝜃3)

over (𝜃1,𝜃2,𝜃3). Since the domain Ω is large enough that (𝜃*1,𝜃
*
2,𝜃

*
3) is an interior point in Ω, the

optimality condition of 𝑔𝜆 shows that we have 𝜃*2 = 𝑥𝜆 and 𝜃*3 = 𝑦𝜆.
Since ℎ𝜆 is 1

𝜆 strongly convex, we have ‖𝜃′1 − 𝜃*1‖22 + ‖𝜃′2 − 𝜃*2‖22 + ‖𝜃′3 − 𝜃*3‖22 ≤ 2𝜆𝜀 (Fact 9.2.3).
Since 𝜃*2 = 𝑥𝜆 and 𝜃*3 = 𝑦𝜆, we have

‖𝜃′2 − 𝑥𝜆‖22 + ‖𝜃′3 − 𝑦𝜆‖22 ≤ 2𝜆𝜀. (9.19)
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Therefore, we have ‖𝑥𝜆−𝑦𝜆‖2 ≥ ‖𝜃′2−𝜃′3‖2−2
√
2𝜆𝜀, ‖𝑥𝜆‖2 ≥ ‖𝜃′2‖2−

√
2𝜆𝜀 and ‖𝑦𝜆‖2 ≥ ‖𝜃′3‖2−

√
2𝜆𝜀.

Using these, ‖𝑥𝜆‖2 ≤𝑀 and ‖𝑦𝜆‖2 ≤𝑀 , we have

𝑓𝜆(𝜃
′
2,𝜃

′
3) =

1

2

⟨︀
𝑐,𝜃′2

⟩︀
+

1

2

⟨︀
𝑐,𝜃′3

⟩︀
− 𝜆

2
‖𝜃′2 − 𝜃′3‖22 −

1

2𝜆
‖𝜃′2‖22 −

1

2𝜆
‖𝜃′3‖22

≥ 1

2
⟨𝑐,𝑥𝜆⟩+

1

2
⟨𝑐,𝑦𝜆⟩ −𝑀

√
2𝜆𝜀

−𝜆
2

(︁
‖𝑥𝜆 − 𝑦𝜆‖2 + 2

√
2𝜆𝜀
)︁2

− 1

2𝜆

(︁
‖𝑥𝜆‖2 +

√
2𝜆𝜀
)︁2
− 1

2𝜆

(︁
‖𝑦𝜆‖2 +

√
2𝜆𝜀
)︁2

=
1

2
⟨𝑐,𝑥𝜆⟩+

1

2
⟨𝑐,𝑦𝜆⟩ −

𝜆

2
‖𝑥𝜆 − 𝑦𝜆‖22 −

1

2𝜆
‖𝑥𝜆‖22 −

1

2𝜆
‖𝑦𝜆‖22

−𝑀
√
2𝜆𝜀− 2𝜆

√
2𝜆𝜀‖𝑥𝜆 − 𝑦𝜆‖2 − 4𝜆2𝜀

− 1

𝜆
‖𝑥𝜆‖2

√
2𝜆𝜀− 𝜀− 1

𝜆
‖𝑦𝜆‖2

√
2𝜆𝜀− 𝜀.

Using ‖𝑥𝜆 − 𝑦𝜆‖2 ≤
√︁

6𝑀2

𝜆 (Lemma 9.4.1), ‖𝑥𝜆‖2 < 𝑀 and ‖𝑦𝜆‖2 < 𝑀 , we have

𝑓𝜆(𝜃
′
2,𝜃

′
3) ≥ 𝑓𝜆(𝑥𝜆,𝑦𝜆)

−𝑀
√
2𝜆𝜀− 2𝜆

√
2𝜆𝜀‖𝑥𝜆 − 𝑦𝜆‖2 − 4𝜆2𝜀

− 1

𝜆
‖𝑥𝜆‖2

√
2𝜆𝜀− 𝜀− 1

𝜆
‖𝑦𝜆‖2

√
2𝜆𝜀− 𝜀.

≥ 𝑓𝜆(𝑥𝜆,𝑦𝜆)

−𝑀
√
2𝜆𝜀− 2𝜆

√
12𝜀𝑀 − 4𝜆2𝜀

−2𝑀
√︂
2
𝜀

𝜆
− 2𝜀.

Since 𝜆 ≥ 2, we have

𝑓𝜆(𝜃
′
2,𝜃

′
3) ≥ 𝑓𝜆(𝑥𝜆,𝑦𝜆)− 20𝑀𝜆

√
𝜀− 10𝜆2𝜀.

Let 𝑧 =
𝜃′2+𝜃

′
3

2 . Lemma 9.4.1 shows that

max
𝑥∈𝐾1∩𝐾2

⟨𝑐,𝑥⟩ ≤ max
𝑥∈𝐾1,𝑦∈𝐾2

𝑓𝜆(𝑥,𝑦) +
𝑀2

𝜆

≤ 𝑓𝜆(𝜃
′
2,𝜃

′
3) +

𝑀2

𝜆
+ 20𝑀𝜆

√
𝜀+ 10𝜆2𝜀

≤ ⟨𝑐, 𝑧⟩+ 20𝑀2

𝜆
+ 20𝜆3𝜀

because 20𝑀𝜆
√
𝜀 ≤ 10𝑀

2

𝜆 + 10𝜆3𝜀. Furthermore, we have

‖𝑧 − 𝑥𝜆‖2 + ‖𝑧 − 𝑦𝜆‖2 ≤ ‖𝜃′2 − 𝑥𝜆‖2 + ‖𝜃′3 − 𝑦𝜆‖2 + ‖𝜃′2 − 𝜃′3‖2

≤ 4
√
2𝜆𝜀+

√︂
6𝑀2

𝜆
.

We now apply our cutting plane method to solve the optimization problem (9.9). First we show
how to transform the optimization oracles for 𝐾1 and 𝐾2 to get a separation oracle for ℎ𝜆, with the
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appropriate parameters.

Lemma 9.4.3. Suppose we have a 𝜀-optimization oracle for 𝐾1 and 𝐾2 for some 0 < 𝜀 < 1. Then on
the set {‖𝜃‖2 ≤ 𝐷}, we have a (𝑂(

√
𝜀𝜆𝐷), 𝑂(

√
𝜀𝜆𝐷))-separation oracle for ℎ𝜆 with time complexity

OO𝜀(𝐾1) + OO𝜀(𝐾2).

Proof. Recall that the function ℎ𝜆 is defined by

ℎ𝜆(𝜃1,𝜃2,𝜃3)

= max
𝑥∈𝐾1,𝑦∈𝐾2

(︂⟨
𝑐

2
+ 𝜆𝜃1 +

𝜃2
𝜆
,𝑥

⟩
+

⟨
𝑐

2
− 𝜆𝜃1 +

𝜃3
𝜆
,𝑦

⟩
+
𝜆

2
‖𝜃1‖22 +

1

2𝜆
‖𝜃2‖22 +

1

2𝜆
‖𝜃3‖22

)︂
= max

𝑥∈𝐾1

⟨
𝑐

2
+ 𝜆𝜃1 +

𝜃2
𝜆
,𝑥

⟩
+ max
𝑦∈𝐾2

⟨
𝑐

2
− 𝜆𝜃1 +

𝜃3
𝜆
,𝑦

⟩
+
𝜆

2
‖𝜃1‖22 +

1

2𝜆
‖𝜃2‖22 +

1

2𝜆
‖𝜃3‖22.

Lemma 9.2.6 shows how to compute the subgradient of functions of the form 𝑓(𝑐) = max𝑥∈𝐾 ⟨𝑐,𝑥⟩
using the optimization oracle for 𝐾. The rest of the term are differentiable so its subgradient is just
the gradient. Hence, by addition rule for subgradients (Fact 9.2.3), we have a 𝑂(𝜀𝜆)-subgradient oracle
for 𝑓𝜆 using a 𝑂(𝜀)-optimization oracle for 𝐾1 and 𝐾2. The result then follows from Lemma 9.2.4.

Theorem 9.4.4. Assume (9.10) and (9.11). Suppose that we have 𝜀-optimization oracle for every
𝜀 > 0. For 0 < 𝛿 < 1, we can find 𝑧 ∈ R𝑛 such that

max
𝑥∈𝐾1∩𝐾2

⟨𝑐,𝑥⟩ ≤ 𝛿 + ⟨𝑐, 𝑧⟩

and ‖𝑧 − 𝑥‖2 + ‖𝑧 − 𝑦‖2 ≤ 𝛿 for some 𝑥 ∈ 𝐾1 and 𝑦 ∈ 𝐾2 in time

𝑂

(︂
𝑛 (OO𝜂(𝐾1) + OO𝜂(𝐾2)) log

(︂
𝑛𝑀

𝛿

)︂
+ 𝑛3 log𝑂(1)

(︂
𝑛𝑀

𝛿

)︂)︂
where 𝜂 = Ω

(︁(︀
𝛿
𝑛𝑀

)︀𝑂(1)
)︁
.

Proof. Setting 𝜆 = 40𝑀2

𝛿2
and 𝜀 = 𝛿7

107𝑀6 in Lemma 9.4.2 we see that so long as we obtain any
approximate solution (𝜃′1,𝜃

′
2,𝜃

′
3) such that

ℎ𝜆(𝜃
′
1,𝜃

′
2,𝜃

′
3) ≤ min

(𝜃1,𝜃2,𝜃3)∈Ω
ℎ𝜆(𝜃1,𝜃2,𝜃3) + 𝜀,

then we obtain the point we want. To apply Theorem 9.3.2, we use

ℎ̃(𝜃1,𝜃2,𝜃3) =

{︃
ℎ𝜆(𝜃1,𝜃2,𝜃3) if (𝜃1,𝜃2,𝜃3) ∈ Ω

+∞ else
.

Lemma 9.4.3 shows that for any 𝛾 > 0 we can obtain a (𝛾, 𝛾)-separation oracle of ℎ𝜆(𝜃) by using
sufficiently accurate optimization oracles. Since Ω is just a product of ℓ2 balls, we can produce a
separating hyperplane easily when (𝜃1,𝜃2,𝜃3) /∈ Ω. Hence, we can obtain a (𝛾, 𝛾)-separation oracle of
ℎ̃(𝜃). For simplicity, we use 𝜃 to represent (𝜃1,𝜃2,𝜃3). Note that 𝐵∞(2𝑀) ⊇ Ω and therefore we can
apply Theorem 9.3.2 with 𝑅 = 2𝑀 to compute 𝜃′ such

ℎ̃(𝜃′)−min
𝜃∈Ω

ℎ̃(𝜃) ≤ 𝛾 + 𝛼

(︂
max
𝜃∈Ω

ℎ̃(𝜃)−min
𝜃∈Ω

ℎ̃(𝜃)

)︂
in time 𝑂

(︁
𝑛SO𝛾,𝛾 log

(︀
𝑛𝜅
𝛼

)︀
+ 𝑛3 log𝑂(1)

(︀
𝑛𝜅
𝛼

)︀)︁
where 𝛾 = Ω

(︀
𝛼MinWidth(Ω)/𝑛𝑂(1)

)︀
= Ω

(︀
𝛼𝑀/𝑛𝑂(1)

)︀



214 CHAPTER 9. EFFECTIVE USE OF CUTTING PLANE METHOD

and 𝜅 = 2𝑀
MinWidth(Ω) = 𝑂(1). Using 𝜆 ≥ 1 and 𝑀 ≥ 1, we have

max
𝜃∈Ω

ℎ̃(𝜃)−min
𝜃∈Ω

ℎ̃(𝜃) ≤ 𝑂
(︀
𝜆𝑀2

)︀
≤ 𝑂

(︂
𝑀4

𝛿2

)︂
.

Setting 𝛼 = Θ
(︁

𝛿9

𝑀10

)︁
with some small enough constant, we have that we can find 𝜃′ such that

ℎ𝜆(𝜃
′) ≤ min

𝜃∈𝑃
ℎ𝜆(𝜃) + 𝛾 + 𝛼𝑂

(︂
𝑀4

𝛿2

)︂
= min

𝜃∈𝑃
ℎ𝜆(𝜃) +𝑂

(︂
𝛿7

𝑀6

)︂
= min

𝜃∈𝑃
ℎ𝜆(𝜃) + 𝜀

in time 𝑂
(︁
𝑛SO𝛾,𝛾 log

(︀
𝑛𝑀
𝛿

)︀
+ 𝑛3 log𝑂(1)

(︀
𝑛𝑀
𝛿

)︀)︁
where 𝛾 = Ω

(︁(︀
𝛿
𝑛𝑀

)︀𝑂(1)
)︁
. Lemma 9.4.3 shows that

the cost of (𝛾, 𝛾)-separation oracle is just 𝑂(OO𝜂(𝐾1) + OO𝜂(𝐾2)) where 𝜂 = Ω
(︁(︀

𝛿
𝑛𝑀

)︀𝑂(1)
)︁
.

Remark 9.4.5. Note that the algorithm does not promise that we obtain a point close to 𝐾1 ∩𝐾2. It
only promises to give a point that is close to both some point in 𝐾1 and some point in 𝐾2. It appears
to the authors that a further assumption is needed to get a point close to 𝐾1∩𝐾2. For example, if 𝐾1

and 𝐾2 are two almost parallel lines, it would be difficult to get an algorithm that does not depend on
the angle. However, as far as we know, most algorithms tackling this problem are pseudo-polynomial
and have polynomial dependence on the angle. Our algorithm depends on the logarithmic of the angle
which is useful for combinatorial problems.

This reduction is very useful for problems in many areas including linear programming, semi-
definite programming and algorithmic game theory. In the remainder of this section we demonstrate
its power by applying it to classical combinatorial problems.

There is however one issue with applying our cutting plane algorithm to these problems. As with
other convex optimization methods, only an approximately optimal solution is found. On the other
hand, typically an exact solution is insisted in combinatorial optimization. To overcome this gap, we
introduce the following lemma which (1) transforms the objective function so that there is only one
optimal solution and (2) shows that an approximate solution is close to the optimal solution whenever
it is unique. As we shall see in the next two subsections, this allows us to round an approximate
solution to an optimal one.

Lemma 9.4.6. Given a linear program min𝐴𝑥≥𝑏 𝑐
𝑇𝑥 where 𝑥, 𝑐 ∈ Z𝑛, 𝑏 ∈ Z𝑚 and 𝐴 ∈ Z𝑚×𝑛.

Suppose {𝐴𝑥 ≥ 𝑏} is an integral polytope (i.e. all extreme points are integral) contained in the
set {‖𝑥‖∞ ≤ 𝑀}. Then we can find a random cost vector 𝑧 ∈ Z𝑛 with ‖𝑧‖∞ ≤ 𝑂(𝑛2𝑀2‖𝑐‖∞)
such that with constant probability, min𝐴𝑥≥𝑏 𝑧

𝑇𝑥 has an unique minimizer 𝑥* and this minimizer
is one of the minimizer(s) of min𝐴𝑥≥𝑏 𝑐

𝑇𝑥. Furthermore, if there is an interior point 𝑦 such that
𝑧𝑇𝑦 < min𝐴𝑥≥𝑏 𝑧

𝑇𝑥+ 𝛿, then ‖𝑦 − 𝑥*‖∞ ≤ 2𝑛𝑀𝛿.

Proof. The first part of the lemma follows by randomly perturbing the cost vector 𝑐. We consider a new
cost vector 𝑧 = 100𝑛2𝑀2𝑐+𝑟 where each coordinate of 𝑟 is sampled randomly from {0, 1, · · · , 10𝑛𝑀}.
[145, Lem 4] shows that the linear program min𝐴𝑥≥𝑏 𝑧

𝑇𝑥 has a unique minimizer with constant
probability. Furthermore, it is clear that the minimizer of min𝐴𝑥≥𝑏 𝑧

𝑇𝑥 is a minimizer of min𝐴𝑥≥𝑏 𝑐
𝑇𝑥

(as 𝑟𝑖 ≪ 100𝑛2𝑀2|𝑐𝑖|).
Now we show the second part of the lemma. Given an interior point 𝑦 of the polytope {𝐴𝑥 ≥ 𝑏},

we can write 𝑦 as a convex combination of the vertices of {𝐴𝑥 ≥ 𝑏}, i.e. 𝑦 =
∑︀
𝑡𝑖v 𝑖. Note that
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𝑧𝑇𝑦 =
∑︀
𝑡𝑖𝑧

𝑇v 𝑖. If all v 𝑖 are not the minimizer, then 𝑧𝑇v 𝑖 ≥ OPT + 1 and hence 𝑧𝑇𝑦 ≥ OPT + 1
which is impossible. Hence, we can assume that v1 is the minimizer. Hence, 𝑧𝑇v 𝑖 = OPT if 𝑖 = 1
and 𝑧𝑇v 𝑖 ≥ OPT+ 1 otherwise. We then have 𝑧𝑇𝑦 ≥ OPT+ (1− 𝑡1) which gives 1− 𝑡1 < 𝛿. Finally,
the claim follows from ‖𝑦 − v1‖∞ ≤

∑︀
𝑖 ̸=1 𝑡𝑖‖v 𝑖 − v1‖∞ ≤ 2𝑛𝑀𝛿.

9.4.2 Matroid Intersection

Let 𝑀1 = (𝐸, ℐ1) and 𝑀2 = (𝐸, ℐ2) be two matroids sharing the same ground set. In this section we
consider the weighted matroid intersection problem

min
𝑆∈ℐ1∩ℐ2

𝑤(𝑆).

where 𝑤 ∈ R𝐸 and 𝑤(𝑆) def
=
∑︀

𝑒∈𝑆 𝑤𝑒.
For any matroid 𝑀 = (𝐸, ℐ), it is well known that the polytope of all independent sets has the

following description [80]:

conv(ℐ1) = {𝑥 ∈ R𝐸 s.t. 0 ≤ 𝑥(𝑆) ≤ 𝑟(𝑆) for all 𝑆 ⊆ 𝐸} (9.20)

where 𝑟 is the rank function for𝑀 , i.e. 𝑟(𝑆) is the size of the largest independent set that is a subset of
𝑆. Furthermore, the polytope of the matroid intersection satisfies conv(ℐ1∩ℐ2) = conv(ℐ1)∩conv(ℐ2).

It is well known that the optimization problem

min
𝑆∈ℐ1

𝑤(𝑆) and min
𝑆∈ℐ2

𝑤(𝑆)

can be solved efficiently by the greedy method. Given a matroid (polytope), the greedy method finds a
maximum weight independent subset by maintaining a candidate independent subset 𝑆 and iteratively
attempts to add new element to 𝑆 in descending weight. A element 𝑖 is added to 𝑆 if 𝑆 ∪ {𝑖} is still
independent. A proof of this algorithm is well-known and can be found in any standard textbook on
combinatorial optimization.

Clearly, the greedy method can be implemented by 𝑂(𝑛) calls to the independence oracle (also
called membership oracle). For rank oracle, it requires 𝑂(𝑟 log 𝑛) calls by finding the next element to
add via binary search. Therefore, we can apply Theorem 9.4.4 to get the following result (note that
this algorithm is the fastest if 𝑟 is close to 𝑛 for the independence oracle).

Theorem 9.4.7. Suppose that the weights 𝑤 are integer with ‖𝑤‖∞ ≤𝑀 . Then, we can find

𝑆 ∈ argmin
𝑆∈ℐ1∩ℐ2

𝑤(𝑆)

in time 𝑂
(︁
𝑛GO log (𝑛𝑀) + 𝑛3 log𝑂(1) (𝑛𝑀)

)︁
where GO is the cost of greedy method for ℐ1 and ℐ2.

Proof. Applying Lemma 9.4.6, we can find a new cost 𝑧 such that

min
𝑥∈conv(ℐ1)∩conv(ℐ2)

𝑧𝑇𝑥

has an unique solution. Note that for any 𝑥 ∈ conv(ℐ1), we have ‖𝑥‖∞ ≤ 1. Hence, applying theorem
9.4.4, we can find 𝑞 such that 𝑞𝑇𝑧 ≤ OPT + 𝜀 and ‖𝑞 − 𝑥‖2 + ‖𝑞 − 𝑦‖2 ≤ 𝜀 for some 𝑥 ∈ conv(ℐ1)
and 𝑦 ∈ conv(ℐ2). Using (9.20), we have the coordinate wise minimum of 𝑥,𝑦, i.e. min{𝑥,𝑦}, is in
conv(ℐ1) ∩ conv(ℐ2). Since ‖𝑞 −min{𝑥,𝑦}‖2 ≤ ‖𝑞 − 𝑥‖2 + ‖𝑞 − 𝑦‖2 ≤ 𝜀, we have

(min{𝑥,𝑦})𝑇 𝑧 ≤ OPT+ 𝑛𝑀𝜀.
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Hence, we have a feasible pointmin{𝑥,𝑦} which has value close to optimal and Lemma 9.4.6 shows that
‖min(𝑥,𝑦)−𝑠‖∞ ≤ 2𝑛2𝑀2𝜀 where 𝑠 is the optimal solution. Hence, we have ‖𝑞−𝑠‖∞ ≤ 2𝑛2𝑀2𝜀+𝜀.
Picking 𝜀 = 1

6𝑛2𝑀2 , we have ‖𝑞− 𝑠‖∞ < 1
2 and hence, we can get the optimal solution by rounding to

the nearest integer.
Since optimization over ℐ1 and ℐ2 involves applying greedy method on certain vectors, it takes

only 𝑂(GO) time. Theorem 9.4.4 shows it only takes 𝑂
(︁
𝑛GO log (𝑛𝑀) + 𝑛3 log𝑂(1) (𝑛𝑀)

)︁
in finding

such 𝑞.

This gives the following corollary.

Corollary 9.4.8. We have 𝑂(𝑛min(𝑛𝒯ind, 𝑟𝒯rank) log(𝑛𝑀)+𝑛3 log𝑂(1) 𝑛𝑀) time algorithm for weighted
matroid intersection. Here 𝒯ind is the time needed to check if a subset is independent, and 𝒯rank is the
time needed to compute the rank of a given subset.

Proof. By Theorem 9.4.7, it suffices to show that the optimization oracle for the matroid polytope
can be implemented in 𝑂(𝑛𝒯ind) and 𝑂(𝑟𝒯rank log 𝑛) time. This is simply attained by the well-known
greedy algorithm which iterates through all the positively-weighted elements in decreasing order, and
adds an element to our candidate independent set whenever possible.

For the independence oracle, this involves one oracle call for each element. On the other hand, for
the rank oracle, we can find the next element to add by binary search which takes time 𝑂(𝒯rank log 𝑛).
Since there are at most 𝑟 elements to add, we have the desired running time.

9.4.3 Submodular Flow

Let 𝐺 = (𝑉,𝐸) be a directed graphwith |𝐸| = 𝑚, let 𝑓 be a submodular function on R𝑉 with |𝑉 | = 𝑛,
𝑓(∅) = 0 and 𝑓(𝑉 ) = 0, and let 𝐴 be the incidence matrix of 𝐺. In this section we consider the
submodular flow problem

Minimize ⟨𝑐, 𝜙⟩ (9.21)

subject to 𝑙(𝑒) ≤ 𝜙(𝑒) ≤ 𝑢(𝑒) ∀𝑒 ∈ 𝐸
𝑥(𝑣) = (𝐴𝜙)(𝑣) ∀𝑣 ∈ 𝑉∑︁
𝑣∈𝑆

𝑥(𝑣) ≤ 𝑓(𝑆) ∀𝑆 ⊆ 𝑉

where 𝑐 ∈ Z𝐸 , 𝑙 ∈ Z𝐸 , 𝑢 ∈ Z𝐸 where 𝐶 = ‖𝑐‖∞ and 𝑈 = max (‖𝑢‖∞, ‖𝑙‖∞,max𝑆⊂𝑉 |𝑓(𝑆)|). Here 𝑐 is
the cost on edges, 𝜙 is the flow on edges, 𝑙 and 𝑢 are lower and upper bounds on the amount of flow
on the edges, and 𝑥(𝑣) is the net flow out of vertex 𝑣. The submodular function 𝑓 upper bounds the
total net flow out of any subset 𝑆 of vertices by 𝑓(𝑆).

Theorem 9.4.9. Suppose that the cost vector 𝑐 is integer weight with ‖𝑐‖∞ ≤ 𝐶 and the capacity
vector and the submodular function satisfy 𝑈 = max (‖𝑢‖∞, ‖𝑙‖∞,max𝑆⊂𝑉 |𝑓(𝑆)|). Then, we can solve

the submodular flow problem (9.21) in time 𝑂
(︁
𝑛2EO log(𝑚𝐶𝑈) + 𝑛3 log𝑂(1)(𝑚𝐶𝑈)

)︁
where EO is the

cost of function evaluation.

Proof. First, we can assume 𝑙(𝑒) ≤ 𝑢(𝑒) for every edge 𝑒, otherwise, the problem is infeasible. Now,
we apply a similar transformation in [110] to modify the graph. We create a new vertex 𝑣0. For every
vertex 𝑣 in 𝑉 , we create a edge from 𝑣0 to 𝑣 with capacity lower bounded by 0, upper bounded by
4𝑛𝑈 , and with cost 2𝑚𝐶𝑈 . Edmonds and Giles showed that the submodular flow polytope is integral
[83]. Hence, there is an integral optimal flow on this new graph. If the optimal flow passes through the
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newly created edge, then it has cost at least 2𝑚𝐶𝑈 −𝑚𝐶𝑈 because the cost of all other edges in total
has at least −𝑚𝐶𝑈 . That means the optimal flow has the cost larger than 𝑚𝐶𝑈 which is impossible.
So the optimal flow does not use the newly created edges and vertex and hence the optimal flow in
the new problem gives the optimal solution of the original problem. Next, we note that for any 𝜙 on
the original graph such that 𝑙(𝑒) ≤ 𝜙(𝑒) ≤ 𝑢(𝑒), we can send suitable amount of flow from 𝑣0 to 𝑣 to
make 𝜙 feasible. Hence, this modification makes the feasibility problem trivial.

Lemma 9.4.6 shows that we can assume the new problem has an unique solution and it only blows
up 𝐶 by a (𝑚𝑈)𝑂(1) factors.

Note that the optimal value is an integer and its absolute value at most𝑚𝐶𝑈 . By binary search, we
can assume we know the optimal value OPT. Now, we reduce the problem to finding a feasible 𝜙 with
{⟨𝑑, 𝜙⟩ ≤ OPT+ 𝜀} with 𝜀 determined later. Let 𝑃𝜀 be the set of such 𝜙. Note that 𝑃𝜀 = 𝐾1,𝜀 ∩𝐾2,𝜀

where

𝐾1,𝜀 =

⎧⎨⎩𝑥 ∈ R𝑉 such that
𝑙(𝑒) ≤ 𝜙(𝑒) ≤ 𝑢(𝑒) ∀𝑒 ∈ 𝐸
𝑥(𝑣) = (𝐴𝜙)(𝑣) ∀𝑣 ∈ 𝑉
⟨𝑑, 𝜙⟩ ≤ OPT+ 𝜀

for some 𝜙

⎫⎬⎭ ,

𝐾2,𝜀 =

{︃
𝑦 ∈ R𝑉 such that

∑︁
𝑣∈𝑆

𝑦(𝑣) ≤ 𝑓(𝑆) ∀𝑆 ⊆ 𝑉,
∑︁
𝑣∈𝑉

𝑦(𝑣) = 𝑓(𝑉 )

}︃
.

Note that the extra condition
∑︀

𝑣 𝑦(𝑣) = 𝑓(𝑉 ) is valid because
∑︀

𝑣 𝑦(𝑣) =
∑︀

𝑣(𝐴𝜙)(𝑣) = 0 and
𝑓(𝑉 ) = 0, and 𝐾1,𝜀 has radius bounded by 𝑂((𝑚𝐶𝑈)𝑂(1)) and 𝐾2,𝜀 has radius bounded by 𝑂(𝑛𝑈).
Furthermore, for any vector 𝑐 ∈ R𝑉 , we note that

max
𝑥∈𝐾1,𝜀

⟨𝑐, 𝑥⟩ = max
𝑙≤𝜙≤𝑢,⟨𝑑,𝜙⟩≤OPT+𝜀,𝑥=𝐴𝜙

⟨𝑐, 𝑥⟩

= max
𝑙≤𝜙≤𝑢,⟨𝑑,𝜙⟩≤OPT+𝜀

⟨𝑐, 𝐴𝜙⟩

= max
𝑙≤𝜙≤𝑢,⟨𝑑,𝜙⟩≤OPT+𝜀

⟨︀
𝐴𝑇 𝑐, 𝜙

⟩︀
.

To solve this problem, again we can do a binary search on ⟨𝑑, 𝜙⟩ and reduce the problem to

max
𝑙≤𝜙≤𝑢,⟨𝑑,𝜙⟩=𝐾

⟨︀
𝐴𝑇 𝑐, 𝜙

⟩︀
for some value of 𝐾. Since 𝐴𝑇 𝑐 is fixed, this is a linear program with only the box constraints and an
extra equality constraint. Hence, it can be solved in nearly linear time [164, Thm 17, ArXiv v1]. As
the optimization oracle for 𝐾1,𝜀 involves only computing 𝐴𝑇 𝑐 and solving this simple linear program,
it takes only 𝑂(𝑛2 log𝑂(1)(𝑚𝐶𝑈/𝜀)) time. On the other hand, since 𝐾2,𝜀 is just a base polyhedron,
the optimization oracle for 𝐾2,𝜀 can be done by greedy method and only takes 𝑂(𝑛EO) time.

Applying Theorem 9.4.4, we can find 𝑞 such that ‖𝑞−𝑥‖2+‖𝑞−𝑦‖2 ≤ 𝛿 for some 𝑥 ∈ 𝐾1,𝜀, 𝑦 ∈ 𝐾2,𝜀

and 𝛿 to be chosen later. According to the definition of𝐾1,𝜀, there is 𝜙 such that 𝑙(𝑒) ≤ 𝜙(𝑒) ≤ 𝑢(𝑒) and
𝑥(𝑣) = (𝐴𝜙)(𝑣) for all 𝑣 and ⟨𝑑, 𝜙⟩ ≤ OPT+𝜀. Since ‖𝑦−𝑥‖2 ≤ 2𝛿, that means |𝑦(𝑣)− (𝐴𝜙)(𝑣)| ≤ 2𝛿
for all 𝑣.

∙ Case 1) If 𝑦(𝑣) ≥ (𝐴𝜙)(𝑣), then we can replace 𝑦(𝑣) by (𝐴𝜙)(𝑣), note that 𝑦 is still in 𝐾2,𝜀

because of the submodular constraints.

∙ Case 2) If 𝑦(𝑣) ≤ (𝐴𝜙)(𝑣), then we can send a suitable amount of flow from 𝑣0 to 𝑣 to make 𝜙
feasible 𝑦(𝑣) ≤ (𝐴𝜙)(𝑣).

Note that under this modification, we increased the objective value by (𝛿𝑛)(2𝑚𝐶𝑈) because the new
edge cost 2𝑚𝐶𝑈 per unit of flow. Hence, we find a flow 𝜙 which is feasible in new graph with objective
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value 𝜀+(𝛿𝑛)(2𝑚𝐶𝑈) far from optimum value. By picking 𝛿 = 1
2𝑚𝑛𝐶𝑈 , we have the value 2𝜀 far from

OPT. Now, we use Lemma 9.4.6 to shows that when 𝜀 is small enough, i.e, 1
(𝑚𝐶𝑈)𝑐 for some constant

𝑐, then we can guarantee that ‖𝑦 − 𝑥*‖∞ ≤ 1
4 where 𝑥* is the optimal demand. Now, we note that

‖𝑞 − 𝑦‖2 ≤ 𝛿 and we note that we only modify 𝑦 by a small amount, we in fact have ‖𝑞 − 𝑥*‖∞ < 1
2 .

Hence, we can read off the solution 𝑥* by rounding 𝑞 to the nearest integer. Note that we only need
to solve the problem 𝐾1,𝜀 ∩𝐾2,𝜀 to 1

(𝑚𝐶𝑈)Θ(1) accuracy and the optimization oracle for 𝐾1,𝜀 and 𝐾2,𝜀

takes time 𝑂(𝑛2 log𝑂(1)(𝑚𝐶𝑈)) and 𝑂(𝑛EO) respectively. Hence, Theorem 9.4.4 shows that it takes

𝑂
(︁
𝑛2EO log(𝑚𝐶𝑈) + 𝑛3 log𝑂(1)(𝑚𝐶𝑈)

)︁
time to find 𝑥* exactly.

After getting 𝑥*, one can find 𝜙* by solving a min cost flow problem using interior point method
(Chapter 6), which takes 𝑂(𝑚

√
𝑛 log𝑂(1)(𝑚𝐶𝑈)) time.

9.4.4 Affine Subspace of Convex Set

In this section, we give another example about using optimization oracle directly via regularization.
We consider the following optimization problem

max
𝑥∈𝐾 and 𝐴𝑥=𝑏

⟨𝑐,𝑥⟩ (9.22)

where 𝑥, 𝑐 ∈ R𝑛, 𝐾 is a convex subset of R𝑛, 𝐴 ∈ R𝑟×𝑛 and 𝑏 ∈ R𝑚. We suppose that 𝑟 ≪ 𝑛 and thus,
the goal of this subsection is to show how to obtain an algorithm takes only �̃�(𝑟) many iterations. To
do this, we assume a slightly stronger optimization oracle for 𝐾:

Definition 9.4.10. Given a convex set 𝐾 and 𝛿 > 0. A 𝛿-2nd-order-optimization oracle for 𝐾 is a
function on R𝑛 such that for any input 𝑐 ∈ R𝑛 and 𝜆 > 0, it outputs 𝑦 such that

max
𝑥∈𝐾

(︀
⟨𝑐,𝑥⟩ − 𝜆‖𝑥‖2

)︀
≤ 𝛿 + ⟨𝑐,𝑦⟩ − 𝜆‖𝑦‖2.

We denote by OO
(2)
𝛿,𝜆(𝐾) the time complexity of this oracle.

The strategy for solving this problem is very similar to the intersection problem and hence some
details are omitted.

Theorem 9.4.11. Assume that max𝑥∈𝐾 ‖𝑥‖2 < 𝑀 , ‖𝑏‖2 < 𝑀 , ‖𝑐‖2 < 𝑀 , ‖𝐴‖2 < 𝑀 and 𝜆min(𝐴) >
1/𝑀 . Assume that 𝐾 ∩ {𝐴𝑥 = 𝑏} ̸= ∅ and we have 𝜀-2nd-order-optimization oracle for every 𝜀 > 0.
For 0 < 𝛿 < 1, we can find 𝑧 ∈ 𝐾 such that

max
𝑥∈𝐾 and 𝐴𝑥=𝑏

⟨𝑐,𝑥⟩ ≤ 𝛿 + ⟨𝑐, 𝑧⟩

and ‖𝐴𝑧 − 𝑏‖2 ≤ 𝛿. This algorithm takes time

𝑂

(︂
𝑟OO

(2)
𝜂,𝜆(𝐾) log

(︂
𝑛𝑀

𝛿

)︂
+ 𝑟3 log𝑂(1)

(︂
𝑛𝑀

𝛿

)︂)︂
where 𝑟 is the number of rows in 𝐴, 𝜂 =

(︀
𝛿
𝑛𝑀

)︀Θ(1)
and 𝜆 =

(︀
𝛿
𝑛𝑀

)︀Θ(1)
.

Proof. The proof is based on the minimax problem

OPT𝜆
def
= min

‖𝜂‖2≤1/𝜆
max
𝑥∈𝐾
⟨𝑐,𝑥⟩+ ⟨𝜂,𝐴𝑥− 𝑏⟩ − 1

𝜆
‖𝑥‖22
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where 𝜆 =
(︀

𝛿
𝑛𝑀

)︀𝑐
for some large constant 𝑐. We note that

OPT𝜆 = max
𝑥∈𝐾

min
‖𝜂‖2≤1/𝜆

⟨𝑐,𝑥⟩+ ⟨𝜂,𝐴𝑥− 𝑏⟩ − 1

𝜆
‖𝑥‖22

= max
𝑥∈𝐾
⟨𝑐,𝑥⟩ − 1

𝜆
‖𝐴𝑥− 𝑏‖2 −

1

𝜆
‖𝑥‖22.

Since 𝜆min(𝐴) > 1/𝑀 and the set 𝐾 is bounded by 𝑀 , one can show that the saddle point (𝑥*,𝜂*)
of the minimax problem gives a good enough solution 𝑥 for the original problem for large enough
constant 𝑐.

For any 𝜂, we define

𝑥𝜂 = argmax
𝑥∈𝐾

⟨𝑐,𝑥⟩+ ⟨𝜂,𝐴𝑥− 𝑏⟩ − 1

𝜆
‖𝑥‖22.

Since the problem is strongly concave in 𝑥, one can prove that

‖𝑥𝜂 − 𝑥*‖2 ≤
(︂
𝑛𝑀

𝛿

)︂𝑂(1)

‖𝜂 − 𝜂*‖2.

Hence, we can first find an approximate minimizer of the function 𝑓(𝜂) = max𝑥∈𝐾 ⟨𝑐,𝑥⟩+⟨𝜂,𝐴𝑥− 𝑏⟩−
1
𝜆‖𝑥‖

2
2 and use the oracle to find 𝑥𝜂.

To find an approximate minimizer of 𝑓 , we note that the subgradient of 𝑓 can be found using the
optimization oracle similar to Theorem 9.4.4. Hence, the result follows from our cutting plane method
and the fact that 𝜂 ∈ R𝑟.

Remark 9.4.12. In Chapter 6, we considered the special case 𝐾 = {𝑥 : 0 ≤ 𝑥𝑖 ≤ 1} and showed
that it can be solved in �̃�(

√
𝑟) iterations using interior point methods. This gives the current fastest

algorithm for the maximum flow problem on directed weighted graphs. This result generalizes that
result to any convex set 𝐾 but with �̃�(𝑟) iterations. This suggests the following open problem: under
what condition on 𝐾 can one optimize linear functions over affine subspaces of 𝐾 with 𝑟 constraints
in �̃�(

√
𝑟) iterations?
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Chapter 10

Submodular Minimization In Nearly-Cubic Time

10.1 Introduction

Submodular functions and submodular function minimization (SFM) are fundamental to the field
of combinatorial optimization. Examples of submodular functions include graph cut functions, set
coverage function, and utility functions from economics. Since the seminal work by Edmonds in 1970
[82], submodular functions and the problem of minimizing such functions (i.e. submodular function
minimization) have served as a popular modeling and optimization tool in various fields such as
theoretical computer science, operations research, game theory, and most recently, machine learning.
Given its prevalence, fast algorithms for SFM are of immense interest both in theory and in practice.

Throughout this chapter, we consider the standard formulation of SFM: we are given a submodular
function 𝑓 defined over the subsets of a 𝑛-element ground set. The values of 𝑓 are integers, have
absolute value at most 𝑀 , and are evaluated by querying an oracle that takes time EO. Our goal is
to produce an algorithm that solves this SFM problem, i.e. finds a minimizer of 𝑓 , while minimizing
both the number of oracle calls made and the total running time.

We provide new 𝑂(𝑛2 log 𝑛𝑀 ·EO+𝑛3 log𝑂(1) 𝑛𝑀) and 𝑂(𝑛3 log2 𝑛 ·EO+𝑛4 log𝑂(1) 𝑛) time algo-
rithms for SFM. These algorithms improve upon the previous fastest weakly and strongly polynomial
time algorithms for SFM which had a a running time of 𝑂((𝑛4·EO+𝑛5) log𝑀) [118] and 𝑂(𝑛5·EO+𝑛6)
[216] respectively. Consequently, we improve the running times in both regimes by roughly a factor of
𝑂(𝑛2).

Both of our algorithms bear resemblance to the classic approach of Grötschel, Lovász and Schrijver
[110, 109] using the Lovász extension. In fact our weakly polynomial time algorithm directly uses the
Lovász extension as well as the results of Chapter 9 to achieve these results. Our strongly polynomial
time algorithm also uses the Lovász extension, along with more modern tools from the past 15 years.

At a high level, our strongly polynomial algorithms apply our cutting plane method in conjunction
with techniques originally developed by Iwata, Fleischer, and Fujishige (IFF) [121]. Our cutting plane
method is performed for enough iterations to sandwich the feasible region in a narrow strip from
which useful structural information about the minimizers can be deduced. Our ability to derive the
new information hinges on a significant extension of IFF techniques.

Over the past few decades, SFM has drawn considerable attention from various research communi-
ties, most recently in machine learning [24, 149]. Given this abundant interest in SFM, we hope that
our ideas will be of value in various practical applications. Indeed, one of the critiques against existing
theoretical algorithms is that their running time is too slow to be practical. Our contribution, on the
contrary, shows that this school of algorithms can actually be made fast theoretically and we hope it
may potentially be competitive against heuristics which are more commonly used.
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10.1.1 Previous Work

Here we provide a brief survey of the history of algorithms for SFM. For a more comprehensive account
of the rich history of SFM, we refer the readers to recent surveys [189, 120].

The first weakly and strongly polynomial time algorithms for SFM were based on the ellipsoid
method [142] and were established in the foundational work of Grötschel, Lovász and Schrijver in
1980’s [110, 109]. Their work was complemented by a landmark paper by Cunningham in 1985 which
provided a pseudopolynomial algorithm that followed a flow-style algorithmic framework [61]. His
tools foreshadowed much of the development in SFM that would take place 15 years later. Indeed,
modern algorithms synthesize his framework with inspirations from various max flow algorithms.

The first such “flow style” strongly polynomial algorithms for SFM were discovered independently in
the breakthrough papers by Schrijver [231] and Iwata, Fleischer, and Fujishige (IFF) [121]. Schrijver’s
algorithm has a running of 𝑂(𝑛8 · EO+ 𝑛9) and borrows ideas from the push-relabel algorithms [105,
68] for the maximum flow problem. On the other hand, IFF’s algorithm runs in time 𝑂(𝑛7 log 𝑛 ·EO)
and 𝑂(𝑛5 ·EO log𝑀), and applies a flow-scaling scheme with the aid of certain proximity-type lemmas
as in the work of Tardos [247]. Their method has roots in flow algorithms such as [117, 106].

Subsequent work on SFM provided algorithms with considerably faster running time by extending
the ideas in these two “genesis” papers [231, 121] in various novel directions [264, 87, 118, 216, 125].
Currently, the fastest weakly and strongly polynomial time algorithms for SFM have a running time
of 𝑂((𝑛4 ·EO+ 𝑛5) log𝑀) [118] and 𝑂(𝑛5 ·EO+ 𝑛6) [216] respectively. Despite this impressive track
record, the running time has not been improved in the last eight years.

We remark that all of the previous algorithms for SFM proceed by maintaining a convex combina-
tion of 𝑂(𝑛) BFS’s of the base polyhedron, and incrementally improving it in a relatively local manner.
As we shall discuss in Section 10.1.2, our algorithms do not explicitly maintain a convex combination.
This may be one of the fundamental reasons why our algorithms achieve a faster running time.

Finally, beyond the distinction between weakly and strongly polynomial time algorithms for SFM,
there has been interest in another type of SFM algorithm, known as fully combinatorial algorithms
in which only additions and subtractions are permitted. Previous such algorithms include [125, 118,
119]. We do not consider such algorithms in the remainder of this chapter and leave it as an open
question if it is possible to turn our algorithms into fully combinatorial ones.

10.1.2 Our Results and Techniques

In this chapter, we show how to improve upon the previous best known running times for SFM by
a factor of 𝑂(𝑛2) in both the strongly and weakly polynomial regimes. In Table 10.1 summarizes
the running time of the previous algorithms as well as the running times of the fastest algorithms
presented in this chapter.

Both our weakly and strongly polynomial algorithms for SFM utilize a convex relaxation of the
submodular function, called the Lovász extension. Our algorithms apply our cutting plane method
from Chapter 8 using a separation oracle given by the subgradient of the Lovász extension. To the
best of the author’s knowledge, Grötschel, Lovász and Schrijver were the first to formulate this convex
optimization framework for SFM [110, 109].

For weakly polynomial algorithms, our contribution is two-fold. First, we show that cutting plane
methods such as Vaidya’s [253] can be applied to SFM to yield faster algorithms. Second, as our cutting
plane method, Theorem 9.3.2, improves upon previous cutting plane algorithms and consequently the
running time for SFM as well. This gives a running time of 𝑂(𝑛2 log 𝑛𝑀 · EO + 𝑛3 log𝑂(1) 𝑛𝑀), an
improvement over the previous best algorithm by Iwata [118] by a factor of almost 𝑂(𝑛2).

Our strongly polynomial algorithms, on the other hand, require substantially more innovation. We
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Years Authors Running times Remarks

1981,1988 Grötschel, Lovász, ̃︀𝑂(𝑛5 · EO+ 𝑛7)[189]
first weakly
and strongly

1985 Cunningham [61] 𝑂(𝑀𝑛6 log 𝑛𝑀 · EO) first pseudopoly
2000 Schrijver [231] 𝑂(𝑛8 · EO+ 𝑛9) first combin. strongly

2000 Iwata, Fleischer,
𝑂(𝑛5 · EO log𝑀)
𝑂(𝑛7 log 𝑛 · EO)

first combin. strongly

2000 Iwata, Fleischer [87] 𝑂(𝑛7 · EO+ 𝑛8)

2003 Iwata [118]
𝑂((𝑛4 · EO+ 𝑛5) log𝑀)
𝑂((𝑛6 · EO+ 𝑛7) log 𝑛)

current best weakly

2003 Vygen [264] 𝑂(𝑛7 · EO+ 𝑛8)

2007 Orlin [216] 𝑂(𝑛5 · EO+ 𝑛6) current best strongly

2009 Iwata, Orlin [125]
𝑂((𝑛4 · EO+ 𝑛5) log 𝑛𝑀)
𝑂((𝑛5 · EO+ 𝑛6) log 𝑛)

- This Chapter
𝑂(𝑛2 log 𝑛𝑀 · EO+ 𝑛3 log𝑂(1) 𝑛𝑀)

𝑂(𝑛3 log2 𝑛 · EO+ 𝑛4 log𝑂(1) 𝑛)

Table 10.1: Algorithms for submodular function minimization. Note that some of these algorithms were
published in both conferences and journals, in which case the year we provided is the earlier one.

first begin with a very simple geometric argument that SFM can be solved in 𝑂(𝑛3 log 𝑛 · EO) oracle
calls (but in exponential time). This proof only uses Grunbaum’s Theorem from convex geometry
and is completely independent from the rest of this chapter. It was the starting point of our method
and suggests that a running time of ̃︀𝑂(𝑛3 · EO + 𝑛𝑂(1)) for submodular minimization is in principle
achievable.

To make this existence result algorithmic, we first run cutting plane, Theorem 8.3.26, for enough
iterations such that we compute either a minimizer or a set 𝑃 containing the minimizers that fits
within in a narrow strip. This narrow strip consists of the intersection of two approximately parallel
hyperplanes. If our narrow strip separates 𝑃 from one of the faces 𝑥𝑖 = 0, 𝑥𝑖 = 1, we can effec-
tively eliminate the element 𝑖 from our consideration and reduce the dimension of our problem by 1.
Otherwise a pair of elements 𝑝, 𝑞 can be identified for which 𝑞 is guaranteed to be in any minimizer
containing 𝑝 (but 𝑝 may not be contained in a minimizer). Our first algorithm deduces only one such
pair at a time. This technique immediately suffices to achieve a ̃︀𝑂(𝑛4 · EO + 𝑛5) time algorithm for
SFM (See Section 10.4.3). We then improve the running time to ̃︀𝑂(𝑛3 · EO + 𝑛4) by showing how
to deduce many such pairs simultaneously. Similar to past algorithms, this structural information is
deduced from a point in the so-called base polyhedron (See Section 10.2).

Readers well-versed in SFM literature may recognize that our strongly polynomial algorithms
are reminiscent of the scaling-based approach first used by IFF [121] and later in [118, 125]. While
both approaches share the same skeleton, there are differences as to how structural information about
minimizers is deduced. A comparison of our algorithms and previous ones are presented in Section 10.5.

Finally, there is one more crucial difference between these algorithms which we believe is responsible
for much of our speedup. One common feature shared by all the previous algorithms is that they
maintain a convex combination of 𝑂(𝑛) BFS’s of the base polyhedron, and incrementally improve on
it by introducing new BFS’s by making local changes to existing ones. Our algorithms, on the other
hand, choose new BFS’s by the cutting plane method. Because of this, our algorithm considers the
geometry of the existing BFS’s where each of them has influences over the choice of the next BFS. In
some sense, our next BFS is chosen in a more “global” manner.
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10.1.3 Organization

The rest of this chapter is organized as follows. We first begin with a gentle introduction to submodular
functions in Section 10.2. In Section 10.3, we apply our cutting plane method to SFM to obtain a
faster weakly polynomial algorithms. In Section 10.4 we then present our results for achieving better
strongly polynomial algorithms, where a warm-up ̃︀𝑂(𝑛4 · EO+ 𝑛5) algorithm is given before the full-
fledged ̃︀𝑂(𝑛3 · EO + 𝑛4) algorithm. Finally, we end this chaper with a discussion and comparison
between our algorithms and previous ones in Section 10.5.

We note that there are a few results in this chapter that can be read fairly independently of the
rest of this chapter. In Theorem 10.3.2 we show how Vaidya’s algorithm can be applied to SFM to
obtain a faster weakly polynomial running time. Also in Theorem 10.4.1 we present a simple geometric
argument that SFM can be solved with 𝑂(𝑛3 log 𝑛 ·EO) oracle calls but with exponential time. These
results can be read with only a working knowledge of the Lovász extension of submodular functions.

10.2 Preliminaries

Here we introduce background on submodular function minimization (SFM) and notation that we use
throughout this chapter. Our exposition is kept to a minimal amount sufficient for our purposes. We
refer interested readers to the extensive survey by McCormick [189] for further intuition.

10.2.1 Submodular Function Minimization

Throughout the rest of this chapter, let 𝑉 = {1, ..., 𝑛} = [𝑛] denote a ground set and let 𝑓 : 2𝑉 −→ Z
denote a submodular function defined on subsets of this ground set. We use 𝑉 and [𝑛] interchangeably
and let [0]

def
= ∅. We abuse notation by letting 𝑆 + 𝑖

def
= 𝑆 ∪ {𝑖} and 𝑆 − 𝑖 def

= 𝑆∖{𝑖} for an element
𝑖 ∈ 𝑉 and a set 𝑆 ⊆ 2𝑉 . Formally, we call a function submodular if it obeys the following property of
diminishing marginal differences:

Definition 10.2.1 (Submodularity). A function 𝑓 : 2𝑉 −→ Z is submodular if 𝑓(𝑇 + 𝑖) − 𝑓(𝑇 ) ≤
𝑓(𝑆 + 𝑖)− 𝑓(𝑆) for any 𝑆 ⊆ 𝑇 and 𝑖 ∈ 𝑉 ∖𝑇 .

For convenience we assume without loss of generality that 𝑓(∅) = 0 by replacing 𝑓(𝑆) by 𝑓(𝑆)−𝑓(∅)
for all 𝑆. We also let 𝑀 def

= max𝑆∈2𝑉 |𝑓(𝑆)|.
The central goal of this chapter is to design algorithms for SFM, i.e. computing the minimizer

of 𝑓 . We call such an algorithm strongly polynomial if its running time depends only polynomially
on 𝑛 and EO, the time needed to compute 𝑓(𝑆) for a set 𝑆, and we call such an algorithm weakly
polynomial if it also depends polylogarithmically on 𝑀 .

10.2.2 Lovász Extension

Our new algorithms for SFM all consider a convex relaxation of a submodular function, known as
the Lovász extension, and then carefully apply our cutting plane methods to it. Here we formally
introduce the Lovász extension and present basic facts that we use throughout this chapter.

The Lovász extension of 𝑓 : [0, 1]𝑛 −→ R of our submodular function 𝑓 is defined for all 𝑥 by

𝑓(𝑥)
def
= E𝑡∼[0,1][𝑓({𝑖 : 𝑥𝑖 ≥ 𝑡})],

where 𝑡 ∼ [0, 1] is drawn uniformly at random from [0, 1]. The Lovász extension allows us to reduce
SFM to minimizing a convex function defined over the interior of the hypercube. Below we state that
the Lovász extension is a convex relaxation of 𝑓 and that it can be evaluated efficiently.
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Theorem 10.2.2. The Lovász extension 𝑓 satisfies the following properties:

1. 𝑓 is convex and min𝑥∈[0,1]𝑛 𝑓(𝑥) = min𝑆⊂[𝑛] 𝑓(𝑆);

2. 𝑓(𝑆) = 𝑓(𝐼𝑆), where 𝐼𝑆 is the characteristic vector for 𝑆, i.e. 𝐼𝑆(𝑖) =

{︃
1 if 𝑖 ∈ 𝑆
0 if 𝑖 /∈ 𝑆

;

3. If 𝑆 is a minimizer of 𝑓 , then 𝐼𝑆 is a minimizer of 𝑓 ;

4. Suppose 𝑥1 ≥ · · · ≥ 𝑥𝑛 ≥ 𝑥𝑛+1
def
= 0, then

𝑓(𝑥) =
𝑛∑︁
𝑖=1

𝑓([𝑖])(𝑥𝑖 − 𝑥𝑖+1) =
𝑛∑︁
𝑖=1

(𝑓([𝑖])− 𝑓([𝑖− 1]))𝑥𝑖 .

Proof. See [109] or any standard textbook on combinatorial optimization, e.g. [232].

Next we show that we can efficiently compute a subgradient of the Lovász or alternatively, a
separating hyperplane for the set of minimizers of our submdoular function 𝑓 . First we remind the
reader of the definition of a separation oracle, and then we prove the necessary properties of the
hyperplane, Theorem 10.2.4.

Definition 10.2.3 (separation oracle, Defintion 2.3.5 restated for Lovász extension). Given a point �̄�
and a convex function 𝑓 over a convex set 𝑃 , 𝑎𝑇𝑥 ≤ 𝑏 is a separating hyperplane if 𝑎𝑇 �̄� ≥ 𝑏 and any
minimizer 𝑥* of 𝑓 over 𝑃 satisfies 𝑎𝑇𝑥* ≤ 𝑏.

Theorem 10.2.4. Given a point �̄� ∈ [0, 1]𝑛 assume without loss of generality (by re-indexing the
coordinates) that �̄�1 ≥ · · · ≥ �̄�𝑛. Then the following inequality is a valid separating hyperplane for 𝑥
and 𝑓 :

𝑛∑︁
𝑖=1

(𝑓([𝑖])− 𝑓([𝑖− 1]))𝑥𝑖 ≤ 𝑓(�̄�)

i.e., it satisfies the following:

1. (separating) �̄� lies on
∑︀𝑛

𝑖=1(𝑓([𝑖])− 𝑓([𝑖− 1]))𝑥𝑖 ≤ 𝑓(�̄�).

2. (valid) For any 𝑥, we have
∑︀𝑛

𝑖=1(𝑓([𝑖]) − 𝑓([𝑖 − 1]))𝑥𝑖 ≤ 𝑓(𝑥). In particular,
∑︀𝑛

𝑖=1(𝑓([𝑖]) −
𝑓([𝑖 − 1]))𝑥*𝑖 ≤ 𝑓(�̄�) for any minimizer 𝑥*, i.e. the separating hyperplane does not cut out any
minimizer.

Moreover, such a hyperplane can be computed with 𝑛 oracle calls to 𝑓 and in time 𝑂(𝑛 · EO+ 𝑛2).

Proof. Note that by Theorem 10.2.2 we have that
∑︀

𝑖∈[𝑛](𝑓([𝑖]) − 𝑓([𝑖 − 1]))𝑥𝑖 = 𝑓(�̄�) and thus the
hyperplane satisfies the separating condition. Moreover, clearly computing it only takes time 𝑂(𝑛 ·
EO+𝑛2) as we simply need to sort the coordinates and evaluate 𝑓 at 𝑛 points, i.e. each of the [𝑖]. All
that remains is to show that the hyperplane satisfies the valid condition.

Let 𝐿(𝑡) def
= {𝑖 : 𝑥𝑖 ≥ 𝑡}. Recall that 𝑓(𝑥) = E𝑡∼[0,1][𝑓(𝐿𝑡)]. Thus 𝑓(𝑥) can be written as a convex

combination 𝑓(𝑥) =
∑︀

𝑡 𝛼𝑡𝑓(𝐿
(𝑡)), where 𝛼𝑡 ≥ 0 and

∑︀
𝑡 𝛼𝑡 = 1. However, by diminishing marginal
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differences we see that for all 𝑡∑︁
𝑖∈[𝑛]

(𝑓([𝑖])− 𝑓([𝑖− 1])) (𝐼𝐿(𝑡))𝑖 =
∑︁
𝑖∈𝐿(𝑡)

(𝑓([𝑖])− 𝑓([𝑖− 1]))

≤
∑︁
𝑖∈𝐿(𝑡)

(︁
𝑓([𝑖] ∩ 𝐿(𝑡))− 𝑓([𝑖− 1] ∩ 𝐿(𝑡))

)︁
= 𝑓(𝐿(𝑡))− 𝑓(∅) = 𝑓(𝐿(𝑡))

and therefore since
∑︀

𝑡 𝛼𝑡𝐼𝐿(𝑡) = 𝑥 we have

∑︁
𝑖∈[𝑛]

(𝑓 [𝑖]− 𝑓([𝑖− 1])𝑥𝑖 =
∑︁
𝑡

𝛼𝑡

𝑛∑︁
𝑖=1

(𝑓([𝑖])− 𝑓([𝑖− 1])) (𝐼𝐿(𝑡))𝑖 ≤
∑︁
𝑡

𝛼𝑡𝑓(𝐿
(𝑡)) = 𝑓(𝑥).

10.2.3 Polyhedral Aspects of SFM

Here we provide a natural primal dual view of SFM that we use throughout the analysis. We provide a
dual convex optimization program to minimizing the Lovász extension and provide several properties
of these programs. We believe the material in this section helps crystallize some of the intuition behind
our algorithm and we make heavy use of the notation presented in this section. However, we will not
need to appeal to the strong duality of these programs in our proofs.

Consider the following primal and dual programs, where we use the shorthands 𝑦(𝑆) =
∑︀

𝑖∈𝑆 𝑦𝑖

and 𝑦−𝑖 = min{0, 𝑦𝑖}. Here the primal constraints are often called the base polyhedron ℬ(𝑓) def
= {𝑦 ∈

R𝑛 : 𝑦(𝑆) ≤ 𝑓(𝑆)∀𝑆 ( 𝑉, 𝑦(𝑉 ) = 𝑓(𝑉 )} and the dual program directly corresponds to minimizing the
Lovász extension and thus 𝑓 .

Primal Dual

max𝑦−(𝑉 )

𝑦(𝑆) ≤ 𝑓(𝑆)∀𝑆 ( 𝑉

𝑦(𝑉 ) = 𝑓(𝑉 )

min𝑓(𝑥)

0 ≤ 𝑥 ≤ 1

Theorem 10.2.5. ℎ is a basic feasible solution (BFS) of the base polyhedron ℬ(𝑓) if and only if

ℎ𝑖 = 𝑓({𝑣1, ..., 𝑣𝑖})− 𝑓({𝑣1, ..., 𝑣𝑖−1})
for some permutation 𝑣1, ..., 𝑣𝑛 of the ground set 𝑉 . We call 𝑣1, ..., 𝑣𝑛 the defining permutation of ℎ.
We call 𝑣𝑖 precedes 𝑣𝑗 for 𝑖 < 𝑗.

This theorem gives a nice characterization of the BFS’s of ℬ(𝑓). It also gives the key observation
underpinning our approach: the coefficients of each separating hyperplane in Theorem 10.2.4

precisely corresponds to a primal BFS (Theorem 10.2.5). Our analysis relies heavily on this
connection. We re-state Theorem 10.2.4 in the language of BFS.

Lemma 10.2.6. We have ℎ𝑇𝑥 ≤ 𝑓(𝑥) for any 𝑥 ∈ [0, 1]𝑛 and BFS ℎ.

Proof. Any BFS is given by some permutation. Thus this is just Theorem 10.2.4 in disguise.

We also note that since the objective function of the primal program is non-linear, we cannot say
that the optimal solution to the primal program is a BFS. Instead we only know that it is a convex
combination of the BFS’s that satisfy the following property. A proof can be found in any standard
textbook on combinatorial optimization.
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Theorem 10.2.7. The above primal and dual programs have no duality gap. Moreover, there always
exists a primal optimal solution 𝑦 =

∑︀
𝑘 𝜆

(𝑘)ℎ(𝑘) with
∑︀

𝑘 𝜆
(𝑘) = 1 (a convex combination of BFS

ℎ(𝑘)) s.t. any 𝑖 with 𝑦𝑖 < 0 precedes any 𝑗 with 𝑦𝑗 > 0 in the defining permutation for each BFS ℎ(𝑘).

Our algorithms will maintain collections of BFS and use properties of ℎ ∈ ℬ(𝑓), i.e. convex
combination of BFS. To simplify our analysis at several points we will want to assume that such a
vector ℎ ∈ ℬ(𝑓) is non-degenerate, meaning it has both positive and negative entries. Below, we prove
that such degenerate points in the base polytope immediately allow us to trivially solve the SFM
problem.

Lemma 10.2.8 (Degenerate Hyperplanes). If ℎ ∈ ℬ(𝑓) is non-negative then ∅ is a minimizer of 𝑓
and if ℎ is non-positive then 𝑉 is a minimizer of 𝑓 .

Proof. While this follows immediately from Theorem 10.2.7, for completeness we prove this directly.
Let 𝑆 ∈ 2𝑉 be arbitrary. If ℎ ∈ ℬ(𝑓) is non-negative then by the we have

𝑓(𝑆) ≥ ℎ(𝑆) =
∑︁
𝑖∈𝑆

ℎ𝑖 ≥ 0 = 𝑓(∅) .

On the other hand if ℎ is non-positive then by definition we have

𝑓(𝑆) ≥ ℎ(𝑆) =
∑︁
𝑖∈𝑆

ℎ𝑖 ≥
∑︁
𝑖∈𝑉

ℎ𝑖 = ℎ(𝑉 ) = 𝑓(𝑉 ) .

10.3 Improved Weakly Polynomial Algorithms for SFM

In this section we show how our cutting plane method can be used to obtain a 𝑂(𝑛2 log 𝑛𝑀 · EO +
𝑛3 log𝑂(1) 𝑛𝑀) time algorithm for SFM. Our main result in this section is the following theorem, which
shows how directly applying our results from earlier chapters to minimize the Lovász extension yields
the desired running time.

Theorem 10.3.1. We have an 𝑂(𝑛2 log 𝑛𝑀 · EO + 𝑛3 log𝑂(1) 𝑛𝑀) time algorithm for submodular
function minimization.

Proof. We apply Theorem 9.3.2 to the Lovász extension 𝑓 : [0, 1]𝑛 −→ R with the separation oracle
given by Theorem 10.2.4. 𝑓 fulfills the requirement on the domain as its domain Ω = [0, 1]𝑛 is
symmetric about the point (1/2, . . . , 1/2) and has exactly 2𝑛 constraints.

In the language of Theorem 9.3.2, our separation oracle is a (0, 0)-separation oracle with 𝜂 = 0
and 𝛿 = 0.

We first show that 𝛿 = 0. Firstly, our separating hyperplane can be written as

𝑛∑︁
𝑖=1

(𝑓([𝑖])− 𝑓([𝑖− 1]))𝑥𝑖 ≤ 𝑓(�̄�) =
𝑛∑︁
𝑖=1

(𝑓([𝑖])− 𝑓([𝑖− 1]))�̄�𝑖,

where the equality follows from Theorem 10.2.2. Secondly, for any 𝑥 with 𝑓(𝑥) ≤ 𝑓(�̄�) we have by
Theorem 10.2.4 that

𝑛∑︁
𝑖=1

(𝑓([𝑖])− 𝑓([𝑖− 1]))𝑥𝑖 ≤ 𝑓(𝑥) ≤ 𝑓(�̄�)

which implies that 𝑥 is not cut away by the hyperplane.
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Next we show that 𝜂 = 0. Our separating hyperplane induces a valid halfspace whenever it is not
nonzero, i.e. 𝑓([𝑖]) ̸= 𝑓([𝑖− 1]) for some 𝑖. In the case that it is zero 𝑓([𝑖]) = 𝑓([𝑖− 1])∀𝑖, by the same
argument above, we have 𝑓(�̄�) =

∑︀𝑛
𝑖=1(𝑓([𝑖])− 𝑓([𝑖− 1]))�̄�𝑖 = 0 and

𝑓(𝑥) ≥
𝑛∑︁
𝑖=1

(𝑓([𝑖])− 𝑓([𝑖− 1]))𝑥𝑖 = 0 = 𝑓(�̄�).

In other words, �̄� is an exact minimizer, i.e. 𝜂 = 0.

Note that
⃒⃒⃒
𝑓(𝑥)

⃒⃒⃒
=
⃒⃒
E𝑡∼[0,1][𝑓({𝑖 : 𝑥𝑖 ≥ 𝑡})]

⃒⃒
≤ 𝑀 as 𝑀 = max𝑆 |𝑓(𝑆)|. Now plugging in 𝛼 = 1

4𝑀

in the guarantee of Theorem 8.3.26, we can find a point 𝑥* such that

𝑓(𝑥*)− min
𝑥∈[0,1]𝑛

𝑓(𝑥) ≤ 1

4𝑀

(︂
max
𝑥∈[0,1]𝑛

𝑓(𝑥)− min
𝑥∈[0,1]𝑛

𝑓(𝑥)

)︂
≤ 1

4𝑀
(2𝑀)

< 1

We claim that min𝑡∈[0,1] 𝑓({𝑖 : 𝑥*𝑖 ≥ 𝑡}) is minimum. To see this, recall from 10.2.2 that 𝑓 has an

integer minimizer and hence min𝑥∈[0,1]𝑛 𝑓(𝑥) = min𝑆 𝑓(𝑆). Moreover, 𝑓(𝑥*) is a convex combination
of 𝑓({𝑖 : 𝑥*𝑖 ≥ 𝑡}) which gives

1 > 𝑓(𝑥*)− min
𝑥∈[0,1]𝑛

𝑓(𝑥) = 𝑓(𝑥*)−min
𝑆
𝑓(𝑆) ≥ min

𝑡∈[0,1]
𝑓({𝑖 : 𝑥*𝑖 ≥ 𝑡})−min

𝑆
𝑓(𝑆).

Since 𝑓 is integer-valued, we must then have min𝑡∈[0,1] 𝑓({𝑖 : 𝑥*𝑖 ≥ 𝑡}) = min𝑆 𝑓(𝑆) as desired.
Since our separation oracle can be computed by 𝑛 oracle calls and runs in time 𝑂(𝑛 · EO + 𝑛2), by
Theorem 9.3.2 the overall running time is then 𝑂(𝑛2 log 𝑛𝑀 · EO+ 𝑛3 log𝑂(1) 𝑛𝑀) as claimed.

Needless to say the proof above completely depends on Theorem 9.3.2. We remark that one can use
the Vaidya’s cutting plane instead of ours to get a time complexity 𝑂(𝑛2 log 𝑛𝑀 ·EO+𝑛𝜔+1 log𝑂(1) 𝑛 ·
log𝑀). There is actually an alternate argument that gives a time complexity of 𝑂(𝑛2 log𝑀 · EO +
𝑛𝑂(1) · log𝑀). Thus it requires slightly fewer oracle calls at the expense of slower running time. A
proof is offered in this section, which can be skipped without any risk of discontinuation. This proof
relies the following cutting plane method.

Theorem 10.3.2 ([36]). Given any convex set 𝐾 ⊂ [0, 1]𝑛 with a separation oracle of cost 𝑆𝑂, in
time 𝑂(𝑘𝑆𝑂 + 𝑘𝑛𝑂(1)) one can find either find a point 𝑥 ∈ 𝐾 or find a polytope 𝑃 such that 𝐾 ⊂ 𝑃

and the volume of 𝐾 is at most
(︀
2
3

)︀𝑘
.

The Theorem allows us to decrease the volume of the feasible region by a factor of
(︀
2
3

)︀𝑘
after

𝑘 iterations. Similar to above, we apply cutting plane to minimize 𝑓 over the hypercube [0, 1]𝑛 for
𝑂(𝑛 log𝑀) iterations, and outputs any integral point in the remaining feasible region 𝑃 .

Lemma 10.3.3. Let 𝑥* achieve the minimum function value 𝑓(𝑥*) among the points used to query
the separation oracle. Then

1. 𝑥* ∈ 𝑃 (𝑘), the current feasible region.

2. Any 𝑥 with 𝑓(𝑥) ≤ 𝑓(𝑥*) belongs to 𝑃 (𝑘).

3. suppose 𝑥*𝑖1 ≥ · · · ≥ 𝑥*𝑖𝑛 and let 𝑆𝑗 = {𝑖1, . . . , 𝑖𝑗}. Then 𝑆𝑙 ∈ argmin𝑆𝑗 𝑓(𝑆𝑗) also belongs to

𝑃 (𝑘).
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Proof. For any separating hyperplane ℎ𝑇𝑥 ≤ 𝑓(�̄�) given by �̄�, we have by Lemma 10.2.6 that ℎ𝑇𝑥* ≤
𝑓(𝑥*). Since 𝑓(𝑥*) is the minimum among all 𝑓(�̄�), ℎ𝑇𝑥* ≤ 𝑓(�̄�) and hence 𝑥* is not removed by any
new separating hyperplane. In other words, 𝑥* ∈ 𝑃 (𝑘) . The argument for (2) is analogous.

For (3), recall that by the definition of Lovász extension 𝑓(𝑥*) is a convex combination of 𝑓(𝑆𝑗)
and thus the indicator variable 𝐼𝑆𝑙

for 𝑆𝑙 satisfies 𝑓(𝐼𝑆𝑙
) ≤ 𝑓(𝑥*). By Lemma 10.2.6 again, this implies

ℎ𝑇 𝐼𝑆𝑙
≤ 𝑓(𝐼𝑆𝑙

) ≤ 𝑓(𝑥*) ≤ 𝑓(�̄�) for any separating hyperplane ℎ𝑇𝑥 ≤ 𝑓(�̄�).

Theorem 10.3.4. Suppose that we run Cutting Plane in Theorem 10.3.2 for 𝑂(𝑛 log𝑀) iterations.
Then 𝑆𝑙 from the last lemma also minimizes 𝑓 .

Proof. We use the notations from the last lemma. After 𝑘 = 𝐾𝑛 log2/3𝑀 iterations, the volume of
the feasible region 𝑃 (𝑘) is at most 1/𝑀𝐾𝑛. By the last lemma, 𝐼𝑆𝑙

∈ 𝑃 (𝑘).
Suppose for the sake of contradiction that 𝑆 minimizes 𝑓 but 𝑓(𝑆) < 𝑓(𝑆𝑙). Since 𝑓 is integer-

valued, 𝑓(𝑆) + 1 ≤ 𝑓(𝑆𝑙). Let 𝑟
def
= 1/6𝑀 . Consider the set 𝐵 def

= {𝑥 : 0 ≤ 𝑥𝑖 ≤ 𝑟 ∀i /∈ 𝑆, 1− 𝑟 ≤ 𝑥𝑖 ≤
1 ∀𝑖 ∈ 𝑆}. We claim that for 𝑥 ∈ 𝐵,

𝑓(𝑥) ≤ 𝑓(𝑆) + 1.

To show this, note that 𝑓({𝑖 : 𝑥𝑖 ≥ 𝑡}) = 𝑓(𝑆) for 𝑟 < 𝑡 ≤ 1− 𝑟 as 𝑥𝑖 ≤ 𝑟 for 𝑖 /∈ 𝑆 and 𝑥𝑖 ≥ 1− 𝑟
for 𝑖 ∈ 𝑆. Now using conditional probability and |𝑓(𝑇 )| ≤𝑀 for any 𝑇 ,

𝑓(𝑥) = E𝑡∼[0,1][𝑓({𝑖 : 𝑥𝑖 ≥ 𝑡})]
= (1− 2𝑟)E[𝑓({𝑖 : 𝑥𝑖 ≥ 𝑡})|𝑟 < 𝑡 ≤ 1− 𝑟] +

𝑟 (E[𝑓({𝑖 : 𝑥𝑖 ≥ 𝑡})|0 ≤ 𝑡 ≤ 𝑟] + E[𝑓({𝑖 : 𝑥𝑖 ≥ 𝑡})|1− 𝑟 ≤ 𝑡 ≤ 1]])

= (1− 𝑟) 𝑓(𝑆) + 𝑟 (E[𝑓({𝑖 : 𝑥𝑖 ≥ 𝑡})|0 ≤ 𝑡 ≤ 𝑟 + E[𝑓({𝑖 : 𝑥𝑖 ≥ 𝑡})|1− 𝑟 ≤ 𝑡 ≤ 1]])

≤ (1− 2𝑟) 𝑓(𝑆) + 2𝑟𝑀

≤ 𝑓(𝑆) + 4𝑟𝑀

≤ 𝑓(𝑆) + 1

But now 𝐵 ⊆ 𝑃 (𝑘) as 𝑓(𝑥) ≤ 𝑓(𝑆) + 1 ≤ 𝑓(𝑆𝑙) and by (2) of the last lemma. This would lead to a
contradiction since

vol(𝐵) =
1

(6𝑀)𝑛
>

1

𝑀𝐾𝑛
≥ vol(𝑃 (𝑘))

for sufficiently large 𝐾.

Corollary 10.3.5. There is an 𝑂(𝑛2 log𝑀 ·EO+𝑛𝑂(1) log𝑀) time algorithm for submodular function
minimization.

Proof. This simply follows from the last lemma, Theorem 10.3.2, and the fact that our separation
oracle runs in time 𝑂(𝑛 · EO+ 𝑛2).

Curiously, we obtained 𝑂(log𝑀) rather than 𝑂(log 𝑛𝑀) as in our algorithm. We leave it as an open
problem whether one can slightly improve our running time to 𝑂(𝑛2 log𝑀 ·EO+𝑛3 log𝑂(1) 𝑛 · log𝑀).
The rest of this chapter is devoted to obtaining better strongly polynomial running time.

10.4 Improved Strongly Polynomial Algorithms for SFM

In this section we show how our cutting plane method can be used to obtain a ̃︀𝑂(𝑛3 · EO+ 𝑛4) time
algorithm for SFM, which improves over the currently fastest 𝑂(𝑛5 ·EO+𝑛6) time algorithm by Orlin.
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10.4.1 Improved Oracle Complexity

We first present a simple geometric argument that 𝑓 can be minimized with just 𝑂(𝑛3 log 𝑛 · EO)
oracle calls. While this is our desired query complexity (and it improves upon the previous best known
bounds by a factor of 𝑂(𝑛2) unfortunately the algorithm runs in exponential time. Nevertheless, it
does provide some insight into how our more efficient algorithms should proceed and it alone, does
suggests that information theoretically, 𝑂(𝑛3 log 𝑛 · EO) calls suffice to solve SFM. In the rest of this
chapter, we combine this insight with some of the existing SFM tools developed over the last decade
to get improved polynomial time algorithms.

Theorem 10.4.1. Submodular functions can be minimized with 𝑂(𝑛3 log 𝑛 · EO) oracle calls.

Proof. We use the cutting plane method in Theorem 10.3.2 with the separation oracle given by Theo-
rem 10.2.4. This method reduce the volume of the feasible region by a factor of (23)

𝑘 after 𝑘 iterations
if the optimal has not found yet.

Now, we argue that after 𝑂(𝑛 log 𝑛) iterations of this procedure we have either found a minimizer
of 𝑓 or we have enough information to reduce the dimension of the problem by 1. To see this, first
note that if the separation oracle ever returns a degenerate hyperplane, then by Lemma 10.2.8 then
either ∅ or 𝑉 is the minimizer, which we can determine in time 𝑂(EO+𝑛). Otherwise, after 100𝑛 log 𝑛
iterations, our feasible region 𝑃 must have a volume of at most 1/𝑛10𝑛 . In this case, we claim that
the remaining integer points in 𝑃 all lie on a hyperplane. This holds, as if this was not the case, then
there is a simplex △, with integral vertices 𝑣0, 𝑣1, . . . , 𝑣𝑛, contained in 𝑃 . But then

vol(𝑃 ) ≥ vol(△) =
1

𝑛!
|det (𝑣1 − 𝑣0 𝑣2 − 𝑣0 . . . 𝑣𝑛 − 𝑣0)| ≥

1

𝑛!
where the last inequality holds since the determinant of an integral matrix is integral, yielding a
contradiction.

In other words after 𝑂(𝑛 log 𝑛) iterations, we have reduced the dimension of all viable solutions
by at least 1. Thus, we can recurse by applying the cutting plane method to the lower dimensional
feasible region, i.e. 𝑃 is (replaced by) the convex combination of all the remaining integer points.
There is a minor technical issue we need to address as our space is now lower dimensional and the
starting region is not necessarily the hypercube anymore and the starting volume is not necessarily
equal to 1.

We argue that the starting volume is bounded by 𝑛𝑂(𝑛). If this is indeed the case, then our previous
argument still works as the volume goes down by a factor of 1/𝑛𝑂(𝑛) in 𝑂(𝑛 log 𝑛) iterations.

Let 𝑣 ∈ 𝑃 be an integer point. Now the dim(()𝑃 )-dimensional ball of radius
√
𝑛 centered at 𝑣

must contain all the other integer points in 𝑃 as any two points of {0, 1}𝑛 are at most
√
𝑛 apart. Thus

the volume of 𝑃 is bounded by the volume of the ball which is 𝑛𝑂(𝑛). Now to get the volume down to
1/𝑛10𝑛, the number of iterations is still 𝑂(𝑛 log 𝑛).

In summary, we have reduced our dimension by 1 using 𝑂(𝑛 log 𝑛) iterations which requires
𝑂(𝑛2 log 𝑛 · EO) oracle calls (as each separating hyperplane is computed with 𝑛 · EO oracle calls).
This can happen at most 𝑛 times. The overall query complexity is then 𝑂(𝑛3 log 𝑛 · EO).

Note that the minimizer 𝑥 obtained may not be integral. This is not a problem as the definition
of Lovász extension implies that if 𝑓(𝑥) is minimal, then 𝑓({𝑖 : 𝑥𝑖 ≥ 𝑡}) is minimal for any 𝑡 ∈ [0, 1].

We remark that this algorithm does not have a polynomial runtime. Even though all the integral
vertices of 𝑃 lie on a hyperplane, the best way we know of that identifies it takes exponential time by
checking for all the integer points {0, 1}𝑛.

Remark 10.4.2. Note that this algorithm works for minimizing any convex function over the hypercube
that obtains its optimal value at a vertex of the hypercube. Formally, our proof of Theorem 10.4.1
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holds whenever a function 𝑓 : 2𝑉 −→ R𝑛 admits a convex relaxation 𝑓 with the following properties:

1. For every 𝑆 ⊆ 𝑉 , 𝑓(𝐼𝑆) = 𝑓(𝑆).

2. Every 𝑓(𝑥) can be written as a convex combination
∑︀

𝑆∈𝒮 𝛼𝑆𝑓(𝑆), where
∑︀
𝛼𝑆 = 1, |𝒮| = 𝑂(𝑛),

and 𝒮 can be computed without any oracle call.

3. A subgradient 𝜕𝑓(𝑥) of 𝑓 at any point 𝑥 ∈ [0, 1]𝑛 can be computed with 𝑂(𝑛 · EO) oracle calls.

In this case, the proof of Theorem 10.4.1, implies that 𝑓 and 𝑓 can be minimized with 𝑂(𝑛3 log 𝑛 ·EO)
oracle calls by using the separating hyperplane 𝜕𝑓(�̄�)𝑇 (𝑥− �̄�) ≤ 0.

10.4.2 Technical Tools

To improve upon the running time of the algorithm in the previous section, we use more structure
of our submodular function 𝑓 . Rather than merely showing that we can decrease the dimension of
our SFM problem by 1 we show how we can reduce the degrees of freedom of our problem in a more
principled way. In Section 10.4.2.1 we formally define the abstraction we use for this and discuss how
to change our separation oracle to accommodate this abstraction, and in Section 10.4.2.2 we show how
we can deduce these constraints. These tools serve as the foundation for the faster strongly polynomial
time SFM algorithms we present in Section 10.4.3 and Section 10.4.4.

10.4.2.1 SFM over Ring Family

For the remainder of this chapter we consider a more general problem than SFM in which we wish to
compute a minimizer of our submodular function 𝑓 over a ring family of the ground set 𝑉 = [𝑛]. A
ring family ℱ is a collection of subsets of 𝑉 such that for any 𝑆1, 𝑆2 ∈ ℱ , we have 𝑆1∪𝑆2, 𝑆1∩𝑆2 ∈ ℱ .
Thus SFM corresponds to the special case where ℱ consists of every subset of 𝑉 . This generalization
has been considered before in the literature and was essential to the IFF algorithm.

It is well known that any ring family ℱ over 𝑉 can be represented by a directed graph 𝐷 = (𝑉,𝐴)
where 𝑆 ∈ ℱ iff 𝑆 contains all of the descendants of any 𝑖 ∈ 𝑆. An equivalent definition is that for
any arc (𝑖, 𝑗) ∈ 𝐴, 𝑖 ∈ 𝑆 implies 𝑗 ∈ 𝑆. It is customary to assume that 𝐴 is acyclic as any (directed)
cycle of 𝐴 can be contracted (see section 10.4.3.1).

We denote by 𝑅(𝑖) the set of descendants of 𝑖 (including 𝑖 itself) and 𝑄(𝑖) the set of ancestors of 𝑖
(including 𝑖 itself). Polyhedrally, an arc (𝑖, 𝑗) ∈ 𝐴 can be encoded as the constraint 𝑥𝑖 ≤ 𝑥𝑗 as shown
by the next lemma.

Lemma 10.4.3. Let ℱ be a ring family over 𝑉 and 𝐷 = (𝑉,𝐴) be its directed acyclic graph represen-
tation. Suppose 𝑓 : 𝑉 −→ R is submodular with Lovász extension 𝑓 . Then the characteristic vector
𝐼𝑆 of any minimizer 𝑆 = argmin𝑆∈ℱ 𝑓(𝑆) over ℱ is also the solution to

min𝑓(𝑥)

𝑥𝑖 ≤ 𝑥𝑗 ∀(𝑖, 𝑗) ∈ 𝐴
0 ≤ 𝑥 ≤ 1

(10.1)

Proof. Let 𝑥* be a minimizer, and 𝐿(𝑡) = {𝑖 : 𝑥*𝑖 ≥ 𝑡}. It is easy to check that the indicator variable
𝐼𝐿(𝑡) satisfies (10.1) since 𝑥* does. Moreover, recall that 𝑓(𝑥*) = E𝑡∼[0,1][𝑓(𝐿𝑡)]. Thus 𝑓(𝑥*) can be

written as a convex combination 𝑓(𝑥*) =
∑︀

𝑡 𝛼𝑡𝑓(𝐿
(𝑡)) =

∑︀
𝑡 𝛼𝑡𝑓(𝐼𝐿(𝑡)), where 𝛼𝑡 > 0 and

∑︀
𝑡 𝛼𝑡 = 1.

Thus all such 𝑓(𝐼𝐿(𝑡)) are minimal, i.e. (10.1) has no “integrality gap”.
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We also modify our separation oracle to accommodate for this generalization as follows. Before
doing so we need a definition which relates our BFS to the ring family formalism.

Definition 10.4.4. A permutation (𝑣1, . . . , 𝑣𝑛) of 𝑉 is said to be consistent with an arc (𝑖, 𝑗) if 𝑗
precedes 𝑖 in (𝑣1, . . . , 𝑣𝑛). Similarly, a BFS of the base polyhedron is consistent with (𝑖, 𝑗) if 𝑗 precedes
𝑖 in its defining permutation. (𝑣1, . . . , 𝑣𝑛) (or a BFS) is consistent with 𝐴 if it is consistent with every
(𝑖, 𝑗) ∈ 𝐴.

Readers may find it helpful to keep in mind the following picture which depicts the relative positions
between 𝑅(𝑖), 𝑖, 𝑄(𝑖) in the defining permutation of ℎ that is consistent with 𝐴:

· · · · · · 𝑅(𝑖)∖{𝑖} · · · · · · 𝑖 · · · · · · 𝑄(𝑖)∖{𝑖} · · · · · ·

In Theorem 10.2.4, given �̄� ∈ [0, 1]𝑛 our separating hyperplane is constructed by sorting the entries
of �̄�. This hyperplane is associated with some BFS ℎ of the base polyhedron. As we shall see towards
the end of the section, we would like ℎ to be consistent with every arc (𝑖, 𝑗) ∈ 𝐴.

This task is easy initially as �̄� satisfies 𝑥𝑖 ≤ 𝑥𝑗 for (𝑖, 𝑗) ∈ 𝐴 for the starting polytope of (10.1).
If 𝑥𝑖 < 𝑥𝑗 , nothing special has to be done as 𝑗 must precede 𝑖 in the ordering. On the other hand,
whenever 𝑥𝑖 = 𝑥𝑗 , we can always break ties by ranking 𝑗 ahead of 𝑖.

However, a technical issue arises due to the fact that our cutting plane algorithm may drop con-
straints from the current feasible region 𝑃 . In other words, �̄� may violate 𝑥𝑖 ≥ 0, 𝑥𝑗 ≤ 1 or 𝑥𝑖 ≤ 𝑥𝑗 if
it is ever dropped. Fortunately this can be fixed by reintroducing the constraint. We summarize the
modification needed in the pseudocode below and formally show that it fulfills our requirement.

Algorithm 25: Modified Separation Oracle
Input: �̄� ∈ R𝑛 and the set of arcs 𝐴
if �̄�𝑖 < 0 for some 𝑖 then

Output: 𝑥𝑖 ≥ 0
else if �̄�𝑗 > 1 for some 𝑗 then

Output: 𝑥𝑗 ≤ 1
else if �̄�𝑖 > �̄�𝑗 for some (𝑖, 𝑗) ∈ 𝐴 then

Output: 𝑥𝑖 ≤ 𝑥𝑗
else

Let 𝑖1, . . . , 𝑖𝑛 be a permutation of 𝑉 such that �̄�𝑖1 ≥ . . . ≥ �̄�𝑖𝑛and for all (𝑖, 𝑗) ∈ 𝐴, 𝑗
precedes 𝑖 in 𝑖1, . . . , 𝑖𝑛.
Output: ℎ𝑇𝑥 ≤ 𝑓(�̄�), where ℎ is the BFS defined by the permutation 𝑖1, . . . , 𝑖𝑛.

Lemma 10.4.5. Our modified separation oracle returns either some BFS ℎ = 0 or a valid separating
hyperplane, i.e.

1. �̄� either lies on the separating hyperplane or is cut away by it.

2. Any minimizer of (10.1) is not cut away by the separating hyperplane.

Such a hyperplane can be computed with 𝑛 oracle calls to 𝑓 and in time 𝑂(𝑛 · EO+ 𝑛2).

Proof. If we get 𝑥𝑖 ≥ 0, 𝑥𝑗 ≤ 1 or 𝑥𝑖 ≤ 𝑥𝑗 (if loop or the first two else loops), then clearly �̄� is cut away
by it and any minimizer must of course satisfy 𝑥𝑖 ≥ 0, 𝑥𝑗 ≤ 1 and 𝑥𝑖 ≤ 𝑥𝑗 as they are the constraints
in (10.1). This proves (1) and (2) for the case of getting 𝑥𝑖 ≥ 0, 𝑥𝑗 ≤ 1 or 𝑥𝑖 ≤ 𝑥𝑗 .
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Thus it remains to consider the case ℎ𝑇𝑥 ≤ 𝑓(�̄�) (last else loop). First of all, �̄� lies on it as
𝑓(�̄�) = ℎ𝑇 �̄�. This proves (1). For (2), we have from Lemma 10.2.6 that ℎ𝑇𝑥 ≤ 𝑓(𝑥). If 𝑥* is a
minimizer of (10.1), we must then have ℎ𝑇𝑥* ≤ 𝑓(𝑥*) ≤ 𝑓(�̄�) as �̄� is also feasible for (10.1).

Finally we note that the running time is self-evident.

We stress again that the main purpose of modifying our separation oracle is to ensure that any
BFS ℎ used to define a new separating hyperplane must be consistent with every (𝑖, 𝑗) ∈ 𝐴.

10.4.2.2 Identifying New Valid Arcs

The reason for considering the ring family generalization of SFM is that our algorithms (and some
previous algorithms too) work by adding new arcs to our digraph 𝐷. This operation yields a strongly
polynomial algorithm since there are only 2 ·

(︀
𝑛
2

)︀
possible arcs to add. Of course, a new arc (𝑖, 𝑗) is

valid only if 𝑖 ∈ 𝑆min =⇒ 𝑗 ∈ 𝑆min for some minimizer 𝑆min. Here we show how to identify such valid
arcs by extracting information from certain nice elements of the base polyhedron.

This is guaranteed by the next four lemmas, which are stated in a way different from previous
works e.g. our version is extended to the ring family setting. This is necessary as our algorithms
require a more general formulation. We also give a new polyhedral proof, which is mildly simpler than
the previous combinatorial proof. On the other hand, Lemma 10.4.10 is new and unique to our work.
It is an important ingredient of our ̃︀𝑂(𝑛3 · EO+ 𝑛4) time algorithm.

Recall that each BFS of the base polyhedron is defined by some permutation of the ground set
elements.

First, we prove the following two lemmas which show that should we ever encounter a non-
degenerate point in the base polytope with a coordinate of very large value, then we can immediately
conclude that that coordinate must be or must not be in solution to SFM over the ring family.

Lemma 10.4.6. If 𝑦 ∈ ℬ(𝑓) is non-degenerate and satisfies 𝑦𝑖 > −(𝑛 − 1)min𝑗 𝑦𝑗, then 𝑖 is not in
any minimizer of 𝑓 (over the ring family 𝐴).

Proof. We proceed by contradiction and suppose that 𝑆 is a minimizer of 𝑓 that contains 𝑖. Now
since 𝑦 is non-degenerate we know that min𝑗 𝑦𝑗 ≤ 0 and by the definition of 𝑦 we have the following
contradiction

0 < 𝑦𝑖 + (𝑛− 1)min
𝑗
𝑦𝑗 ≤

∑︁
𝑗∈𝑆

𝑦𝑗 = 𝑦(𝑆) ≤ 𝑓(𝑆) ≤ 𝑓(∅) = 0 .

Lemma 10.4.7. If 𝑦 ∈ ℬ(𝑓) is non-degenerate and satisfies 𝑦𝑖 < −(𝑛− 1)max𝑗 𝑦𝑗, then 𝑖 is in every
minimizer of 𝑓 (over the ring family 𝐴).

Proof. We proceed by contradiction and suppose that 𝑆 is a minimizer of 𝑓 that does not contain 𝑖.
Now since 𝑦 is non-degenerate we know that max𝑗 𝑦𝑗 ≥ 0 and therefore∑︁

𝑗∈[𝑛]

𝑦𝑗 = 𝑦𝑖 +
∑︁
𝑗∈𝑆

𝑦𝑗 +
∑︁

𝑗∈𝑉−(𝑆+𝑖)

𝑦𝑗 < −(𝑛− 1)max
𝑗
𝑦𝑗 +

∑︁
𝑗∈𝑆

𝑦𝑗 + (|𝑉 | − |𝑆| − 1)max
𝑗
𝑦𝑗 ≤

∑︁
𝑗∈𝑆

𝑦𝑗 .

However by the definition of 𝑦 we have∑︁
𝑗∈𝑆

𝑦𝑗 = 𝑦(𝑆) ≤ 𝑓(𝑆) ≤ 𝑓(𝑉 ) =
∑︁
𝑗∈[𝑛]

𝑦𝑗 .

Thus we have a contradiction and the result follows.
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Now we are ready to present conditions under which a new valid arc can be added. We begin with
a simple observation. Let upper(𝑖) def

= 𝑓(𝑅(𝑖))−𝑓(𝑅(𝑖)−𝑖) and lower(𝑖)
def
= 𝑓(𝑉 ∖𝑄(𝑖)+𝑖)−𝑓(𝑉 ∖𝑄(𝑖)).

As the names suggest, they bound the value of ℎ𝑖 for any BFS used.

Lemma 10.4.8. For any BFS ℎ used to construct a separating hyperplane given by our modified
separation oracle, we have lower(𝑖) ≤ ℎ𝑖 ≤ upper(𝑖).

Proof. Note that by Lemma 10.4.5, ℎ is consistent with every (𝑗1, 𝑗2) ∈ 𝐴 and hence 𝑖 must precede
𝑄(𝑖) and be preceded by 𝑅(𝑖). Let 𝑆 be the set of elements preceding 𝑖 in the defining permutation of
ℎ. Then ℎ𝑖 = 𝑓(𝑆+ 𝑖)− 𝑓(𝑆) ≤ 𝑓(𝑅(𝑖))− 𝑓(𝑅(𝑖)− 𝑖) because of diminishing return and 𝑅(𝑖)− 𝑖 ⊆ 𝑆.
The lower bound follows from the same argument as 𝑄(𝑖)− 𝑖 comes after 𝑖, and so 𝑄(𝑖) ⊆ 𝑉 ∖𝑆.

In the following two lemmas, we show that if upper(𝑖) is ever sufficiently positive or lower(𝑖) is
sufficiently negative, then we find a new arc.

While these lemmas may appear somewhat technical but actually has an intuitive interpretation.
Suppose an element 𝑝 is in a minimizer 𝑆min of 𝑓 over the ring family 𝐷. Then 𝑅(𝑝) must also be
part of 𝑆min. Now if 𝑓(𝑅(𝑝)) is very large relative to 𝑓(𝑅(𝑝) − 𝑝), there should be some element
𝑞 ∈ 𝑆min∖𝑅(𝑝) compensating for the discrepancy. The lemma says that such an element 𝑞 can in fact
be found efficiently.

Lemma 10.4.9 (new arc). Let 𝑦 =
∑︀

𝑘 𝜆
(𝑘)𝑦(𝑘) be a non-degenerate convex combination of 𝑂(𝑛)

base polyhedron BFS’s 𝑦(𝑘) which are consistent with every arc (𝑖, 𝑗) ∈ 𝐴. If some element 𝑝 satisfies
upper(𝑝) > 𝑛4max 𝑦𝑗, then we can find, using 𝑂(𝑛 · EO) oracle calls and 𝑂(𝑛2) time, some 𝑞 /∈ 𝑅(𝑝)
such that the arc (𝑝, 𝑞) is valid, i.e. if 𝑝 is in a minimizer, then so is 𝑞.

Proof. If max 𝑦𝑗 < 0 then we are immediately done by Lemma 10.2.8. We assume max 𝑦𝑗 ≥ 0 in
the proof. For all 𝑘 let 𝑦′(𝑘) be the BFS obtained by taking the defining permutation of 𝑦(𝑘) and
moving 𝑅(𝑝) to the front while preserving the relative ordering of 𝑅(𝑝) within each permutation).
Furthermore, let 𝑦′ def

=
∑︀

𝑘 𝜆
(𝑘)𝑦′(𝑘). Then since 𝑦′(𝑘)𝑝 = 𝑓(𝑅(𝑝)) − 𝑓(𝑅(𝑝) − 𝑝) = upper(𝑝) we have

upper(𝑝) = 𝑦′𝑝 = 𝑓(𝑅(𝑝))− 𝑓(𝑅(𝑝)− 𝑝). Moreover,

𝑦′𝑗 ≥ 𝑦𝑗 ∀𝑗 ∈ 𝑅(𝑝) and 𝑦′𝑗 ≤ 𝑦𝑗 ∀𝑗 /∈ 𝑅(𝑝) (10.2)

by diminishing marginal return.
Now, suppose 𝑝 is in a minimizer 𝑆min. Then 𝑅(𝑝) ⊆ 𝑆min by definition. We then define 𝑓 ′(𝑆) =

𝑓(𝑆 ∪ 𝑅(𝑝)) for 𝑆 ⊆ 𝑉 ∖𝑅(𝑝). It can be checked readily that 𝑓 ′ is submodular and 𝑆min∖𝑅(𝑝) is a
minimizer of 𝑓 ′ (over the corresponding ring family). Note that now 𝑦′𝑉 ∖𝑅(𝑝) (the restriction of 𝑦′ to
𝑉 ∖𝑅(𝑝)) is a convex combination of the BFS’s of the base polyhedron ℬ(𝑓 ′) of 𝑓 ′. We shall show that
𝑦′𝑉 ∖𝑅(𝑝) has the desired property in Lemma 10.4.7.

Note that 𝑦′(𝑉 ∖𝑅(𝑝) + 𝑝) ≤ 𝑦(𝑉 ∖𝑅(𝑝) + 𝑝) since

𝑦′(𝑉 ∖𝑅(𝑝) + 𝑝) = 𝑦′(𝑉 )− 𝑦′(𝑅(𝑝)− 𝑝) = 𝑦(𝑉 )− 𝑦′(𝑅(𝑝)− 𝑝) ≤ 𝑦(𝑉 )− 𝑦(𝑅(𝑝)− 𝑝) = 𝑦(𝑉 ∖𝑅(𝑝) + 𝑝).

But now since 𝑦 is non-degenerate max𝑗 𝑦𝑗 ≥ 0 and therefore

𝑦′(𝑉 ∖𝑅(𝑝)) ≤ 𝑦(𝑉 ∖𝑅(𝑝) + 𝑝)− 𝑦′𝑝
= 𝑦(𝑉 ∖𝑅(𝑝) + 𝑝)− (𝑓(𝑅(𝑝))− 𝑓(𝑅(𝑝)− 𝑝)) (10.3)

≤ 𝑛max 𝑦𝑗 − (𝑓(𝑅(𝑝))− 𝑓(𝑅(𝑝)− 𝑝))
< (𝑛− 𝑛4)max 𝑦𝑗
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Therefore by the Pigeonhole Principle some 𝑞 /∈ 𝑅(𝑝) must satisfy

𝑦′𝑞 <
(︀
(𝑛− 𝑛4)max 𝑦𝑗

)︀
/(𝑛− 1)

= −(𝑛3 + 𝑛2 + 𝑛)max 𝑦𝑗

≤ −(𝑛3 + 𝑛2 + 𝑛) max
𝑗 /∈𝑅(𝑝)

𝑦𝑗

≤ −(𝑛3 + 𝑛2 + 𝑛) max
𝑗 /∈𝑅(𝑝)

𝑦′𝑗 by (10.2)

By Lemma 10.4.7, this 𝑞 must be in any minimizer of 𝑓 ′. In other words, whenever 𝑝 is in a minimizer
of 𝑓 , then so is 𝑞.

Note however that computing all 𝑦′ would take 𝑂(𝑛2) oracle calls in the worst case as there are
𝑂(𝑛) 𝑦′(𝑘)’s. We use the following trick to identify some 𝑞 with 𝑦′𝑞 < −(𝑛− 1)max 𝑦𝑗 using just 𝑂(𝑛)
calls. The idea is that we actually only want to have sufficient decreases in 𝑦′(𝑉 ∖𝑅(𝑝)) which can be
accomplished by having a large corresponding decrease in some 𝑦′(𝑘).

For each 𝑘, by the same argument above (see (10.3))

𝑦′(𝑘)(𝑉 ∖𝑅(𝑝))− 𝑦(𝑘)(𝑉 ∖𝑅(𝑝)) ≤ 𝑦(𝑘)𝑝 − (𝑓(𝑅(𝑝))− 𝑓(𝑅(𝑝)− 𝑝)) (10.4)

The “weighted decrease” 𝜆(𝑘)
(︁
𝑦
(𝑘)
𝑝 − (𝑓(𝑅(𝑝))− 𝑓(𝑅(𝑝)− 𝑝))

)︁
for 𝑦′(𝑘) sum up to

∑︁
𝜆(𝑘)

(︁
𝑦(𝑘)𝑝 − (𝑓(𝑅(𝑝))− 𝑓(𝑅(𝑝)− 𝑝))

)︁
= 𝑦𝑝 − (𝑓(𝑅(𝑝))− 𝑓(𝑅(𝑝)− 𝑝)) < (1− 𝑛4)max 𝑦𝑗

Thus by the Pigeonhole Principle, some 𝑙 will have

𝜆(𝑙)
(︁
𝑦(𝑙)𝑝 − (𝑓(𝑅(𝑝))− 𝑓(𝑅(𝑝)− 𝑝))

)︁
<
(︀
(1− 𝑛4)max 𝑦𝑗

)︀
/𝑂(𝑛) < −𝑛2max 𝑦𝑗 .

For this 𝑦(𝑙) we compute 𝑦′(𝑙). We show that 𝑦′′ = 𝜆(𝑙)𝑦′(𝑙) +
∑︀

𝑘 ̸=𝑙 𝜆
(𝑘)𝑦(𝑘) has the same property as

𝑦′ above.

𝑦′′(𝑉 ∖𝑅(𝑝)) = 𝜆(𝑙)𝑦′(𝑙)(𝑉 ∖𝑅(𝑝)) +
∑︁
𝑘 ̸=𝑙

𝜆(𝑘)𝑦(𝑘)(𝑉 ∖𝑅(𝑝))

= 𝑦(𝑉 ∖𝑅(𝑝)) + 𝜆(𝑙)
(︁
𝑦′(𝑙)(𝑉 ∖𝑅(𝑝))− 𝑦(𝑙)(𝑉 ∖𝑅(𝑝))

)︁
≤ 𝑦(𝑉 ∖𝑅(𝑝)) + 𝜆(𝑙)

(︁
𝑦(𝑙)𝑝 − (𝑓(𝑅(𝑝))− 𝑓(𝑅(𝑝)− 𝑝))

)︁
by (10.4)

< (𝑛− 1)max 𝑦𝑗 − 𝑛2max 𝑦𝑗

< (𝑛− 𝑛2)max 𝑦𝑗

Then some 𝑞 ∈ 𝑉 ∖𝑅(𝑝) must satisfy

𝑦′′𝑞 <
𝑛− 𝑛2

𝑛− 1
max 𝑦𝑗 = −𝑛max 𝑦𝑗

That is, the arc (𝑝, 𝑞) is valid. This takes 𝑂(𝑛) oracle calls as given 𝑦 =
∑︀

𝑘 𝜆
(𝑘)𝑦(𝑘) , computing

𝑦′′ requires knowing only 𝑓(𝑅(𝑝)), 𝑓(𝑅(𝑝) − 𝑝), and 𝑦′(𝑙) which can be computed from 𝑦(𝑙) with 𝑛
oracle calls. The runtime is 𝑂(𝑛2) which is needed for computing 𝑦′′.

Lemma 10.4.10. Let 𝑦 =
∑︀

𝑘 𝜆
(𝑘)𝑦(𝑘)be a non-degenerate convex combination of base polyhedron

BFS 𝑦(𝑘) which is consistent with every arc (𝑖, 𝑗) ∈ 𝐴. If lower(𝑝) < 𝑛4min 𝑦𝑗, then we can find,
using 𝑂(𝑛 · EO) oracle calls and 𝑂(𝑛2) time, some 𝑞 /∈ 𝑄(𝑝) such that the arc (𝑞, 𝑝) is valid, i.e. if 𝑝
is not in a minimizer, then 𝑞 is not either.
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Proof. It is possible to follow the same recipe in the proof of Lemma 10.4.9 but using Lemma 10.4.6
instead of Lemma 10.4.7. Here we offer a proof which directly invokes Lemma 10.4.7 on a different
submodular function.

Let 𝑔 be defined by 𝑔(𝑆) def
= 𝑓(𝑉 ∖𝑆) for any 𝑆, and 𝐴𝑔 be the set of arcs obtained by reversing

the directions of the arcs of 𝐴. Consider the problem of minimizing 𝑔 over the ring family 𝐴𝑔. Using
subscripts to avoid confusion with 𝑓 and 𝑔, e.g. 𝑅𝑔(𝑖) is the set of descendants of 𝑖 w.r.t. 𝐴𝑔, it is not
hard to verify the following:

∙ 𝑔 is submodular

∙ 𝑅𝑔(𝑖) = 𝑄𝑓 (𝑖)

∙ 𝑔(𝑅𝑔(𝑝))− 𝑔(𝑅𝑔(𝑝)− 𝑝) = − (𝑓(𝑉 ∖𝑄𝑓 (𝑝) + 𝑝)− 𝑓(𝑉 ∖𝑄𝑓 (𝑝)))

∙ −𝑦(𝑘) is a BFS of ℬ(𝑔) if and only if 𝑦(𝑘) is a BFS of ℬ(𝑓)

∙ max(−𝑦𝑗) = −min 𝑦𝑗

By using the above correspondence and applying Lemma 10.4.9 to 𝑔 and 𝐴𝑔, we can find, using 𝑂(𝑛)
oracle calls and 𝑂(𝑛2) time, some 𝑞 /∈ 𝑅𝑔(𝑝) = 𝑄(𝑝) such that the arc (𝑝, 𝑞) is valid for 𝑔 and 𝐴𝑔. In
other words, the reverse (𝑞, 𝑝) will be valid for 𝑓 and 𝐴.

These lemmas lay the foundation of our algorithm. They suggests that if the positive entries of a
point in the base polyhedron are small relative to some upper(𝑝) = 𝑓(𝑅(𝑝))− 𝑓(𝑅(𝑝)− 𝑝), a new arc
(𝑝, 𝑞) can be added to 𝐴. This can be seen as a robust version of Lemma 10.2.8.

Finally, we end the section with a technical lemma that will be used crucially for both of our
algorithms. The importance of it would become obvious when it is invoked in our analyses.

Lemma 10.4.11. Let ℎ′′ denote a convex combination of two vectors ℎ and ℎ′ in the base polyhedron,
i.e. ℎ′′ = 𝜆ℎ+ (1− 𝜆)ℎ′ for some 𝜆 ∈ [0, 1]. Further suppose that

‖ℎ′′‖2 ≤ 𝛼min
{︀
𝜆‖ℎ‖2, (1− 𝜆)‖ℎ′‖2

}︀
for some 𝛼 ≤ 1

2
√
𝑛
. Then for 𝑝 = argmax𝑗(max{𝜆|ℎ𝑗 |, (1− 𝜆)|ℎ′𝑗 |}) we have

lower(𝑝) ≤ − 1

2𝛼
√
𝑛
· ‖ℎ′′‖∞ and upper(𝑝) ≥ 1

2𝛼
√
𝑛
· ‖ℎ′′‖∞ .

Proof. Suppose without loss of generality that 𝜆|ℎ𝑝| ≥ (1− 𝜆)|ℎ′𝑝|. Then by assumptions we have

‖ℎ′′‖∞ ≤ ‖ℎ′′‖2 ≤ 𝛼 ·min
{︀
𝜆‖ℎ‖2, (1− 𝜆)‖ℎ′‖2

}︀
≤ 𝛼
√
𝑛 |𝜆ℎ𝑝| .

However, since 𝛼 ≤ 1
2
√
𝑛
we see that

⃒⃒
𝜆ℎ𝑝 + (1− 𝜆)ℎ′𝑝

⃒⃒
≤ ‖ℎ′′‖∞ ≤ 𝛼

√
𝑛 |𝜆ℎ𝑝| ≤

1

2
|𝜆ℎ𝑝| .

Consequently, 𝜆ℎ𝑝 and (1− 𝜆)ℎ′𝑝 have opposite signs and
⃒⃒
(1− 𝜆)ℎ′𝑝

⃒⃒
≥ 1

2

⃒⃒
𝜆ℎ′𝑝

⃒⃒
. We then have,

lower(𝑝) ≤ min
{︀
ℎ𝑝, ℎ

′
𝑝

}︀
≤ min

{︀
𝜆ℎ𝑝, (1− 𝜆)ℎ′𝑝

}︀
≤ −1

2
|𝜆ℎ𝑝| ≤ −

1

2𝛼
√
𝑛
‖ℎ′′‖∞

and
upper(𝑝) ≥ max

{︀
ℎ𝑝, ℎ

′
𝑝

}︀
≥ max

{︀
𝜆ℎ𝑝, (1− 𝜆)ℎ′𝑝

}︀
≥ 1

2
|𝜆ℎ𝑝| ≥

1

2𝛼
√
𝑛
‖ℎ′′‖∞ .
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10.4.3 ̃︀𝑂(𝑛4 · EO+ 𝑛5) Time Algorithm

Here we present a ̃︀𝑂(𝑛4 · EO+ 𝑛5) time, i.e. strongly polynomial time algorithm, for SFM. We build
upon the algorithm achieved in the section to achieve a faster running time in Section 10.4.4.

Our new algorithm combines the existing tools for SFM developed over the last decade with our
cutting plane method. While there are certain similarities with previous algorithms (especially [118,

125, 121]), our approach significantly departs from all the old approaches in one important aspect.
All of the previous algorithms actively maintain a point in the base polyhedron and represent

it as a convex combination of BFS’s. At each step, a new BFS may enter the convex combination
and an old BFS may exit. Our algorithm, on the other hand, maintains only a collection of BFS’s
(corresponding to our separating hyperplanes), rather than an explicit convex combination. A “good”
convex combination is computed from the collection of BFS’s only after running Cutting Plane for
enough iterations. We believe that this crucial difference is the fundamental reason which offers the
speedup. This is achieved by the Cutting Plane method which considers the geometry of the collection
of BFS’s. On the other hand, considering only a convex combination of BFS’s effectively narrows our
sight to only one point in the base polyhedron.

Overview

Now we are ready to describe our strongly polynomial time algorithm. Similar to the weakly poly-
nomial algorithm, we first run our cutting plane for enough iterations on the initial feasible region
{𝑥 ∈ [0, 1]𝑛 : 𝑥𝑖 ≤ 𝑥𝑗 ∀(𝑖, 𝑗) ∈ 𝐴}, after which a pair of approximately parallel supporting hyperplanes
𝐹1, 𝐹2 of width 1/𝑛Θ(1) can be found. Our strategy is to write 𝐹1 and 𝐹2 as a nonnegative combination
of the facets of remaining feasible region 𝑃 . This combination is made up of newly added separating
hyperplanes as well as the inequalities 𝑥𝑖 ≥ 0, 𝑥𝑗 ≤ 1 and 𝑥𝑖 ≤ 𝑥𝑗 . We then argue that one of the
following updates can be done:

∙ Collapsing: 𝑥𝑖 = 0, 𝑥𝑗 = 1 or 𝑥𝑖 = 𝑥𝑗

∙ Adding a new arc (𝑖, 𝑗): 𝑥𝑖 ≤ 𝑥𝑗 for some (𝑖, 𝑗) /∈ 𝐴

The former case is easy to handle by elimination or contraction. If 𝑥𝑖 = 0, we simply eliminate 𝑖 from
the ground set 𝑉 ; and if 𝑥𝑖 = 1, we redefine 𝑓 so that 𝑓(𝑆) = 𝑓(𝑆 + 𝑖) for any 𝑆 ⊆ 𝑉 − 𝑖. 𝑥𝑖 = 𝑥𝑗 can
be handled in a similar fashion. In the latter case, we simply add the arc (𝑖, 𝑗) to 𝐴. We then repeat
the same procedure on the new problem.

Roughly speaking, our strongly polynomial time guarantee follows as eliminations and contractions
can happen at most 𝑛 times and at most 2 ·

(︀
𝑛
2

)︀
new arcs can be added. While the whole picture is

simple, numerous technical details come into play in the execution. We advise readers to keep this
overview in mind when reading the subsequent sections.

Algorithm

Our algorithm is summarized below. Again, we remark that our algorithm simply uses Theorem 10.4.12
regarding our cutting plane and is agnostic as to how the cutting plane works, thus it could be replaced
with other methods, albeit at the expense of slower runtime.

1. Run cutting plane on (10.1) (Theorem 10.4.12 with 𝜏 = Θ(1)) using our modified separation
oracle (Section 10.4.2.1).

2. Identify a pair of “narrow” approximately parallel supporting hyperplanes or get some BFS ℎ = 0
(in which case both ∅ and 𝑉 are minimizers).
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3. Deduce from the hyperplanes some new constraint of the forms 𝑥𝑖 = 0, 𝑥𝑗 = 1, 𝑥𝑖 = 𝑥𝑗 or 𝑥𝑖 ≤ 𝑥𝑗
(Section 10.4.3.2).

4. Consolidate 𝐴 and 𝑓 (Section 10.4.3.1).

5. Repeat by running our cutting plane method on (10.1) with updated 𝐴 and 𝑓 . (Note that Any
previously found separating hyperplanes are discarded.)

We call step (1) a phase of cutting plane. The minimizer can be constructed by unraveling the
recursion.

10.4.3.1 Consolidating 𝐴 and 𝑓

Here we detail how the set of valid arcs 𝐴 and submodular function 𝑓 should be updated once we
deduce new information 𝑥𝑖 = 0, 𝑥𝑖 = 1, 𝑥𝑖 = 𝑥𝑗 or 𝑥𝑖 ≤ 𝑥𝑗 . Recall that 𝑅(𝑖) and 𝑄(𝑖) are the sets
of descendants and ancestors of 𝑖 respectively (including 𝑖 itself). The changes below are somewhat
self-evident, and are actually used in some of the previous algorithms so we only sketch how they are
done without a detailed justification.

Changes to the digraph representation 𝐷 of our ring family include:

∙ 𝑥𝑖 = 0: remove 𝑄(𝑖) from the ground set and all the arcs incident to 𝑄(𝑖)

∙ 𝑥𝑖 = 1: remove 𝑅(𝑖) from the ground set and all the arcs incident to 𝑅(𝑖)

∙ 𝑥𝑖 = 𝑥𝑗 : contract 𝑖 and 𝑗 in 𝐷 and remove any duplicate arcs

∙ 𝑥𝑖 ≤ 𝑥𝑗 : insert the arc (𝑖, 𝑗) to 𝐴

∙ For the last two cases, we also contract the vertices on a directed cycle of 𝐴 until there is no
more. Remove any duplicate arcs.

Here we can contract any cycle (𝑖1, . . . , 𝑖𝑘) because the inequalities 𝑥𝑖1 ≤ 𝑥𝑖2 , . . . , 𝑥𝑖𝑘−1
≤ 𝑥𝑖𝑘 , 𝑥𝑖𝑘 ≤ 𝑥𝑖1

imply 𝑥𝑖1 = . . . = 𝑥𝑖𝑘 .
Changes to 𝑓 :

∙ 𝑥𝑖 = 0: replace 𝑓 by 𝑓 ′ : 2𝑉 ∖𝑄(𝑖) −→ R, 𝑓 ′(𝑆) = 𝑓(𝑆) for 𝑆 ⊆ 𝑉 ∖𝑄(𝑖)

∙ 𝑥𝑖 = 1: replace 𝑓 by 𝑓 ′ : 2𝑉 ∖𝑅(𝑖) −→ R, 𝑓 ′(𝑆) = 𝑓(𝑆 ∪𝑅(𝑖)) for 𝑆 ⊆ 𝑉 ∖𝑅(𝑖)

∙ 𝑥𝑖 = 𝑥𝑗 : see below

∙ 𝑥𝑖 ≤ 𝑥𝑗 : no changes to 𝑓 needed if it does not create a cycle in 𝐴; otherwise see below

∙ Contraction of 𝐶 = {𝑖1, . . . , 𝑖𝑘}: replace 𝑓 by 𝑓 ′ : 2𝑉 ∖𝐶+𝑙 −→ R, 𝑓 ′(𝑆) = 𝑓(𝑆) for 𝑆 ⊆ 𝑉 ∖𝐶 and
𝑓 ′(𝑆) = 𝑓((𝑆 − 𝑙) ∪ 𝐶) for 𝑆 ∋ 𝑙

Strictly speaking, these changes are in fact not needed as they will automatically be taken care of
by our cutting plane method. Nevertheless, performing them lends a more natural formulation of the
algorithm and simplifies its description.
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10.4.3.2 Deducing New Constraints 𝑥𝑖 = 0, 𝑥𝑗 = 1, 𝑥𝑖 = 𝑥𝑗 or 𝑥𝑖 ≤ 𝑥𝑗

Here we show how to deduce new constraints through the result of our cutting plane method. This is
the most important ingredient of our algorithm. As mentioned before, similar arguments were used
first by IFF [121] and later in [118, 125]. There are however two important differences for our method:

∙ We maintain a collection of BFS’s rather a convex combination; a convex combination is com-
puted and needed only after each phase of cutting plane.

∙ As a result, our results are proved mostly geometrically whereas the previous ones were proved
mostly combinatorially.

Our ability to deduce such information hinges on the power of the cutting plane method in Chapter 8.
We re-state our main result Theorem 8.3.26 in the language of SFM. Note that Theorem 10.4.12 is
formulated in a fairly general manner in order to accommodate for the next section. Readers may
wish to think 𝜏 = Θ(1) for now.

Theorem 10.4.12 (Theorem 8.3.26 restated for SFM). For any 𝜏 ≥ 100, applying our cutting plane
method, Theorem 10.4.12, to (10.1) with our modified separation oracle (or its variant in Section
10.4.4) with high probability in 𝑛 either

1. Finds a degenerate BFS ℎ ≥ 0⃗ or ℎ ≤ 0.

2. Finds a polytope 𝑃 consisting of 𝑂(𝑛) constraints which are our separating hyperplanes or the
constraints in (10.1). Moreover, 𝑃 satisfies the following inequalities

𝑐𝑇𝑥 ≤𝑀 and 𝑐′𝑇𝑥 ≤𝑀 ′,

both of which are nonnegative combinations of the constraints of 𝑃 , where

||𝑐+ 𝑐′||2 ≤ min{||𝑐||2, ||𝑐′||2}/𝑛Θ(𝜏) and |𝑀 +𝑀 ′| ≤ min{||𝑐||2, ||𝑐′||2}/𝑛Θ(𝜏).

Furthermore, the algorithm runs in expected time 𝑂(𝑛2𝜏 log 𝑛 · EO+ 𝑛3𝜏𝑂(1) log𝑂(1) 𝑛).

Proof. In applying Theorem 10.4.12 we let 𝐾 be the set of minimizers of 𝑓 over the ring family and
the box is the hypercube with 𝑅 = 1. We run cutting plane with our modified separation oracle
(Lemma 10.4.5). The initial polytope 𝑃 (0) can be chosen to be, say, the hypercube. If some separating
hyperplane is degenerate, then we have the desired result (and know that either ∅ or 𝑉 is optimal).
Otherwise let 𝑃 be the current feasible region. Note that 𝑃 ̸= ∅, because our minimizers of 𝑓 are all
in 𝑃 (0) and 𝑃 (𝑘) as they are never cut away by the separating hyperplanes.

Let 𝒮 be the collection of inequalities (10.1) as well as the separating hyperplanes ℎ𝑇𝑥 ≤ 𝑓(�̄�ℎ) =
ℎ𝑇 �̄�ℎ used. By Theorem 8.3.26, all of our minimizers will be contained in 𝑃 , consisting of 𝑂(𝑛)
constraints 𝐴𝑥 ≥ 𝑏. Each such constraint 𝑎𝑇𝑖 𝑥 ≥ 𝑏𝑖 is a scaling and shifting of some inequality
𝑝𝑇𝑖 𝑥 ≥ 𝑞𝑖 in 𝒮, i.e. 𝑎𝑖 = 𝑝𝑖/||𝑝𝑖||2 and 𝑏𝑖 ≤ 𝑞𝑖/||𝑝𝑖||2.

By taking 𝜀 = 1/𝑛Θ(𝜏) with sufficiently large constant in Θ, our theorem certifies that 𝑃 has a
narrow width by 𝑎1, some nonnegative combination

∑︀𝑂(𝑛)
𝑖=2 𝑡𝑖𝑎𝑖 and point 𝑥𝑜 ∈ 𝑃 with ||𝑥𝑜||∞ ≤

3
√
𝑛𝑅 = 3

√
𝑛 satisying the following:⃦⃦⃦⃦

⃦⃦𝑎1 + 𝑂(𝑛)∑︁
𝑖=2

𝑡𝑖𝑎𝑖

⃦⃦⃦⃦
⃦⃦
2

≤ 1/𝑛Θ(𝜏)

0 ≤ 𝑎𝑇1 𝑥𝑜 − 𝑏1 ≤ 1/𝑛Θ(𝜏)
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0 ≤

⎛⎝𝑂(𝑛)∑︁
𝑖=2

𝑡𝑖𝑎𝑖

⎞⎠𝑇

𝑥𝑜 −
𝑂(𝑛)∑︁
𝑖=2

𝑡𝑖𝑏𝑖 ≤ 1/𝑛Θ(𝜏)

We convert these inequalities to 𝑝 and 𝑞. Let 𝑡′𝑖
def
= 𝑡𝑖 · ||𝑝1||2/||𝑝𝑖||2 ≥ 0.⃦⃦⃦⃦

⃦⃦𝑝1 + 𝑂(𝑛)∑︁
𝑖=2

𝑡′𝑖𝑝𝑖

⃦⃦⃦⃦
⃦⃦
2

≤ ||𝑝1||2/𝑛Θ(𝜏)

0 ≤ 𝑝𝑇1 𝑥𝑜 − 𝑞1 ≤ ||𝑝1||2/𝑛Θ(𝜏)

0 ≤

⎛⎝𝑂(𝑛)∑︁
𝑖=2

𝑡′𝑖𝑝𝑖

⎞⎠𝑇

𝑥𝑜 −
𝑂(𝑛)∑︁
𝑖=2

𝑡′𝑖𝑞𝑖 ≤ ||𝑝1||2/𝑛Θ(𝜏)

We claim that1 𝑐 = −𝑝1, 𝑀 = −𝑞1, 𝑐′ = −
∑︀𝑂(𝑛)

𝑖=2 𝑡′𝑖𝑝𝑖, 𝑀
′ = −

∑︀𝑂(𝑛)
𝑖=2 𝑡′𝑖𝑞𝑖 satisfy our requirement.

We first show that ||𝑐+ 𝑐′||2 ≤ min{||𝑐||2, ||𝑐′||2}/𝑛Θ(𝜏). We have ||𝑐+ 𝑐′||2 ≤ ||𝑐||2/𝑛Θ(𝜏) from the
first inequality. If ||𝑐||2 ≤ ||𝑐′||2 we are done. Otherwise, by triangle inequality

||𝑐′||2 − ||𝑐||2 ≤ ||𝑐+ 𝑐′||2 ≤ ||𝑐||2/𝑛Θ(𝜏) =⇒ 2||𝑐||2 ≥ ||𝑐′||2
and hence ||𝑐+ 𝑐′||2 ≤ ||𝑐||2/𝑛Θ(𝜏) ≤ ||𝑐′||2/2𝑛Θ(𝜏) = ||𝑐′||2/𝑛Θ(𝜏).

We also need to prove |𝑀 + 𝑀 ′| ≤ min{||𝑐||2, ||𝑐′||2}/𝑛Θ(𝜏). Summing the second and third
inequalities,

−||𝑐||2/𝑛Θ(𝜏) ≤ (𝑐+ 𝑐′)𝑇𝑥𝑜 − (𝑀 +𝑀 ′) ≤ 0

Recall that we have ||𝑥𝑜||∞ ≤ 3
√
𝑛. Then

|𝑀 +𝑀 ′| ≤ |(𝑐+ 𝑐′)𝑇𝑥𝑜 − (𝑀 +𝑀 ′)|+ |(𝑐+ 𝑐′)𝑇𝑥𝑜|
≤ ||𝑐||2/𝑛Θ(𝜏) + 3

√
𝑛||𝑐+ 𝑐′||2

≤ ||𝑐||2/𝑛Θ(𝜏) + 3
√
𝑛||𝑐||2/𝑛Θ(𝜏)

= ||𝑐||2/𝑛Θ(𝜏)

as desired. Our result then follows as we proved 2||𝑐′||2 ≥ ||𝑐||2.
Finally, we have the desired runtime as our modified separation oracle runs in time 𝑂(𝑛 · EO +

𝑛2 log𝑂(1) 𝑛).

Informally, the theorem above simply states that after 𝑂(𝑛𝜏 log 𝑛) iterations of cutting plane,
the remaining feasible region 𝑃 can be sandwiched between two approximately parallel supporting
hyperplanes of width 1/𝑛𝑂(𝜏). A good intuition to keep in mind is that every 𝑂(𝑛) iterations of
cutting plane reduces the minimum width by a constant factor.

Remark 10.4.13. As shown in the proof of Theorem 10.4.12, one of the two approximately parallel
hyperplanes can actually be chosen to be a constraint of our feasible region 𝑃 . However we do not
exploit this property as it does not seem to help us and would break the notational symmetry in 𝑐
and 𝑐′.

Setup

1Minus signs is needed because we express our inequalities as e.g. ℎ𝑇𝑥 ≤ ℎ𝑇 �̄�ℎ whereas in Theorem 8.3.26, 𝑎𝑇
𝑖 𝑥 ≥ 𝑏𝑖

is used. We apologize for the inconvenience.
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In each phase, we run cutting plane using Theorem 10.4.12 with 𝜏 = Θ(1). If some separating
hyperplane used is degenerate, we have found the minimizer by Lemma 10.2.8.

Now assume none of the separating hyperplanes is degenerate. By Theorem 10.4.12, 𝑃 is sand-
wiched by a pair of approximately parallel supporting hyperplanes 𝐹, 𝐹 ′ which are of width 1/10𝑛10

apart. The width here can actually be 1/𝑛𝑐 for any constant 𝑐 by taking a sufficiently large constant
in Theta.

Here, we show how to deduce from 𝐹 and 𝐹 ′ some 𝑥𝑖 = 0,, 𝑥𝑗 = 1,𝑥𝑖 = 𝑥𝑗 , or 𝑥𝑖 ≤ 𝑥𝑗 constraint
on the minimizers of 𝑓 over the ring family. Let

𝑐𝑇𝑥 =
∑︁

𝑐𝑖𝑥𝑖 ≤𝑀 and 𝑐′𝑇𝑥 =
∑︁

𝑐′𝑖𝑥𝑖 ≤𝑀 ′

be the inequality for 𝐹 and 𝐹 ′ such that

|𝑀 +𝑀 ′|, ||𝑐+ 𝑐′||2 ≤ gap, where gap def
=

1

10𝑛10
min{||𝑐||2, ||𝑐′||2}.

By the same theorem we can write 𝑐𝑇𝑥 ≤ 𝑀 as a nonnegative combination of the constraints
for 𝑃 . Recall that the constraints for 𝑃 take on four different forms: (1) −𝑥𝑖 ≤ 0; (2) 𝑥𝑗 ≤ 1; (3)
−(𝑥𝑗−𝑥𝑖) ≤ 0; (4) ℎ𝑇𝑥 =

∑︀
ℎ𝑖𝑥𝑖 ≤ 𝑓(�̄�ℎ). Here the first three types are present initially whereas the

last type is the separating hyperplane added. As alleged previously, the coefficient vector ℎ corresponds
to a BFS of the base polyhedron for 𝑓 . Our analysis crucially exploits this property.

Thus suppose 𝑐𝑇𝑥 =
∑︀

𝑖 𝑐𝑖𝑥𝑖 ≤ 𝑀 is a nonnegative combination of our constraints with weights
𝛼𝑖, 𝛽𝑗 , 𝛾𝑖𝑗 , 𝜆ℎ ≥ 0. The number of (positive) 𝛼𝑖, 𝛽𝑗 , 𝛾𝑖𝑗 , 𝜆ℎ is at most 𝑂(𝑛). Here we denote separating
hyperplanes by ℎ𝑇𝑥 ≤ 𝑓(�̄�ℎ). Let 𝐻 be the set of BFS’s used to construct separating hyperplanes.

𝑐𝑇𝑥 = −
∑︁
𝑖

𝛼𝑖𝑥𝑖 +
∑︁
𝑗

𝛽𝑗𝑥𝑗 +
∑︁

(𝑖,𝑗)∈𝐴

𝛾𝑖𝑗(𝑥𝑖 − 𝑥𝑗) +
∑︁
ℎ∈𝐻

𝜆ℎℎ
𝑇𝑥 and 𝑀 =

∑︁
𝑗

𝛽𝑗 +
∑︁
ℎ∈𝐻

𝜆ℎ𝑓(�̄�ℎ).

(10.5)
Similarly, we write the inequality for 𝐹 ′ as a nonnegative combination of the constraints for 𝑃 and

the number of (positive) 𝛼′
𝑖, 𝛽

′
𝑗 , 𝛾

′
𝑖𝑗 , 𝜆

′
ℎ is 𝑂(𝑛):

𝑐′𝑇𝑥 = −
∑︁

𝛼′
𝑖𝑥𝑖 +

∑︁
𝛽′𝑗𝑥𝑗 +

∑︁
(𝑖,𝑗)∈𝐴

𝛾′𝑖𝑗(𝑥𝑖 − 𝑥𝑗) +
∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇𝑥 and 𝑀 ′ =

∑︁
𝛽′𝑗 +

∑︁
ℎ∈𝐻

𝜆′ℎ𝑓(�̄�ℎ).

(10.6)
We also scale 𝑐, 𝑐′, 𝛼, 𝛼′, 𝛽, 𝛽′, 𝛾, 𝛾′, 𝜆, 𝜆′ so that∑︁

ℎ∈𝐻
(𝜆ℎ + 𝜆′ℎ) = 1

as this does not change any of our preceding inequalities regarding 𝐹 and 𝐹 ′.
Now that 𝐹, 𝐹 ′ have been written as combinations of our constraints, we have gathered the nec-

essary ingredients to derive our new arc. We first give a geometric intuition why we would expect to
be able to derive a new constraint. Consider the nonnegative combination making up 𝐹 . We think of
the coefficient 𝛽𝑗 as the contribution of 𝑥𝑗 ≤ 1 to 𝐹 . Now if 𝛽𝑗 is very large, 𝐹 is “very parallel” to
𝑥𝑗 ≤ 1 and consequently 𝐹 ′ would miss 𝑥𝑗 = 0 as the gap between 𝐹 and 𝐹 ′ is small. 𝑃 would then
miss 𝑥𝑗 = 0 too as it is sandwiched between 𝐹 and 𝐹 ′. Similarly, a large 𝛼𝑖 and a large 𝛾𝑖𝑗 would
respectively imply that 𝑥𝑖 = 1 and (𝑥𝑖 = 0, 𝑥𝑗 = 1) would be missed. The same argument works for
𝐹 ′ as well.

But on the other hand, if the contributions from 𝑥𝑖 ≥ 0, 𝑥𝑗 ≤ 1, 𝑥𝑖 ≤ 𝑥𝑗 to both 𝐹 and 𝐹 ′

are small, then the supporting hyperplanes 𝑐𝑇𝑥 ≤ ... and 𝑐′𝑇𝑥 ≤ ... would be mostly made up of
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separating hyperplanes ℎ𝑇𝑥 ≤ 𝑓(�̄�ℎ). By summing up these separating hyperplanes (whose coefficients
form BFS’s), we would then get a point in the base polyhedron which is very close to the origin 0.
Moreover, by Lemma 10.4.11 and Lemma 10.4.9 we should then be able to deduce some interesting
information about the minimizer of 𝑓 over 𝐷.

The rest of this section is devoted to realizing the vision sketched above. We stress that while the
algebraic manipulations may be long, they are simply the execution of this elegant geometric picture.

Now, consider the following weighted sum of ℎ𝑇𝑥 ≤ 𝑓(�̄�ℎ):(︃∑︁
ℎ∈𝐻

𝜆ℎℎ
𝑇 +

∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇

)︃
𝑥 =

∑︁
ℎ∈𝐻

𝜆ℎℎ
𝑇𝑥+

∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇𝑥 ≤

∑︁
ℎ∈𝐻

𝜆ℎ𝑓(�̄�ℎ) +
∑︁
ℎ∈𝐻

𝜆′ℎ𝑓(�̄�ℎ).

Observe that
∑︀

ℎ∈𝐻 𝜆ℎℎ
𝑇 +

∑︀
ℎ∈𝐻 𝜆

′
ℎℎ

𝑇 is in the base polyhedron since it is a convex combination
of BFS ℎ. Furthermore, using (10.5) and (10.6) this can also be written as(︃∑︁

ℎ∈𝐻
𝜆ℎℎ

𝑇 +
∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇

)︃
𝑥 =

⎛⎝𝑐𝑇𝑥+
∑︁

𝛼𝑖𝑥𝑖 −
∑︁

𝛽𝑗𝑥𝑗 +
∑︁

(𝑖,𝑗)∈𝐴

𝛾𝑖𝑗(𝑥𝑗 − 𝑥𝑖)

⎞⎠
+

⎛⎝𝑐′𝑇𝑥+
∑︁

𝛼′
𝑖𝑥𝑖 −

∑︁
𝛽′𝑗𝑥𝑗 +

∑︁
(𝑖,𝑗)∈𝐴

𝛾′𝑖𝑗(𝑥𝑗 − 𝑥𝑖)

⎞⎠ (10.7)

and ∑︁
ℎ∈𝐻

𝜆ℎ𝑓(�̄�ℎ) +
∑︁
ℎ∈𝐻

𝜆′ℎ𝑓(�̄�ℎ) =
(︁
𝑀 −

∑︁
𝛽𝑗

)︁
+
(︁
𝑀 ′ −

∑︁
𝛽′𝑗

)︁
= (𝑀 +𝑀 ′)−

∑︁
𝛽𝑗 −

∑︁
𝛽′𝑗

Furthermore, we can bound 𝑐𝑇𝑥+ 𝑐′𝑇𝑥 by 𝑐𝑇𝑥+ 𝑐′𝑇𝑥 ≥ −||𝑐+ 𝑐′||1 ≥ −
√
𝑛||𝑐+ 𝑐′||2 ≥ −

√
𝑛gap

as 𝑥 ≤ 1. Since 𝑀 +𝑀 ′ ≤ gap, we obtain

𝐿𝐻𝑆
def
=
∑︁

𝛼𝑖𝑥𝑖 +
∑︁

𝛼′
𝑖𝑥𝑖 −

∑︁
𝛽𝑗𝑥𝑗 −

∑︁
𝛽′𝑗𝑥𝑗 +

∑︁
(𝑖,𝑗)∈𝐴

𝛾𝑖𝑗(𝑥𝑗 − 𝑥𝑖) +
∑︁

(𝑖,𝑗)∈𝐴

𝛾′𝑖𝑗(𝑥𝑗 − 𝑥𝑖)

≤ 2
√
𝑛gap−

∑︁
𝛽𝑗 −

∑︁
𝛽′𝑗

Geometrically, the next lemma states that if the contribution from, say 𝑥𝑖 ≥ 0, to 𝐹 is too large,
then 𝐹 ′ would be forced to miss 𝑥𝑖 = 1 because they are close to one another.

Lemma 10.4.14. Suppose 𝑥 satisfies (10.1), 𝐿𝐻𝑆 ≤ 2
√
𝑛gap−

∑︀
𝛽𝑗−

∑︀
𝛽′𝑗 and 𝛼𝑖, 𝛽𝑗 , 𝛾𝑖𝑗 , 𝛼

′
𝑖, 𝛽

′
𝑗 , 𝛾

′
𝑖𝑗 ≥

0.

1. If 𝛼𝑖 > 2
√
𝑛gap or 𝛼′

𝑖 > 2
√
𝑛gap, then 𝑥𝑖 < 1.

2. If 𝛽𝑗 > 2
√
𝑛gap or 𝛽′𝑗 > 2

√
𝑛gap, then 𝑥𝑗 > 0.

3. If 𝛾𝑖𝑗 > 2
√
𝑛gap or 𝛾′𝑖𝑗 > 2

√
𝑛gap, then 0 ≤ 𝑥𝑗 − 𝑥𝑖 < 1.

Proof. We only prove it for 𝛼𝑖, 𝛽𝑗 , 𝛾𝑖𝑗 as the other case follows by symmetry.
Using 0 ≤ 𝑥 ≤ 1 and 𝑥𝑖 ≤ 𝑥𝑗 for (𝑖, 𝑗) ∈ 𝐴, we have 𝐿𝐻𝑆 ≥ 𝛼𝑖𝑥𝑖 −

∑︀
𝛽𝑗 −

∑︀
𝛽′𝑗 . Hence

𝛼𝑖𝑥𝑖 ≤ 2
√
𝑛gap and we get 𝑥𝑖 < 1 if 𝛼𝑖 > 2

√
𝑛gap.

Similarly, 𝐿𝐻𝑆 ≥ −𝛽𝑘𝑥𝑘 −
∑︀

𝑗 ̸=𝑘 𝛽𝑗 −
∑︀
𝛽′𝑗 which gives −𝛽𝑘𝑥𝑘 ≤ 2

√
𝑛gap − 𝛽𝑘. Then 𝑥𝑘 > 0 if

𝛽𝑘 > 2
√
𝑛gap.

Finally, 𝐿𝐻𝑆 ≥ 𝛾𝑖𝑗(𝑥𝑗 − 𝑥𝑖)−
∑︀
𝛽𝑗 −

∑︀
𝛽′𝑗 which gives 𝛾𝑖𝑗(𝑥𝑗 − 𝑥𝑖) ≤ 2

√
𝑛gap. Then 𝑥𝑗 − 𝑥𝑖 < 1

if 𝛾𝑖𝑗 > 2
√
𝑛gap. We have 𝑥𝑖 ≤ 𝑥𝑗 since (𝑖, 𝑗) ∈ 𝐴.



10.4. Improved Strongly Polynomial Algorithms for SFM 243

So if either condition of Lemma 10.4.14 holds, we can set 𝑥𝑖 = 0 or 𝑥𝑗 = 1 or 𝑥𝑖 = 𝑥𝑗 since our
problem (10.1) has an integral minimizer and any minimizer of 𝑓 is never cut away by Lemma 10.4.5.
Consequently, in this case we can reduce the dimension by at least 1. From now on we may assume
that

max{𝛼𝑖, 𝛼′
𝑖, 𝛽𝑗 , 𝛽

′
𝑗 , 𝛾𝑖𝑗 , 𝛾

′
𝑖𝑗} ≤ 2

√
𝑛gap. (10.8)

Geometrically, (10.8) says that if the supporting hyperplanes are both mostly made up of the
separating hyperplanes, then their aggregate contributions to 𝐹 and 𝐹 ′ should be small in absolute
value.

The next lemma identifies some 𝑝 ∈ 𝑉 for which 𝑓(𝑅(𝑝))− 𝑓(𝑅(𝑝)− 𝑝) is “big”. This prepares for
the final step of our approach which invokes Lemma 10.4.9.

Lemma 10.4.15. Let 𝑦
def
=
∑︀

ℎ∈𝐻 𝜆ℎℎ and 𝑦′
def
=
∑︀

ℎ∈𝐻 𝜆
′
ℎℎ and let 𝑝 ∈ argmax𝑙{max{|𝑦𝑙|, |𝑦′𝑙|}} then

upper(𝑝) ≥ 𝑛7‖𝑦 + 𝑦′‖∞
assuming (10.8).

Proof. Recall that ‖𝑐+ 𝑐′‖2 ≤ gap where gap = 1
10𝑛10 min{||𝑐||2, ||𝑐′||2},

𝑐 = 𝑦 −
∑︁
𝑖

𝛼𝑖1𝑖 +
∑︁
𝑗

𝛽𝑗1𝑗 +
∑︁
(𝑖,𝑗)

𝛾𝑖𝑗(1𝑖 − 1𝑗) and 𝑐′ = 𝑦′ −
∑︁
𝑖

𝛼′
𝑖1𝑖 +

∑︁
𝑗

𝛽′𝑗1𝑗 +
∑︁
(𝑖,𝑗)

𝛾′𝑖𝑗(1𝑖 − 1𝑗) .

By (10.8) we know that ‖𝑐 − 𝑦‖2 ≤ 4𝑛2gap ≤ 4
10𝑛8 ‖𝑐‖2 and ‖𝑐′ − 𝑦′‖2 ≤ 4𝑛2gap ≤ 4

10𝑛8 ‖𝑐′‖2.
Consequently, by the triangle inequality we have that

‖𝑦 + 𝑦′‖2 ≤ ‖𝑐+ 𝑐′‖2 + ‖𝑐− 𝑦‖2 + ‖𝑐′ − 𝑦′‖2 ≤ 9𝑛2gap

and
‖𝑐‖2 ≤ ‖𝑐− 𝑦‖2 + ‖𝑦‖2 ≤

4

10𝑛8
‖𝑐‖2 + ‖𝑦‖2 ⇒ ‖𝑐‖2 ≤ 2‖𝑦‖2

Similarly, we have that ‖𝑐′‖2 ≤ 2‖𝑦′‖2. Consequently since gap ≤ 1
10𝑛10 min{||𝑐||2, ||𝑐′||2}, we have

that
‖𝑦 + 𝑦′‖2 ≤

2

𝑛8
min

{︀
‖𝑦‖2, ‖𝑦′‖2

}︀
and thus, invoking Lemma 10.4.11 yields the result.

We summarize the results in the lemma below.

Corollary 10.4.16. Let 𝑃 be the feasible region after running cutting plane on (10.1). Then one of
the following holds:

1. We found a degenerate BFS and hence either ∅ or 𝑉 is a minimizer.

2. The integral points of 𝑃 all lie on some hyperplane 𝑥𝑖 = 0, 𝑥𝑗 = 1 or 𝑥𝑖 = 𝑥𝑗 which we can find.

3. Let 𝐻 be the collection of BFS’s ℎ used to construct our separating hyperplanes for 𝑃 . Then
there is a convex combination 𝑦 of 𝐻 such that 𝑛4|𝑦𝑖| < max𝑝 upper(𝑝) for all 𝑖.

Proof. As mentioned before, (1) happens if some separating hyperplane is degenerate. We have (2) if
one of the conditions in Lemma 10.4.14 holds. Otherwise, 𝑦 =

∑︀
ℎ∈𝐻 𝜆ℎℎ+

∑︀
ℎ∈𝐻 𝜆

′
ℎℎ is a candidate

for Case 3 by Lemma 10.4.15.

Let us revisit the conditions of Lemma 10.4.9 and explain that they are satisfied by Case 3 of the
last lemma.
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∙ 𝑦 is a convex combination of at most 𝑂(𝑛) BFS’s. This holds in Case 3 since our current feasible
region consists of only 𝑂(𝑛) constraints thanks to the Cutting Plane method.

∙ Those BFS’s must be consistent with every arc of 𝐴. This holds because Case 3 uses the BFS’s
for constructing our separating hyperplane. Our modified separation oracle guarantees that they
are consistent with 𝐴.

Thus in Case 3 of the last corollary, Lemma 10.4.9 allows us to deduce a new constraint 𝑥𝑝 ≤ 𝑥𝑞 for
some 𝑞 /∈ 𝑅(𝑝).

10.4.3.3 Running Time

Here we bound the total running time of our algorithm and prove the following.

Theorem 10.4.17. Our algorithm runs in time 𝑂(𝑛4 log 𝑛 · EO+ 𝑛5 log𝑂(1) 𝑛).

Proof. To avoid being repetitive, we appeal to Corollary 10.4.16. Each phase of cutting plane takes
time 𝑂(𝑛2 log 𝑛 · EO + 𝑛3 log𝑂(1) 𝑛) (Theorem 10.4.12 with 𝜏 being a big constant. Given 𝐹 and 𝐹 ′

represented as a nonnegative combination of facets, we can check for the conditions in Lemma 10.4.14
in 𝑂(𝑛) time as there are only this many facets of 𝑃 . This settles Case 2 of Corollary 10.4.16. Finally,
Lemma 10.4.9 tells us that we can find a new arc in 𝑂(𝑛 ·EO+𝑛2) time for Case 3 of Corollary 10.4.16.
Our conclusion follows from the fact that we can get 𝑥𝑖 = 0, 𝑥𝑖 = 1, 𝑥𝑖 = 𝑥𝑗 at most 𝑛 times and
𝑥𝑖 ≤ 𝑥𝑗 at most 𝑂(𝑛2) times.

10.4.4 ̃︀𝑂(𝑛3 · EO+ 𝑛4) Time Algorithm

Here we show how to improve our running time for strongly polynomial SFM to ̃︀𝑂(𝑛3 ·EO+𝑛4). Our
algorithm can be viewed as an extension of the algorithm we presented in the previous Section 10.4.3.
The main bottleneck of our previous algorithm was the time needed to identify a new arc, which cost
us ̃︀𝑂(𝑛2 · EO+ 𝑛3). Here we show how to reduce our amortized cost for identifying a valid arc down
to ̃︀𝑂(𝑛 · EO+ 𝑛2) and thereby achieve our result.

The key observation we make to improve this running time is that our choice of 𝑝 for adding an arc
in the previous lemma can be relaxed. 𝑝 actually need not be argmax𝑖 upper(𝑖); instead it is enough
to have upper(𝑝) > 𝑛4max{𝛼𝑖, 𝛼′

𝑖, 𝛽𝑗 , 𝛽
′
𝑗 , 𝛾𝑖𝑗 , 𝛾

′
𝑖𝑗}. For each such 𝑝 a new constraint 𝑥𝑝 ≤ 𝑥𝑞 can be

identified via Lemma 10.4.9. So if there are many 𝑝’s satisfying this we will be able to obtain many
new constraints and hence new valid arcs (𝑝, 𝑞).

On the other hand, the bound in Lemma 10.4.15 says that our point in the base polyhedron is small
in absolute value. This is actually stronger than what we need in Lemma 10.4.9 which requires only
its positive entries to be “small”. However as we saw in Lemma 10.4.10 we can generate a constraint
of the form 𝑥𝑞 ≤ 𝑥𝑝 whenever lower(𝑝) is sufficiently negative.

Using this idea, we divide 𝑉 into different buckets according to upper(𝑝) and lower(𝑝). This will
allow us to get a speedup for two reasons.

First, bucketing allows us to disregard unimportant elements of 𝑉 during certain executions of our
cutting plane method. If both upper(𝑖) and lower(𝑖) are small in absolute value, then 𝑖 is essentially
negligible because for a separating hyperplane ℎ𝑇𝑥 ≤ 𝑓(�̄�), any ℎ𝑖 ∈ [lower(𝑖), upper(𝑖)] small in
absolute value would not really make a difference. We can then run our cutting plane algorithm only
on those non-negligible 𝑖’s, thereby reducing our time complexity. Of course, whether ℎ𝑖 is small is
something relative. This suggests that partitioning the ground set by the relative size of upper(𝑖) and
lower(𝑖) is a good idea.
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Second, bucketing allows us to ensure that we can always add an arc for many edges simultaneously.
Recall that we remarked that all we want is 𝑛𝑂(1)|𝑦𝑖| ≤ upper(𝑝) for some 𝑦 in the base polyhedron.
This would be sufficient to identify a new valid arc (𝑝, 𝑞). Now if the marginal differences upper(𝑝)
and upper(𝑝′) are close in value, knowing 𝑛𝑂(1)|𝑦𝑖| ≤ upper(𝑝) would effectively give us the same for
𝑝′ for free. This suggests that elements with similar marginal differences should be grouped together.

The remainder of this section simply formalizes these ideas. In Section 10.4.4.1 we discuss how we
partition the ground set 𝑉 . In Section 10.4.4.2, we present our cutting plane method on a subset of
the coordinates. Then in Section 10.4.4.3 we show how we find new arcs. Finally, in Section 10.4.4.4
we put all of this together to achieve our desired running time.

10.4.4.1 Partitioning Ground Set into Buckets

We partition the ground set 𝑉 into different buckets according to the values of upper(𝑖) and lower(𝑖).
This is reminiscent to Iwata-Orlin’s algorithm [125] which considers elements with big upper(𝑖). How-
ever they did not need to do bucketing by size or to consider lower(𝑖), whereas these seem necessary
for our algorithm.

Let 𝑁 = max𝑖{max{upper(𝑖),−lower(𝑖)}} be the largest marginal difference in absolute value.
By Lemma (10.4.8), 𝑁 ≥ 0. We partition our ground set 𝑉 as follows:

𝐵1 = {𝑖 : upper(𝑖) ≥ 𝑁/𝑛10 or lower(𝑖) ≤ −𝑁/𝑛10}

𝐵𝑘 = {𝑖 /∈ 𝐵1 ∪ . . . ∪𝐵𝑘−1 : 𝑁/𝑛10𝑘 ≤ upper(𝑖) < 𝑁/𝑛10(𝑘−1)

or −𝑁/𝑛10(𝑘−1) < lower(𝑖) ≤ −𝑁/𝑛10𝑘}, 𝑘 ≥ 2

We call 𝐵𝑘 buckets. Our buckets group elements by the values of upper(𝑖) and lower(𝑖) at 1/𝑛10

“precision”. There are two cases.

∙ Case 1: the number of buckets is at most log 𝑛2, in which case upper(𝑖) > 𝑁/𝑛𝑂(log𝑛) or
lower(𝑖) < −𝑁/𝑛𝑂(log𝑛) for all 𝑖.

∙ Case 2: there is some 𝑘 for which |𝐵1 ∪ . . . ∪𝐵𝑘| ≥ |𝐵𝑘+1|.

This is because if there is no such 𝑘 in Case 2, then by induction each bucket 𝐵𝑘+1 has at least
2𝑘|𝐵1| ≥ 2𝑘 elements and hence 𝑘 ≤ log 𝑛.

Case 1 is easier to handle, and is in fact a special case of Case 2. We first informally sketch the
treatment for Case 1 which should shed some light into how we deal with Case 2.

We run Cutting Plane for 𝑂(𝑛 log2 𝑛) iterations (i.e. 𝜏 = Θ(log 𝑛)). By Theorem 10.4.12, our
feasible region 𝑃 would be sandwiched by a pair of approximately parallel supporting hyperplanes of
width at most 1/𝑛Θ(log𝑛). Now proceeding as in the last section, we would be able to find some 𝑦 in
the base polyhedron and some element 𝑝 such that 𝑛Θ(log𝑛)|𝑦𝑖| ≤ upper(𝑝). This gives

𝑛Θ(log𝑛)|𝑦𝑖| ≤
upper(𝑝)

𝑛Θ(log𝑛)
≤ 𝑁

𝑛Θ(log𝑛)
.

Since upper(𝑖) > 𝑁/𝑛Θ(log𝑛) or lower(𝑖) < −𝑁/𝑛Θ(log𝑛) for all 𝑖 in Case 1, we can then conclude
that some valid arc (𝑖, 𝑞) or (𝑞, 𝑖) can be added for every 𝑖. Thus we add 𝑛/2 arcs simultaneously
in one phase of the algorithm at the expense of blowing up the runtime by 𝑂(log 𝑛). This saves a
factor of 𝑛/ log 𝑛 from our runtime in the last section, and the amortized cost for an arc would then
be ̃︀𝑂(𝑛 · EO+ 𝑛2).

2More precisely, 𝐵𝑘 = ∅ for 𝑘 > ⌈log𝑛⌉.
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On the other hand, in Case 2 we have a “trough” at 𝐵𝑘+1. Roughly speaking, this trough is useful
for acting as a soft boundary between 𝐵1∪ . . .∪𝐵𝑘 and

⋃︀
𝑙≥𝑘+2𝐵𝑙. Recall that we are able to “ignore”⋃︀

𝑙≥𝑘+2𝐵𝑙 because their ℎ𝑖 is relatively small in absolute value. In particular, we know that for any
𝑝 ∈ 𝐵1 ∪ . . . ∪𝐵𝑘 and 𝑖 ∈ 𝐵𝑙, where 𝑙 ≥ 𝑘 + 2,

max{upper(𝑝),−lower(𝑝)} ≥ 𝑛10max{upper(𝑖),−lower(𝑖)}.

This is possible because 𝐵𝑘+1, which is sandwiched in between, acts like a shield preventing 𝐵𝑙 to
“mess with” 𝐵1∪ . . .∪𝐵𝑘. This property comes at the expense of sacrificing 𝐵𝑘+1 which must confront
𝐵𝑙.

Furthermore, we require that |𝐵1 ∪ . . . ∪𝐵𝑘| ≥ |𝐵𝑘+1|, and run Cutting Plane on 𝐵 = (𝐵1 ∪ . . . ∪
𝐵𝑘)∪𝐵𝑘+1. If |𝐵𝑘+1| ≫ |𝐵1∪ . . .∪𝐵𝑘|, our effort would mostly be wasted on 𝐵𝑘+1 which is sacrificed,
and the amortized time complexity for 𝐵1 ∪ . . . ∪𝐵𝑘 would then be large.

Before discussing the algorithm for Case 2, we need some preparatory work.

10.4.4.2 Separating Hyperplane: Project and Lift

Our speedup is achieved by running our cutting plane method on the projection of our feasible region
onto 𝐵 := (𝐵1 ∪ · · · ∪ 𝐵𝑘) ∪ 𝐵𝑘+1. More precisely, we start by running our cutting plane on 𝑃𝐵 =
{𝑥 ∈ R𝐵 : ∃𝑥′ ∈ R�̄� s.t. (𝑥,𝑥′) satisfies (10.1)}, which has a lower dimension. However, to do this,
we need to specify a separation oracle for 𝑃𝐵. Here we make one of the most natural choices.

We begin by making an apparently immaterial change to our set of arcs 𝐴. Let us take the
transitive closure of 𝐴 by adding the arc (𝑖, 𝑗) whenever there is a path from 𝑖 to 𝑗. Clearly this would
not change our ring family as a path from 𝑖 to 𝑗 implies 𝑗 ∈ 𝑅(𝑖). Roughly speaking, we do this to
handle pathological cases such as (𝑖, 𝑘), (𝑘, 𝑗) ∈ 𝐴, (𝑖, 𝑗) /∈ 𝐴 and 𝑖, 𝑗 ∈ 𝐵, 𝑘 /∈ 𝐵. Without introducing
the arc (𝑖, 𝑗), we risk confusing a solution containing 𝑖 but not 𝑗 as feasible since we are restricting
our attention to 𝐵 and ignoring 𝑘 /∈ 𝐵.

Definition 10.4.18. Given a digraph 𝐷 = (𝑉,𝐴), the transitive closure of 𝐴 is the set of arcs (𝑖, 𝑗)
for which there is a directed path from 𝑖 to 𝑗. We say that 𝐴 is complete if it is equal to its transitive
closure.

Given �̄� ∈ [0, 1]𝐵, we define the completion of �̄� with respect to 𝐴 as follows.

Definition 10.4.19. Given �̄� ∈ [0, 1]𝐵 and a set of arcs 𝐴, 𝑥𝒞 ∈ [0, 1]𝑛 is a completion of �̄� if 𝑥𝒞𝐵 = �̄�
and 𝑥𝒞𝑖 ≤ 𝑥𝒞𝑗 for every (𝑖, 𝑗) ∈ 𝐴. Here 𝑥𝒞𝐵 denotes the restriction of 𝑥𝒞 to 𝐵.

Lemma 10.4.20. Given �̄� ∈ [0, 1]𝐵 and a complete set of arcs 𝐴, there is a completion of �̄� if �̄�𝑖 ≤ �̄�𝑗
for every (𝑖, 𝑗) ∈ 𝐴 ∩ (𝐵 ×𝐵). Moreover, it can be computed in 𝑂(𝑛2) time.

Proof. We set 𝑥𝒞𝐵 = �̄�. For 𝑖 /∈ 𝐵, we set

𝑥𝒞𝑖 =

{︃
1 if @𝑗 ∈ 𝐵 s.t. (𝑖, 𝑗) ∈ 𝐴
min(𝑖,𝑗)∈𝐴,𝑗∈𝐵 𝑥

𝒞
𝑗 otherwise

One may verify that 𝑥𝒞 satisfies our requirement as 𝐴 is complete. Computing each 𝑥𝒞𝑖 takes 𝑂(𝑛)
time. Since |𝑉 ∖𝐵| = |�̄�| ≤ 𝑛, computing the whole 𝑥𝒞 takes 𝑂(𝑛2) time.

This notion of completion is needed since our original separation oracle requires a full dimensional
input �̄�. Now that �̄� ∈ R𝐵, we need a way of extending it to R𝑛 while retaining the crucial property
that ℎ is consistent with every arc in 𝐴.
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Algorithm 26: Projected Separation Oracle

Input: �̄� ∈ R𝐵 and a complete set of arcs 𝐴
if �̄�𝑖 < 0 for some 𝑖 ∈ 𝐵 then

Output: 𝑥𝑖 ≥ 0
else if �̄�𝑗 > 1 for some 𝑗 ∈ 𝐵 then

Output: 𝑥𝑗 ≤ 1
else if �̄�𝑖 > �̄�𝑗 for some (𝑖, 𝑗) ∈ 𝐴 ∩𝐵2 then

Output: 𝑥𝑖 ≤ 𝑥𝑗
else

Let 𝑥𝒞 ∈ R𝑛 be a completion of �̄�
Let 𝑖1, . . . , 𝑖𝑛 be a permutation of 𝑉 such that 𝑥𝒞𝑖1 ≥ . . . ≥ 𝑥

𝒞
𝑖𝑛

and for all (𝑖, 𝑗) ∈ 𝐴, 𝑗
precedes 𝑖 in 𝑖1, . . . , 𝑖𝑛.
Output: ℎ𝑇𝐵𝑥𝐵 =

∑︀
𝑖∈𝐵 ℎ𝑖𝑥𝑖 ≤

∑︀
𝑖∈𝐵 ℎ𝑖�̄�𝑖, where ℎ is the BFS defined by the permutation

𝑖1, . . . , 𝑖𝑛.

Note that the runtime is still 𝑂(𝑛 ·EO+𝑛2 log𝑂(1) 𝑛) as 𝑥𝒞 can be computed in 𝑂(𝑛2) time by the
last lemma.

We reckon that the hyperplane ℎ𝑇𝐵𝑥𝐵 ≤
∑︀

𝑖∈𝐵 ℎ𝑖�̄�𝑖 returned by the oracle is not a valid separating
hyperplane (i.e. it may cut out the minimizers). Nevertheless, we will show that it is a decent “proxy”
to the true separating hyperplane ℎ𝑇𝑥 ≤ 𝑓(𝑥𝒞) =

∑︀
𝑖∈𝑉 ℎ𝑖𝑥

𝒞
𝑖 and is good enough to serve our purpose

of sandwiching the remaining feasible region in a small strip. To get a glimpse, note that the terms
missing ℎ𝑇𝐵𝑥𝐵 ≤

∑︀
𝑖∈𝐵 ℎ𝑖�̄�𝑖 all involve ℎ𝑖 for 𝑖 /∈ 𝐵, which is “negligible” compared to 𝐵1 ∪ · · · ∪𝐵𝑘.

One may try to make ℎ𝑇𝐵𝑥𝐵 ≤
∑︀

𝑖∈𝐵 ℎ𝑖�̄�𝑖 valid, say, by ℎ
𝑇
𝐵𝑥𝐵 ≤

∑︀
𝑖∈𝐵 ℎ𝑖�̄�𝑖 +

∑︀
𝑖/∈𝐵 |ℎ𝑖|. The

problem is that such hyperplanes would not be separating for �̄� anymore as ℎ𝑇𝐵�̄� =
∑︀

𝑖∈𝐵 ℎ𝑖�̄�𝑖 <∑︀
𝑖∈𝐵 ℎ𝑖�̄�𝑖 +

∑︀
𝑖/∈𝐵 |ℎ𝑖|. Consequently, we lose the width (or volume) guarantee of our cutting plane

algorithm. Although this seems problematic, it is actually still possible to show a guarantee sufficient
for our purpose as

∑︀
𝑖/∈𝐵 |ℎ𝑖| is relatively small. We leave it as a nontrivial exercise to interested

readers.
In conclusion, it seems that one cannot have the best of both worlds: the hyperplane returned by

the oracle cannot be simultaneously valid and separating.

Algorithm

We take 𝑘 to be the first for which |𝐵1 ∪ . . . ∪𝐵𝑘| ≥ |𝐵𝑘+1|, i.e. |𝐵1 ∪ . . . ∪𝐵𝑙| < |𝐵𝑙+1| for 𝑙 ≤ 𝑘 − 1.
Thus 𝑘 ≤ log 𝑛. Let 𝑏 = |𝐵|, and so |𝐵1 ∪ · · · ∪𝐵𝑘| ≥ 𝑏/2. Case 1 is a special case by taking 𝐵 = 𝑉 .

Our algorithm is summarized below. Here 𝐴 is always complete as 𝐴 is replaced its transitive
closure whenever a new valid arc is added.

1. Run Cutting Plane on 𝑃𝐵 = {𝑥 ∈ R𝐵 : ∃𝑥′ ∈ R�̄� s.t. (𝑥, 𝑥′) satisfies (10.1)} with the new
projected separation oracle.

2. Identify a pair of “narrow” approximately parallel supporting hyperplanes.

3. Deduce from the hyperplanes certain new constraints of the forms 𝑥𝑖 = 0, 𝑥𝑗 = 1, 𝑥𝑖 = 𝑥𝑗 or
𝑥𝑖 ≤ 𝑥𝑗 by lifting separating hyperplanes back to R𝑛

4. Consolidate 𝐴 and 𝑓 . If some 𝑥𝑖 ≤ 𝑥𝑗 added, replace 𝐴 by its transitive closure.

5. Repeat Step 1 with updated 𝐴 and 𝑓 . (Any previously found separating hyperplanes are dis-
carded.)
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The minimizer can be constructed by unraveling the recursion.
First of all, to be able to run Cutting Plane on 𝑃𝐵 we must come up with a polyhedral description

of 𝑃𝐵 which consists of just the constraints involving 𝐵. This is shown in the next lemma.

Lemma 10.4.21. Let 𝑃𝐵 = {𝑥 ∈ R𝐵 : ∃𝑥′ ∈ R�̄� s.t. (𝑥,𝑥′) satisfies (10.1)}. Then

𝑃𝐵 = {𝑥 ∈ R𝐵 : 0 ≤ 𝑥 ≤ 1, 𝑥𝑖 ≤ 𝑥𝑗∀(𝑖, 𝑗) ∈ 𝐴 ∩ (𝐵 ×𝐵)}

Proof. It is clear that 𝑃𝐵 ⊆ {𝑥 ∈ R𝐵 : 0 ≤ 𝑥 ≤ 1, 𝑥𝑖 ≤ 𝑥𝑗∀(𝑖, 𝑗) ∈ 𝐴 ∩ (𝐵 × 𝐵)} as the constraints
0 ≤ 𝑥 ≤ 1, 𝑥𝑖 ≤ 𝑥𝑗∀(𝑖, 𝑗) ∈ 𝐴 ∩ (𝐵 ×𝐵) all appear in (10.1).

Conversely, for any 𝑥 ∈ R𝐵 satisfying 0 ≤ 𝑥 ≤ 1, 𝑥𝑖 ≤ 𝑥𝑗∀(𝑖, 𝑗) ∈ 𝐴 ∩ (𝐵 × 𝐵), we know there is
some completion 𝑥𝒞 of 𝑥 by Lemma 10.4.20 as 𝐴 is complete. Now 𝑥𝒞 satisfies (10.1) by definition,
and hence 𝑥 ∈ 𝑃𝐵.

The only place where we have really changed the algorithm is Step (3).

10.4.4.3 Deducing New Constraints 𝑥𝑖 = 0, 𝑥𝑗 = 1, 𝑥𝑖 = 𝑥𝑗 or 𝑥𝑖 ≤ 𝑥𝑗

Our method will deduce one of the following:

∙ 𝑥𝑖 = 0, 𝑥𝑗 = 1 or 𝑥𝑖 = 𝑥𝑗

∙ for each 𝑝 ∈ 𝐵1 ∪ · · · ∪𝐵𝑘, 𝑥𝑝 ≤ 𝑥𝑞 for some 𝑞 /∈ 𝑅(𝑝) or 𝑥𝑝 ≥ 𝑥𝑞 for some 𝑞 /∈ 𝑄(𝑝)

Our argument is very similar to the last section’s. Roughly speaking, it is the same argument but
with “noise” introduced by 𝑖 /∈ 𝐵. We use extensively the notations from the last section.

Our main tool is again Theorem 10.4.12. Note that 𝑛 should be replaced by 𝑏 in the Theorem
statement. We invoke it with 𝜏 = 𝑘 log𝑏 𝑛 = 𝑂(log2 𝑛) (using 𝑘 ≤ log 𝑛) to get a width of 1/𝑏Θ(𝜏) =
1/𝑛Θ(𝑘). This takes time at most 𝑂(𝑏𝑛 log2 𝑛 · EO + 𝑏𝑛2 log𝑂(1) 𝑛). Again, this is intuitively clear as
we run it for 𝑂(𝑘𝑏 log 𝑛) iterations, each of which takes time 𝑂(𝑛 · EO+ 𝑛2 log𝑂(1) 𝑛).

After each phase of (roughly 𝑂(𝑘𝑏 log 𝑛) iterations) of Cutting Plane, 𝑃𝐵 is sandwiched between a
pair of approximately parallel supporting hyperplanes 𝐹 and 𝐹 ′ which have width 1/𝑛20𝑘. Let 𝐹 and
𝐹 ′ be

𝑐𝑇𝑥𝐵 =
∑︁
𝑖∈𝐵

𝑐𝑖𝑥𝑖 ≤𝑀, 𝑐′𝑇𝑥𝐵 =
∑︁
𝑖∈𝐵

𝑐′𝑖𝑥𝑖 ≤𝑀 ′,

such that
|𝑀 +𝑀 ′|, ||𝑐+ 𝑐′||2 ≤ gap, where gap =

1

𝑛20𝑘
min{||𝑐||2, ||𝑐′||2}.

The rest of this section presents an execution of the ideas discussed above. All of our work is basically
geared towards bringing the amortized cost for identifying a valid arc down to ̃︀𝑂(𝑛 ·EO+𝑛2). Again,
we can write these two constraints as a nonnegative combination. Here �̄�𝒞ℎ is the completion of the
point �̄�ℎ used to construct ℎ𝑇𝐵𝑥𝐵 ≤ ℎ𝑇𝐵

(︀
�̄�𝒞ℎ
)︀
𝐵
. (Recall that

(︀
�̄�𝒞ℎ
)︀
𝐵
is the restriction of �̄�𝒞ℎ to 𝐵.)

𝑐𝑇𝑥𝐵 = −
∑︁
𝑖∈𝐵

𝛼𝑖𝑥𝑖+
∑︁
𝑗∈𝐵

𝛽𝑗𝑥𝑗+
∑︁

(𝑖,𝑗)∈𝐴∩𝐵2

𝛾𝑖𝑗(𝑥𝑖−𝑥𝑗)+
∑︁
ℎ∈𝐻

𝜆ℎℎ
𝑇
𝐵𝑥𝐵 and 𝑀 =

∑︁
𝑗∈𝐵

𝛽𝑗+
∑︁
ℎ∈𝐻

𝜆ℎℎ
𝑇
𝐵

(︀
�̄�𝒞ℎ
)︀
𝐵
.

𝑐′𝑇𝑥𝐵 = −
∑︁
𝑖∈𝐵

𝛼′
𝑖𝑥𝑖+

∑︁
𝑗∈𝐵

𝛽′𝑗𝑥𝑗+
∑︁

(𝑖,𝑗)∈𝐴∩𝐵2

𝛾′𝑖𝑗(𝑥𝑖−𝑥𝑗)+
∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇
𝐵𝑥𝐵 and 𝑀 ′ =

∑︁
𝑗∈𝐵

𝛽′𝑗+
∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇
𝐵

(︀
�̄�𝒞ℎ
)︀
𝐵
.
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As we have discussed, the problem is that the separating hyperplanes ℎ𝑇𝐵𝑥𝐵 ≤ ℎ𝑇𝐵
(︀
�̄�𝒞ℎ
)︀
𝐵
are not

actually valid. We can, however, recover their valid counterpart by lifting them back to ℎ𝑇𝑥 ≤ ℎ𝑇 �̄�𝒞ℎ.
The hope is that ℎ𝑇𝐵𝑥𝐵 ≤ ℎ𝑇𝐵

(︀
�̄�𝒞ℎ
)︀
𝐵
and ℎ𝑇𝑥 ≤ ℎ𝑇 �̄�𝒞ℎ are not too different so that the arguments will

still go through. We show that this is indeed the case.
Again, we scale 𝑐, 𝑐′, 𝛼, 𝛼′, 𝛽, 𝛽′, 𝛾, 𝛾′, 𝜆, 𝜆′ so that∑︁

ℎ∈𝐻
(𝜆ℎ + 𝜆′ℎ) = 1.

By adding all the constituent separating hyperplane inequalities, we get∑︁
ℎ∈𝐻

𝜆ℎℎ
𝑇𝑥+

∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇𝑥 ≤

∑︁
ℎ∈𝐻

𝜆ℎℎ
𝑇 �̄�𝒞ℎ +

∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇 �̄�𝒞ℎ

Let

𝐿𝐻𝑆
def
=
∑︁

𝛼𝑖𝑥𝑖 +
∑︁

𝛼′
𝑖𝑥𝑖 −

∑︁
𝛽𝑗𝑥𝑗 −

∑︁
𝛽′𝑗𝑥𝑗 +

∑︁
𝛾𝑖𝑗(𝑥𝑗 − 𝑥𝑖) +

∑︁
𝛾′𝑖𝑗(𝑥𝑗 − 𝑥𝑖).

Here we know that∑︁
ℎ∈𝐻

𝜆ℎℎ
𝑇𝑥+

∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇𝑥 = 𝐿𝐻𝑆 + (𝑐+ 𝑐′)𝑇𝑥𝐵 +

∑︁
ℎ∈𝐻

𝜆ℎℎ
𝑇
�̄�𝑥�̄� +

∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇
�̄�𝑥�̄�∑︁

ℎ∈𝐻
𝜆ℎℎ

𝑇 �̄�𝒞ℎ +
∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇 �̄�𝒞ℎ = (𝑀 +𝑀 ′) +

∑︁
ℎ∈𝐻

𝜆ℎℎ
𝑇
�̄�

(︀
�̄�𝒞ℎ
)︀
�̄�
+
∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇
�̄�

(︀
�̄�𝒞ℎ
)︀
�̄�
−
∑︁

𝛽𝑗 −
∑︁

𝛽′𝑗

Combining all yields

𝐿𝐻𝑆 + (𝑐+ 𝑐′)𝑇𝑥𝐵 +
∑︁
ℎ∈𝐻

𝜆ℎℎ
𝑇
�̄�𝑥�̄� +

∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇
�̄�𝑥�̄�

≤ (𝑀 +𝑀 ′) +
∑︁
ℎ∈𝐻

𝜆ℎℎ
𝑇
�̄�

(︀
�̄�𝒞ℎ
)︀
�̄�
+
∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇
�̄�

(︀
�̄�𝒞ℎ
)︀
�̄�
−
∑︁

𝛽𝑗 −
∑︁

𝛽′𝑗 .

Here (𝑐 + 𝑐′)𝑇𝑥𝐵 can be bounded as before: (𝑐 + 𝑐′)𝑇𝑥𝐵 ≥ −
√
𝑛||𝑐 + 𝑐′||2 ≥ −

√
𝑛gap. Since

𝑀 +𝑀 ′ ≤ gap, We then obtain

𝐿𝐻𝑆+
∑︁
ℎ∈𝐻

𝜆ℎℎ
𝑇
�̄�𝑥�̄� +

∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇
�̄�𝑥�̄� ≤ 2

√
𝑛gap+

∑︁
ℎ∈𝐻

𝜆ℎℎ
𝑇
�̄�

(︀
�̄�𝒞ℎ
)︀
�̄�
+
∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇
�̄�

(︀
�̄�𝒞ℎ
)︀
�̄�
−
∑︁

𝛽𝑗 −
∑︁

𝛽′𝑗

We should expect the contribution from ℎ�̄� to be small as ℎ𝑖 for 𝑖 /∈ 𝐵 is small compared to
𝐵1 ∪ . . . ∪𝐵𝑘. We formalize our argument in the next two lemmas.

Lemma 10.4.22. We have
∑︀

ℎ∈𝐻 𝜆ℎℎ
𝑇
�̄�

(︀
�̄�𝒞ℎ
)︀
�̄�
+
∑︀

ℎ∈𝐻 𝜆
′
ℎℎ

𝑇
�̄�

(︀
�̄�𝒞ℎ
)︀
�̄�
≤ 𝑁/𝑛10(𝑘+1)−1.

Proof. We bound each component of
∑︀

ℎ∈𝐻 𝜆ℎℎ
𝑇
�̄�

(︀
�̄�𝒞ℎ
)︀
�̄�
+
∑︀

ℎ∈𝐻 𝜆
′
ℎℎ

𝑇
�̄�

(︀
�̄�𝒞ℎ
)︀
�̄�
. For 𝑖 ∈ �̄�, we have

upper(𝑖) ≤ 𝑁/𝑛10(𝑘+1). By Lemma 10.4.8 ℎ𝑖 ≤ upper(𝑖). Therefore,

∑︁
ℎ∈𝐻

𝜆ℎℎ
𝑇
𝑖

(︀
�̄�𝒞ℎ
)︀
𝑖
+
∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇
𝑖

(︀
�̄�𝒞ℎ
)︀
𝑖
≤

(︃∑︁
ℎ∈𝐻

𝜆ℎ +
∑︁
ℎ∈𝐻

𝜆′ℎ

)︃
𝑁/𝑛10(𝑘+1) = 𝑁/𝑛10(𝑘+1).

Our result then follows since

∑︁
ℎ∈𝐻

𝜆ℎℎ
𝑇
�̄�

(︀
�̄�𝒞ℎ
)︀
�̄�
+
∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇
�̄�

(︀
�̄�𝒞ℎ
)︀
�̄�
=
∑︁
𝑖∈�̄�

(︃∑︁
ℎ∈𝐻

𝜆ℎℎ
𝑇
𝑖

(︀
�̄�𝒞ℎ
)︀
𝑖
+
∑︁
ℎ∈𝐻

𝜆′ℎℎ
𝑇
𝑖

(︀
�̄�𝒞ℎ
)︀
𝑖

)︃
.
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Lemma 10.4.23. We have
∑︀

ℎ∈𝐻 𝜆ℎℎ
𝑇
�̄�𝑥�̄� +

∑︀
ℎ∈𝐻 𝜆

′
ℎℎ

𝑇
�̄�𝑥�̄� ≥ −𝑁/𝑛

10(𝑘+1)−1.

Proof. The proof is almost identical to the last lemma except that we use ℎ𝑖 ≥ lower(𝑖) instead of
ℎ𝑖 ≤ upper(𝑖), and lower(𝑖) ≥ −𝑁/𝑛10(𝑘+1).

The two lemmas above imply that

𝐿𝐻𝑆 ≤ 2
√
𝑛gap−

∑︁
𝛽𝑗 −

∑︁
𝛽𝑗 + 2𝑁/𝑛10(𝑘+1)−1 = gap′ −

∑︁
𝛽𝑗 −

∑︁
𝛽𝑗

where gap′ = 2
√
𝑛gap+ 2𝑁/𝑛10(𝑘+1)−1.

Lemma 10.4.24. Suppose 𝑥 satisfies (10.1) and 𝐿𝐻𝑆 ≤ gap′−
∑︀
𝛽𝑗−

∑︀
𝛽′𝑗 with 𝛼𝑖, 𝛽𝑗 , 𝛾𝑖𝑗 , 𝛼

′
𝑖, 𝛽

′
𝑗 , 𝛾

′
𝑖𝑗 ≥

0.

1. If 𝛼𝑖 > gap′ or 𝛼′
𝑖 > gap′, then 𝑥𝑖 < 1.

2. If 𝛽𝑗 > gap′ or 𝛽′𝑗 > gap′, then 𝑥𝑗 > 0.

3. If 𝛾𝑖𝑗 > gap′ or 𝛾′𝑖𝑗 > gap′, then 0 ≤ 𝑥𝑗 − 𝑥𝑖 < 1.

Proof. The proof is exactly the same as Lemma 10.4.14 with 2
√
𝑛gap replaced by gap′.

From now on we may assume that

max{𝛼𝑖, 𝛼′
𝑖, 𝛽𝑗 , 𝛽

′
𝑗 , 𝛾𝑖𝑗 , 𝛾

′
𝑖𝑗} ≤ gap′. (10.9)

Lemma 10.4.25. Let 𝑦
def
=
∑︀

ℎ∈𝐻 𝜆ℎℎ and 𝑦′
def
=
∑︀

ℎ∈𝐻 𝜆
′
ℎℎ and let 𝑝 ∈ argmax𝑙∈𝐵{max{|𝑦𝑙|, |𝑦′𝑙|}

then
𝑁 ≥ 𝑛10𝑘+6‖𝑦𝐵 + 𝑦′𝐵‖∞

assuming (10.9).

Proof. Recall that ‖𝑐 + 𝑐′‖2 ≤ gap < gap′ where gap = 1
𝑛20𝑘 min{||𝑐||2, ||𝑐′||2} and gap′ = 2

√
𝑛gap +

2𝑁/𝑛10(𝑘+1)−1. Now there are two cases.
Case 1: 2

√
𝑛gap ≥ 2𝑁/𝑛10(𝑘+1)−1. Then gap′ ≤ 4

√
𝑛gap and we follow the same proof of Lemma

10.4.15. We have

𝑐 = 𝑦𝐵 −
∑︁
𝑖

𝛼𝑖1𝑖+
∑︁
𝑗

𝛽𝑗1𝑗 +
∑︁
(𝑖,𝑗)

𝛾𝑖𝑗(1𝑖− 1𝑗) and 𝑐′ = 𝑦′𝐵 −
∑︁
𝑖

𝛼′
𝑖1𝑖+

∑︁
𝑗

𝛽′𝑗1𝑗 +
∑︁
(𝑖,𝑗)

𝛾′𝑖𝑗(1𝑖− 1𝑗) .

By (10.9) we know that ‖𝑐 − 𝑦𝐵‖2 ≤ 4𝑛2gap′ ≤ 1
𝑛17𝑘 ‖𝑐‖2 and ‖𝑐′ − 𝑦′𝐵‖2 ≤ 4𝑛2gap′ ≤ 1

𝑛17𝑘 ‖𝑐‖2.
Consequently, by the triangle inequality we have that

‖𝑦𝐵 + 𝑦′𝐵‖2 ≤ ‖𝑐+ 𝑐′‖2 + ‖𝑐− 𝑦𝐵‖2 + ‖𝑐′ − 𝑦′𝐵‖2 ≤ 9𝑛2gap′

and
‖𝑐‖2 ≤ ‖𝑐− 𝑦𝐵‖2 + ‖𝑦𝐵‖2 ≤

1

𝑛17𝑘
‖𝑐‖2 + ‖𝑦𝐵‖2 ⇒ ‖𝑐‖2 ≤ 2‖𝑦𝐵‖2

Similarly, we have that ‖𝑐′‖2 ≤ 2‖𝑦′𝐵‖2. Consequently since gap′ ≤ 1
𝑛19𝑘 min{||𝑐||2, ||𝑐′||2}, we have

that
‖𝑦𝐵 + 𝑦′𝐵‖2 ≤

18

𝑛17𝑘
min

{︀
‖𝑦𝐵‖2, ‖𝑦′𝐵‖2

}︀
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and thus, invoking Lemma 10.4.11 yields 𝑁 ≥ upper(𝑝) ≥ 𝑛16𝑘‖𝑦𝐵 + 𝑦′𝐵‖∞, as desired.
Case 2: 2

√
𝑛gap < 2𝑁/𝑛10(𝑘+1)−1. Then for any 𝑖 ∈ 𝐵, |𝑐𝑖 + 𝑐′𝑖| ≤ ||𝑐 + 𝑐′||2 ≤ gap <

2𝑁/𝑛10(𝑘+1)−1. Since

𝑦𝐵 + 𝑦′𝐵 = (𝑐+ 𝑐′) +
∑︁
𝑖

𝛼𝑖1𝑖 −
∑︁
𝑗

𝛽𝑗1𝑗 −
∑︁
(𝑖,𝑗)

𝛾𝑖𝑗(1𝑖 − 1𝑗) +
∑︁
𝑖

𝛼′
𝑖1𝑖 −

∑︁
𝑗

𝛽′𝑗1𝑗 −
∑︁
(𝑖,𝑗)

𝛾′𝑖𝑗(1𝑖 − 1𝑗)

we have
‖𝑦𝐵 + 𝑦′𝐵‖∞ ≤ 2𝑁/𝑛10(𝑘+1)−1 + 2𝑛1.5gap′ ≤ 𝑁/𝑛10𝑘+7.

Corollary 10.4.26. Let 𝑃 be the feasible region after running Cutting Plane on (10.1) with the
projected separation oracle. Then one of the following holds:

1. We found a BFS ℎ with ℎ𝐵 = 0.

2. The integral points of 𝑃 all lie on some hyperplane 𝑥𝑖 = 0, 𝑥𝑗 = 1 or 𝑥𝑖 = 𝑥𝑗.

3. Let 𝐻 be the collection of BFS’s ℎ used to construct our separating hyperplanes for 𝑃 . Then
there is a convex combination 𝑦 of 𝐻 such that for 𝑝 ∈ 𝐵1 ∪ · · · ∪𝐵𝑘, we have 𝑛4|𝑦𝑖| < upper(𝑝)
or lower(𝑝) < −𝑛4|𝑦𝑖| for all 𝑖.

Proof. As mentioned before, (1) happens if some separating hyperplane satisfies ℎ𝐵 = 0 when running
cutting plane on the non-negligible coordinates. We have (2) if some condition in Lemma 10.4.24 holds.
Otherwise, we claim 𝑦 =

∑︀
ℎ 𝜆ℎℎ +

∑︀
ℎ 𝜆

′
ℎℎ is a candidate for Case 3. 𝑦 is a convex combination of

BFS and by Lemma 10.4.25, for the big elements 𝑖 ∈ 𝐵 we have

|𝑦𝑖| ≤ 𝑁/𝑛10𝑘+6 ≤ 1

𝑛4
max{upper(𝑝),−lower(𝑝)}.

where the last inequality holds since for 𝑝 ∈ 𝐵1 ∪ · · · ∪𝐵𝑘, max{upper(𝑝),−lower(𝑝)} ≥ 𝑁/𝑛10𝑘.
On the other hand, for the small elements 𝑖 /∈ 𝐵, |𝑦𝑖| ≤ 𝑁/𝑛10(𝑘+1) ≤ 1

𝑛4 max{upper(𝑝),−lower(𝑝)}
as desired.

The gap is then smaller enough to add an arc for each 𝑝 ∈ 𝐵1 ∪ · · · ∪ 𝐵𝑘 by Lemmas 10.4.9 and
10.4.10. Therefore we can add a total of |𝐵1 ∪ · · · ∪𝐵𝑘|/2 ≥ 𝑏/4 arcs with roughly 𝑂(𝑘𝑏 log 𝑛) = ̃︀𝑂(𝑏)
iterations of Cutting Plane, each of which takes ̃︀𝑂(𝑛 · EO+ 𝑛2). That is, the amortized cost for each
arc is ̃︀𝑂(𝑛 · EO+ 𝑛2). We give a more formal time analysis in below but it should be somewhat clear
why we have the desired time complexity.

Lemma 10.4.27. Suppose there is a convex combination 𝑦 of 𝐻 such that for 𝑝 ∈ 𝐵1 ∪ · · · ∪𝐵𝑘, we
have 𝑛4|𝑦𝑖| < upper(𝑝) or lower(𝑝) < −𝑛4|𝑦𝑖| for all 𝑖. Then we can identify at least 𝑏/4 new valid
arcs.

Proof. We have |𝐻| = 𝑂(𝑛) since 𝐻 is the set of BFS’s used for the constraints of 𝑃 which has 𝑂(𝑛)
constraints. By Lemmas 10.4.9 and 10.4.10, for 𝑝 ∈ 𝐵1 ∪ · · · ∪𝐵𝑘 we can add a new valid arc (𝑝, 𝑞) or
(𝑞, 𝑝). However note that a new arc (𝑝1, 𝑝2) may added twice by both 𝑝1 and 𝑝2. Therefore the total
number of new arcs is only at least |𝐵1 ∪ · · · ∪𝐵𝑘|/2 ≥ 𝑏/4.
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10.4.4.4 Running Time

Not much changes to the previous runtime analysis are needed. To avoid repetition, various details
already present in the corresponding part of the last section are omitted. Recall 𝑘 ≤ log 𝑛, and of
course, 𝑏 ≤ 𝑛.

For each (roughly) 𝑂(𝑘𝑏 log 𝑛) iterations of Cutting Plane we either get 𝑥𝑖 = 0,𝑥𝑖 = 1,𝑥𝑖 = 𝑥𝑗
or 𝑏/4 𝑥𝑖 ≤ 𝑥𝑗 ’s. The former can happen at most 𝑛 times while in the latter case, the amortized
cost of each arc is 𝑂(𝑘 log 𝑛) iterations of Cutting Plane. In the worst case the overall number of
iterations required is ̃︀𝑂(𝑛2). Thus our algorithm has a runtime of ̃︀𝑂(𝑛3 ·EO+𝑛4) since each iteration
is ̃︀𝑂(𝑛 · EO+ 𝑛2) as shown below.

Theorem 10.4.28. Our algorithm runs in time 𝑂(𝑛3 log2 𝑛 · EO+ 𝑛4 log𝑂(1) 𝑛).

Proof. We use Corollary 10.4.26. First we note that Case 1 can actually be integrated into Case 3
since max{upper(𝑝),−lower(𝑝)} ≥ 𝑁/𝑛10𝑘 = 𝑛10𝑁/𝑛10(𝑘+1) ≥ ℎ𝑖 for 𝑖 /∈ 𝐵.

As we have argued in the beginning of the last section, Theorem 10.4.12 with 𝜏 = 𝑘 log𝑏 𝑛 implies
that the runtime for each phase is 𝑂(𝑏𝑛 log2 𝑛 ·EO+ 𝑏𝑛2 log𝑂(1) 𝑛). In each phase we either get 𝑥𝑖 = 0,
𝑥𝑖 = 1, 𝑥𝑖 = 𝑥𝑗 (Case 2) or 𝑏/4 𝑥𝑖 ≤ 𝑥𝑗 ’s (Case 3), the latter of which follows from Corollary 10.4.26
and Lemma 10.4.27.

Case 2 can only happen 𝑛 times. Thus the total cost is at most 𝑂(𝑛3 log2 𝑛 · EO + 𝑛4 log𝑂(1) 𝑛).
The overhead cost is also small. Similar to before, given 𝐹 and 𝐹 ′ represented as a nonnegative
combination of facets, we can check for the conditions in Lemma 10.4.24 in 𝑂(𝑛) time as there are
only this many facets of 𝑃 . This settles Case 2.

For case 3 the amortized cost for each arc is 𝑂(𝑛 log2 𝑛 · EO+ 𝑛2 log𝑂(1) 𝑛). Our desired runtime
follows since there are only 𝑂(𝑛2) arcs to add. Unlike Case 2 some extra care is needed to handle the
overhead cost. The time needed to deduce a new arc (applying Lemmas 10.4.9 and 10.4.10 to 𝑦 and
𝑝 ∈ 𝐵1 ∪ · · · ∪ 𝐵𝑘) is still 𝑂(𝑛 · EO+ 𝑛2). But as soon as we get a new arc, we must update 𝐴 to be
its transitive closure so that it is still complete. Given 𝐴 complete and a new arc (𝑝, 𝑞) /∈ 𝐴, we can
simply add the arcs from the ancestors of 𝑝 to 𝑞 and from 𝑝 to the descendants of 𝑞. There are at
most 𝑂(𝑛) arcs to add so this takes time 𝑂(𝑛2) per arc, which is okay.

10.5 Discussion and Comparison with Previous Algorithms

We compare and contrast our algorithms with the previous ones. We focus primarily on strongly
polynomial time algorithms.

Convex combination of BFS’s

All of the previous algorithms maintain a convex combination of BFS’s and iteratively improve
over it to get a better primal solution. In particular, the new BFS’s used are typically obtained by
making local changes to existing ones. Our algorithms, on the other hand, considers the geometry of
the existing BFS’s. The weighted “influences”3 then aggregately govern the choice of the next BFS.
We believe that this is the main driving force for the speedup of our algorithms.

Scaling schemes

Many algorithms for combinatorial problems are explicitly or implicitly scaling a potential function
or a parameter. In this chapter, our algorithms in some sense aim to minimize the volume of the
feasible region. Scaling schemes for different potential functions and parameters were also designed in
previous works [121, 118, 125, 119]. All of these functions and parameters have an explict form. On
the contrary, our potential function is somewhat unusual in the sense that it has no closed form.

3In the terminology of Chapter 8, these weighted influences are the leverage scores.
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Deducing new constraints

As mentioned in the main text, our algorithms share the same skeleton and tools for deducing
new constraints with [121, 118, 125, 119]. Nevertheless, there are differences in the way these tools
are employed. Our algorithms proceed by invoking them in a geometric manner, whereas previous
algorithms were mostly combinatorial.

Big elements and bucketing

Our bucketing idea has roots in Iwata-Orlin’s algorithm [125] but is much more sophisticated. For
instance, it is sufficient for their algorithm to consider only big elements, i.e. upper(𝑖) ≥ 𝑁/𝑛𝑂(1).
Our algorithm, on the other hand, must carefully group elements by the size of both upper(𝑖) and
lower(𝑖). The speedup appears impossible without these new ideas. We do however note that it
is unfair to expect such a sophisticated scheme in Iwata-Orlin’s algorithm as it would not lead to a
speedup. In other words, their method is fully sufficient for their purposes, and the simplicity in their
case is a virtue rather than a shortcoming.

10.5.1 Open Problems

One natural open problem is improving our weakly polynomial algorithm to 𝑂(𝑛2 log𝑀 · EO +
𝑛3 log𝑂(1) 𝑛 · log𝑀) time. Our application of center of mass to SFM demonstrates that it should
be possible.

For strongly polynomial algorithms, the existential result of Theorem 10.4.1 shows that SFM can
be solved with 𝑂(𝑛3 log 𝑛 · EO) oracle calls. Unfortunately, our algorithm incurs an overhead of log 𝑛
as there can be as many as log 𝑛 buckets each time. One may try to remove this log 𝑛 overhead by
designing a better bucketing scheme or arguing that more arcs can be added.

The other log 𝑛 overhead seem much trickier to remove. Our method currently makes crucial use
of the tools developed by [121], where the log 𝑛 factors in the runtime seem inevitable. We suspect
that our algorithm may have an analogue similar to [231, 216], which do not carry any log 𝑛 overhead
in the running time.

Perhaps an even more interesting open problem is whether our algorithm is optimal (up to polylog-
arithmic factors). There are grounds for optimism. So far the best way of certifying the optimality of a
given solution 𝑆 ⊆ 𝑉 is to employ duality and express some optimal solution to the base polyhedron as
a convex combination of 𝑛+1 BFS’s. This already takes 𝑛2 oracle calls as each BFS requires 𝑛. Thus
one would expect the optimal number of oracle calls needed for SFM to be at least 𝑛2. Our bound is
not too far off from it, and anything strictly between 𝑛2 and 𝑛3 seems instinctively unnatural.
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Chapter 11

First Order Method vs Cutting Plane Method

11.1 Introduction

Let 𝑓 : R𝑛 → R be a 𝛽-smooth and 𝛼-strongly convex function. Thus, for any 𝑥, 𝑦 ∈ R𝑛, we have

𝑓(𝑥) +∇𝑓(𝑥)⊤(𝑦 − 𝑥) + 𝛼

2
|𝑦 − 𝑥|2 ≤ 𝑓(𝑦) ≤ 𝑓(𝑥) +∇𝑓(𝑥)⊤(𝑦 − 𝑥) + 𝛽

2
|𝑦 − 𝑥|2.

Let 𝜅 = 𝛽/𝛼 be its condition number. It is a one line calculation to verify that a step of gradient
descent on 𝑓 will decrease (multiplicatively) the squared distance to the optimum by 1− 1/𝜅.

In Section 11.3, we propose a new method, which can be viewed as some combination of gradient
descent and the ellipsoid method, for which the squared distance to the optimum decreases at a rate of
(1− 1/

√
𝜅) (and each iteration requires one gradient evaluation and two line-searches). This matches

the optimal rate of convergence among the class of first-order methods, [203, 206].

In Section 11.4, we generalize this idea and show how to automatically combine different optimiza-
tion algorithms. In particular, we show how to combine gradient descent and cutting plane methods
to get an algorithm with convergence rate min(1 − 1/𝜅, 1 − 1/𝑂(𝑛)). This is the first algorithm we
know that can naturally achieve both 𝜅 dependence and 𝑛 dependence guarantee.

In Section 11.5, we provide some numerical evidence that the new methods can be superior to
Nesterov’s accelerated gradient descent.

11.1.1 Preliminaries

We write | · | for the Euclidean norm in R𝑛, and B(𝑥, 𝑟2) := {𝑦 ∈ R𝑛 : |𝑦 − 𝑥|2 ≤ 𝑟2} (note that the
second argument is the radius squared). We define the map line_search : R𝑛 × R𝑛 → R𝑛 by

line_search(𝑥, 𝑦) = argmin
𝑡∈R

𝑓(𝑥+ 𝑡(𝑦 − 𝑥)),

and we denote
𝑥+ = 𝑥− 1

𝛽
∇𝑓(𝑥), and 𝑥++ = 𝑥− 1

𝛼
∇𝑓(𝑥).

Recall that by strong convexity one has

∀𝑦 ∈ R𝑛, 𝑓(𝑦) ≥ 𝑓(𝑥) +∇𝑓(𝑥)⊤(𝑦 − 𝑥) + 𝛼

2
|𝑦 − 𝑥|2,

which implies in particular:

𝑥* ∈ B

(︂
𝑥++,

|∇𝑓(𝑥)|2

𝛼2
− 2

𝛼
(𝑓(𝑥)− 𝑓(𝑥*))

)︂
.
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Furthermore recall that by smoothness one has 𝑓(𝑥+) ≤ 𝑓(𝑥)− 1
2𝛽 |∇𝑓(𝑥)|

2 which allows to shrink the

above ball by a factor of 1− 1
𝜅 and obtain the following:

𝑥* ∈ B

(︂
𝑥++,

|∇𝑓(𝑥)|2

𝛼2

(︂
1− 1

𝜅

)︂
− 2

𝛼
(𝑓(𝑥+)− 𝑓(𝑥*))

)︂
(11.1)

11.2 Intuition

|𝑔|

√
1− 𝜀 |𝑔|1

√
1− 𝜀

Figure 11-1: One ball shrinks.

√
1− 𝜀 |𝑔|

√︀
1− 𝜀|𝑔|2

√︀
1−

√
𝜀

Figure 11-2: Two balls shrink.

The left diagram shows the intersection shrinks at the same rate if only one of the ball shrinks; the right diagram
shows the intersection shrinks much faster if two balls shrinks at the same absolute amount.

In Section 11.2.1 we describe a geometric alternative to gradient descent (with the same convergence
rate) which gives the core of our new optimal method. Then in Section 11.2.2 we explain why one can
expect to accelerate this geometric algorithm.

11.2.1 A Suboptimal Algorithm

Assume that we are given a guarantee 𝑅0 > 0 on the distance from some point 𝑥0 to the optimum,
that is 𝑥* ∈ B(𝑥0, 𝑅

2
0). Combining this original enclosing ball for 𝑥* and the one obtained by (11.1)

(with 𝑓(𝑥*) ≤ 𝑓(𝑥+0 )) one obtains

𝑥* ∈ B(𝑥0, 𝑅
2
0) ∩ B

(︂
𝑥0 −

1

𝛼
∇𝑓(𝑥0),

|∇𝑓(𝑥0)|2

𝛼2

(︂
1− 1

𝜅

)︂)︂
.

If |∇𝑓(𝑥0)|2
𝛼2 ≤ 𝑅2

0(1− 1
𝜅) then the second ball already shrinks by a factor of (1− 1

𝜅). In the other case

when |∇𝑓(𝑥0)|2
𝛼2 > 𝑅2

0(1 − 1
𝜅), the center of the two balls are far apart and therefore there is a much

smaller ball containing the intersection of two balls. Formally, it is an easy calculation to see that for
any 𝑔 ∈ R𝑛, 𝜀 ∈ (0, 1), there exists 𝑥 ∈ R𝑛 such that

B(0, 1) ∩ B(𝑔, |𝑔|2(1− 𝜀)) ⊂ B(𝑥, 1− 𝜀). (Figure 11-1)

In particular the two above display implies that there exists 𝑥1 ∈ R𝑛 such that

𝑥* ∈ B

(︂
𝑥1, 𝑅

2
0

(︂
1− 1

𝜅

)︂)︂
.
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Denote by 𝑇 the map from 𝑥0 to 𝑥1 defined implicitely above, and let (𝑥𝑘) be defined by 𝑥𝑘+1 = 𝑇 (𝑥𝑘).
Then we just proved

|𝑥* − 𝑥𝑘|2 ≤
(︂
1− 1

𝜅

)︂𝑘
𝑅2

0.

In other words, after 2𝜅 log(𝑅0/𝜀) iterations where each iteration cost one call to the gradient oracle)
one obtains a point 𝜀-close to the minimizer of 𝑓 .

11.2.2 Why One Can Accelerate

Assume now that we are give a guarantee 𝑅0 > 0 such that 𝑥* ∈ B(𝑥0, 𝑅
2
0 − 2

𝛼(𝑓(𝑦) − 𝑓(𝑥*)))
where 𝑓(𝑥0) ≤ 𝑓(𝑦) (say by choosing 𝑦 = 𝑥0). Using the fact that 𝑓(𝑥+0 ) ≤ 𝑓(𝑥0) − 1

2𝛽 |∇𝑓(𝑥0)|
2 ≤

𝑓(𝑦)− 1
2𝛼𝜅 |∇𝑓(𝑥0)|

2 , we obtain that

𝑥* ∈ B

(︂
𝑥0, 𝑅

2
0 −
|∇𝑓(𝑥0)|2

𝛼2𝜅
− 2

𝛼

(︀
𝑓(𝑥+0 )− 𝑓(𝑥

*)
)︀)︂

which, intuitively, allows us the shrink the radius squared from 𝑅2
0 to 𝑅2

0 −
|∇𝑓(𝑥0)|2
𝛼2𝜅

using the local
information at 𝑥0. From (11.1), we have

𝑥* ∈ B

(︂
𝑥++
0 ,
|∇𝑓(𝑥0)|2

𝛼2

(︂
1− 1

𝜅

)︂
− 2

𝛼

(︀
𝑓(𝑥+0 )− 𝑓(𝑥

*)
)︀)︂

.

Now, intersecting the above two shrunk balls and using Lemma 11.3.2 (see below and also see
Figure 11-2), we obtain that there is an 𝑥′1 such that

𝑥* ∈ B

(︂
𝑥′1, 𝑅

2
0

(︂
1− 1√

𝜅

)︂
− 2

𝛼

(︀
𝑓(𝑥+0 )− 𝑓(𝑥

*)
)︀)︂

giving us an acceleration in shrinking of the radius. To carry the argument for the next iteration, we
would have required that 𝑓(𝑥′1) ≤ 𝑓(𝑥

+
0 ) but it may not hold. Thus, we choose 𝑥1 by a line search

𝑥1 = line_search
(︀
𝑥′1, 𝑥

+
0

)︀
which ensures that 𝑓(𝑥1) ≤ 𝑓(𝑥+0 ). To remedy the fact that the ball for the next iteration is centered
at 𝑥′1 and not 𝑥1, we observe that the line search also ensures that ∇𝑓(𝑥1) is perpendicular to the line
going through 𝑥1 and 𝑥′1. This geometric fact is enough for the algorithm to work at the next iteration
as well. In the next section we describe precisely our proposed algorithm which is based on the above
insights.

11.3 An Optimal Algorithm

Let 𝑥0 ∈ R𝑛, 𝑐0 = 𝑥++
0 , and 𝑅2

0 =
(︀
1− 1

𝜅

)︀ |∇𝑓(𝑥0)|2
𝛼2 . For any 𝑘 ≥ 0 let

𝑥𝑘+1 = line_search
(︀
𝑐𝑘, 𝑥

+
𝑘

)︀
,

and 𝑐𝑘+1 (respectively 𝑅2
𝑘+1) be the center (respectively the squared radius) of the ball given by (the

proof of) Lemma 11.3.2 which contains

B

(︂
𝑐𝑘, 𝑅

2
𝑘 −
|∇𝑓(𝑥𝑘+1)|2

𝛼2𝜅

)︂
∩ B

(︂
𝑥++
𝑘+1,

|∇𝑓(𝑥𝑘+1)|2

𝛼2

(︂
1− 1

𝜅

)︂)︂
.
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Algorithm 27: Minimum Enclosing Ball of the Intersection to Two Balls
Input: a ball centered at 𝑥𝐴 with radius 𝑅𝐴 and a ball centered at 𝑥𝐵 with radius 𝑅𝐵.
if |𝑥𝐴 − 𝑥𝐵|2 ≥

⃒⃒
𝑅2
𝐴 −𝑅2

𝐵

⃒⃒
then

𝑐 = 1
2 (𝑥𝐴 + 𝑥𝐵)−

𝑅2
𝐴−𝑅2

𝐵

2|𝑥𝐴−𝑥𝐵 |2 (𝑥𝐴 −𝑋𝐵).

𝑅2 = 𝑅2
𝐵 −

(|𝑥𝐴−𝑥𝐵 |2+𝑅2
𝐵−𝑅2

𝐴)
2

4|𝑥𝐴−𝑥𝐵 |2 .

else if |𝑥𝐴 − 𝑥𝐵|2 < 𝑅2
𝐴 −𝑅2

𝐵 then
𝑐 = 𝑥𝐵. 𝑅 = 𝑅𝐵.

else
𝑐 = 𝑥𝐴. 𝑅 = 𝑅𝐴.

end

Output: a ball centered at 𝑐 with radius 𝑅.

Algorithm 28: Geometric Descent Method (GeoD)
Input: parameters 𝛼 and initial points 𝑥0.
𝑥+0 = line_search(𝑥0, 𝑥0 −∇𝑓(𝑥0)).
𝑐0 = 𝑥0 − 𝛼−1∇𝑓(𝑥0).
𝑅2

0 = |∇𝑓(𝑥0)|2
𝛼2 − 2

𝛼

(︀
𝑓(𝑥0)− 𝑓(𝑥+0 )

)︀
.

for 𝑖← 1, 2, · · · do
Combining Step:

𝑥𝑘 = line_search(𝑥+𝑘−1, 𝑐𝑘−1).
Gradient Step:

𝑥+𝑘 = line_search(𝑥𝑘, 𝑥𝑘 −∇𝑓(𝑥𝑘)).
Ellipsoid Step:

𝑥𝐴 = 𝑥𝑘 − 𝛼−1∇𝑓(𝑥𝑘). 𝑅2
𝐴 = |∇𝑓(𝑥𝑘)|2

𝛼2 − 2
𝛼

(︀
𝑓(𝑥𝑘)− 𝑓(𝑥+𝑘 )

)︀
.

𝑥𝐵 = 𝑐𝑘−1. 𝑅2
𝐵 = 𝑅2

𝑘−1 −
2
𝛼

(︀
𝑓(𝑥+𝑘−1)− 𝑓(𝑥

+
𝑘 )
)︀
.

Let 𝐵(𝑐𝑘, 𝑅
2
𝑘) is the minimum enclosing ball of 𝐵(𝑥𝐴, 𝑅

2
𝐴) ∩𝐵(𝑥𝐵, 𝑅

2
𝐵).

end

Output: 𝑥𝑇 .

The formulas for 𝑐𝑘+1 and 𝑅2
𝑘+1 are given in Algorithm 27.

Theorem 11.3.1. For any 𝑘 ≥ 0, one has 𝑥* ∈ B(𝑐𝑘, 𝑅
2
𝑘), 𝑅

2
𝑘+1 ≤

(︁
1− 1√

𝜅

)︁
𝑅2
𝑘, and thus

|𝑥* − 𝑐𝑘|2 ≤
(︂
1− 1√

𝜅

)︂𝑘
𝑅2

0.

Proof. We will prove a stronger claim by induction that for each 𝑘 ≥ 0, one has

𝑥* ∈ B

(︂
𝑐𝑘, 𝑅

2
𝑘 −

2

𝛼

(︀
𝑓(𝑥+𝑘 )− 𝑓(𝑥

*)
)︀)︂

.

The case 𝑘 = 0 follows immediately by (11.1). Let us assume that the above display is true for some
𝑘 ≥ 0. Then using 𝑓(𝑥*) ≤ 𝑓(𝑥+𝑘+1) ≤ 𝑓(𝑥𝑘+1)− 1

2𝛽 |∇𝑓(𝑥𝑘+1)|2 ≤ 𝑓(𝑥+𝑘 )−
1
2𝛽 |∇𝑓(𝑥𝑘+1)|2, one gets

𝑥* ∈ B

(︂
𝑐𝑘, 𝑅

2
𝑘 −
|∇𝑓(𝑥𝑘+1)|2

𝛼2𝜅
− 2

𝛼

(︀
𝑓(𝑥+𝑘+1)− 𝑓(𝑥

*)
)︀)︂

.
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Furthermore by (11.1) one also has

B

(︂
𝑥++
𝑘+1,

|∇𝑓(𝑥𝑘+1)|2

𝛼2

(︂
1− 1

𝜅

)︂
− 2

𝛼

(︀
𝑓(𝑥+𝑘+1)− 𝑓(𝑥

*)
)︀)︂

.

Thus it only remains to observe that the squared radius of the ball given by Lemma 11.3.2 which

encloses the intersection of the two above balls is smaller than
(︁
1− 1√

𝜅

)︁
𝑅2
𝑘 −

2
𝛼(𝑓(𝑥

+
𝑘+1) − 𝑓(𝑥

*)).

We apply Lemma 11.3.2 after moving 𝑐𝑘 to the origin and scaling distances by 𝑅𝑘. We set 𝜀 = 1
𝜅 ,

𝑔 =
|∇𝑓(𝑥𝑘+1)|

𝛼 , 𝛿 = 2
𝛼

(︀
𝑓(𝑥+𝑘+1)− 𝑓(𝑥

*)
)︀
and 𝑎 = 𝑥++

𝑘+1 − 𝑐𝑘. The line search step of the algorithm
implies that ∇𝑓(𝑥𝑘+1)

⊤(𝑥𝑘+1 − 𝑐𝑘) = 0 and therefore, |𝑎| = |𝑥++
𝑘+1 − 𝑐𝑘| ≥ |∇𝑓(𝑥𝑘+1)|/𝛼 = 𝑔 and

Lemma 11.3.2 applies to give the result.

Lemma 11.3.2. Let 𝑎 ∈ R𝑛 and 𝜀 ∈ (0, 1), 𝑔 ∈ R+. Assume that |𝑎| ≥ 𝑔. Then there exists 𝑐 ∈ R𝑛
such that for any 𝛿 ≥ 0,

B(0, 1− 𝜀𝑔2 − 𝛿) ∩ B(𝑎, 𝑔2(1− 𝜀)− 𝛿) ⊂ B
(︀
𝑐, 1−

√
𝜀− 𝛿

)︀
.

Proof. First observe that if 𝑔2 ≤ 1/2 then one can take 𝑐 = 𝑎 since 1
2(1−𝜀) ≤ 1−

√
𝜀. Thus we assume

now that 𝑔2 > 1/2, and note that we can also clearly assume that 𝑛 = 2. Consider the segment joining
the two points at the intersection of the two balls under consideration. We denote 𝑐 for the point at
the intersection of this segment and [0, 𝑎], and 𝑥 = |𝑐| (that is 𝑐 = 𝑥 𝑎

|𝑎|). A simple picture reveals that
𝑥 satisfies

1− 𝜀𝑔2 − 𝛿 − 𝑥2 = 𝑔2(1− 𝜀)− 𝛿 − (|𝑎| − 𝑥)2 ⇔ 𝑥 =
1 + |𝑎|2 − 𝑔2

2|𝑎|
.

When 𝑥 ≤ |𝑎|, neither of the balls covers more than half of the other ball and hence the intersection

of the two balls is contained in the ball B
(︁
𝑥 𝑎
|𝑎| , 1− 𝜀𝑔

2 − 𝛿 − 𝑥2
)︁
(See figure 11-2). Thus it only

remains to show that 𝑥 ≤ |𝑎| and that 1− 𝜀𝑔2− 𝛿−𝑥2 ≤ 1−
√
𝜀− 𝛿. The first inequality is equivalent

to |𝑎|2 + 𝑔2 ≥ 1 which follows from |𝑎|2 ≥ 𝑔2 ≥ 1/2. The second inequality to prove can be written as

𝜀𝑔2 +
(1 + |𝑎|2 − 𝑔2)2

4|𝑎|2
≥
√
𝜀,

which is straightforward to verify (recall that |𝑎|2 ≥ 𝑔2 ≥ 1/2).

Algorithm 28 we give is more agressive than Theorem 11.3.1, for instance, using line search instead
of fixed step size. The correctness of this version follows from a similar proof as Theorem 11.3.1.

This algorithm does not require the smoothness parameter and the number of iterations; and it
guarantees the function value is strictly decreasing. They are useful properties for machine learning
applications because the only required parameter 𝛼 is usually given. Furthermore, we believe that the
integration of zeroth and first order information about the function makes our new method particularly
well-suited in practice.

11.4 Politician

In this section, we discuss how to in general combine different optimization algorithms. In standard
black-box convex optimization [201, 206, 40] first-order methods interact with an oracle: given a query
point 𝑥, the oracle reports the value and gradient of the underlying objective function 𝑓 at 𝑥. Here, we
propose to replace the oracle by a politician. Instead of answering the original query 𝑥 the politician
changes the question and answers a new query 𝑦 which is guaranteed to be better than the original
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query 𝑥 in the sense that 𝑓(𝑦) ≤ 𝑓(𝑥). The newly selected query 𝑦 also depends on the history of
queries that were made to the politician. Formally we introduce the following definition (for sake of
simplicty we write ∇𝑓(𝑥) for either a gradient or a subgradient of 𝑓 at 𝑥).

Definition 11.4.1. Let 𝒳 ⊂ R𝑛 and 𝑓 : 𝒳 → R. A politician Φ for 𝑓 is a mapping from 𝒳 ×
∪∞𝑘=0(𝒳 ×R×R𝑛)𝑘 to 𝒳 such that for any 𝑘 ≥ 0, 𝑥 ∈ 𝒳 , ℎ ∈ (𝒳 ×R×R𝑛)𝑘 one has 𝑓(Φ(𝑥, ℎ)) ≤ 𝑓(𝑥).
Furthermore when queried at 𝑥 with history ℎ a politician for 𝑓 also output 𝑓(Φ(𝑥, ℎ)) and∇𝑓(Φ(𝑥, ℎ))
(in order to not overload notation we do not include these outputs in the range of Φ).

Let us clarify the interaction of a first-order method with a politician. Note that we refer to the
couple (first-order method, politician) as the algorithm. Let 𝑀 : ∪∞𝑘=0(𝒳 × R× R𝑛)𝑘 → 𝒳 be a first-
order method and Φ a politician for some function 𝑓 : 𝒳 → R. The course of the algorithm (𝑀,Φ)
then goes as follows: at iteration 𝑘 + 1 one first calculates the method’s query point 𝑥𝑘+1 = 𝑀(ℎ𝑘)
(with ℎ0 = ∅), then one calculates the politician’s new query point 𝑦𝑘+1 = Φ(𝑥𝑘+1, ℎ𝑘) and the first
order information at this point (𝑓(𝑦𝑘+1),∇𝑓(𝑦𝑘+1)), and finally one updates the history with this new
information ℎ𝑘+1 = (ℎ𝑘, (𝑦𝑘+1, 𝑓(𝑦𝑘+1),∇𝑓(𝑦𝑘+1))). Note that a standard oracle simply corresponds
to a politician 𝒪 for 𝑓 such that 𝒪(𝑥, ℎ) = (𝑥, 𝑓(𝑥),∇𝑓(𝑥)) (in particular the algorithm (𝑀,𝒪) is the
usual algorithm corresponding to the first-order method 𝑀).

The philosophy of the above definition is that it gives in some sense an automatic way to combine
different optimization algorithms. Say for example that we wish to combine the ellipsoid method with
gradient descent. One way to do so is to design an “ellipsoidal politician”: the politician keeps track
of a feasible ellipsoidal region based on the previously computed gradients, and when asked with the
query 𝑥 the politician chooses as a new query 𝑦 the result of a line-search on the line between 𝑥 and
the center of current ellipsoid. Gradient descent with this ellipsoidal politician would then replace
the step 𝑥 ← 𝑥 − 𝜂∇𝑓(𝑥) by 𝑥 ← 𝑦 − 𝜂∇𝑓(𝑦). The hope is that in practice such a combination
would integrate the fast incremental progress of gradient descent with the geometrical progress of the
ellipsoid method.

In this section, we focus on unconstrained convex optimization. We are particularly interested in
situations where calculating a (sub)gradient has superlinear complexity (i.e., ≫ 𝑛) such as in logistic
regression and semidefinite programming. In such cases it is natural to try to make the most out of the
computed gradients by incorporating geometric reasoning (such as in the ellipsoid method). We do so
by introducing the geometric politician (Section 11.4.2), which is based on a combination of the ideas
in previous section with standard cutting plane machinery (through the notion of a “center” of a set,
see Section 11.4.3). For a given first order method 𝑀 , we denote by 𝑀+ the algorithm obtained by
running 𝑀 with the geometric politician. We demonstrate empirically (Section 11.5) the effectiveness
of the geometric politician on various standard first-order methods for convex optimization (gradient
descent, Nesterov’s accelerated gradient descent, non-linear conjugate gradient, BFGS). In particular
we show that BFGS+ is a surprisingly robust and parameter-free algorithm with state of the art
performance across a wide range of problems (both smooth and non-smooth).

11.4.1 Affine Invariant Politician

As mentioned above we assume that the complexity of computing the map 𝑥 ↦→ ∇𝑓(𝑥) is superlinear.
This implies that we can afford to have a politician such that the complexity of computing the map
(𝑥, ℎ) ↦→ Φ(𝑥, ℎ) is 𝑂(𝑛 × poly(𝑘)) (we think of the number of iterations 𝑘 as typically much smaller
than the dimension 𝑛). We show in this section that this condition is (essentially) automatically
satisfied as long as the politician is affine invariant in the following sense (we use a slight abuse of
language and refer to a map 𝑓 ↦→ Φ𝑓 , where Φ𝑓 is a politician for 𝑓 , as a politician):
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Definition 11.4.2. A politician 𝑓 ↦→ Φ𝑓 is called affine invariant if for any function 𝑓 and any affine
map 𝑇 : R𝑚 → R𝑛 such that 𝑇 (𝑥) = 𝑧+𝐿𝑥 for some matrix 𝐿, 𝑘 ≥ 0, 𝑥 ∈ R𝑚, (𝑦𝑖, 𝑣𝑖, 𝑔𝑖) ∈ R𝑚×R×R𝑛,
one has

𝑇 (Φ𝑓∘𝑇 (𝑥, (𝑦𝑖, 𝑣𝑖, 𝐿
⊤𝑔𝑖)𝑖∈[𝑘])) = Φ𝑓 (𝑇 (𝑥), (𝑇 (𝑦𝑖), 𝑣𝑖, 𝑔𝑖)𝑖∈[𝑘]).

We say that an affine invariant politician has cost 𝜓 : N → N if for any 𝑓 : R𝑘 → R the map
(𝑥, ℎ) ∈ R𝑘 × (R𝑘 × R× R𝑘)𝑘 ↦→ Φ𝑓 (𝑥, ℎ) can be computed in time 𝜓(𝑘).

Proposition 11.4.3. Let Φ be an affine invariant politician with cost 𝜓. Then for any 𝑓 : R𝑛 → R,
(𝑦𝑖, 𝑣𝑖, 𝑔𝑖) ∈ R𝑛×R×R𝑛, 𝑖 ∈ [𝑘] and 𝑥, 𝑦𝑖 ∈ 𝑦1+Span(𝑔1, · · · , 𝑔𝑘) one can compute Φ𝑓 (𝑥, (𝑦𝑖, 𝑣𝑖, 𝑔𝑖)𝑖∈[𝑘]) ∈
R𝑛 in time 𝜓(𝑘) +𝑂(𝑛𝑘2).

Proof. Let 𝐺 be the 𝑛 × 𝑘 matrix with 𝑖𝑡ℎ column given by 𝑔𝑖. We consider the 𝑄𝑅 decomposition
of 𝐺 which can be computed in time 𝑂(𝑛𝑘2), that is 𝑄 is an 𝑛 × 𝑘 matrix and 𝑅 a 𝑘 × 𝑘 matrix
such that 𝐺 = 𝑄𝑅 and 𝑄⊤𝑄 = I𝑘. Let 𝑇 be the affine map defined by 𝑇 = 𝑦1 +𝑄. Note that since
𝑥 ∈ 𝑦1 +Span(𝑔1, · · · , 𝑔𝑘) one has 𝑥 = 𝑇 (𝑄⊤(𝑥− 𝑦1)) (and similarly for 𝑦𝑖). Thus by affine invariance
one has

Φ𝑓 (𝑥, (𝑦𝑖, 𝑣𝑖, 𝑔𝑖)) = Φ𝑓 (𝑇 (𝑄
⊤(𝑥− 𝑦1)), (𝑇 (𝑄⊤(𝑦𝑖 − 𝑦1)), 𝑣𝑖, 𝑔𝑖))

= 𝑦1 +𝑄Φ𝑓∘𝑇 (𝑄
⊤(𝑥− 𝑦1), (𝑄⊤(𝑦𝑖 − 𝑦1), 𝑣𝑖, 𝑅𝑖)),

where 𝑅𝑖 is the 𝑖𝑡ℎ column of 𝑅. Furthermore by definition of the cost 𝜓 and since 𝑓 ∘ 𝑇 is defined
on R𝑘 we see that this last quantity can be computed in time 𝜓(𝑘) + 𝑂(𝑛𝑘2), thus concluding the
proof.

The above proposition shows that with an affine invariant politician and a first order method 𝑀
verifying for any (𝑦𝑖, 𝑣𝑖, 𝑔𝑖)𝑖∈[𝑘] ∈ (R𝑛 × R× R𝑛)𝑘,

𝑀((𝑦𝑖, 𝑣𝑖, 𝑔𝑖)𝑖∈[𝑘]) ∈ 𝑦1 + Span(𝑦1, · · · , 𝑦𝑘, 𝑔1, · · · , 𝑔𝑘),
one can run 𝑘 steps of the corresponding algorithm in time 𝑂(𝑛𝑘2 + 𝑘𝜓(𝑘)) plus the time to compute
the 𝑘 function values and gradients of the underlying function 𝑓 to be optimized. Note that one gets
a time of 𝑂(𝑛𝑘2) instead of 𝑂(𝑛𝑘3) as one can store the 𝑄𝑅 decomposition from one step to the next,
and updating the decomposition only cost 𝑂(𝑛𝑘).

11.4.2 Geometric Politician

We describe in this section the geometric politician which is based on ideas developed in Section 11.3.
A key observation in that Section is that if 𝑓 is a 𝛼-strongly convex function minimized at 𝑥* then
one has for any 𝑥, ⃦⃦⃦⃦

𝑥* − 𝑥− 1

𝛼
∇𝑓(𝑥)

⃦⃦⃦⃦2
≤ ‖∇𝑓(𝑥)‖

2

𝛼2
− 2

𝛼
(𝑓(𝑥)− 𝑓(𝑥*)) .

This motivates the following definition:

B(𝑥, 𝛼, fval) :=

{︃
𝑧 ∈ R𝑛 :

⃦⃦⃦⃦
𝑧 − 𝑥− 1

𝛼
∇𝑓(𝑥)

⃦⃦⃦⃦2
≤ ‖∇𝑓(𝑥)‖

2

𝛼2
− 2

𝛼
(𝑓(𝑥)− fval)

}︃
.

In particular given the first order information at 𝑦1, · · · , 𝑦𝑘 one knows that the optimum 𝑥* lies in the
region 𝑅𝑘 ⊂ R𝑛 defined by

𝑅𝑘 =
⋂︁
𝑖∈[𝑘]

𝐵(𝑦𝑖, 𝛼, fval) where fval = min
𝑖∈[𝑘]

𝑓(𝑦𝑖). (11.2)
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Algorithm 29: Geometric Politician
Parameter: An upper bound on the strong convexity parameter 𝛼. (Can be +∞.)
Input: Query 𝑥, past queries and the corresponding first order information
(𝑦𝑖, 𝑓(𝑦𝑖),∇𝑓(𝑦𝑖))𝑖∈[𝑘].
Let fval = min𝑖∈[𝑘] 𝑓(𝑦𝑖) and the feasible region 𝑅𝑘(𝛼) =

⋂︀
𝑖∈[𝑘]B(𝑦𝑖, 𝛼, fval).

if 𝑅𝑘(𝛼) = ∅ then
Let 𝛼 be the largest number such that 𝑅𝑘(𝛼) ̸= ∅.
𝛼← 𝛼/4.

end

Let 𝑦𝑘+1 = argmin𝑦∈{𝑡𝑥+(1−𝑡)𝑐(𝑅𝑘(𝛼)),𝑡∈R} 𝑓(𝑦)
where 𝑐(𝑅𝑘(𝛼)) is the volumetric center of 𝑅𝑘(𝛼) (see Section 11.4.3).
Output: 𝑦𝑘+1, 𝑓(𝑦𝑘+1) and ∇𝑓(𝑦𝑘+1).

Now suppose that given this first order information at 𝑦1, · · · , 𝑦𝑘 the first order method asks to query
𝑥. How should we modify this query in order to take into account the geometric information that
𝑥* ∈ 𝑅𝑘? First observe that for any 𝑧, B(𝑧, 𝛼, fval) is contained in a halfspace that has 𝑧 on its
boundary (in the limiting case 𝛼→ 0 the set B(𝑧, 𝛼, 𝑓(𝑧)) is exactly a halfspace). In particular if the
next query point 𝑦𝑘+1 is the center of gravity of 𝑅𝑘 then we have that the volume of 𝑅𝑘+1 is at most
1− 1/𝑒 times the volume of 𝑅𝑘 (see [111]), thus leading to an exponential convergence rate. However
the region 𝑅𝑘 can be very large initially, and the center of gravity might have a large function value
and gradient, which means that 𝑅𝑘 would be intersected with a large sphere (possibly so large that it
is close to a halfspace). On the other hand the first order method recommends to query 𝑥, which we
can think of as a local improvement of 𝑦𝑘, which should lead to a much smaller sphere. The issue is
that the position of this sphere might be such that the intersection with 𝑅𝑘 is almost as large as the
sphere itself. In order to balance between the geometric and function value/gradient considerations we
propose for the new query to do a line search between the center of 𝑅𝑘 and the recommended query
𝑥. The geometric politician follows this recipe with two important modifications: (i) there are many
choices of centers that would guarantee an exponential convergence rate while being much easier to
compute than the center of gravity, and we choose here to consider the volumetric center, see Section
11.4.3 for the definition and more details about this notion; (ii) we use a simple heuristic to adapt
online the strong convexity parameter 𝛼, namely we start with some large value for 𝛼 and if it happens
that the feasible region 𝑅𝑘 is empty then we know that 𝛼 was too large, in which case we reduce it.
We can now describe formally the geometric politician, see Algorithm 29. Importantly one can verify
that the geometric politician is affine invariant and thus can be implemented efficiently (see the proof
of Proposition 11.4.3).

11.4.3 Volumetric Center

The volumetric barrier for a polytope was introduced in [253] to construct an algorithm with both the
oracle complexity of the center of gravity method and the computational complexity of the ellipsoid
method (see [Section 2.3, [40]] for more details and Chapter 8 for recent advances on this construction).
Recalling that the standard logarithmic barrier 𝐹𝑃 for the polytope 𝑃 = {𝑥 ∈ R𝑛 : 𝑎⊤𝑖 𝑥 < 𝑏𝑖, 𝑖 ∈ [𝑚]}
is defined by

𝐹𝑃 (𝑥) = −
𝑚∑︁
𝑖=1

log(𝑏𝑖 − 𝑎⊤𝑖 𝑥),
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one defines the volumetric barrier 𝑣𝑃 for 𝑃 by

𝑣𝑃 (𝑥) = logdet(∇2𝐹𝑃 (𝑥)).

The volumetric center 𝑐(𝑃 ) is then defined as the minimizer of 𝑣𝑃 . In the context of the geometric
politician (see Algorithm 29) we are dealing with an intersection of balls rather than an intersection
of halfspaces. More precisely the region of interest is of the form:

𝑅 =
𝑘⋂︁
𝑖=1

{𝑥 ∈ R𝑛 : ‖𝑥− 𝑐𝑖‖ ≤ 𝑟𝑖} .

For such a domain the natural self-concordant barrier to consider is:

𝐹𝑅(𝑥) = −
1

2

𝑘∑︁
𝑖=1

log
(︀
𝑟2𝑖 − ‖𝑥− 𝑐𝑖‖2

)︀
.

The volumetric barrier is defined as before by

𝑣𝑅(𝑥) = logdet(∇2𝐹𝑅(𝑥)),

and the volumetric center of 𝑅 is the minimizer of 𝑣𝑅. It is shown in [12] that 𝑣𝑅 is a self-concordant
barrier which means that the center can be updated (when a new ball is added to 𝑅) via few iterations
of Newton’s method. Often in practice, it takes less than 5 iterations to update the minimizer of a
self-concordant barrier [103, 26] when we add a new constraint. Hence, the complexity merely depends
on how fast we can compute the gradient and Hessian of 𝐹𝑅 and 𝑣𝑅.

Proposition 11.4.4. For the analytic barrier 𝐹𝑅, we have that

∇𝐹𝑅(𝑥) =𝐴⊤1𝑘×1,

∇2𝐹𝑅(𝑥) =2𝐴⊤𝐴+ 𝜆(1)𝐼

where 𝑑 is a vector defined by
(︀
𝑟2𝑖 − ‖𝑥− 𝑐𝑖‖2

)︀−1
, 𝐴 is a 𝑘×𝑛 matrix with 𝑖𝑡ℎ row given by 𝑑𝑖(𝑥)(𝑥−𝑐𝑖),

𝜆(𝑝) =
∑︀

𝑖∈[𝑘] 𝑑
𝑝
𝑖 (𝑥) and 1𝑘×1 is a 𝑘 × 1 matrix with all entries being 1.

For the volumetric center, we have that

∇𝑣𝑅(𝑥) =
(︀(︀
2Tr𝐻−1

)︀
I + 4𝐻−1

)︀
𝐴⊤𝑑+ 8𝐴⊤𝜎,

∇2𝑣𝑅(𝑥) = 48𝐴⊤Σ𝐴− 64𝐴⊤
(︁
𝐴𝐻−1𝐴⊤

)︁(2)
𝐴

+
(︁
8Tr(𝐷Σ) + 2𝜆(2)Tr(𝐻−1)

)︁
𝐼 + 4𝜆(2)𝐻−1

+ 8Tr(𝐻−1)𝐴⊤𝐷𝐴+ 16sym(
(︁
𝐴⊤𝐷𝐴𝐻−1

)︁
)

− 4Tr(𝐻−2)𝐴⊤𝐷J𝐷𝐴− 8𝐻−1𝐴⊤𝐷J𝐷𝐴𝐻−1

− 8sym(()𝐴⊤𝐷J𝐷𝐴𝐻−2)− 8
(︁
𝑑⊤𝐴𝐻−1𝐴⊤𝑑

)︁
𝐻−1

− 16sym(
(︁
𝐴⊤𝐷𝑖𝑎𝑔

(︁
𝐴𝐻−2𝐴⊤

)︁
J𝐷𝐴

)︁
)

− 32sym(
(︁
𝐴⊤𝐷𝑖𝑎𝑔(𝐴𝐻−1𝐴⊤𝑑)𝐴𝐻−1

)︁
)

where 𝐻 = ∇2𝐹𝑅(𝑥), 𝜎𝑖 = 𝑒⊤𝑖 𝐴𝐻
−1𝐴⊤𝑒𝑖, 𝑒𝑖 is the indicator vector with 𝑖𝑡ℎ coordinate, J is a 𝑘 × 𝑘

matrix with all entries being 1, sym(()𝐵) = 𝐵+𝐵⊤,𝐷𝑖𝑎𝑔(𝑣) is a diagonal matrix with𝐷𝑖𝑎𝑔(𝑣)𝑖𝑖 = 𝑣𝑖,

𝐷 =𝐷𝑖𝑎𝑔(𝑑), Σ =𝐷𝑖𝑎𝑔(𝜎), and 𝐵(2) is the Schur square of 𝐵 defined by 𝐵
(2)
𝑖𝑗 = 𝐵2

𝑖𝑗.
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The above proposition shows that one step of Newton method for analytic center requires 1 dense
matrix multiplication and solving 1 linear system; and for volumetric center, it requires 5 dense matrix
multiplications, 1 matrix inversion and solving 1 linear system if implemented correctly. Although the
analytic center is a more popular choice for “geometrical” algorithms, we choose volumetric center here
because it gives a better convergence rate [253, 20] and the extra cost 𝜓(𝑘) is negligible to the cost of
updating QR decomposition 𝑛𝑘.

11.5 Experiments

In this section, we compare the geometric politician against two libraries for first order methods,
minFunc [230] and TFOCS [32]. Both are popular MATLAB libraries for minimizing general smooth
convex functions. Since the focus of this chapter is all about how to find a good step direction, we use
the exact line search (up to machine accuracy) whenever possible. This eliminates the effect of different
line searches and reduces the number of algorithms we need to test. TFOCS is the only algorithm
we use which does not use line search because they do not provide such option. To compensate on
the unfairness to TFOCS, we note that the algorithm TFOCS uses is accelerated gradient descent
and hence we implement the Gonzaga-Karas’s accelerated gradient descent [108], which is specifically
designed to be used with exact line search. Another reason we pick this variant of accelerated gradient
descent is because we found it to be the fastest variant of accelerated gradient descent (excluding the
geometric descent in Section 11.3) for our tested data (Gonzaga and Karas also observed that on their
own dataset).

The algorithms to be tested are the following:

∙ [SD] Steepest descent algorithm in minFunc.

∙ [Nes] Accelerated gradient descent, General Scheme 2.2.6 in [206].

∙ [TFOCS] Accelerated gradient descent in TFOCS.

∙ [GK] Gonzaga-Karas’s of Accelerated Gradient Descent (Section 11.5.1).

∙ [Geo] Geometric Descent (Section 11.3).

∙ [CG] Non-Linear Conjugate Gradient in minFunc.

∙ [BFGS] Broyden–Fletcher–Goldfarb–Shanno algorithm in minFunc.

∙ [PCG] Preconditioned Non-Linear Conjugate Gradient in minFunc.

∙ [∅+] Geometric Politician itself (Section 11.5.1).

∙ [GK+] Using GK with Geometric Oracle (Section 11.5.1).

∙ [BFGS+] Using BFGS with Geometric Oracle (Section 11.5.1).

We only tested the geometric oracle on GK and BFGS because they are respectively the best algorithms
in theory and practice on our tested data. The ∅+ algorithm is used as the control group to test if the
geometric politician by itself is sufficient to achieve good convergence rate. We note that all algorithms
except Nes are parameter free; each step of SD, Nes, TFOCS, GK, Geo, CG takes 𝑂(𝑛) time and each
step of BFGS, PCG, ∅+, GK+ and BFGS+ takes roughly 𝑂(𝑛𝑘) time for 𝑘𝑡ℎ iteration.
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Algorithm 30: ∅+
Input: 𝑥0.
for 𝑘 ← 1, 2, · · · do

Set 𝑥𝑘+1 ← Φ𝑓 (𝑥𝑘, (𝑥𝑖, 𝑓(𝑥𝑖),∇𝑓(𝑥𝑖))𝑖∈[𝑘]).
end

Algorithm 31: Gonzaga-Karas’s variant of Accelerated Gradient Descent
Input: 𝑥1.
𝛾 = 2𝛼, 𝑣0 = 𝑥0 and 𝑦0 = 𝑥0.
for 𝑘 ← 1, 2, · · · do

𝑦𝑘 ← Φ𝑓 (𝑦𝑘−1).
𝑥𝑘+1 = line_search(𝑦𝑘,−∇𝑓(𝑦𝑘)).
if 𝛼 ≥ 𝛾/1.02 and we are using first order oracle then 𝛼 = 𝛾/2. (*);

if 𝛼 ≥ ‖∇𝑓(𝑦𝑘)‖2
2(𝑓(𝑦𝑘)−𝑓(𝑥𝑘+1))

then 𝛼 = ‖∇𝑓(𝑦𝑘)‖2
20(𝑓(𝑦𝑘)−𝑓(𝑥𝑘+1))

.;

𝐺 = 𝛾
(︀
𝛼
2 ‖𝑣𝑘 − 𝑦𝑘‖

2 + ⟨∇𝑓(𝑦𝑘), 𝑣𝑘 − 𝑦𝑘⟩
)︀
.

𝐴 = 𝐺+ 1
2‖∇𝑓(𝑦𝑘)‖

2 + (𝛼− 𝛾)(𝑓(𝑥𝑘)− 𝑓(𝑦𝑘)).
𝐵 = (𝛼− 𝛾)(𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘))− 𝛾(𝑓(𝑦𝑘)− 𝑓(𝑥𝑘))−𝐺.
𝐶 = 𝛾(𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘)).
𝛽 = −𝐵+

√
𝐵2−4𝐴𝐶
2𝐴 , 𝛾 = (1− 𝛽)𝛾 + 𝛽𝛼.

𝑣𝑘+1 =
1
𝛾 ((1− 𝛽)𝛾𝑣𝑘 + 𝛽(𝛼𝑦𝑘 −∇𝑓(𝑦𝑘)).

end

11.5.1 Details of Implementations

The first algorithm we implement is the ∅+ algorithm which simply repeatedly call the politician. As
we will see, this algorithm is great for non smooth problems but not competitive for smooth problems.

The second algorithm we implement is the accelerated gradient descent proposed by Gonzaga
and Karas [108]. This algorithm uses line search to learn the the smoothness parameter and strong
convexity parameter, see Algorithm 31. We disable the line (*) in the algorithm if Φ𝑓 is a politician
instead of an oracle because 𝛾 ≥ 𝛼 does not hold for the strong convexity parameter 𝛼 if Φ𝑓 is not an
oracle.

The third algorithm we implemented is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
This algorithm uses the gradients to reconstruct the Hessian and use it to approximate Newton’s
method, see Algorithm 32. We note that another natural way to employ the politician with BFGS
is to set 𝑥𝑘+1 = line_search(Φ𝑓 (𝑥𝑘), 𝑝) and this runs faster in practice; however, this algorithm
computes two gradients per iteration (namely ∇𝑓(𝑥𝑘) and ∇𝑓(Φ𝑓 (𝑥𝑘))) while we restrict ourselves to
algorithms which compute one gradient per iteration.

11.5.2 Quadratic Function

We consider the function
𝑓(𝑥) = (𝑥− 𝑐)⊤𝐷(𝑥− 𝑐), (11.3)

where 𝐷 is a diagonal matrix with entries uniformly sampled from [0, 1] and 𝑐 is a random vector with
entries uniformly sampled from the normal distribution 𝑁(0, 1). Since this is a quadratic function,
CG, BFGS and BFGS+ are equivalent and optimal, namely, they output the minimum point in the
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Algorithm 32: BFGS
Input: 𝑥1.
for 𝑘 ← 1, 2, · · · do

𝑝 = −∇𝑓(𝑥𝑘).
for 𝑖← 𝑘 − 1, · · · , 1 do

𝛼𝑖 ← ⟨𝑠𝑖, 𝑝⟩ / ⟨𝑠𝑖, 𝑦𝑖⟩.
𝑝 = 𝑝− 𝛼𝑖𝑦𝑖.

end

𝑝 = ⟨𝑠𝑘−1, 𝑦𝑘−1⟩ / ⟨𝑦𝑘−1, 𝑦𝑘−1⟩ 𝑝.
for 𝑖← 1, · · · , 𝑘 − 1 do

𝛽𝑖 ← ⟨𝑦𝑖, 𝑝⟩ / ⟨𝑠𝑖, 𝑦𝑖⟩.
𝑝 = 𝑝+ (𝛼𝑖 − 𝛽𝑖)𝑦𝑖.

end

𝑥𝑘+1 = Φ𝑓 (line_search(𝑥𝑘, 𝑝)).
𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘, 𝑦𝑘 = ∇𝑓(𝑥𝑘+1)−∇𝑓(𝑥𝑘).

end

span of all previous gradients.

11.5.3 Variant of Nesterov’s Worst Function

[206] introduced the function

𝑓(𝑥) = (1− 𝑥[1])2 +
𝑛−1∑︁
𝑘=1

(𝑥[𝑘]− 𝑥[𝑘 + 1])2

and used it to give a lower bound for all first-order methods. To distinguish the performance between
CG, BFGS and BFGS+, we consider the following non-quadratic variant

𝑓(𝑥) = 𝑔(1− 𝑥[1]) +
𝑛−1∑︁
𝑘=1

𝑔(𝑥[𝑘]− 𝑥[𝑘 + 1]) (11.4)

for some function 𝑔 to be defined. If we pick 𝑔(𝑥) = |𝑥| then all first order methods takes at least 𝑛
iterations to minimize 𝑓 exactly. On the other hand with 𝑔(𝑥) = max(|𝑥|−0.1, 0) one of the minimizer
of 𝑓 is (1, 9

10 ,
8
10 , · · · ,

1
10 , 0, 0, · · · , 0), and thus it takes at least 11 iterations for first order methods to

minimize 𝑓 in this case. We “regularize” the situation a bit and consider the function

𝑔(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
√︁
(𝑥− 0.1)2 + 0.0012 − 0.001 if 𝑥 ≥ 0.1√︁
(𝑥+ 0.1)2 + 0.0012 − 0.001 if 𝑥 ≤ −0.1

0 otherwise

.

Since this function is far from quadratic, our algorithms (∅+, GK+, BFGS+) converge much faster.
This is thus a nice example where the geometric politician helps a lot because the underlying dimension
of the problem is small.
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Figure 11-3: Comparison of first-order methods for the function (11.3) with 𝑛 = 10000.

11.5.4 Binary Regression with Smoothed Hinge Loss

We consider the binary classification problem on the datasets from [48]. The problem is to minimize
the regularized empirical risk:

𝑓𝑡(𝑥) =
1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑡(𝑏𝑖𝑎
𝑇
𝑖 𝑥) +

𝜆

2
|𝑥|2 (11.5)

where 𝑎𝑖 ∈ R𝑑, 𝑏𝑖 ∈ R are given by the datasets, 𝜆 is the regularization coefficient, 𝜙𝑡 is the smoothed
hinge loss defined by

𝜙𝑡(𝑧) =

⎧⎪⎨⎪⎩
0 if 𝑧 ≤ −1
𝑧 + 1− 𝑡

2 if 𝑧 ≥ −1 + 𝑡
1
2𝑡(𝑧 + 1)2 otherwise

and 𝑡 is the smoothness parameter. The usual choice for 𝑡 is 1, here we test both 𝑡 = 1 and 𝑡 = 10−4.
The latter case is to test how well the algorithms perform when the function is non-smooth.

We note that for this problem it would be natural to compare ourselves with SGD (stochastic
gradient descent) or more refined stochastic algorithms such as SAG [159] or SVRG [129]. However
since the focus of this chapter is on general black-box optimization we stick to comparing only to
general methods. It is an interesting open problem to extend our algorithms to the stochastic setting,
see Section 11.6.

In figures 11-5 and 11-6, we show the performance profile for problems in the LIBSVM datasets
(and with different values for the regularization parameter 𝜆). More precisely for a given algorithm
we plot 𝑥 ∈ [1, 10] versus the fraction of datasets that the algorithm can solve (up to a certain
prespecified accuracy) in a number of iterations which is at most 𝑥 times the number of iterations
of the best algorithm for this dataset. Figure 11-5 shows the case 𝑡 = 1 with the targeted accuracy
10−6; Figure 11-6 shows the case 𝑡 = 10−4 with the targeted accuracy 10−3. We see that TFOCS is
slower than SD for many problems, this is simply because SD uses the line search while TFOCS does
not, and this makes a huge difference for simple problems. Among algorithms taking 𝑂(𝑛) time per
iteration, CG and Geo perform the best, while for the 𝑂(𝑛𝑘) algorithms we see that BFGS, BFGS+
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Figure 11-4: Comparison of first-order methods for the function (11.4) with 𝑛 = 10000.

and GK+ perform the best. The gap in performance is particularly striking in the non-smooth case
where BFGS+ is the fastest algorithm on almost all problems and all other methods (except GK+)
are lagging far behind (for 20% of the problems all other methods take 10 times more iterations than
BFGS+ and GK+).

Finally in figures 11-7 and 11-8 we test five algorithms on three specific datasets (respectively in
the smooth and non-smooth case). In both figures we see that BFGS+ performs the best for all three
datasets. BFGS performs second for smooth problems while GK+ performs second for nonsmooth
problems.

11.5.5 Summary

The experiments show that BFGS+ and BFGS perform the best among all methods for smooth test
problems while BFGS+ and GK+ perform the best for nonsmooth test problems. The first phe-
nomenon is due to the optimality of these algorithm for quadratic problems. We leave the explanation
for the second phenomenon as an open problem. At least, the experiments show that this is not due
to the geometric oracle itself since ∅+ is much slower, and this is not due to the original algorithm
since GK performs much worse than GK+ for those problems. Overall these experiments are very
promising for the geometric oracle as a replacement of quasi Newton method for non-smooth problems
and as a general purpose solver due to its robustness.

11.6 Discussion

First order methods generally involve only very basic operations at each step (addition, scalar mul-
tiplication). In last section, we formalize each step’s operations (besides the gradient calculation) as
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Figure 11-5: Performance profile on problem (11.5) with 𝑡 = 1 and 𝜆 = 10−4, 10−5, 10−6, 10−7, 10−8.

the work of the politician. We showed that the cost per step of an affine invariant politician 𝜓(𝑘) is
negligible compared to the gradient calculation (which is Ω(𝑛)). This opens up a lot of possibilities:
instead of basic addition or scalar multiplication one can imagine computing a center of gravity, solving
a linear program, or even searching over an exponential space (indeed, say 𝑘 < 30 and 𝑛 > 1010, then
2𝑘 < 𝑛). Our experiments demonstrate the effectiveness of this strategy. On the other hand from a
theoretical point of view a lot remains to be done. For example one can prove results of the following
flavor:

Theorem 11.6.1. Let 𝑓 such that 𝛼I ⪯ ∇2𝑓(𝑥) ⪯ 𝛽I,∀𝑥 ∈ R𝑛 and let 𝜅 = 𝛽/𝛼. Suppose that in
the Geometric Politician we replace the volumetric center by the center of gravity or the center of the
John ellipsoid. Let 𝑦𝑘 be the output of the 𝑘𝑡ℎ step of SD+ with some initial point 𝑥0. Then, we have
that

𝑓(𝑦𝑘)− 𝑓(𝑥*) ≤ 𝜅
(︂
1− 1

Θ(min(𝑛 log(𝜅), 𝜅))

)︂𝑘
(𝑓(𝑥0)− 𝑓(𝑥*)) .

and

𝑓(𝑦𝑘)− 𝑓(𝑥*) ≤
2𝛽𝑅2

𝑘 + 4

where 𝑅 = max𝑓(𝑥)≤𝑓(𝑥0) ‖𝑥− 𝑥*‖.

This claim says that, up to a logarithmic factor, SD+ enjoys simultaneously the incremental
progress of gradient descent and the geometrical progress of cutting plane methods. There are three
caveats in this claim:

∙ We use the center of gravity or the center of the John ellipsoid instead of the volumetric center.
Note however that it is well-known that the volumetric center is usually more difficult to analyze,
[253, 20].
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Figure 11-6: Performance profile on problem (11.5) with 𝑡 = 10−4 and 𝜆 = 10−4, 10−5, 10−6, 10−7, 10−8.

∙ The extraneous log(𝜅) comes from the number of potential restart when we decrease 𝛼. Is there
a better way to learn 𝛼 that would not incur this additional logarithmic term?

∙ Theorem 11.3.1 shows essentially that one can combine the ellipsoid method with gradient de-
scent to achieve the optimal 1−

√︀
1/𝜅 rate. Can we prove such a result for SD+?

The geometric politician could be refined in many ways. Here are two simple questions that we leave
for future work:

∙ One can think that gradient descent stores 1 gradient information, accelerated gradient descent
stores 2 gradient information, and our method stores all past gradient information. We believe
that neither 1, 2 nor all is the correct answer. Instead, the algorithm should dynamically decide
the number of gradients to store based on the size of its memory, the cost of computing gradients,
and the information each gradient reveals.

∙ Is there a stochastic version of our algorithm? How well would such a method compare with
state of the art stochastic algorithms such as SAG [159] and SVRG [129]?

11.7 Appendix: Convergence of SD+

Let 𝑓 such that 𝛼I ⪯ ∇2𝑓(𝑥) ⪯ 𝛽I for all 𝑥 ∈ R𝑛 and let 𝜅 = 𝛽/𝛼. Let 𝑦𝑘 be the output of the
𝑘𝑡ℎ step of SD+ (where the volumetric center is replaced by the center of gravity or the center of the
John ellipsoid) with some initial point 𝑥0. We prove two rates of convergence for SD+, one with the
condition number 𝜅, and one with the ambient dimension 𝑛. We start by the former.



11.7. Appendix: Convergence of SD+ 271

0 50 100

10-2

madelon

0 50 100

10-10

100 rcv1

0 50 100

10-10

100 real-sim

0 50 100

10-2

0 50 100

10-5

100

0 50 100
10-10

10-5

100

0 50 100

10-2

0 50 100

100

Geo CG BFGS GK+ BFGS+

0 50 100

100

Figure 11-7: Comparison between Geo, CG, BFGS, GK+, BFGS+ on problem (11.5) with 𝑡 = 1 and 𝜆 =
10−4, 10−6, 10−8.

Theorem 11.7.1. One has

𝑓(𝑦𝑘)− 𝑓(𝑥*) ≤
(︂
1− 1

𝜅

)︂𝑘
(𝑓(𝑥0)− 𝑓(𝑥*))

and

𝑓(𝑦𝑘)− 𝑓(𝑥*) ≤
2𝛽𝑟2

𝑘 + 4

where 𝑟 = max𝑓(𝑥)≤𝑓(𝑥0) ‖𝑥− 𝑥*‖.

Proof. Let 𝛿𝑘 = 𝑓(𝑦𝑘)− 𝑓(𝑥*). Since 𝑓 is 𝛼-strongly convex we have that

𝛿𝑘 ≤
1

2𝛼
‖∇𝑓(𝑦𝑘)‖2.

Due to the decrease guarantee of politicians and the line search in steepest descent, we have that
𝑓(𝑦𝑘+1) ≤ 𝑓(𝑥𝑘+1) ≤ 𝑓(𝑦𝑘)− 1

2𝛽‖∇𝑓(𝑦𝑘)‖
2 and hence

𝛿𝑘 − 𝛿𝑘+1 ≥
1

2𝛽
‖∇𝑓(𝑦𝑘)‖2 ≥

𝛿𝑘
𝜅
. (11.6)

Hence, we have 𝛿𝑘+1 ≤
(︀
1− 1

𝜅

)︀
𝛿𝑘 and this gives the first inequality.

To obtain a rate independent of 𝛼 we instead use the following estimate

𝛿𝑘 ≤ ⟨∇𝑓(𝑦𝑘), 𝑦𝑘 − 𝑥*⟩ ≤ ‖∇𝑓(𝑦𝑘)‖ · ‖𝑦𝑘 − 𝑥*‖.
Using the decrease guarantee of politicians and line search we have that 𝑓(𝑦𝑘) ≤ 𝑓(𝑥𝑘) ≤ 𝑓(𝑦𝑘−1) ≤
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Figure 11-8: Comparison between Geo, CG, BFGS, GK+, BFGS+ on problem (11.5) with 𝑡 = 10−4 and
𝜆 = 10−4, 10−6, 10−8.

· · · ≤ 𝑓(𝑥0), and thus by definition of 𝑅:

‖𝑦𝑘 − 𝑥*‖ ≤ 𝑟.
Due to the line search in steepest descent again, we have that

𝛿𝑘 − 𝛿𝑘+1 ≥
1

2𝛽
‖∇𝑓(𝑦𝑘)‖2 ≥

1

2𝛽

(︂
𝛿𝑘
𝑟

)︂2

.

Since 𝛿𝑘 ≥ 𝛿𝑘+1, we have

1

𝛿𝑘+1
− 1

𝛿𝑘
=
𝛿𝑘 − 𝛿𝑘+1

𝛿𝑘𝛿𝑘+1
≥ 𝛿𝑘 − 𝛿𝑘+1

𝛿2𝑘
≥ 1

2𝛽𝑟2
.

So, by induction, we have that 1
𝛿𝑘
≥ 1

𝛿0
+ 𝑘

2𝛽𝑟2
. Now, we note that

𝛿0 ≤ ⟨∇𝑓(𝑥*), 𝑥0 − 𝑥*⟩+
𝛽

2
‖𝑥0 − 𝑥*‖2 ≤

𝛽𝑟2

2
.

Thus, we have that

𝛿𝑘 ≤
2𝛽𝑟2

𝑘 + 4
.

We now turn to the dimension dependent analysis of SD+. We first show a simple geometric result,
namely that if an intersection of spheres has a “small” volume then the intersection must lie close close
to the boundary of one of the spheres.
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Lemma 11.7.2. Let 𝑅 = ∩𝑘𝑖=1{𝑥 ∈ R𝑛 : ‖𝑥 − 𝑐𝑖‖ ≤ 𝑟𝑖}, 𝐷 = max𝑖∈[𝑘] 𝑟𝑖, and 𝜔𝑛 the volume of the
unit ball in R𝑛. Then, there exists 𝑖 ∈ [𝑘] such that for all 𝑥 ∈ 𝑅,

‖𝑥− 𝑐𝑖‖2 ≥ 𝑟2𝑖 − 24𝑘2
(︂

vol𝑅

𝐷𝑛𝜔𝑛

)︂1/𝑛

𝐷2.

Proof. Since − log(1−‖𝑥‖2) is a 1-self concordant barrier function, 2𝐹𝑅 is a 𝑘-self concordant function.
Let 𝑦 be the minimizer of 𝐹𝑅. Let 𝐸 = {𝑥 ∈ R𝑛 : 𝑥⊤∇2(2𝐹𝑅)(𝑦)𝑥 ≤ 1}. Theorem 4.2.6 in [206] shows
that

𝑦 + 𝐸 ⊂ 𝑅 ⊂ 𝑦 + (𝑘 + 2
√
𝑘)𝐸. (11.7)

In particular, this shows that vol𝐸 ≤ vol𝑅. We have that(︀
det∇2𝐹𝑅(𝑦)

)︀1/2
=

𝜔𝑛

2𝑛/2
1

vol𝐸
≥ 𝜔𝑛

2𝑛/2
1

vol𝑅
.

By the AM-GM inequality, we have that

Tr∇2𝐹𝑅(𝑦)

𝑛
≥ 1

2

(︁ 𝜔𝑛
vol𝑅

)︁2/𝑛
. (11.8)

By Proposition 11.4.3, we have that ∇2𝐹𝑅(𝑦) = 2𝐴⊤𝐴+ 𝜆(1)I and hence,

Tr∇2𝐹𝑅(𝑦) = 2Tr𝐴⊤𝐴+ 𝑛𝜆(1)

= 2
𝑘∑︁
𝑖=1

‖𝑦 − 𝑐𝑖‖2

(𝑟2𝑖 − ‖𝑦 − 𝑐𝑖‖2)2
+ 𝑛

𝑘∑︁
𝑖=1

1

𝑟2𝑖 − ‖𝑦 − 𝑐𝑖‖2
.

Applying (11.8), we have that

2

𝑛

𝑘∑︁
𝑖=1

‖𝑦 − 𝑐𝑖‖2

(𝑟2𝑖 − ‖𝑦 − 𝑐𝑖‖2)2
+

𝑘∑︁
𝑖=1

1

𝑟2𝑖 − ‖𝑦 − 𝑐𝑖‖2
≥ 1

2

(︁ 𝜔𝑛
vol𝑅

)︁2/𝑛
So, there exists 𝑖 such that

‖𝑦 − 𝑐𝑖‖2

(𝑟2𝑖 − ‖𝑦 − 𝑐𝑖‖2)2
≥ 𝑛

8𝑘

(︁ 𝜔𝑛
vol𝑅

)︁2/𝑛
or

1

𝑟2𝑖 − ‖𝑦 − 𝑐𝑖‖2
≥ 1

4𝑘

(︁ 𝜔𝑛
vol𝑅

)︁2/𝑛
.

Using ‖𝑦 − 𝑐𝑖‖ ≤ 𝑟𝑖 ≤ 𝐷 and vol𝑅 ≤ 𝐷𝑛𝜔𝑛, we have that

𝑟2𝑖 − ‖𝑦 − 𝑐𝑖‖2 ≤ max

(︃√︂
8𝑘

𝑛

(︂
vol𝑅

𝜔𝑛

)︂1/𝑛

‖𝑦 − 𝑐𝑖‖, 4𝑘
(︂
vol𝑅

𝜔𝑛

)︂2/𝑛
)︃

≤ 4𝑘

(︂
vol𝑅

𝐷𝑛𝜔𝑛

)︂1/𝑛

𝐷2.

Therefore, the width of the ellipsoid 𝐸 in the direction 𝑦 − 𝑐𝑖 is at most

𝑟𝑖 − ‖𝑦 − 𝑐𝑖‖ ≤ 𝑟𝑖 −

√︃
𝑟2𝑖 − 4𝑘

(︂
vol𝑅

𝐷𝑛𝜔𝑛

)︂1/𝑛

𝐷2.
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The right hand side of (11.7) shows that, for all 𝑥 ∈ 𝑅, we have

‖𝑥− 𝑐𝑖‖ ≥ 𝑟𝑖 − (1 + 𝑘 + 2
√
𝑘)

⎛⎝𝑟𝑖 −
√︃
𝑟2𝑖 − 4𝑘

(︂
vol𝑅

𝐷𝑛𝜔𝑛

)︂1/𝑛

𝐷2

⎞⎠
≥ 𝑟𝑖 − (1 + 𝑘 + 2

√
𝑘)

(︃
𝑟𝑖 − 𝑟𝑖

(︃
1− 4𝑘

(︂
vol𝑅

𝐷𝑛𝜔𝑛

)︂1/𝑛 𝐷2

𝑟2𝑖

)︃)︃

≥

[︃
1− 12𝑘2

(︂
vol𝑅

𝐷𝑛𝜔𝑛

)︂1/𝑛 𝐷2

𝑟2𝑖

]︃
𝑟𝑖.

Hence, we have

‖𝑥− 𝑐𝑖‖2 ≥

[︃
1− 24𝑘2

(︂
vol𝑅

𝐷𝑛𝜔𝑛

)︂1/𝑛 𝐷2

𝑟2𝑖

]︃
𝑟2𝑖 .

Finally, equipped with the above geometrical result, we can bound the convergence of SD+ using
the dimension 𝑛. We start with a lemma taking care of the adaptivity to the strong convexity in the
geometric politician.

Lemma 11.7.3. In the first 𝑘 = Θ(𝑛 log(𝜅𝑛𝜀 )) iterations, either SD+ restarts the estimate of the
strong convexity or

𝑓(𝑦𝑘)− 𝑓(𝑥*) ≤ 𝜀 (𝑓(𝑥0)− 𝑓(𝑥*)) .

Proof. The decrease guarantee and the smoothness imply that

‖∇𝑓(𝑦𝑘)‖2

2𝛽
≤ 𝑓(𝑦𝑘)− 𝑓(𝑥*) ≤ 𝑓(𝑥0)− 𝑓(𝑥*).

Therefore, all the spheres found by the geometric politician have radius squared at most 𝐷2 where,
denoting 𝛼 for the convexity upper bound the algorithm is currently using,

𝐷2 = max
𝑘≥1

‖∇𝑓(𝑦𝑘)‖2

𝛼2 ≤ 2𝛽(𝑓(𝑥0)− 𝑓(𝑥*))
𝛼2 .

Lemma 11.7.2 shows that for any step 𝑘, there is 𝑖 ∈ [𝑘] such that for all 𝑥 ∈ 𝑅𝑘,

‖𝑥− 𝑐𝑖‖2 ≥ 𝑟2𝑖 −
48𝛽𝑘2

𝛼2

(︂
vol𝑅𝑘
𝐷𝑛𝜔𝑛

)︂1/𝑛

(𝑓(𝑥0)− 𝑓(𝑥*)).

Let 𝑘 = Θ(𝑛 log(𝜅𝑛𝜀 )) and recall the discussion in Section 11.4.2 about the volume decrease of the
geometric politician with the center of gravity (the same discussion applies to the John ellipsoid). We
see that if the algorithm does not restart 𝛼 within the first 𝑘 iterations then we have

vol𝑅𝑘
𝐷𝑛𝜔𝑛

=
(︁
𝑂
(︁ 𝜀

𝜅2𝑘2

)︁)︁𝑛
,

and hence (for an appropriate numerical constant in 𝑘)

‖𝑥− 𝑐𝑖‖2 ≥ 𝑟2𝑖 −
𝜀(𝑓(𝑥0)− 𝑓(𝑥*))

𝛼𝜅
. (11.9)

Recall from (11.6) that

𝑓(𝑦𝑘+1) ≤ 𝑓(𝑦𝑘)−
𝑓(𝑦𝑘)− 𝑓(𝑥*)

𝜅
,
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and therefore we have (by the improvement of the previous balls):

𝑅𝑘+1 ⊂
{︂
‖𝑥− 𝑐𝑖‖2 ≤ 𝑟2𝑖 −

2(𝑓(𝑦𝑘)− 𝑓(𝑥*))
𝛼𝜅

}︂
∩𝑅𝑘.

However, from (11.9), we know that either the above intersection is empty or 𝑓(𝑦𝑘)−𝑓(𝑥*) < 𝜀(𝑓(𝑥0)−
𝑓(𝑥*)). This proves the statement.

Theorem 11.7.4. We have that

𝑓(𝑦𝑘)− 𝑓(𝑥*) ≤ 𝜅
(︂
1− 1

Θ(𝑛 log(𝜅))

)︂𝑘
(𝑓(𝑥0)− 𝑓(𝑥*)) .

Proof. If 𝜅 < 𝑛, the statements follows from Theorem 11.7.1. Hence, we can assume 𝜅 ≥ 𝑛.
Set 𝑇 = Θ(𝑛 log(𝑛𝜅𝜀 ) log(𝜅)), Lemma 11.7.3 shows that for every Θ(𝑛 log(𝑛𝜅𝜀 )) iteration, the algo-

rithm either finds 𝑦 such that
𝑓(𝑦)− 𝑓(𝑥*) ≤ 𝜀 (𝑓(𝑥0)− 𝑓(𝑥*))

or decreases 𝛼𝑘 by a constant where 𝛼𝑘 is the convexity upper bound the algorithm is using at 𝑘𝑡ℎ

iteration. Note that 𝛼1 ≤ 𝛽 because of the line search, and thus the algorithm can restart 𝛼𝑘 at most
log(𝜅) many times. Hence, after 𝑇 iterations, we must have

𝑓(𝑦𝑇 )− 𝑓(𝑥*) ≤ 𝜀 (𝑓(𝑥0)− 𝑓(𝑥*)) ,
thus concluding the proof.
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Chapter 12

Undirected MaxFlow In Almost-Linear Time

12.1 Introduction

In this chapter, we study the maximum flow problem. Given a graph 𝐺 = (𝑉,𝐸) in which each edge
𝑒 ∈ 𝐸 is assigned a nonnegative capacity 𝜇𝑒, the maximum 𝑠-𝑡 flow problem asks us to find a flow
𝑓 that routes as much flow as possible from a source vertex 𝑠 to a sink vertex 𝑡 while sending at most
𝜇𝑒 units of flow over each edge 𝑒. Its generalization, the maximum concurrent multicommodity

flow problem, supplies 𝑘 source-sink pairs (𝑠𝑖, 𝑡𝑖) and asks for the maximum 𝛼 such that we may
simultaneously route 𝛼 units of flow between each source-sink pair. That is, it asks us to find flows
𝑓1, . . . ,𝑓𝑘 (which we think of as corresponding to 𝑘 different commodities) such that 𝑓 𝑖 sends 𝛼 units
of flow from 𝑠𝑖 to 𝑡𝑖, and

∑︀
𝑖 |𝑓 𝑖(𝑒)| ≤ 𝜇𝑒 for all 𝑒 ∈ 𝐸.

These problems lie at the core of graph algorithms and combinatorial optimization, and they have
been extensively studied over the past 60 years [232, 4]. They have found a wide range of theoretical
and practical applications [5], and they are widely used as key subroutines in other algorithms (see [18,
233]).

In this chapter, we introduce a new framework for approximately solving flow problems in capac-
itated, undirected graphs and apply it to provide asymptotically faster algorithms for the maximum
𝑠-𝑡 flow and maximum concurrent multicommodity flow problems. For graphs with 𝑛 vertices and 𝑚
edges, it allows us to find an 𝜀-approximately maximum 𝑠-𝑡 flows in time 𝑂(𝑚1+𝑜(1)𝜀−2), improving
on the previous best bound of ̃︀𝑂(𝑚𝑛1/3poly(1/𝜀))[51]. Applying the same framework in the multi-
commodity setting solves a maximum concurrent multicommodity flow problem with 𝑘 commodities
in 𝑂(𝑚1+𝑜(1)𝜀−2𝑘2) time, improving on the existing bound of ̃︀𝑂(𝑚4/3poly(𝑘, 𝜀−1))[140].

We believe that both our general framework and several of the pieces necessary for its present
instantiation are of independent interest, and we hope that they will find other applications. These
include:

∙ a non-Euclidean generalization of gradient descent, bounds on its performance, and a way to use
this to reduce approximate maximum flow and maximum concurrent flow to oblivious routing;

∙ the definition and efficient construction of flow sparsifiers; and

∙ the construction of a new oblivious routing scheme that can be implemented extremely efficiently.

We have aimed to make our algorithm fairly modular and have thus occasionally worked in slightly
more generality than is strictly necessary for the problem at hand. This has slightly increased the
length of the exposition, but we believe that it clarifies the high-level structure of the argument, and
it will hopefully facilitate the application of these tools in other settings.



278 CHAPTER 12. UNDIRECTED MAXFLOW IN ALMOST-LINEAR TIME

12.1.1 Related Work

For the first several decades of its study, the fastest algorithms for the maximum flow problem were
essentially all deterministic algorithms based on combinatorial techniques, such as augmenting paths,
blocking flows, preflows, and the push-relabel method. These culminated in the work of Goldberg
and Rao [104], which computes exact maximum flows in time 𝑂(min(𝑛2/3,𝑚1/2) log(𝑛2/𝑚) log𝑈) on
graphs with edge weights in {0, . . . , 𝑈}. We refer the reader to [104] for a survey of these results.

More recently, a collection of new techniques based on randomization, spectral graph theory and
numerical linear algebra, graph decompositions and embeddings, and iterative methods for convex
optimization have emerged. These have allowed researchers to provide better provable algorithms for
a wide range of flow and cut problems, particularly when one aims to obtain approximately optimal
solutions on undirected graphs.

Our algorithm draws extensively on the intellectual heritage established by these works. In this
section, we will briefly review some of the previous advances that inform our algorithm. We do not
give a comprehensive review of the literature, but instead aim to provide a high-level view of the
main tools that motivated the present work, along with the limitations of these tools that had to be
overcome. For simplicity of exposition, we primarily focus on the maximum 𝑠-𝑡 flow problem for the
remainder of the introduction.

Sparsification In [33], Benczur and Karger showed how to efficiently approximate any graph 𝐺 with
a sparse graph 𝐺′ on the same vertex set. To do this, they compute a carefully chosen probability
𝑝𝑒 for each 𝑒 ∈ 𝐸, sample each edge 𝑒 with probability 𝑝𝑒, and include 𝑒 in 𝐺′ with its weight
increased by a factor of 1/𝑝𝑒 if it is sampled. Using this, they obtain, in nearly linear time, a graph
𝐺′ with 𝑂(𝑛 log 𝑛/𝜀2) edges such that the total weight of the edges crossing any cut in 𝐺′ is within
a multiplicative factor of 1 ± 𝜀 of the weight crossing the corresponding cut in 𝐺. In particular, the
Max-Flow Min-Cut Theorem implies that the value of the maximum flow on 𝐺′ is within a factor of
1± 𝜀 of that of 𝐺.

This is an extremely effective tool for approximately solving cut problems on a dense graph 𝐺, since
one can simply solve the corresponding problem on the sparsified graph 𝐺′. However, while this means
that one can approximately compute the value of the maximum 𝑠-𝑡 flow on 𝐺 by solving the problem
on 𝐺′, it is not known how to use the maximum 𝑠-𝑡 flow on 𝐺′ to obtain an actual approximately
maximum flow on 𝐺. Intuitively, this is because the weights of edges included in 𝐺′ are larger than
they were in 𝐺, and the sampling argument does not provide any guidance about how to route flows
over these edges in the original graph 𝐺.

Iterative algorithms based on linear systems and electrical flows In 2010, Christiano et
al.[51] described a new linear algebraic approach to the problem that found 𝜀-approximately maximum
𝑠-𝑡 flows in time ̃︀𝑂(𝑚𝑛1/3poly(1/𝜀)). They treated the edges of 𝐺 as electrical resistors and then
computed the electrical flow that would result from sending electrical current from 𝑠 to 𝑡 in the
corresponding circuit. They showed that these flows can be computed in nearly-linear time using fast
Laplacian linear system solvers [147, 146, 141, 163], which we further discuss below. The electrical
flow obeys the flow conservation constraints, but it could violate the capacity constraints. They
then adjusted the resistances of edges to penalize the edges that were flowing too much current and
repeated the process. Kelner, Miller, and Peng [140] later showed how to use more general objects that
they called quadratically coupled flows to use a similar approach to solve the maximum concurrent
multicommodity flow problem in time ̃︀𝑂(𝑚4/3poly(𝑘, 1/𝜀)).

Following this, Lee, Rao, and Srivastava [161] proposed another iterative algorithm that uses
electrical flows, but in a way that was substantially different than in [51]. Instead of adjusting the
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resistances of the edges in each iteration to correct overflowing edges, they keep the resistances the same
but compute a new electrical flow to reroute the excess current. They explain how to interpret this as
gradient descent in a certain space, from which a standard analysis would give an algorithm that runs
in time ̃︀𝑂(𝑚3/2poly(1/𝜀)). By replacing the standard gradient descent step with Nesterov’s accelerated
gradient descent method [206] and using a regularizer to make the penalty function smoother, they
obtain an algorithm that runs in time ̃︀𝑂(𝑚𝑛1/3poly(1/𝜀)) in unweighted graphs.

In all of these algorithms, the superlinear running times arise from an intrinsic Θ(
√
𝑚) factor

introduced by using electrical flows, which minimize an ℓ2 objective function, to approximate the
maximum congestion, which is an ℓ∞ quantity.

Fast solvers for Laplacian linear systems In their breakthrough paper [243], Spielman and Teng
showed how to solve Laplacian systems in nearly-linear time. (This was later sped up and simplified
by Koutis, Miller, and Peng [147, 146] and Kelner, Orecchia, Sidford, and Zhu [141].) Their algorithm
worked by showing how to approximate the Laplacian ℒ𝐺 of a graph 𝐺 with the Laplacian ℒ𝐻 of a
much simpler graph 𝐻 such that one could use the ability to solve linear systems in ℒ𝐻 to accelerate
the solution of a linear system in ℒ𝐺. They then applied this recursively to solve the linear systems
in ℒ𝐻 . In addition to providing the electrical flow primitive used by the algorithms described above,
the structure of their recursive sequence of graph simplifications provides the motivating framework
for much of the technical content of our oblivious routing construction.

Oblivious routing In an oblivious routing scheme, one specifies a linear operator taking any demand
vector to a flow routing these demands over the edges of 𝐺. Given a collection of demand vectors,
one can produce a multicommodity flow meeting these demands by routing each demand vector using
this pre-specified operator, independently of the others. The competitive ratio of such an operator is
the worst possible ratio between the congestion incurred by a set of demands in this scheme and the
congestion of the best multicommodity flow routing these demands.

In [225], Räcke showed how to construct an oblivious routing scheme with a competitive ratio of
𝑂(log 𝑛). His construction worked by providing a probability distribution over trees 𝑇𝑖 such that 𝐺
embeds into each 𝑇𝑖 with congestion at most 1, and such that the corresponding convex combination
of trees embeds into 𝐺 with congestion 𝑂(log 𝑛). In a sense, one can view this as showing how to
approximate 𝐺 by a probability distribution over trees. Using this, he was able to show how to obtain
polylogarithmic approximations for a variety of cut and flow problems, given only the ability to solve
these problems on trees.

We note that such an oblivious routing scheme clearly yields a logarithmic approximation to the
maximum flow and maximum concurrent multicommodity flow problems. However, Räcke’s con-
struction took time substantially superlinear time, making it too slow to be useful for computing
approximately maximum flows. Furthermore, it only gives a logarithmic approximation, and it is not
clear how to use this a small number of times to reduce the error to a multiplicative 𝜀.

In a later paper [182], Madry applied a recursive technique similar to the one employed by Spielman
and Teng in their Laplacian solver to accelerate many of the applications of Räcke’s construction at
the cost of a worse approximation ratio. Using this, he obtained almost-linear-time polylogarithmic
approximation algorithms for a wide variety of cut problems.

Unfortunately, his algorithm made extensive use of sparsification, which, for the previously men-
tioned reasons, made it unable to solve the corresponding flow problems. This meant that, while it
could use flow-cut duality to find a polylogarithmic approximation of the value of a maximum flow,
it could not construct a corresponding flow or repeatedly apply such a procedure a small number of
times to decrease the error to a multiplicative 𝜀.
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In simultaneous, independent work [233], Jonah Sherman used somewhat different techniques to
find another almost-linear-time algorithm for the (single-commodity) maximum flow problem. His
approach is essentially dual to ours: Our algorithm maintains a flow that routes the given demands
throughout its execution and iteratively works to improve its congestion. Our main technical tools
thus consist of efficient methods for finding ways to route flow in the graph while maintaining flow
conservation. Sherman, on the other hand, maintains a flow that does not route the given demands,
along with a bound on the congestion required to route the excess flow at the vertices. He then uses
this to iteratively work towards achieving flow conservation. (In a sense, our algorithm is more in
the spirit of augmenting paths, whereas his is more like preflow-push.) As such, his main technical
tools are efficient methods for producing dual objects that give congestion bounds. Objects meeting
many of his requirements were given in the work of Madry [182] (whereas there were no previous
constructions of flow-based analogues, requiring us to start from scratch); leveraging these allows him
to avoid some of the technical complexity required by our approach. We believe that these papers
nicely complement each other, and we enthusiastically refer the reader to Sherman’s paper.

12.1.2 Our Approach

In this section, we give a high-level description of how we overcome the obstacles described in the
previous section. For simplicity, we suppose for the remainder of this introduction that all edges have
capacity 1.

The problem is thus to send as many units of flow as possible from 𝑠 to 𝑡 without sending more
than one unit over any edge. It will be more convenient for us to work with an equivalent congestion
minimization problem, where we try to find the unit 𝑠-𝑡 flow 𝑓 (i.e., a flow sending one unit from 𝑠 to
𝑡) that minimizes ‖𝑓‖∞ = max𝑒 |𝑓 𝑒|. If we begin with some initial unit 𝑠-𝑡 flow 𝑓0, the goal will be
thus be to find the circulation 𝑐 to add to 𝑓0 that minimizes ‖𝑓0 + 𝑐‖∞.

We give an iterative algorithm to approximately find such a 𝑐. There are 2𝑂(
√
log𝑛 log log𝑛)/𝜀2

iterations, each of which adds a circulation to the present flow and runs in 𝑚 · 2𝑂(
√
log𝑛 log log𝑛) time.

Constructing this scheme consists of two main parts: an iterative scheme that reduces the problem
to the construction of a projection matrix with certain properties; and the construction of such an
operator.

The iterative scheme: Non-Euclidean gradient descent

The simplest way to improve the flow would be to just perform gradient descent on the maximum
congestion of an edge. There are two problems with this:

The first problem is that gradient descent depends on having a smoothly varying gradient, but the
infinity norm is very far from smooth. This is easily remedied by a standard technique: we replace the
infinity norm with a smoother “soft max” function. Doing this would lead to an update that would be
a linear projection onto the space of circulations. This could be computed using an electrical flow, and
the resulting algorithm would be very similar to the unaccelerated gradient descent algorithm in [161].

The more serious problem is the one discussed in the previous section: the difference between
ℓ2 and ℓ∞. Gradient steps choose a direction by optimizing a local approximation of the objective
function over a sphere, whereas the ℓ∞ constraint asks us to optimize over a cube. The difference
between the size of the largest sphere inside a cube and the smallest sphere containing it gives rise to
an inherent 𝑂(

√
𝑚) in the number of iterations, unless one can somehow exploit additional structure

in the problem.
To deal with this, we introduce and analyze a non-Euclidean variant of gradient descent that
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operates with respect to an arbitrary norm.1 Rather than choosing the direction by optimizing a local
linearization of the objective function over the sphere, it performs an optimization over the unit ball
in the given norm. By taking this norm to be ℓ∞ instead of ℓ2, we are able to obtain a much smaller
bound on the number of iterations, albeit at the expense of having to solve a nonlinear minimization
problem at every step. The number of iterations required by the gradient descent method depends on
how quickly the gradient can change over balls in the norm we are using, which we express in terms
of the Lipschitz constant of the gradient in the chosen norm.

To apply this to our problem, we write flows meeting our demands as 𝑓0 + 𝑐, as described above.
We then need a parametrization of the space of circulations so that the objective function (after being
smoothed using soft max) has a good bound on its Lipschitz constant. Similarly to what occurs
in [141], this comes down to finding a good linear representation of the space of circulations, which we
show amounts in the present setting to finding a matrix that projects into the space of circulations
while meetings certain norm bounds.

Constructing a projection matrix

This reduces our problem to the construction of such a projection matrix. A simple calculation shows
that any linear oblivious routing scheme 𝐴 with a good competitive ratio gives rise to a projection
matrix with the desired properties, and thus leads to an iterative algorithm that converges in a small
number of iterations. Each of these iterations performs a matrix-vector multiplication with both 𝐴
and 𝐴𝑇 .

Intuitively, this is letting us replace the electrical flows used in previous algorithms with the flows
given by an oblivious routing scheme. Since the oblivious routing scheme was constructed to meet ℓ∞
guarantees, while the electrical flow could only obtain such guarantees by relating ℓ2 to ℓ∞, it is quite
reasonable that we should expect this to lead to a better iterative algorithm.

However, the computation involved in existing oblivious routing schemes is not fast enough to be
used in this setting. Our task thus becomes constructing an oblivious routing scheme that we can
compute and work with very efficiently. We do this with a recursive construction that reduces oblivious
routing in a graph to oblivious routing in various successively simpler graphs.

To this end, we show that if 𝐺 can be embedded with low congestion into 𝐻 (existentially), and
𝐻 can be embedded with low congestion into 𝐺 efficiently, one can use an oblivious routing on 𝐻
to obtain an oblivious routing on 𝐺. The crucial difference between the simplification operations we
perform here and those in previous papers (e.g., in the work of Benczur-Karger [33] and Madry [182])
is that ours are accompanied by such embeddings, which enables us to transfer flows from the simpler
graphs to the more complicated ones.

We construct our routing scheme by recursively composing two types of reductions, each of which
we show how to implement without incurring a large increase in the competitive ratio:

∙ Vertex elimination This shows how to efficiently reduce oblivious routing on a graph 𝐺 =
(𝑉,𝐸) to routing on 𝑡 graphs with roughly ̃︀𝑂(|𝐸|/𝑡) vertices. To do this, we show how to
efficiently embed 𝐺 into 𝑡 simpler graphs, each consisting of a tree plus a subgraph supported
on roughly ̃︀𝑂(|𝐸|/𝑡) vertices. This follows easily from a careful reading of Madry’s paper [182].
We then show that routing on such a graph can be reduced to routing on a graph with at most̃︀𝑂(|𝐸|/𝑡) vertices by collapsing paths and eliminating leaves.

1This idea and analysis seems to be implicit in other work, e.g., [205] However, we could not find a clean statement
like the one we need in the literature, and we have not seen it previously applied in similar settings. We believe that it
will find further applications, so we state it in fairly general terms before specializing to what we need for flow problems.
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∙ Flow sparsification This allows us to efficiently reduce oblivious routing on an arbitrary graph
to oblivious routing on a graph with ̃︀𝑂(|𝑉 |) edges, which we call a flow sparsifier.
To construct flow sparsifiers, we use local partitioning to decompose the graph into well-connected
clusters that contain many of the original edges. (These clusters are not quite expanders, but
they are contained in graphs with good expansion in a manner that is sufficient for our purposes.)
We then sparsify these clusters using standard techniques and then show that we can embed the
sparse graph back into the original graph using electrical flows. If the graph was originally dense,
this results in a sparser graph, and we can recurse on the result. While the implementation of
these steps is somewhat different, the outline of this construction parallels Spielman and Teng’s
approach to the construction of spectral sparsifiers [243, 244].

Combining these two reductions recursively yields an efficient oblivious routing scheme, and thus an
algorithm for the maximum flow problem.

Finally, we show that the same framework can be applied to the maximum concurrent multicom-
modity flow problem. While the norm and regularization change, the structure of the argument and
the construction of the oblivious routing scheme go through without requiring substantial modification.

12.2 Preliminaries

Here, we define some notations that is used throughout in this chapter.
General Notation: We let 𝐼 be the identity matrix and 𝐼𝑎→𝑏 ∈ R𝑏×𝑎 denote the matrix such

that for all 𝑖 ≤ min{𝑎, 𝑏} we have 𝐼𝑖𝑖 = 1 and 𝐼𝑖𝑗 = 0 otherwise.
Graphs: Throughout this chapter we let 𝐺 = (𝑉,𝐸,𝜇) denote an undirected capacitated graph

with 𝑛 = |𝑉 | vertices, 𝑚 = |𝐸| edges, and non-negative capacities 𝜇 ∈ R𝐸 . We let 𝑤𝑒 ≥ 0 denote the
weight of an edge and let 𝑟𝑒

def
= 1/𝑤𝑒 denote the resistance of an edge. Here we make no connection

between 𝜇𝑒 and 𝑟𝑒; we fix their relationship later.
Sizes: For all 𝑎 ∈ 𝑉 we let 𝑑𝑎

def
=
∑︀

{𝑎,𝑏}𝑤𝑎,𝑏 denote the (weighted) degree of vertex 𝑎 and we let

deg(𝑎)
def
= |{𝑒 ∈ 𝐸 | 𝑒 = {𝑎, 𝑏} for some 𝑏 ∈ 𝑉 }| denote its (combinatorial) degree. We let 𝐷 ∈ R𝑉×𝑉

be the diagonal matrix where 𝐷𝑎,𝑎 = 𝑑𝑎. Furthermore, for any vertex subset 𝑆 ⊆ 𝑉 we define its

volume by vol(𝑆)
def
=
∑︀

𝑎∈𝑉 𝑑𝑎 .
Cuts: For any vertex subset 𝑆 ⊆ 𝑉 we denote the cut induced by 𝑆 by the edge subset

𝜕(𝑆)
def
= {𝑒 ∈ 𝐸 | 𝑒 ̸⊆ 𝑆 and 𝑒 ̸⊆ 𝐸 ∖ 𝑆}

and we denote the cost of 𝐹 ⊆ 𝐸 by 𝑤(𝐹 ) def
=
∑︀

𝑒∈𝐹 𝑤𝑒. We denote the conductance of 𝑆 ⊆ 𝑉 by

Φ(𝑆)
def
=

𝑤(𝜕(𝑆))

min{vol(𝑆), vol(𝑉 − 𝑆)}
and we denote the conductance of a graph by

Φ(𝐺)
def
= min

𝑆⊆𝑉 :𝑆/∈{∅,𝑉 }
𝜑(𝑆)

Subgraphs: For a graph 𝐺 = (𝑉,𝐸) and a vertex subset 𝑆 ⊆ 𝑉 let 𝐺(𝑆) denote the subgraph of
𝐺 consisting of vertex set 𝑆 and all the edges of 𝐸 with both endpoints in 𝑆, i.e. {(𝑎, 𝑏) ∈ 𝐸 | 𝑎, 𝑏 ∈ 𝑆}.
When we we refer to a graph property, such as vol or Φ, we use subscripts to specify which graph
we are considering. For example vol𝐺(𝑆)(𝐴) denotes the volume of vertex set 𝐴 in the subgraph of 𝐺
induced by 𝑆.



12.3. Solving Max-Flow Using a Circulation Projection 283

Congestion: Thinking of edge vectors, 𝑓 ∈ R𝐸 , as flows we let the congestion2 of 𝑓 be given by
cong(𝑓)

def
= ‖𝑈−1𝑓‖∞. For any collection of flows {𝑓 𝑖} = {𝑓1, . . . ,𝑓𝑘} we overload notation and let

their total congestion be given by

cong({𝑓 𝑖})
def
=

⃦⃦⃦⃦
⃦𝑈−1

∑︁
𝑖

|𝑓 𝑖|

⃦⃦⃦⃦
⃦
∞

Demands and Multicommodity Flow: We call a vector 𝜒 ∈ R𝑉 a demand vector if it is the
case that

∑︀
𝑎∈𝑉 𝜒(𝑎) = 0 and we say 𝑓 ∈ R𝐸 meets the demands if 𝐵𝑇𝑓 = 𝜒. Given a set of demands

𝐷 = {𝜒1, . . . ,𝜒𝑘}, i.e. ∀𝑖 ∈ [𝑘],
∑︀

𝑎∈𝑉 𝜒𝑖(𝑎) = 0, we denote the optimal low congestion routing of
these demands as follows

OPT(𝐷)
def
= min

{𝑓 𝑖}∈R𝐸 : {𝐵𝑇 𝑓 𝑖}={𝜒𝑖}
cong({𝑓 𝑖})

We call a set of flows {𝑓 𝑖} that meet demands {𝜒𝑖}, i.e. ∀𝑖,𝐵𝑇𝑓 𝑖 = 𝜒𝑖, a multicommodity flow
meeting the demands.

Running Time: For matrix 𝐴, we let 𝒯 (𝐴) denote the maximum amount of time needed to
apply 𝐴 or 𝐴𝑇 to a vector.

12.3 Solving Max-Flow Using a Circulation Projection

12.3.1 Gradient Descent

In this section, we discuss the gradient descent method for general norms. Let ‖ · ‖ : R𝑛 → R be an
arbitrary norm on R𝑛 and recall that the gradient of 𝑓 at 𝑥 is defined to be the vector ∇𝑓(𝑥) ∈ R𝑛
such that

𝑓(𝑦) = 𝑓(𝑥) + ⟨∇𝑓(𝑥),𝑦 − 𝑥⟩+ 𝑜(‖𝑦 − 𝑥‖). (12.1)

The gradient descent method is a greedy minimization method that updates the current vector, 𝑥,
using the direction which minimizes ⟨∇𝑓(𝑥),𝑦 − 𝑥⟩. To analyze this method’s performance, we need
a tool to compare the improvement ⟨∇𝑓(𝑥),𝑦 − 𝑥⟩ with the step size, ‖𝑦 − 𝑥‖, and the quantity,
‖∇𝑓(𝑥)‖. For ℓ2 norm, this can be done by Cauchy Schwarz inequality and in general, we can define
a new norm for ∇𝑓(𝑥) to make this happens. We call this the dual norm ‖ · ‖* defined as follows

‖𝑥‖* def
= max

𝑦∈R𝑛 : ‖𝑦‖≤1
⟨𝑦,𝑥⟩.

Fact 12.8.4 shows that this definition indeed yields that ⟨𝑦,𝑥⟩ ≤ ‖𝑦‖*‖𝑥‖. Next, we define the fastest
increasing direction 𝑥#, which is an arbitrary point satisfying the following

𝑥# def
= argmax

𝑠∈R
⟨𝑥, 𝑠⟩ − 1

2
‖𝑠‖2.

In the appendix, we provide some facts about ‖ · ‖* and 𝑥# that we will use in this section. Using the
notations defined, the gradient descent method simply produces a sequence of 𝑥𝑘 such that

𝑥𝑘+1 := 𝑥𝑘 − 𝑡𝑘(∇𝑓(𝑥𝑘))#

2Note that here and in the rest of the chapter we will focus our analysis with congestion with respect to the norm
‖ · ‖∞ and we will look at oblivious routing strategies that are competitive with respect to this norm. However, many of
the results present are easily generalizable to other norms. These generalizations are outside the scope of this thesis.
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where 𝑡𝑘 is some chosen step size for iteration 𝑘. To determine what these step sizes should be we need
some information about the smoothness of the function, in particular, the magnitude of the second
order term in (12.1). The natural notion of smoothness for gradient descent is the Lipschitz constant
of the gradient of 𝑓 , that is the smallest constant 𝐿 such that

∀𝑥,𝑦 ∈ R𝑛 : ‖∇𝑓(𝑥)−∇𝑓(𝑦)‖* ≤ 𝐿 · ‖𝑥− 𝑦‖.
In the appendix we provide an equivalent definition and a way to compute 𝐿, which is useful later.

Let 𝑋* ⊆ R𝑛 denote the set of optimal solutions to the unconstrained minimization problem
min𝑥∈R𝑛 𝑓 and let 𝑓* denote the optimal value of this minimization problem, i.e.

∀𝑥 ∈ 𝑋* : 𝑓(𝑥) = 𝑓* = min
𝑦∈R𝑛

𝑓(𝑦) and ∀𝑥 /∈ 𝑋* : 𝑓(𝑥) > 𝑓*

We assume that 𝑋* is non-empty. Now, we are ready to estimate the convergence rate of the gradient
descent method.

Theorem 12.3.1. Let 𝑓 : R𝑛 → R be a convex continuously differentiable function and let 𝐿 be the
Lipschitz constant of ∇𝑓 . For initial point 𝑥0 ∈ R𝑛 we define a sequence of 𝑥𝑘 by the update rule

𝑥𝑘+1 := 𝑥𝑘 −
1

𝐿
(∇𝑓(𝑥𝑘))#

For all 𝑘 ≥ 0, we have

𝑓(𝑥𝑘)− 𝑓* ≤
2 · 𝐿 ·𝑅2

𝑘 + 4
where 𝑅

def
= max

𝑥∈R𝑛:𝑓(𝑥)≤𝑓(𝑥0)
min
𝑥*∈𝑋*

‖𝑥− 𝑥*‖.

Proof. 3 By the Lipschitz continuity of the gradient of 𝑓 and Lemma 12.8.5 we have

𝑓(𝑥𝑘+1) ≤ 𝑓(𝑥𝑘)−
1

2𝐿
(‖∇𝑓(𝑥𝑘)‖*)2 .

Furthermore, by the convexity of 𝑓 , we know that

∀𝑥,𝑦 ∈ R𝑛 : 𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥),𝑦 − 𝑥⟩.
Using this and the fact that 𝑓(𝑥𝑘) decreases monotonically with 𝑘, we get

𝑓(𝑥𝑘)− 𝑓* ≤ min
𝑥*∈𝑋*

⟨∇𝑓(𝑥𝑘),𝑥𝑘 − 𝑥*⟩ ≤ min
𝑥*∈𝑋*

‖∇𝑓(𝑥𝑘)‖*‖𝑥𝑘 − 𝑥*‖ ≤ 𝑅‖∇𝑓(𝑥𝑘)‖*.

Therefore, letting 𝜑𝑘
def
= 𝑓(𝑥𝑘)− 𝑓*, we have

𝜑𝑘 − 𝜑𝑘+1 ≥
1

2𝐿
(‖∇𝑓(𝑥𝑘)‖*)2 ≥

𝜑2𝑘
2 · 𝐿 ·𝑅2

.

Furthermore, since 𝜑𝑘 ≥ 𝜑𝑘+1, we have

1

𝜑𝑘+1
− 1

𝜑𝑘
=
𝜑𝑘 − 𝜑𝑘+1

𝜑𝑘𝜑𝑘+1
≥ 𝜑𝑘 − 𝜑𝑘+1

𝜑2𝑘
≥ 1

2 · 𝐿 ·𝑅2
.

So, by induction, we have that
1

𝜑𝑘
− 1

𝜑0
≥ 𝑘

2 · 𝐿 ·𝑅2
.

3The structure of this specific proof was modeled after a proof in [205] for a slightly different problem.
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Now, note that since ∇𝑓(𝑥*) = 0, we have that

𝑓(𝑥0) ≤ 𝑓(𝑥*) + ⟨∇𝑓(𝑥*),𝑥0 − 𝑥*⟩+ 𝐿

2
‖𝑥0 − 𝑥*‖2 ≤ 𝑓(𝑥*) +

𝐿

2
𝑅2.

So, we have that 𝜑0 ≤ 𝐿
2𝑅

2 and putting this all together yields that

1

𝜑𝑘
≥ 1

𝜑0
+

𝑘

2 · 𝐿 ·𝑅2
≥ 4

2 · 𝐿 ·𝑅2
+

𝑘

2 · 𝐿 ·𝑅2
.

12.3.2 Maximum Flow Formulation

For an arbitrary set of demands 𝜒 ∈ R𝑉 we wish to solve the following maximum flow problem

max
𝛼∈𝑅,𝑓∈R𝐸

𝛼 subject to 𝐵𝑇𝑓 = 𝛼𝜒 and ‖𝑈−1𝑓‖∞ ≤ 1.

Equivalently, we want to compute a minimum congestion flow

min
𝑓∈R𝐸 : 𝐵𝑇 𝑓=𝜒

‖𝑈−1𝑓‖∞.

where we call ‖𝑈−1𝑓‖∞ the congestion of 𝑓 .

Letting 𝑓0 ∈ R𝐸 be some initial feasible flow, i.e. 𝐵𝑇𝑓0
def
= 𝜒, we write the problem equivalently

as
min

𝑐∈R𝐸 : 𝐵𝑇 𝑐=0
‖𝑈−1(𝑓0 + 𝑐)‖∞

where the output flow is 𝑓 = 𝑓0+𝑐. Although the gradient descent method is applicable to constrained
optimization problems and has a similar convergence guarantee, the sub-problem involved in each
iteration is a constrained optimization problem, which is quite complicated in this case. Since the
domain is a linear subspace, the constraints can be avoided by projecting the variables onto this
subspace.

Formally, we define a circulation projection matrix as follows.

Definition 12.3.2. A matrix 𝑃 ∈ R𝐸×𝐸 is a circulation projection matrix if it is a projection matrix
onto the circulation space, i.e. it satisfies the following

∙ ∀𝑥 ∈ R𝐸 we have 𝐵𝑇𝑃𝑥 = 0.

∙ ∀𝑥 ∈ R𝐸 with 𝐵𝑇𝑥 = 0 we have 𝑃𝑥 = 𝑥.

Then, the problem becomes
min
𝑐∈R𝐸

‖𝑈−1(𝑓0 + 𝑃𝑐)‖∞.

Applying gradient descent on this problem is similar to applying projected gradient method on the
original problem. But, instead of using the orthogonal projection that is not suitable for ‖ · ‖∞, we
will pick a better projection matrix.

Applying the change of basis 𝑥 = 𝑈−1𝑐 and letting 𝛼0 = 𝑈−1𝑓0 and 𝑃 = 𝑈−1𝑃𝑈 , we write the
problem equivalently as

min
𝑥∈R𝐸

‖𝛼0 + 𝑃𝑥‖∞
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where the output maximum flow is

𝑓(𝑥) = 𝑈(𝛼0 + 𝑃𝑥)/‖𝑈(𝛼0 + 𝑃𝑥)‖∞.

12.3.3 An Approximate Maximum Flow Algorithm

Since the gradient descent method requires the objective function to be differentiable, we introduce
a smooth version of ‖ · ‖∞ which we call smax𝑡. In next section, we prove that there is a convex
differentiable function smax𝑡 such that ∇smax𝑡 is Lipschitz continuous with Lipschitz constant 1

𝑡 and
such that

∀𝑥 ∈ R𝐸 : ‖𝑥‖∞ − 𝑡 ln(2𝑚) ≤ smax𝑡(𝑥) ≤ ‖𝑥‖∞ .

Now we consider the following regularized optimization problem

min
𝑥∈R𝐸

𝑔𝑡(𝑥) where 𝑔𝑡(𝑥) = smax𝑡(𝛼0 + 𝑃𝑥).

For the rest of this section, we consider solving this optimization problem using gradient descent under
‖ · ‖∞.

First, we bound the Lipschitz constant of the gradient of 𝑔𝑡.

Lemma 12.3.3. The gradient of 𝑔𝑡 is Lipschitz continuous with Lipschitz constant 𝐿 = ‖𝑃 ‖2∞
𝑡 .

Proof. By Lemma 12.8.5 and the Lipschitz continuity of ∇smax𝑡, we have

smax𝑡(𝑦) ≤ smax𝑡(𝑥) + ⟨∇smax𝑡(𝑥),𝑦 − 𝑥⟩+
1

2𝑡
‖𝑦 − 𝑥‖∞.

Seting 𝑥← 𝛼0 + 𝑃𝑥 and 𝑦 ← 𝛼0 + 𝑃𝑦, we have

𝑔𝑡(𝑦) ≤ 𝑔𝑡(𝑦) + ⟨∇smax𝑡(𝛼0 + 𝑃𝑥),𝑃𝑦 − 𝑃𝑥⟩+
1

2𝑡
‖𝑃𝑦 − 𝑃𝑥‖2∞

≤ 𝑔𝑡(𝑦) + ⟨𝑃 𝑇∇smax𝑡(𝛼0 + 𝑃𝑥),𝑦 − 𝑥⟩+
1

2𝑡
‖𝑃 ‖2∞‖𝑦 − 𝑥‖2∞

= 𝑔𝑡(𝑦) + ⟨∇𝑔𝑡(𝑥),𝑦 − 𝑥⟩+
1

2𝑡
‖𝑃 ‖2∞‖𝑦 − 𝑥‖2∞.

Hence, the result follows from Lemma 12.8.5.

Now, we apply gradient descent to find an approximate max flow as follows.

Algorithm 33: MaxFlow

Input: any initial feasible flow 𝑓0 and OPT = min𝑥 ‖𝑈−1𝑓0 + 𝑃𝑥‖∞.
Let 𝛼0 = (𝐼 − 𝑃 )𝑈−1𝑓0 and 𝑥0 = 0.
Let 𝑡 = 𝜀OPT/2 ln(2𝑚) and 𝑘 = 300‖𝑃 ‖4∞ ln(2𝑚)/𝜀2.
Let 𝑔𝑡 = smax𝑡(𝛼0 + 𝑃𝑥).
for 𝑖 = 1, 2, · · · , 𝑘 do

𝑥𝑖+1 = 𝑥𝑖 − 𝑡
‖𝑃 ‖2∞

(∇𝑔𝑡(𝑥𝑖))#. (See Lemma 12.3.5)

end

Output: 𝑈 (𝛼0 + 𝑃𝑥𝑘) /‖𝛼0 + 𝑃𝑥𝑘‖∞.

We remark that the initial flow can be obtained by BFS and the OPT value can be approximted
using binary search. In Section 12.7, we will give an algorithm with better dependence on ‖𝑃 ‖.
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Theorem 12.3.4. Let ̃︀𝑃 be a cycle projection matrix, let 𝑃 = 𝑈−1 ̃︀𝑃𝑈 , and let 𝜀 < 1. MaxFlow

outputs an (1− 𝜀)-approximate maximum flow in time

𝑂

(︂
‖𝑃 ‖4∞ ln(𝑚) (𝒯 (𝑃 ) +𝑚)

𝜀2

)︂
.

Proof. First, we bound ‖𝛼0‖∞. Let 𝑥* be a minimizer of min𝑥 ‖𝑈−1𝑓0 +𝑃𝑥‖∞ such that 𝑃 �⃗�* = �⃗�*.
Then, we have

‖𝛼0‖∞ = ‖𝑈−1𝑓0 − 𝑃𝑈−1𝑓0‖∞
≤ ‖𝑈−1𝑓0 + 𝑥

*‖∞ + ‖𝑥* + 𝑃𝑈−1𝑓0‖∞
= ‖𝑈−1𝑓0 + 𝑥

*‖∞ + ‖𝑃𝑥* + 𝑃𝑈−1𝑓0‖∞
≤ (1 + ‖𝑃 ‖∞) ‖𝑈−1𝑓0 + 𝑥

*‖∞
= (1 + ‖𝑃 ‖∞)OPT.

Second, we bound 𝑅 in Theorem 12.3.1. Note that

𝑔𝑡(𝑥0) = smax𝑡(𝛼0) ≤ ‖𝛼0‖∞ ≤ (1 + ‖𝑃 ‖∞)OPT.

Hence, the condition 𝑔𝑡(𝑥) ≤ 𝑔𝑡(𝑥0) implies that

‖𝛼0 + 𝑃𝑥‖∞ ≤ (1 + ‖𝑃 ‖∞)OPT+ 𝑡 ln(2𝑚).

For any 𝑦 ∈ 𝑋* let 𝑐 = 𝑥−𝑃𝑥+ 𝑦 and note that 𝑃𝑐 = 𝑃𝑦 and therefore 𝑐 ∈ 𝑋*. Using these facts,
we can bound 𝑅 as follows

𝑅 = max
𝑥∈R𝐸 : 𝑔𝑡(𝑥)≤𝑔𝑡(𝑥0)

{︂
min
𝑥*∈𝑋*

‖𝑥− 𝑥*‖∞
}︂

≤ max
𝑥∈R𝐸 : 𝑔𝑡(𝑥)≤𝑔𝑡(𝑥0)

‖𝑥− 𝑐‖∞

≤ max
𝑥∈R𝐸 : 𝑔𝑡(𝑥)≤𝑔𝑡(𝑥0)

‖𝑃𝑥− 𝑃𝑦‖∞

≤ max
𝑥∈R𝐸 : 𝑔𝑡(𝑥)≤𝑔𝑡(𝑥0)

‖𝑃𝑥‖∞ + ‖𝑃𝑦‖∞

≤ 2‖𝛼0‖∞ + ‖𝛼0 + 𝑃𝑥‖∞ + ‖𝛼0 + 𝑃𝑦‖∞
≤ 2‖𝛼0‖∞ + 2‖𝛼0 + 𝑃𝑥‖∞
≤ 4 (1 + ‖𝑃 ‖∞)OPT+ 2𝑡 ln(2𝑚).

From Lemma 12.3.3, we know that the Lipschitz constant of ∇𝑔𝑡 is ‖𝑃 ‖2∞/𝑡. Hence, Theorem 12.3.1
shows that

𝑔𝑡(𝑥𝑘) ≤ min
𝑥
𝑔𝑡(𝑥) +

2 · 𝐿 ·𝑅2

𝑘 + 4

≤ OPT+
2 · 𝐿 ·𝑅2

𝑘 + 4
.

So, we have

‖𝛼0 + 𝑃𝑥𝑘‖∞ ≤ 𝑔𝑡(𝑥𝑘) + 𝑡 ln(2𝑚)

≤ OPT+ 𝑡 ln(2𝑚) +
2‖𝑃 ‖2∞
𝑡(𝑘 + 4)

(4 (1 + ‖𝑃 ‖∞)OPT+ 2𝑡 ln(2𝑚))2 .
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Using 𝑡 = 𝜀OPT/2 ln(2𝑚) and 𝑘 = 300‖𝑃 ‖4∞ ln(2𝑚)/𝜀2, we have

‖𝛼0 + 𝑃𝑥𝑘‖∞ ≤ (1 + 𝜀)OPT.

Therefore, 𝛼0 + 𝑃𝑥𝑘 is an (1− 𝜀) approximate maximum flow.

Now, we estimate the running time. In each step 5, we are required to compute (∇𝑔(𝑥𝑘))#. The
gradient

∇𝑔(𝑥) = 𝑃 𝑇∇smax𝑡(𝛼0 + 𝑃𝑥)

can be computed in 𝑂(𝒯 (𝑃 ) +𝑚) using the formula of the gradient of smax𝑡, applications of 𝑃 and
𝑃 𝑇 . Lemma 12.3.5 shows that the # operator can be computed in 𝑂(𝑚).

Lemma 12.3.5. In ‖ · ‖∞, the # operator is given by the explicit formula(︁
𝑥#
)︁
𝑒
= sign(𝑥𝑒)‖𝑥‖1 for 𝑒 ∈ 𝐸.

Proof. Recall that

𝑥# = argmax
𝑠∈R

⟨𝑥, 𝑠⟩ − 1

2
‖�⃗�‖2∞.

It is easy to see that for all 𝑒 ∈ 𝐸, ||𝑥#||∞ =
⃒⃒(︀
𝑥#
)︀
𝑒

⃒⃒
. In particular, we have(︁

𝑥#
)︁
𝑒
= sign(𝑥𝑒)||𝑥#||∞.

Fact 12.8.3 shows that ||𝑥#||∞ = ‖𝑥‖1 and the result follows.

12.3.4 Properties of soft max

In this section, we define smax𝑡 and discuss its properties. Formally, the regularized convex function
can be found by smoothing technique using convex conjugate [208] [35, Sec 5.4]. For simplicity and
completeness, we define it explicitly and prove its properties directly. Formally, we define

∀𝑥 ∈ R𝐸 ,∀𝑡 ∈ R>0 : smax𝑡(𝑥)
def
= 𝑡 ln

(︃∑︀
𝑒∈𝐸 exp

(︀
𝑥𝑒
𝑡

)︀
+ exp

(︀
−𝑥𝑒

𝑡

)︀
2𝑚

)︃
.

For notational simplicity, for all 𝑥 where this vector is clear from context, we define 𝑐 and 𝑠 as follows

∀𝑒 ∈ 𝐸 : 𝑐𝑒
def
= exp

(︁𝑥𝑒
𝑡

)︁
+ exp

(︁
−𝑥𝑒
𝑡

)︁
and 𝑠𝑒

def
= exp

(︁𝑥𝑒
𝑡

)︁
− exp

(︁
−𝑥𝑒
𝑡

)︁
,

where the letters are chosen due to the very close resemblance to hyperbolic sine and hyperbolic cosine.

Lemma 12.3.6.

∀𝑥 ∈ R𝑛 : ∇smax𝑡(𝑥) =
1

1𝑇𝑐
𝑠

∀𝑥 ∈ R𝑛 : ∇2smax𝑡(𝑥) =
1

𝑡
(︀
1𝑇𝑐

)︀ [︂𝑑𝑖𝑎𝑔(𝑐)− 𝑠𝑠𝑇
1𝑇𝑐

]︂
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Proof. For all 𝑖 ∈ 𝐸 and 𝑥 ∈ R𝐸 , we have

𝜕

𝜕𝑥𝑖
smax𝑡(𝑥) =

𝜕

𝜕𝑥𝑖

(︃
𝑡 ln

(︃∑︀
𝑒∈𝐸 exp

(︀
𝑥𝑒
𝑡

)︀
+ exp

(︀
−𝑥𝑒

𝑡

)︀
2𝑚

)︃)︃

=
exp

(︀
𝑥𝑖
𝑡

)︀
− exp

(︀
−𝑥𝑖

𝑡

)︀∑︀
𝑒∈𝐸 exp

(︀
𝑥𝑒
𝑡

)︀
+ exp

(︀
−𝑥𝑒

𝑡

)︀ .
For all 𝑖, 𝑗 ∈ 𝐸 and 𝑥 ∈ R𝐸 , we have

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
smax𝑡(𝑥) =

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗

(︃
𝑡 ln

(︃∑︀
𝑒∈𝐸 exp

(︀
𝑥𝑒
𝑡

)︀
+ exp

(︀
−𝑥𝑒

𝑡

)︀
2𝑚

)︃)︃

=
𝜕

𝜕𝑗

[︃
exp

(︀
𝑥𝑖
𝑡

)︀
− exp

(︀
−𝑥𝑖

𝑡

)︀∑︀
𝑒∈𝐸 exp

(︀
𝑥𝑒
𝑡

)︀
+ exp

(︀
−𝑥𝑒

𝑡

)︀]︃

=
1

𝑡

(︀
1𝑇𝑐

)︀
1𝑖=𝑗 (𝑐𝑖)− 𝑠𝑖𝑠𝑗(︀
1𝑇𝑐

)︀2 .

Lemma 12.3.7. The function smax𝑡 is a convex continuously differentiable function and it has Lip-
schitz continuous gradient with Lipschitz constant 1/𝑡 and

‖𝑥‖∞ − 𝑡 ln(2𝑚) ≤ smax𝑡(𝑥) ≤ ‖𝑥‖∞
for 𝑥 ∈ R𝐸.
Proof. By the formulation of the Hessian, for all 𝑥,𝑦 ∈ R𝐸 , we have

𝑦𝑇
(︀
∇2smax𝑡(𝑥)

)︀
𝑦 ≤

∑︀
𝑖 𝑐𝑖𝑦

2
𝑖

𝑡(1𝑇𝑐)
≤
∑︀

𝑖 𝑐𝑖(max𝑗 𝑦
2
𝑗 )

𝑡(1𝑇𝑐)
≤ 1

𝑡
‖𝑦‖2∞.

On the other side, for all 𝑥,𝑦 ∈ R𝐸 , we have by 𝑠𝑖 ≤ |𝑠𝑖| ≤ 𝑐𝑖 and Cauchy Schwarz shows that

𝑦𝑇𝑠𝑠𝑇𝑦 ≤ (1𝑇 |𝑠|)(𝑦𝑇𝑑𝑖𝑎𝑔(|𝑠|)𝑦). ≤ (1𝑇𝑐)(𝑦𝑇𝑑𝑖𝑎𝑔(𝑐)𝑦).

and hence
0 ≤ 𝑦𝑇

(︀
∇2smax𝑡(𝑥)

)︀
𝑦.

Thus, the first part follows from Lemma 12.8.6. For the later part, we have

‖𝑥‖∞ ≥ 𝑡 ln

(︃∑︀
𝑒∈𝐸 exp

(︀
𝑥𝑒
𝑡

)︀
+ exp

(︀
−𝑥𝑒

𝑡

)︀
2𝑚

)︃
≥ 𝑡 ln

⎛⎝exp
(︁
‖𝑥‖∞
𝑡

)︁
2𝑚

⎞⎠ = ‖𝑥‖∞ − ln(2𝑚).

12.4 Oblivious Routing

In the previous sections, we saw how a circulation projection matrix can be used to solve max flow. In
the next few sections, we show how to efficiently construct a circulation projection matrix to obtain
an almost linear time algorithm for solving max flow.

Our proof focuses on the notion of (linear) oblivious routings. Rather than constructing the
circulation projection matrix directly, we show how the efficient construction of an oblivious routing
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algorithm with a good competitive ratio immediately allows us to produce a circulation projection
matrix.

In the remainder of this section, we formally define oblivious routings and prove the relationship
between oblivious routing and circulation projection matrices (Section 12.4.1), provide a high level
overview of our recursive approach and state the main theorems we will prove in later sections (Section
12.4.2). Finally, we prove the main theorem about our almost-linear-time construction of circulation

projection with norm 2𝑂(
√

log(𝑛) log log(𝑛)) assuming the proofs in the later sections (Section 12.4.3).

12.4.1 From Oblivious Routing to Circulation Projection

Here we provide definitions and prove basic properties of oblivious routings, that is, fixed mappings
from demands to flows that meet the input demands. While non-linear algorithms could be considered,
we restrict our attention to linear oblivious routing strategies and use the term oblivious routing to
refer to the linear subclass for the remainder of this chapter.4

Definition 12.4.1 (Oblivious Routing). An oblivious routing on graph 𝐺 = (𝑉,𝐸) is a linear operator
𝐴 ∈ R𝐸×𝑉 such that for all demands 𝜒 ∈ R𝑉 , 𝐵𝑇𝐴𝜒 = 𝜒. We call 𝐴𝜒 the routing of 𝜒 by 𝐴.

Given an oblivious routing strategy 𝐴 and a set of demands 𝐷 = {𝜒1, . . . ,𝜒𝑘}, one can construct
a multicommodity flow satisfying all the demands in 𝐷 by using 𝐴 to route each demand individually,
obliviously to the existence of the other demands. We measure the competitive ratio of such an
oblivious routing strategy to be the ratio of the worst relative congestion of such a routing to the
minimal-congestion routing of the demands.

Definition 12.4.2 (Competitive Ratio). The competitive ratio of oblivious routing 𝐴 ∈ R𝐸×𝑉 , de-
noted 𝜌(𝐴), is given by

𝜌(𝐴)
def
= max

{𝜒𝑖} : ∀𝑖 𝜒𝑖⊥1

cong({𝐴𝜒𝑖})
OPT({𝜒𝑖})

At times, it will be more convenient to analyze an oblivious routing as a linear algebraic object
rather a combinatorial algorithm; towards this end, we note that the competitive ratio of a linear
oblivious routing strategy can be gleaned from the operator norm of a related matrix (see also [158]
and [139]). Below, we state and prove a generalization of this result to weighted graphs that will be
vital to relating 𝐴 to ̃︀𝑃 .

Lemma 12.4.3. For any oblivious routing 𝐴, we have 𝜌(𝐴) = ‖𝑈−1𝐴𝐵𝑇𝑈‖∞

Proof. For a set of demands 𝐷, let 𝐷∞ be the set of demands that results by taking the routing of
every demand in 𝐷 by OPT(𝐷) and splitting it up into demands on every edge corresponding to the
flow sent by OPT(𝐷). Now, clearly OPT(𝐷) = OPT(𝐷∞) since routing 𝐷 can be used to route 𝐷∞
and vice versa, and clearly cong(𝐴𝐷) ≤ cong(𝐴𝐷∞) by the linearity of 𝐴 (routing 𝐷∞ simply doesn’t
reward 𝐴 routing for cancellations). Using this and the fact that 𝐷∞ ⊆ 𝐷, we have:

𝜌𝑝(𝐴) = max
𝐷

cong({𝐴𝐷})
OPT(𝐷)

= max
𝐷∞

cong(𝐴𝐷∞)

OPT(𝐷∞)
= max
𝑥∈R𝐸

‖
∑︀

𝑒∈𝐸 𝑥𝑒
⃒⃒
𝑈−1𝐴𝜒𝑒

⃒⃒
‖∞

‖𝑈−1𝑥‖∞

= max
𝑥∈R𝐸

‖
⃒⃒
𝑈−1𝐴𝐵𝑇

⃒⃒
𝑥‖∞

‖𝑈−1𝑥‖∞
= max
𝑥∈R𝐸

‖
⃒⃒
𝑈−1𝐴𝐵𝑇𝑈

⃒⃒
𝑥‖∞

‖𝑥‖∞
.

4Note that the oblivous routing strategies considered in [139] [158] [225] are all linear oblivious routing strategies.
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To make this lemma easily applicable in a variety of settings, we make use of the following easy-
to-prove lemma.

Lemma 12.4.4 (Operator Norm Bounds). For all 𝐴 ∈ R𝑛×𝑚, we have that

‖𝐴‖∞ = ‖ |𝐴| ‖∞ = ‖ |𝐴|1‖∞ = max
𝑖∈𝑛
‖𝐴𝑇1𝑖‖1.

The previous two lemmas make the connection between oblivious routings and circulation projec-
tion matrices clear. Below, we prove it formally.

Lemma 12.4.5 (Oblivious Routing to Circulation Projection). For oblivious routing 𝐴 ∈ R𝐸×𝑉 the

matrix ̃︀𝑃 def
= 𝐼 −𝐴𝐵𝑇 is a circulation projection matrix such that ‖𝑈−1 ̃︀𝑃𝑈‖∞ ≤ 1 + 𝜌(𝐴) .

Proof. First, we verify that im(̃︀𝑃 ) is contained in cycle space:

∀𝑥 ∈ R𝐸 : 𝐵𝑇 ̃︀𝑃𝑥 = 𝐵𝑇𝑥−𝐵𝑇𝐴𝐵𝑇𝑥 = 0.

Next, we check that ̃︀𝑃 is the identity on cycle space

∀𝑥 ∈ R𝐸 s.t. 𝐵𝑇𝑥 = 0 : ̃︀𝑃𝑥 = 𝑥−𝐴𝐵𝑇𝑥 = 𝑥.

Finally, we bound the ℓ∞-norm of the scaled projection matrix:

‖𝑈−1 ̃︀𝑃𝑈‖∞ = ‖𝐼 −𝑈−1𝐴𝐵𝑇𝑈‖∞ ≤ 1 + 𝜌(𝐴).

12.4.2 A Recursive Approach by Embeddings

We construct an oblivious routing for a graph recursively. Given a generic, possibly complicated, graph,
we show how to reduce computing an oblivious routing on this graph to computing an oblivious routing
on a simpler graph on the same vertex set. A crucial concept in these constructions will be the notion
of an embedding, which will allow us to relate the competitive ratios of an oblivious routing algorithms
over graphs on the same vertex sets but different edge sets.

Definition 12.4.6 (Embedding). Let 𝐺 = (𝑉,𝐸,𝜇) and 𝐺′ = (𝑉,𝐸′,𝜇′) denote two undirected
capacitated graphs on the same vertex set with incidence matrices 𝐵 ∈ R𝐸×𝑉 and 𝐵′ ∈ R𝐸′×𝑉

respectively. An embedding from 𝐺 to 𝐺′ is a matrix 𝑀 ∈ R𝐸′×𝐸 such that 𝐵′𝑇𝑀 = 𝐵𝑇 .

In other words, an embedding is a map from flows in one graph 𝐺 to flows in another graph 𝐺′ that
preserves the demands met by the flow. We can think of an embedding as a way of routing any flow
in graph 𝐺 into graph 𝐺′ that has the same vertex set, but different edges. We will be particularly
interested in embeddings that increase the congestion of the flow by a small amount going from 𝐺 to
𝐺′.

Definition 12.4.7 (Embedding Congestion). Let 𝑀 ∈ R𝐸′×𝐸 be an embedding from 𝐺 = (𝑉,𝐸,𝜇)
to 𝐺′ = (𝑉,𝐸′,𝜇′) and let 𝑈 ∈ R𝐸×𝐸 and 𝑈 ′ ∈ R𝐸′×𝐸′

denote the capacity matrices of 𝐺 and 𝐺′

respectively. The congestion of embedding 𝑀 is given by

cong(𝑀)
def
= max

𝑥∈R𝐸

‖𝑈 ′−1
𝑀𝑥‖∞

‖𝑈−1𝑥‖∞
= ‖𝑈 ′−1|𝑀 |𝑈1‖∞ .

We say 𝐺 embeds into 𝐺′ with congestion 𝛼 if there exists an embedding 𝑀 from 𝐺 to 𝐺′ such that
cong(𝑀) ≤ 𝛼.



292 CHAPTER 12. UNDIRECTED MAXFLOW IN ALMOST-LINEAR TIME

Embeddings potentially allow us to reduce computing an oblivious routing in a complicated graph
to computing an oblivious routing in a simpler graph. Specifically, if we can embed a complicated
graph in a simpler graph and we can efficiently embed the simple graph in the original graph, both
with low congestion, then we can just focus on constructing oblivious routings in the simpler graph.
We prove this formally as follows.

Lemma 12.4.8 (Embedding Lemma). Let 𝐺 = (𝑉,𝐸,𝜇) and 𝐺′ = (𝑉,𝐸′,𝜇′) denote two undirected
capacitated graphs on the same vertex sets, let 𝑀 ∈ R𝐸′×𝐸 denote an embedding from 𝐺 into 𝐺′, let
𝑀 ′ ∈ R𝐸×𝐸′

denote an embeding from 𝐺′ into 𝐺, and let 𝐴′ ∈ R𝐸′×𝑉 denote an oblivious routing
algorithm on 𝐺′. Then 𝐴

def
= 𝑀 ′𝐴′ is an oblivious routing algorithm on 𝐺 and

𝜌(𝐴) ≤ cong(𝑀) · cong(𝑀 ′) · 𝜌(𝐴′).

Proof. For all 𝑥 ∈ R𝑉 we have by definition of embeddings and oblivious routings that

𝐵𝑇𝐴𝑥 = 𝐵𝑇𝑀 ′𝐴′𝑥 = 𝐵𝑇𝑥.

To bound 𝜌(𝐴), we let 𝑈 denote the capacity matrix of 𝐺 and 𝑈 ′ denote the capacity matrix of 𝐺′.
Using Lemma 12.4.3, we get

𝜌(𝐴) = ‖𝑈−1𝐴𝐵𝑇𝑈‖∞ = ‖𝑈−1𝑀 ′𝐴′𝐵𝑇𝑈‖∞
Using that 𝑀 is an embedding and therefore 𝐵′𝑇𝑀 = 𝐵𝑇 , we get

𝜌(𝐴) = ‖𝑈−1𝑀 ′𝐴′𝐵′𝑇𝑀𝑈‖∞ ≤ ‖𝑈−1𝑀 ′𝑈 ′‖∞ · ‖𝑈 ′−1
𝐴′𝐵′𝑇𝑈 ′‖∞ · ‖𝑈 ′−1

𝑀𝑈‖∞
By the definition of competitive ratio and congestion, we obtain the result.

Note how in this lemma we only use the embedding from 𝐺 to 𝐺′ to certify the quality of flows in
𝐺′, we do not actually need to apply this embedding in the reduction.

Using this concept, we construct oblivious routings via recursive application of two techniques.
First, in Section 12.5, we show how to take an arbitrary graph 𝐺 = (𝑉,𝐸) and approximate it by a
sparse graph 𝐺′ = (𝑉,𝐸′) (i.e. one in which |𝐸′| = ̃︀𝑂(|𝑉 |)) such that flows in 𝐺 can be routed in 𝐺′

with low congestion and that there is an ̃︀𝑂(1) embedding from 𝐺′ to 𝐺 that can be applied in ̃︀𝑂(|𝐸|)
time. We call such a construction a flow sparsifiers and prove the following theorem.

Theorem 12.4.9. Let 𝐺 = (𝑉,𝐸,𝜇) be an undirected capacitated graph. In ̃︀𝑂(|𝐸| log𝑈) time we can
construct a graph 𝐺′ on the same vertex set with at most ̃︀𝑂(|𝑉 | log𝑈) edges and capacity ratio at most
𝑈 · poly(|𝑉 |). Moreover, given an oblivious routing 𝐴′ on 𝐺′, in ̃︀𝑂(|𝐸| log𝑈) time we can construct
an oblivious routing 𝐴 on 𝐺 such that

𝒯 (𝐴) = ̃︀𝑂(|𝐸| log𝑈 + 𝒯
(︀
𝐴′)︀) and 𝜌(𝐴) = ̃︀𝑂(𝜌(𝐴′)).

Next, in Section 12.6 we show how to embed a graph into a collection of graphs consisting of
trees plus extra edges. Then, we will show how to embed these graphs into better structured graphs
consisting of trees plus edges so that by simply removing degree 1 and degree 2 vertices we are left
with graphs with fewer vertices. Formally, we prove the following.

Theorem 12.4.10. Let 𝐺 = (𝑉,𝐸,𝜇) be an undirected capacitated graph with capacity ratio 𝑈 . For

all 𝑡 > 0 in ̃︀𝑂(𝑡 · |𝐸|) time we can compute graphs 𝐺1, . . . , 𝐺𝑡 each with at most ̃︀𝑂( |𝐸| log(𝑈)
𝑡 ) vertices,

at most |𝐸| edges, and capacity ratio at most |𝑉 | · 𝑈. Moreover, given oblivious routings 𝐴𝑖 for each
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𝐺𝑖, in ̃︀𝑂(𝑡 · |𝐸|) time we can compute an oblivious routing 𝐴 on 𝐺 such that

𝒯 (𝐴) = ̃︀𝑂(𝑡 · |𝐸|+
𝑡∑︁
𝑖=1

𝒯 (𝐴𝑖)) and 𝜌(𝐴) = ̃︀𝑂(max
𝑖
𝜌(𝐴𝑖)).

In the next section we show that the careful application of these two ideas along with a powerful
primitive for routing on constant sized graphs suffices to produce an oblivious routing with the desired
properties.

12.4.3 Efficient Oblivious Routing Construction Proof

First, we provide the lemma that will serve as the base case of our recursion. In particular, we show
that electric routing can be used to obtain a routing algorithm with constant competitive ratio for
constant-size graphs.

Lemma 12.4.11 (Base Case). Let 𝐺 = (𝑉,𝐸,𝜇) be an undirected capacitated graph and let us assign

weights to edges so that 𝑊 = 𝑈2. For ℒ def
= 𝐵𝑇𝑊𝐵 we have that 𝐴

def
= 𝑊𝐵ℒ+ is an oblivious

routing on 𝐺 with 𝜌(𝐴) ≤
√︀
|𝐸| and 𝒯 (ℒ+) = ̃︀𝑂(|𝐸|).

Proof. To see that 𝐴 is an oblivious routing strategy we note that for any demands 𝜒 ∈ R𝑉 we have
𝐵𝑇𝐴 = ℒℒ+ = 𝐼. To see bound 𝜌(𝐴) we note that by Lemma 12.4.3 and standard norm inequalities
we have

𝜌(𝐴) = max
𝑥∈R𝐸

‖𝑈−1𝑊𝐵ℒ+𝐵𝑇𝑈𝑥‖∞
‖𝑥‖∞

≤ max
𝑥∈R𝐸

‖𝑈𝐵ℒ+𝐵𝑇𝑈𝑥‖2
1√
|𝐸|
‖𝑥‖2

=
√︀
|𝐸| · ‖𝑈𝐵ℒ+𝐵𝑇𝑈‖2

The result follows from the fact in [242] that Π
def
= 𝑈𝐵ℒ+𝐵𝑇𝑈 is an orthogonal projection, and

therefore ‖Π‖2 ≤ 1, and the fact in [243, 147, 146, 141] that 𝒯 (ℒ+) = ̃︀𝑂(|𝐸|).

Assuming Theorem 12.4.9 and Theorem 12.4.10, which we prove in the next two sections, we prove
that low-congestion oblivious routings can be constructed efficiently.

Theorem 12.4.12. Given an undirected capacitated graph 𝐺 = (𝑉,𝐸,𝜇) with capacity ratio 𝑈 . As-
sume 𝑈 = poly(|𝑉 |). We can construct an oblivious routing algorithm 𝐴 on 𝐺 in time

𝑂(|𝐸|2𝑂(
√

log |𝑉 | log log |𝑉 |))

such that
𝒯 (𝐴) = |𝐸|2𝑂(

√
log |𝑉 | log log |𝑉 |) and 𝜌(𝐴) = 2𝑂(

√
log |𝑉 | log log |𝑉 |).

Proof. Let 𝑐 be the constant hidden in the exponent terms, including �̃�(·) and poly(·) in Theorem
12.4.9 and Theorem 12.4.10. Apply Theorem 12.4.9 to construct a sparse graph 𝐺(1), then apply

Theorem 12.4.10 with 𝑡 =
⌈︁
2
√

log |𝑉 | log log |𝑉 |
⌉︁
to get 𝑡 graphs 𝐺(1)

1 , · · ·𝐺(1)
𝑡 such that each graphs have

at most 𝑂
(︀
1
𝑡 |𝐸| log

2𝑐 |𝑉 | log2𝑐 𝑈
)︀
vertices and at most 𝑈 · |𝑉 |2𝑐 capacity ratio.

Repeat this process on each 𝐺(1)
𝑖 , it produces 𝑡2 graphs 𝐺(2)

1 , · · · , 𝐺(2)
𝑡2
. Keep doing this until all

graphs 𝐺𝑖 produced have 𝑂(1) vertices. Let 𝑘 be the highest level we go through in this process. Since

at the 𝑘-th level the number of vertices of each graph is at most 𝑂
(︁
𝑐𝑘

𝑡𝑘
|𝐸| log2𝑘𝑐 |𝑉 | log2𝑘(𝑈 |𝑉 |2𝑐𝑘)

)︁
vertices, we have 𝑘 = 𝑂

(︁√︁
log |𝑉 |

log log |𝑉 |

)︁
.
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On each graph 𝐺𝑖, we use Theorem 12.4.11 to get an oblivious routing algorithm 𝐴𝑖 for each 𝐺𝑖
with

𝒯 (𝐴𝑖) = �̃�(1) and 𝜌(𝐴𝑖) = �̃�(1).

Then, Theorem 12.4.10 and 12.4.9 shows that we have an oblivious routing algorithm 𝐴 for 𝐺 with

𝒯 (𝐴) = 𝑂(𝑡𝑘|𝐸| log𝑐𝑘(|𝑉 |) log2𝑘(𝑈 |𝑉 |2𝑐𝑘)) and 𝜌(𝐴) = 𝑂(log2𝑘𝑐 |𝑉 | log𝑘(𝑈 |𝑉 |2𝑐𝑘)).

The result follows from 𝑘 = 𝑂
(︁√︁

log |𝑉 |
log log |𝑉 |

)︁
and 𝑡 =

⌈︁
2
√

log |𝑉 | log log |𝑉 |
⌉︁
.

Using Theorem 12.4.12, Lemma 12.4.5 and Theorem 12.3.4, we have the following almost linear
time max flow algorithm on undirected graph.

Theorem 12.4.13. Given an undirected capacitated graph 𝐺 = (𝑉,𝐸,𝜇) with capacity ratio 𝑈 . As-
sume 𝑈 = poly(|𝑉 |). There is an algorithm finds an (1− 𝜀) approximate maximum flow in time

𝑂

⎛⎝ |𝐸|2𝑂(︁√
log |𝑉 | log log |𝑉 |

)︁
𝜀2

⎞⎠ .

12.5 Flow Sparsifiers

In order to prove Theorem 12.4.9, i.e. reduce the problem of efficiently computing a competitive
oblivious routing on a dense graph to the same problem on a sparse graph, we introduce a new
algorithmic tool called flow sparsifiers. 5 A flow sparsifier is an efficient cut-sparsification algorithm
that also produces an efficiently-computable low-congestion embedding mapping the sparsified graph
back to the original graph.

Definition 12.5.1 (Flow Sparsifier). An algorithm is a (ℎ, 𝜀, 𝛼)-flow sparsifier if on input graph 𝐺 =
(𝑉,𝐸, 𝜇) with capacity ratio 𝑈 it outputs a graph 𝐺′ = (𝑉,𝐸′, 𝜇′) with capacity ratio 𝑈 ′ ≤ 𝑈 ·poly(|𝑉 |)
and an embedding 𝑀 : R𝐸′ → R𝐸 of 𝐺′ into 𝐺 with the following properties:

∙ Sparsity: 𝐺′ is ℎ-sparse, i.e.
|𝐸′| ≤ ℎ

∙ Cut Approximation: 𝐺′ is an 𝜀-cut approximation of 𝐺, i.e.

∀𝑆 ⊆ 𝑉 : (1− 𝜀)𝜇(𝜕𝐺(𝑆)) ≤ 𝜇′(𝜕𝐺′(𝑆)) ≤ (1 + 𝜀)𝜇(𝜕𝐺(𝑆))

∙ Flow Approximation: 𝑀 has congestion at most 𝛼, i.e.

cong(𝑀) ≤ 𝛼.

∙ Efficiency: The algorithm runs in �̃�(𝑚 log𝑈) time and 𝒯 (𝑀) is also �̃�(𝑚 log𝑈).

Flow sparsifiers allow us to solve a multi-commodity flow problem on a possibly dense graph 𝐺 by
converting 𝐺 into a sparse graph 𝐺′ and solving the flow problem on 𝐺′, while suffering a loss of a
factor of at most 𝛼 in the congestion when mapping the solution back to 𝐺 using 𝑀 .

5Note that our flow sparsifiers aim to reduce the number of edges, and are different from the flow sparsifiers of Leighton
and Moitra [167], which work in a different setting and reduce the number of vertices.
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Theorem 12.5.2. Consider a graph 𝐺 = (𝑉,𝐸, 𝜇) and let 𝐺′ = (𝑉,𝐸′, 𝜇′) be given by an (ℎ, 𝜀, 𝛼)-flow
sparsifier of 𝐺. Then, for any set of 𝑘 demands 𝐷 = {𝜒1,𝜒2, . . . ,𝜒𝑘} between vertex pairs of 𝑉, we
have:

OPT𝐺′(𝐷) ≤ 𝑂(log 𝑘)

1− 𝜀
·OPT𝐺(𝐷). (12.2)

Given the optimum flow {𝑓⋆𝑖 } over 𝐺′, we have

cong𝐺({𝑀𝑓⋆𝑖 }) ≤ 𝛼 ·OPT𝐺′(𝐷) ≤ 𝑂(𝛼 log 𝑘)

1− 𝜀
·OPT𝐺(𝐷).

Proof. By the flow-cut gap theorem of Aumann and Rabani [21], we have that, for any set of 𝑘 demands
𝐷 on 𝑉 we have:

OPT𝐺(𝐷) ≥ 𝑂
(︂

1

log 𝑘

)︂
·max
𝑆⊂𝑉

𝐷(𝜕(𝑆))

𝜇(𝜕𝐺(𝑆))
.

where 𝐷(𝜕(𝑆)) denotes the total amount of demand separated by the cut between 𝑆 and 𝑆. As any
cut 𝑆 ⊆ 𝑉 in 𝐺′ has capacity 𝜇′(𝜕𝐺′(𝑆)) ≥ (1− 𝜀)𝜇(𝜕𝐺(𝑆)), we have:

OPT𝐺′(𝐷) ≤ max
𝑆⊂𝑉

𝐷(𝜕(𝑆))

𝜇′(𝜕𝐺′(𝑆))
≤ 1

1− 𝜀
·max
𝑆⊂𝑉

𝐷(𝜕(𝑆))

𝜇(𝜕𝐺(𝑆))
≤ 𝑂(log 𝑘)

1− 𝜀
·OPT𝐺(𝐷).

The second part of the theorem follows as a consequence of the definition of the congestion of the
embedding 𝑀 .

Our flow sparsifiers should be compared with the cut-based decompositions of Räcke [225]. Räcke
constructs a probability distribution over trees and gives explicit embeddings from 𝐺 to this distri-
bution and backwards, achieving a congestion of 𝑂(log 𝑛). However, this distribution over tree can
include up to 𝑂(𝑚 log 𝑛) trees and it is not clear how to use it to obtain an almost linear time algo-
rithm. Flow sparsifiers answer this problem by embedding 𝐺 into a single graph 𝐺′, which is larger
than a tree, but still sparse. Moreover, they provide an explicit efficient embedding of 𝐺′ into 𝐺.
Interestingly, the embedding from 𝐺 to 𝐺′ is not necessary for our notion of flow sparsifier, and is
replaced by the cut-approximation guarantee. This requirement, together with the application of the
flow-cut gap [21], lets us argue that the optimal congestion of a 𝑘-commodity flow problem can change
at most by a factor of 𝑂(log 𝑘) between 𝐺 and 𝐺′.

Main Theorem on Flow Sparsifiers and Proof of Theorem 12.4.9

The main goal of this section will be to prove the following theorem:

Theorem 12.5.3. For any constant 𝜀 ∈ (0, 1), there is an (�̃�(𝑛 log𝑈), 𝜀, �̃�(1))-flow sparsifier.

Assuming Theorem 12.5.3, we can now prove Theorem 12.4.9, the main theorem necessary for edge
reduction in our construction of low-congestion projections.

Proof of Theorem 12.4.9. We apply the flow sparsifier of Theorem 12.5.3 to 𝐺 = (𝑉,𝐸,𝜇) and obtain
output 𝐺′ = (𝑉,𝐸′,𝜇′) with embedding 𝑀 . By the definition of flow sparsifier, we know that the
capacity ratio 𝑈 ′ of 𝐺′ is at most 𝑈 · poly(|𝑉 |), as required. Moreover, again by Theorem 12.5.3, 𝐺′

has at most �̃�(|𝑉 | log𝑈) edges. Given an oblivious routing 𝐴′ on 𝐺′ consider the oblivious routing
𝐴

def
= 𝑀𝐴′. By the definition of flow sparsifier, we have that 𝒯 (𝑀) = ̃︀𝑂(|𝐸| log𝑈). Hence 𝒯 (𝐴) =

𝒯 (𝑀) + 𝒯 (𝐴′) = ̃︀𝑂(|𝐸| log𝑈) + 𝒯 (𝐴′) . To complete the proof, we bound the competivite ratio
𝜌(𝐴). Using the same argument as in Lemma 12.4.3, we can write 𝜌(𝐴) as

𝜌(𝐴) = max
𝐷

cong𝐺({𝐴𝐷})
OPT𝐺(𝐷)

≤ max
𝐷∞

cong𝐺(𝐴𝐷∞)

OPT𝐺(𝐷∞)
,
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where 𝐷∞ is the set of demands that result by taking the routing of every demand in 𝐷 by OPT(𝐷)
and splitting it up into demands on every edge corresponding to the flow sent by OPT(𝐷). Notice
that 𝐷∞ has at most |𝐸| demands that are routed between pairs of vertices in 𝑉. Then, because 𝐺′ is
an 𝜀-cut approximation to 𝐺, the flow-cut gap of Aumann and Rabani [21] guarantees that

OPT𝐺(𝐷∞) ≥ 1

𝑂(log 𝑛)
OPT𝐺′(𝐷∞).

As a result, we obtain:

𝜌(𝐴) ≤ 𝑂(log 𝑛) ·max
𝐷∞

cong𝐺(𝐴𝐷∞)

OPT𝐺′(𝐷∞)
= 𝑂(log 𝑛) ·max

𝐷∞

cong𝐺(𝑀𝐴′𝐷∞)

OPT𝐺′(𝐷∞)

≤ 𝑂(log 𝑛) · cong(𝑀) ·max
𝐷∞

cong𝐺′(𝐴′𝐷∞)

OPT𝐺′(𝐷∞)
≤ ̃︀𝑂(𝜌(𝐴′)).

Techniques

We will construct flow sparsifiers by taking as a starting point the construction of spectral sparsifiers
of Spielman and Teng [244]. Their construction achieves a sparsity of ̃︀𝑂 (︀ 𝑛

𝜀2

)︀
edges, while guarantee-

ing an 𝜀-spectral approximation. As the spectral approximation implies the cut approximation, the
construction in [244] suffices to meet the first two conditions in Definition 12.5.1. Moreover, their
algorithm also runs in time �̃�(𝑚), meeting the fourth condition. Hence, to complete the proof of The-
orem 12.5.3, we will modify the construction of Spielman and Teng to endow their sparsifier 𝐺′ with an
embedding𝑀 onto 𝐺 of low congestion that can be both computed and invoked efficiently. The main
tool we use in constructing 𝑀 is the notion of electrical-flow routing and the fact that electrical-flow
routing schemes achieve a low competitive ratio on near-expanders and subsets thereof [139, 158].

To exploit this fact and construct a flow sparsifier, we follow Spielman and Teng [244] and par-
tition the input graph into vertex sets, where each sets induces a near-expanders and most edges of
the graph do not cross set boundaries. We then sparsify these induced subgraphs using standard
sparsification techniques and iterate on the edges not in the subgraphs. As each iteration removes a
constant fraction of the edges, by using standard sparsification techniques, we immediately obtain the
sparsity and cut approximation properties. To obtain the embedding 𝑀 with cong(𝑀) = ̃︀𝑂(1), we
prove a generalization of results in [139, 158] and show that the electrical-flow routing achieves a low
competitive ratio on near-expanders and subsets thereof.

In the next two subsections, we introduce the necessary concept about electrical-flow routing and
prove that it achieves low competitive ratio over near-expanders (and subsets of near-expanders).

12.5.1 Subgraph Routing

Given an oblivious routing strategy 𝐴, we may be interested only in routing demands coming from
a subset of edge 𝐹 ⊆ 𝐸. In this setting, given a set of demands 𝐷 routable in 𝐹, we let OPT𝐹 (𝐷)
denote the minimal congestion achieved by any routing restricted to only sending flow on edges in 𝐹
and we measure the 𝐹 -competitive ratio of 𝐴 by

𝜌𝐹 (𝐴)
def
= max

𝐷 routable in 𝐹

cong(𝐴𝐷)

OPT𝐹 (𝐷)

Note that𝐴 may use all the edges in 𝐺 but 𝜌𝐹 (𝐴) compares it only against routings that are restricted
to use only edges in 𝐹 . As before, we can upper bound the 𝐹 -competitive ratio 𝜌𝐹 (𝐴) by operator
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norms.

Lemma 12.5.4. Let 1𝐹 ∈ R𝐸 denote the indicator vector for set 𝐹 (i.e. 1𝐹 (𝑒) = 1 if 𝑒 ∈ 𝐹 and

1𝐹 (𝑒) = 0) and let 𝐼𝐹
def
= 𝑑𝑖𝑎𝑔(1𝐹 ). For any 𝐹 ⊆ 𝐸 we have

𝜌𝐹 (𝐴) = ‖𝑈−1𝐴𝐵𝑇𝑈𝐼𝐹 ‖∞
Proof. We use the same reasoning as in the non-subgraph case. For a set of demands 𝐷 = {𝜒𝑖}, we
consider 𝐷𝐹

∞, the demands on the edges in 𝐹 used by OPT𝐹 (𝐷). Then, it is the case that OPT𝐹 (𝐷) =
OPT𝐹 (𝐷∞) and we know that cost of obliviously routing 𝐷𝑃 is greater than the cost of obliviously
routing 𝐷. Therefore, we have:

𝜌𝐹 = max
𝑥∈R𝐸 : 𝐼𝐸∖𝐹𝑥=0

‖
∑︀

𝑒∈𝐸 |𝑈
−1𝐴𝐵𝑇1𝑒𝑥𝑒| ‖∞
‖𝑈−1𝑥‖∞

= max
𝑦∈R𝐸 : 𝐼𝐸∖𝐹 𝑦=0

‖
∑︀

𝑒∈𝐸 |𝑈
−1𝐴𝐵𝑇𝑈1𝑒𝑦𝑒| ‖∞
‖𝑦‖∞

= max
𝑦∈R𝐸

‖
∑︀

𝑒∈𝐸 |𝑈
−1𝐴𝐵𝑇𝑈𝐼𝐹1𝑒𝑦𝑒| ‖∞
‖𝑦‖∞

= ‖
⃒⃒
𝑈−1𝐴𝐵𝑇𝑈𝐼𝐹

⃒⃒
‖∞ = ‖𝑈−1𝐴𝐵𝑇𝑈𝐼𝐹 ‖∞

(Having 𝑦𝑒 ̸= 0 for 𝑒 ∈ 𝐸 ∖ 𝐹 decreases the ratio.)

12.5.2 Electrical-Flow Routings

In this section, we define the notion of electrical-flow routing and prove the results necessary to
construct flow sparsifiers. Recall that 𝑅 is the diagonal matrix of resistances and the Laplacian ℒ is
defined as 𝐵𝑇𝑅−1𝐵. For the rest of this section, we assume that resistances are set as 𝑅 = 𝑈−1.

Definition 12.5.5. Consider a graph 𝐺 = (𝑉,𝐸, 𝜇) and set the edge resistances as 𝑟𝑒 = 1
𝜇𝑒

for all
𝑒 ∈ 𝐸. The oblivious electrical-flow routing strategy is the linear operator 𝐴ℰ defined as

𝐴ℰ
def
= 𝑅−1𝐵ℒ+,

In words, the electrical-flow routing strategy is the routing scheme that, for each demand 𝜒 sends
the electrical flow with boundary condition 𝜒 on the graph 𝐺 with resistances 𝑅 = 𝑈−1.

For the electrical-flow routing strategy 𝐴ℰ , the upper bound on the competitive ratio 𝜌(𝐴ℰ) in
Lemma 12.4.3 can be rephrased in terms of the voltages induced on 𝐺 by electrically routing an edge
𝑒 ∈ 𝐸. This interpretation appears in [139, 158].

Lemma 12.5.6. Let 𝐴ℰ be the electrical-flow routing strategy. For an edge 𝑒 ∈ 𝐸, we let the voltage
vector v 𝑒 ∈ R𝑉 be given by v 𝑒

def
= ℒ+𝜒𝑒. We then have

𝜌(𝐴ℰ) = max
𝑒∈𝐸

∑︁
(𝑎,𝑏)∈𝐸

|𝑣𝑒(𝑎)− 𝑣𝑒(𝑏)|
𝑟𝑎𝑏

.

Proof. We have:

𝜌(𝐴ℰ) = ‖𝐵ℒ+𝐵𝑇𝑅−1‖∞ = max
𝑒∈𝐸
‖𝑅−1𝐵ℒ+𝐵𝑇1𝑒‖1 = max

𝑒∈𝐸

∑︁
(𝑎,𝑏)∈𝐸

|𝑣𝑒(𝑎)− 𝑣𝑒(𝑏)|
𝑟𝑎𝑏

.
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The same reasoning can be extended to the subgraph-routing case to obtain the following lemma.

Lemma 12.5.7. For 𝐹 ⊆ 𝐸 and 𝑅 = 𝑈−1 we have

𝜌𝐹 (𝐴ℰ) = max
𝑒∈𝐸

∑︁
(𝑎,𝑏)∈𝐹

|𝑣𝑒(𝑎)− 𝑣𝑒(𝑏)|
𝑟𝑎𝑏

.

Proof. As before, we have:

𝜌𝐹 (𝐴ℰ) = ‖𝐵ℒ+𝐵𝑇𝑅−1𝐼𝐹 ‖∞ (By Lemma 12.5.4)

= max
𝑒∈𝐸
‖𝐼𝐹𝑅−1𝐵ℒ+𝐵𝑇1𝑒‖1 = max

𝑒∈𝐸

∑︁
(𝑎,𝑏)∈𝐹

|𝑣𝑒(𝑎)− 𝑣𝑒(𝑏)|
𝑟𝑎𝑏

12.5.2.1 Bounding the Congestion

In this section, we prove that we can bound the 𝐹 -competitive ratio of the oblivious electrical-routing
strategy as long as the edges 𝐹 that the optimum flow is allowed to route over are contained within
an induced expander 𝐺(𝑈) = (𝑈,𝐸(𝑈)) for some 𝑈 ⊆ 𝑉 . Towards this we provide and prove the
following lemma. This is a generalization of a similar lemma proved in [139].

Lemma 12.5.8. For weighted graph 𝐺 = (𝑉,𝐸,𝑤) with integer weights and vertex subset 𝑈 ⊆ 𝑉 the
following holds:

𝜌𝐹 (𝐴ℰ) ≤
8 log(vol(𝐺(𝑈)))

Φ(𝐺(𝑈))2

Proof. By Lemma 12.5.7, for every edge 𝑒 ∈ 𝐸,

𝜌𝐹 (𝐴ℰ) ≤ ‖𝐼𝐸(𝑈)𝑅
−1𝐵ℒ+𝜒𝑒‖1

Fix any edge 𝑒 ∈ 𝐸 and let 𝑣 def
= ℒ+𝜒𝑒. Recall that with this definition

‖𝐼𝐸(𝑈)𝑅
−1𝐵ℒ+𝜒𝑒‖1 =

∑︁
(𝑎,𝑏)∈𝐸(𝑈)

|𝑣(𝑎)− 𝑣(𝑏)|
𝑟𝑎𝑏

=
∑︁

(𝑎,𝑏)∈𝐸(𝑈)

𝑤𝑎𝑏 · |𝑣(𝑎)− 𝑣(𝑏)| (12.3)

We define the following vertex subsets:

∀𝑥 ∈ R : 𝑆≤
𝑥

def
= {𝑎 ∈ 𝑈 | 𝑣(𝑎) ≤ 𝑥} and 𝑆≥

𝑥
def
= {𝑎 ∈ 𝑈 | 𝑣(𝑎) ≥ 𝑥}

Since adding a multiple of the all-ones vector to 𝑣 does not change the quantity of interest in Equa-
tion 12.3, we can assume without loss of generality that

vol𝐺(𝑈)(𝑆
≥
0 ) ≥

1

2
(vol(𝐺(𝑈))) and vol𝐺(𝑈)(𝑆

≤
0 ) ≥

1

2
(vol(𝐺(𝑈))) .

For any vertex subset 𝑆 ⊆ 𝑈, we denote the flow out of 𝑆 and the weight out of 𝑆 by

𝑓(𝑆)
def
=

∑︁
𝑒=(𝑎,𝑏)∈𝐸(𝑈)

⋂︀
𝜕(𝑆)

𝑤𝑒|𝑣(𝑎)− 𝑣(𝑏)|, and 𝑤(𝑆)
def
=

∑︁
𝑒∈𝐸(𝑈)

⋂︀
𝜕(𝑆)

𝑤𝑒.

At this point, we define a collections of subsets {𝐶𝑖 ∈ 𝑆≥
0 }. For an increasing sequence of real numbers
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{𝑐𝑖}, we let 𝐶𝑖
def
= 𝑆≥

𝑐𝑖 and we define the sequence {𝑐𝑖} inductively as follows:

𝑐0
def
= 0 , 𝑐𝑖

def
= 𝑐𝑖−1 +Δ𝑖−1 , and Δ𝑖

def
= 2

𝑓(𝐶𝑖)

𝑤(𝐶𝑖)
.

In words, the 𝑐𝑖+1 equals the sum of 𝑐𝑖 and an increase Δ𝑖 which depends on how much the cut
𝛿(𝐶𝑖) ∩ 𝐸(𝑈) was congested by the electrical flow.

Now, 𝑙𝑖
def
= 𝑤(𝜕𝐸(𝑈)(𝐶𝑖−1) − 𝜕𝐸(𝑈)(𝐶𝑖)), i.e. the weight of the edges in 𝐸(𝑈) cut by 𝐶𝑖−1 but not

by 𝐶𝑖. We get

vol(𝐶𝑖+1) ≤ vol(𝐶𝑖)− 𝑙𝑖

≤ vol(𝐶𝑖)−
𝑤(𝐶𝑖)

2
(By choice of 𝑙𝑖 and Δ𝑖)

≤ vol(𝐶𝑖)−
1

2
vol(𝐶𝑖)Φ(𝐺(𝑈)) (Definition of conductance)

Applying this inductively and using our assumption on vol(𝑆≥
0 ) we have that

vol(𝐶𝑖) ≤
(︂
1− 1

2
Φ(𝐺(𝑈))

)︂𝑖
vol(𝐶0) ≤

1

2

(︂
1− 1

2
Φ(𝐺(𝑈))

)︂𝑖
vol(𝐺(𝑈))

Since 𝜑(𝐺(𝑈)) ∈ (0, 1), for 𝑖 + 1 = 2 log(vol(𝐺(𝑈)))
Φ(𝐺(𝑈)) we have that vol(𝑆𝑖) ≤ 1

2 . Since vol(𝑆𝑖) decreases
monotonically with 𝑖, if we let 𝑟 be the smallest value such that 𝐶𝑟+1 = ∅, we must have

𝑟 ≤ 2 · log(vol(𝐺(𝑈)))

Φ(𝐺(𝑈))

Since 𝑣 corresponds to a unit flow, we know that 𝑓(𝐶𝑖) ≤ 1 for all 𝑖. Moreover, by the definition of
conductance we know that 𝑤(𝐶𝑖) ≥ Φ(𝐺(𝑈)) · vol(𝐶𝑖). Therefore,

Δ𝑖 ≤
2

Φ(𝐺(𝑈)) · vol(𝐶𝑖)
.

We can now bound the contribution of 𝐶≥
0 to the volume of the linear embedding 𝑣. In the following,

for a vertex 𝑎 ∈ 𝑉, we let 𝑑(𝑎) def
=
∑︀

𝑒={𝑎,𝑏}∈𝐸(𝑈)𝑤𝑒 be the degree of 𝑎 in 𝐸(𝑈).

∑︁
𝑎∈𝐶≥

0

𝑑(𝑎)𝑣(𝑎) =
𝑟∑︁
𝑖=0

⎡⎣ ∑︁
𝑎∈𝐶𝑖−𝐶𝑖+1

𝑑(𝑎)𝑣(𝑎)

⎤⎦
≤

𝑟∑︁
𝑖=0

⎡⎣ ∑︁
𝑎∈𝐶𝑖−𝐶𝑖+1

𝑑(𝑎)

⎛⎝ 𝑖∑︁
𝑗=0

Δ𝑗

⎞⎠⎤⎦ (By definition of 𝐶𝑖)

≤
𝑟∑︁
𝑖=0

⎡⎣(vol(𝐶𝑖)− vol(𝐶𝑖+1)) ·

⎛⎝ 𝑖∑︁
𝑗=0

Δ𝑗

⎞⎠⎤⎦
=

𝑟∑︁
𝑖=0

vol(𝐶𝑖)Δ𝑖 ≤
2𝑟

Φ(𝐺(𝑈))
(Rearrangement and fact that vol(𝐶𝑟+1) = 0)

By repeating the same argument on 𝑆≤
0 , we get that

∑︀
𝑎∈𝑆≤

0
𝑑(𝑎)𝑣(𝑎) ≤ 2𝑟

Φ(𝐺(𝑈)) . Putting this all
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together yields

‖𝐼𝐸(𝑈)𝑅
−1𝐵ℒ+𝜒𝑒‖ =

∑︁
(𝑎,𝑏)∈𝐺(𝑈)

𝑤𝑎𝑏 · |𝑣(𝑎)− 𝑣(𝑏)| ≤
∑︁

𝑎∈𝐺(𝑈)

𝑑(𝑎)𝑣(𝑎) ≤ 4𝑟

Φ(𝐺(𝑈))

From this lemma and Lemma 12.5.7, the following is immediate:

Lemma 12.5.9. Let 𝐹 ⊆ 𝐸 be contained within some vertex induced subgraph 𝐺(𝑈), then for 𝑅 =
𝑈−1 we have

𝜌𝐹 (𝑅−1𝐵ℒ+) ≤ 𝜌𝐸(𝑈)(𝑅−1𝐵ℒ+) ≤ 8 log(vol(𝐺(𝑈)))

Φ(𝐺(𝑈))2
.

12.5.3 Construction and Analysis of Flow Sparsifiers

In the remainder of this section we show how to produce an efficient 𝑂(log𝑐)-flow sparsifier for some
fixed constant 𝑐, proving Theorem 12.5.3. In this chapter, we make no attempt to optimize the value
of 𝑐. For the rest of this section, we again assume that we choose the resistance of an edge to be the
the inverse of its capacity, i.e. 𝑈 =𝑊 = 𝑅−1.

As discussed before, our approach follows closely that of Spielman and Teng [244] to the con-
struction of spectral sparsifiers. The first step of this line of attack is to reduce the problem to the
unweighted case.

Lemma 12.5.10. Given an (ℎ, 𝜀, 𝛼)-flow-sparsifier algorithm for unweighted graphs, it is possible to
construct an (ℎ · log𝑈, 𝜀, 𝛼)-flow-sparsifier algorithm for weighted graphs 𝐺 = (𝑉,𝐸, 𝜇) with capacity
ratio 𝑈 obeying

𝑈 =
max𝑒∈𝐸 𝜇𝑒
min𝑒∈𝐸 𝜇𝑒

= poly(|𝑉 |).

Proof. We write each edge in binary so that 𝐺 =
∑︀log𝑈

𝑖=0 2𝑖𝐺𝑖 for some unweighted graphs {𝐺𝑖 =
(𝑉,𝐸𝑖}𝑖∈[log𝑈 ]}, where |𝐸𝑖| ≤ 𝑚 for all 𝑖. We now apply the unweighted flow-sparsifier to each 𝐺𝑖

in turn to obtain graphs {𝐺′
𝑖}. We let 𝐺′ def

=
∑︀log𝑈

𝑖=0 2𝑖𝐺′
𝑖 be the weighted flow-sparsified graph. By

the assumption on the unweighted flow-sparsifier, each 𝐺′
𝑖 is ℎ-sparse, so that 𝐺′ must have at most

ℎ · log𝑈 edges. Similarly, 𝐺′ is an 𝜀-cut approximation of 𝐺, as each 𝐺′
𝑖 is an 𝜀-cut approximation of

the corresponding 𝐺𝑖. Letting 𝑀 𝑖 be the embedding of 𝐺′
𝑖 into 𝐺𝑖, we can consider the embedding

𝑀 =
∑︀log𝑈

𝑖=0 2𝑖𝑀 𝑖 of 𝐺′ into 𝐺. As each 𝑀𝑖 has congestion bounded by 𝛼, it must be the case that
𝑀 also has congestion bounded by 𝛼. The time to run the weighted flow sparsifier and to invoke 𝑀
is now �̃�(𝑚) · log𝑈 = �̃�(𝑚) by our assumption on 𝑈.

The next step is to construct a routine which flow-sparsifies a constant fraction of the edges of 𝐸.
This routine will then be applied iteratively to produce the final flow-sparsifier.

Lemma 12.5.11. On input an unweighted graph 𝐺 = (𝑉,𝐸), there is an algorithm that runs in
�̃�(𝑚) and computes a partition of 𝐸 into (𝐹, 𝐹 ), an edge set 𝐹 ′ ⊆ 𝐹 with weight vector 𝑤𝐹 ′ ∈
R𝐸 , support(𝑤𝐹 ′) = 𝐹 ′, and an embedding 𝐻 : R𝐹 ′ → R𝐸 with the following properties:

1. 𝐹 contains most of the volume of 𝐺, i.e.

|𝐹 | ≥ |𝐸|
2

;

2. 𝐹 ′ contains only �̃�(𝑛) edges, i.e. |𝐹 ′| ≤ �̃�(𝑛).
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3. The weights 𝑤𝐹 ′ are bounded

∀𝑒 ∈ 𝐹 ′ ,
1

poly(𝑛)
≤ 𝑤𝐹 ′(𝑒) ≤ 𝑛.

4. The graph 𝐻 ′ = (𝑉, 𝐹 ′, 𝑤𝐹 ′) is an 𝜀-cut approximation to 𝐻 = (𝑉, 𝐹 ), i.e. for all 𝑆 ⊆ 𝑉 :

(1− 𝜀)|𝜕𝐻(𝑆)| ≤ 𝑤𝐹 ′(𝜕𝐻′(𝑆)) ≤ (1 + 𝜀)|𝜕𝐻(𝑆)|.

5. The embedding 𝐻 from 𝐻 = (𝑉, 𝐹 ′, 𝑤𝐹 ′) to 𝐺 has bounded congestion

cong(𝐻) = ̃︀𝑂(1).

and can be applied in time �̃�(𝑚).

Given Lemma 12.5.10 and Lemma 12.5.11, it is straightforward to complete the proof of Theo-
rem 12.5.3.

Proof. Using Lemma 12.5.10, we reduce the objective of Theorem 12.5.3 to running a ( ̃︀𝑂(𝑛), 𝜀, ̃︀𝑂(1))-
flow sparsifier on log𝑈 unweighted graphs. To construct this unweighted flow sparsifier, we apply
Lemma 12.5.11 iteratively as follows. Starting with the instance unweighted graph 𝐺1 = (𝑉,𝐸1), we
run the algorithm of Lemma 12.5.11 on the current graph 𝐺𝑡 = (𝑉,𝐸𝑡) to produce the sets 𝐹𝑡 and 𝐹 ′

𝑡 ,
the weight vector 𝑤𝐹 ′

𝑡
and the embedding 𝐻𝑡 : R𝐹

′
𝑡 → 𝑅𝐸 . To proceed to the next iteration, we then

define 𝐸𝑡+1
def
= 𝐸𝑡 ∖ 𝐹𝑡 and move on to 𝐺𝑡+1.

By Lemma 12.5.11, at every iteration 𝑡, |𝐹𝑡| ≥ 1
2 · |𝐸𝑡|, so that |𝐸𝑡+1| ≤ 1

2 · |𝐸𝑡|. This shows that
there can be at most 𝑇 ≤ log(|𝐸1|) = 𝑂(log 𝑛) iterations.

After the last iteration 𝑇, we have effectively partitioned 𝐸1 into disjoint subsets {𝐹𝑡}𝑡∈[𝑇 ], where
each 𝐹𝑡 is well-approximated but the weighted edgeset 𝐹 ′

𝑡 . We then output the weighted graph 𝐺′ =

(𝑉,𝐸′ def
= ∩𝑇𝑡=1𝐹

′
𝑡 , 𝑤

′ def
=
∑︀𝑇

𝑡=1𝑤𝐹 ′
𝑡
), which is the sum of the disjoint weighted edges sets {𝐹 ′

𝑡}𝑡∈[𝑇 ]. We

also output the embedding 𝑀 : R𝐸′ → R𝐸 from 𝐺′ to 𝐺, defined as the direct sum

𝑀 =
𝑇⨁︁
𝑡=1

𝐻𝑡.

In words,𝑀 maps an edge 𝑒′ ∈ 𝐸′ by finding 𝑡 for which 𝑒′ ∈ 𝐹 ′
𝑡 and applying the corresponding 𝐻𝑡.

We are now ready to prove that this algorithm with output 𝐺′ and𝑀 is an efficient ( ̃︀𝑂(𝑛), 𝜀, ̃︀𝑂(𝑛))-
flow sparsifier. To bound the capacity ratio 𝑈 ′ of 𝐺′, we notice that

𝑈 ′ ≤ max
𝑡

max𝑒∈𝐹 ′
𝑡
𝑤𝐹 ′

𝑡
(𝑒)

min𝑒∈𝐹 ′
𝑡
𝑤𝐹 ′

𝑡
(𝑒)
≤ poly(𝑛),

where we used the fact that the sets 𝐹 ′
𝑡 are disjoint and the guarantee on the range of 𝑤𝐹 ′

𝑡
.

Next, we bound the sparsity of 𝐺′. By Lemma 12.5.11, 𝐹 ′
𝑡 contains at most ̃︀𝑂(𝑛) edges. As a

result, we get the required bound

|𝐸′| =
𝑇∑︁
𝑡=1

|𝐹 ′
𝑡 | ≤ ̃︀𝑂(𝑇𝑛) = ̃︀𝑂(𝑛).

For the cut approximation, we consider any 𝑆 ⊆ 𝑉. By the cut guarantee of Lemma 12.5.11, we have
that, for all 𝑡 ∈ [𝑇 ],

(1− 𝜀)|𝜕𝐺(𝑆) ∩ 𝐹𝑡| ≤ 𝑤𝐹 ′
𝑡
(𝜕𝐺(𝑆) ∩ 𝐹 ′

𝑡) ≤ (1 + 𝜀)|𝜕𝐺(𝑆) ∩ 𝐹𝑡|.
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Summing over all 𝑡, as 𝐸′ =
⋃̇︀
𝐹 ′
𝑡 and 𝐸 =

⋃̇︀
𝐹𝑡, we obtain the required approximation

(1− 𝜀)|𝜕𝐺(𝑆)| ≤ 𝑤′(𝜕𝐺′(𝑆)) ≤ (1 + 𝜀)|𝜕𝐺(𝑆)|.
The congestion of 𝑀 can be bounded as follows

cong(𝑀) ≤
𝑇∑︁
𝑡=1

cong(𝐻𝑡) = ̃︀𝑂(𝑇 ) = ̃︀𝑂(1).

To conclude the proof, we address the efficiency of the flow sparsifier. The algorithm applies the
routine of Lemma 12.5.11 for 𝑇 = ̃︀𝑂(1) times and hence runs in time ̃︀𝑂(𝑚), as required. Invoking the
embedding 𝑀 requires invoking each of the 𝑇 embeddings 𝐻𝑡. This takes time ̃︀𝑂(𝑇𝑚) = ̃︀𝑂(𝑚).

12.5.3.1 Flow Sparsification of Unweighted Graphs: Proof of Lemma 12.5.11

In this subsection, we prove Lemma 12.5.11. Our starting point is the following decomposition state-
ment, which shows that we can form a partition of an unweighted graph where most edges do not
cross the boundaries and the subgraphs induced within each set of this partition are near-expanders.
The following lemma is implicit in Spielman and Teng’s local clustering approach to spectral sparsifi-
cation [244].

Lemma 12.5.12 (Decomposition Lemma). For an unweighted graph 𝐺 = (𝑉,𝐸), in �̃�(𝑚)-time we
can produce a partition 𝑉1, . . . , 𝑉𝑘 of 𝑉 and a collection of sets 𝑆1, . . . , 𝑆𝑘 ⊆ 𝑉 with the following
properties:

∙ For all 𝑖, 𝑆𝑖 is contained in 𝑉𝑖.

∙ For all 𝑖, there exists a set 𝑇𝑖 with 𝑆𝑖 ⊆ 𝑇𝑖 ⊆ 𝑉𝑖, such that

Φ(𝐺(𝑇𝑖)) ≥ Ω

(︂
1

log2 𝑛

)︂
.

∙ At least half of the edges are found within the sets {𝑆𝑖}, i.e.

𝑘∑︁
𝑖=1

|𝐸(𝑆𝑖)| =
𝑘∑︁
𝑖=1

|{𝑒 = {𝑎, 𝑏} : 𝑎 ∈ 𝑆𝑖, 𝑏 ∈ 𝑆𝑖}| ≥
1

2
|𝐸|.

To design an algorithm satisfying the requirements of Lemma 12.5.11, we start by appling the
Decomposition Lemma to our unweighted input graph 𝐺 = (𝑉,𝐸) to obtain the partition {𝑉𝑖}𝑖∈[𝑘]
and the sets {𝑆𝑖}𝑖∈[𝑘]. We let 𝐺𝑖

def
= (𝑆𝑖, 𝐸(𝑆𝑖)). To reduce the number of edges, while preseving

cuts, we apply a spectral sparsification algorithm to each 𝐺𝑖. Concretely, by applying the spectral
sparsification by effective resistances of Spielman and Srivastava [242] to each 𝐺𝑖, we obtain weighted
graphs 𝐺′

𝑖 = (𝑆𝑖, 𝐸
′
𝑖 ⊆ 𝐸(𝑆𝑖), 𝑤

′
𝑖) in time

∑︀𝑘
𝑖=1

̃︀𝑂(|𝐸(𝑆𝑖)|) ≤ ̃︀𝑂(|𝐸|) with |𝐸′
𝑖| ≤ ̃︀𝑂(|𝑆𝑖|) and the

property that cuts are preserved6 for all 𝑖:

∀𝑆 ⊆ 𝑆𝑖 , (1− 𝜀) · |𝜕𝐺𝑖(𝑆)| ≤ 𝑤′
𝑖(𝜕𝐺′

𝑖
(𝑆)) ≤ (1 + 𝜀) · |𝜕𝐺𝑖(𝑆)|.

Moreover, the spectral sparsification of [242] constructs the weights {𝑤′
𝑖(𝑒)}𝑒∈𝐸′

𝑖
such that

∀𝑒 ∈ 𝐸′
𝑖 ,

1

poly(𝑛)
≤ 1

poly(|𝑆𝑖|)
≤ 𝑤′

𝑖(𝑒) ≤ |𝑆𝑖| ≤ 𝑛.

6The spectral sparsification result actually yields the stronger spectral approximation guarantee, but for our purposes
the cut guarantee suffices.
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To complete the description of the algorithm, we output the partition (𝐹, 𝐹 ) of 𝐸, where

𝐹
def
=

𝑘⋃︁
𝑖=1

𝐸(𝑆𝑖).

We also output the set of weighted sparsified edges 𝐹 ′.

𝐹 ′ def
=

𝑘⋃︁
𝑖=1

𝐸′
𝑖.

The weight 𝑤𝐹 ′(𝑒) of edge 𝑒 ∈ 𝐹 ′ is given by finding 𝑖 such that 𝑒 ∈ 𝐸′
𝑖 and setting 𝑤𝐹 ′(𝑒) = 𝑤′

𝑖(𝑒).

We now depart from Spielman and Teng’s construction by endowing our 𝐹 ′ with an embedding
onto 𝐺. The embedding𝐻 : R𝐹 ′ → R𝐸 of the graph 𝐻 = (𝑉, 𝐹 ′, 𝑤𝐹 ′) to 𝐺 is constructed by using the
oblivious electrical-flow routing of 𝐸(𝑆𝑖) into 𝐺(𝑉𝑖). More specifically, as the sets {𝑉𝑖} partition 𝑉, the
embedding𝐻 can be expressed as the following direct sum over the orthogonal subspaces {R𝐸(𝑉𝑖)×𝐸′

𝑖}.

𝐻
def
=

(︃
𝑘⨁︁
𝑖=1

𝐵𝐸(𝑉𝑖)ℒ
+
𝐺(𝑉𝑖)

𝐵𝑇
𝐸(𝑉𝑖)

𝐼(𝐸(𝑉𝑖),𝐸′
𝑖)

)︃
,

where 𝐼(𝐸(𝑉𝑖),𝐸′
𝑖)
is the identity mapping of the edges 𝐸′

𝑖 ⊆ 𝐸(𝑉𝑖) of 𝐹 ′ over 𝑉𝑖 to the edges 𝐸(𝑉𝑖) of
𝑉𝑖 in 𝐺. Notice that there is no dependence on the resistances over 𝐺 as 𝐺 is unweighted.

This complete the description of the algorithm. We are now ready to give the proof of Lemma 12.5.11.

[Proof of Lemma 12.5.11]. The algorithm described above performs a decomposition of the input
graph 𝐺 = (𝑉,𝐸) in time ̃︀𝑂(𝑚) by the Decomposition Lemma. By the result of Spielman and
Srivastava [242], each 𝐺𝑖 is sparsified in time ̃︀𝑂(|𝐸(𝑆𝑖)|). Hence, the sparsification step requires timẽ︀𝑂(𝑚) as well. This shows that the algorithm runs in ̃︀𝑂(𝑚)-time, as required.

By the Decomposition Lemma, we know that |𝐹 | =
∑︀𝑘

𝑖=1 |𝐸(𝑆𝑖)| ≥ |𝐸|
2 , which satisfies the require-

ment of the Lemma. Moreover, by the spectral sparsification result, we know that |𝐹 ′| =
∑︀𝑘

𝑖=1 |𝐸′
𝑖| ≤∑︀𝑘

𝑖=1
̃︀𝑂(|𝑆𝑖|) ≤ ̃︀𝑂(𝑛), as required. We also saw that by construction the weights 𝑤𝐹 ′ are bounded:

∀𝑒 ∈ 𝐹 ′ ,
1

poly(𝑛)
≤ 𝑤𝐹 ′(𝑒) ≤ 𝑛.

To obtain the cut-approximation guarantee, we use the fact that for every 𝑖, by spectral sparsifi-
cation,

∀𝑆 ⊆ 𝑆𝑖 , (1− 𝜀) · |𝜕𝐺𝑖(𝑆)| ≤ 𝑤′
𝑖(𝜕𝐺′

𝑖
(𝑆)) ≤ (1 + 𝜀) · |𝜕𝐺𝑖(𝑆)|.

We have 𝐻 ′ = (𝑉, 𝐹 ′, 𝑤𝐹 ′) and 𝐻 = (𝑉, 𝐹 ). Consider now 𝑇 ⊆ 𝑉 and apply the previous bound to
𝑇 ∩ 𝑆𝑖 for all 𝑖. Because 𝐹 ′ ⊆ 𝐹 = ∪𝑘𝑖=1𝐸(𝑆𝑖), we have that summing over the 𝑘 bounds yields

∀𝑇 ⊆ 𝑉 , (1− 𝜀)|𝜕𝐻(𝑇 )| ≤ 𝑤𝐹 ′(𝜕𝐻′(𝑇 )) ≤ (1 + 𝜀)|𝜕𝐻(𝑇 )|,
which is the desired cut-approximaton guarantee.

Finally, we are left to prove that the embedding 𝐻 from 𝐻 ′ = (𝑉, 𝐹 ′, 𝑤𝐹 ′) to 𝐺 = (𝑉,𝐸) has low
congestion and can be applied efficiently. By definition of congestion,

cong(𝐻) = max
𝑥∈R𝐹 ′

‖𝐻𝑥‖∞
‖𝑈−1

𝐹 ′ 𝑥‖∞
= ‖|𝐻|𝑈𝐹 ′1𝐹 ′‖∞ =

⃦⃦⃦⃦
⃦
⃒⃒⃒⃒
⃒
𝑘⨁︁
𝑖=1

𝐵𝐸(𝑉𝑖)ℒ
+
𝐺(𝑉𝑖)

𝐵𝑇
𝐸(𝑉𝑖)

𝐼(𝐸(𝑉𝑖),𝐸′
𝑖)

⃒⃒⃒⃒
⃒𝑈𝐹 ′1𝐹 ′

⃦⃦⃦⃦
⃦
∞

.
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Decomposing R𝐸 into the subspaces {R𝐸(𝑉𝑖)} and R𝐹 ′
into the subspaces {R𝐸′

𝑖} we have:

cong(𝐻) ≤ max
𝑖∈[𝑘]

⃦⃦⃦⃒⃒⃒
𝐵𝐸(𝑉𝑖)ℒ

+
𝐺(𝑉𝑖)

𝐵𝑇
𝐸(𝑉𝑖)

𝐼(𝐸(𝑉𝑖),𝐸′
𝑖)

⃒⃒⃒
𝑈𝐸′

𝑖
1𝐸′

𝑖

⃦⃦⃦
∞
.

For each 𝑖 ∈ [𝑘], consider now the set of demands 𝐷𝑖 over 𝑉𝑖, 𝐷𝑖
def
= {𝜒𝑒}𝑒∈𝐸′

𝑖
, given by the edges of 𝐸′

𝑖

with their capacities 𝑤′
𝑖. That is, 𝜒𝑒 ∈ R𝑉𝑖 is the demand corresponding to edge 𝑒 ∈ 𝐸′

𝑖 with weight
𝑤′
𝑖(𝑒). Consider also the electrical routing 𝐴ℰ ,𝑖 = 𝐵𝐸(𝑉𝑖)ℒ

+
𝐺(𝑉𝑖)

over 𝐺(𝑉𝑖). Then:

cong(𝐻) ≤ max
𝑖∈[𝑘]

cong(𝐴ℰ ,𝑖𝐷𝑖)

Notice that, by construction, 𝐷𝑖 is routable in 𝐺′
𝑖 = (𝑆𝑖, 𝐸

′
𝑖, 𝑤

′
𝑖) and OPT𝐺′

𝑖
(𝐷𝑖) = 1. But, by our use

of spectral sparsifiers in the construction, 𝐺′
𝑖 is an 𝜀-cut approximation of 𝐺𝑖. Hence, by the flow-cut

gap of Aumann and Rabani [21], we have:

OPT𝐺𝑖(𝐷𝑖) ≤ 𝑂(log(|𝐷𝑖|)) ·OPT𝐺′
𝑖
(𝐷𝑖) ≤ ̃︀𝑂(1).

When we route 𝐷𝑖 oblivious in 𝐺(𝑉𝑖), we can consider the 𝐸(𝑆𝑖)-competitive ratio 𝜌𝐸(𝑆𝑖)(𝐴ℰ ,𝑖) of the
electrical routing 𝐴ℰ ,𝑖 = 𝐵𝐸(𝑉𝑖)ℒ

+
𝐺(𝑉𝑖)

, as 𝐷𝑖 is routable in 𝐸(𝑆𝑖), because 𝐸′
𝑖 ⊆ 𝐸(𝑆𝑖). We have

cong(𝐻) ≤ max
𝑖∈[𝑘]

𝜌
𝐸(𝑆𝑖)
𝐺(𝑉𝑖)

(𝐴ℰ ,𝑖) ·OPT
𝐸(𝑆𝑖)
𝐺(𝑉𝑖)

(𝐷𝑖) = max
𝑖∈[𝑘]

𝜌
𝐸(𝑆𝑖)
𝐺(𝑉𝑖)

(𝐴ℰ ,𝑖) ·OPT𝐺𝑖(𝐷𝑖),

Finally, putting these bounds together, we have:

cong(𝐻) ≤ max
𝑖∈[𝑘]

𝜌
𝐸(𝑆𝑖)
𝐺(𝑉𝑖)

(𝐴ℰ ,𝑖) ·OPT𝐺𝑖(𝐷𝑖) ≤ ̃︀𝑂(1) ·max
𝑖∈[𝑘]

𝜌
𝐸(𝑆𝑖)
𝐺(𝑉𝑖)

(𝐴ℰ ,𝑖).

But, by the Decomposition Lemma, there exists 𝑇𝑖 with 𝑆𝑖 ⊆ 𝑇𝑖 ⊆ 𝑉𝑖 such that

Φ(𝐺(𝑇𝑖)) ≥ Ω

(︂
1

log2 𝑛

)︂
.

Then, by Lemma 12.5.9, we have that:

𝜌
𝐸(𝑆𝑖)
𝐺(𝑉𝑖)

(𝐴ℰ ,𝑖) ≤ 𝑂
(︂
log vol(𝐺(𝑇𝑖))

Φ(𝐺(𝑇𝑖))2

)︂
≤ ̃︀𝑂(1).

This concludes the proof that cong(𝐻) ≤ ̃︀𝑂(1). To complete the proof of the Lemma, we just notice
that 𝐻 can be invoked in time ̃︀𝑂(𝑚). A call of 𝐻 involves solving 𝑘-electrical-problems, one for each
𝐺(𝑉𝑖). This can be done in time

∑︀𝑘
𝑖=1

̃︀𝑂(|𝐸(𝑉𝑖)|) ≤ ̃︀𝑂(𝑚), using any of the nearly-linear Laplacian
system solvers available, such as [141].

12.6 Removing Vertices in Oblivious Routing Construction

In this section we show how to reduce computing an efficient oblivious routing on a graph 𝐺 = (𝑉,𝐸)

to computing an oblivious routing for 𝑡 graphs with ̃︀𝑂( |𝑉 |
𝑡 ) vertices and at most |𝐸| edges. Formally

we show

Theorem 12.6.1. Let 𝐺 = (𝑉,𝐸,𝜇) be an undirected capacitated graph with capacity ratio 𝑈 . For

all 𝑡 > 0 in ̃︀𝑂(𝑡 · |𝐸|) time we can compute graphs 𝐺1, . . . , 𝐺𝑡 each with at most ̃︀𝑂( |𝐸| log(𝑈)
𝑡 ) vertices,

at most |𝐸| edges, and capacity ratio at most |𝑉 | · 𝑈 , such that given oblivious routings 𝐴𝑖 for each
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𝐺𝑖, in ̃︀𝑂(𝑡 · |𝐸|) time we can compute an oblivious routing 𝐴 ∈ R𝐸×𝑉 on 𝐺 such that

𝒯 (𝐴) = ̃︀𝑂(︃𝑡 · |𝐸|+ 𝑡∑︁
𝑖=1

𝒯 (𝐴𝑖)

)︃
and 𝜌(𝐴) = ̃︀𝑂(︂max

𝑖
𝜌(𝐴𝑖)

)︂
We break this proof into several parts. First we show how to embed 𝐺 into a collection of 𝑡 graphs

consisting of trees minus some edges which we call patrial tree embeddings (Section 12.6.1). Then we
show how to embed a partial tree embedding in an “almost 𝑗-tree” [182], that is a graph consisting
of a tree and a subgraph on at most 𝑗 vertices, for 𝑗 = 2𝑡 (Section 12.6.2). Finally, we show how to
reduce oblivious routing on an almost 𝑗-tree to oblivious routing on a graph with at most 𝑂(𝑗) vertices
by removing degree-1 and degree-2 vertices (Section 12.6.3). Finally, in Section 12.6.4 we put this all
together to prove Theorem 12.4.10.

We remark that much of the ideas in the section were either highly influenced from [182] or are
direct restatements of theorems from [182] adapted to our setting. We encourage the reader to look
over that paper for further details regarding the techniques used in this section.

12.6.1 From Graphs to Partial Tree Embeddings

To prove Theorem 12.4.10, we make heavy use of spanning trees and various properties of them. In
particular, we use the facts that for every pair of vertices there is a unique tree path connecting them,
that every edge in the tree induces a cut in the graph, and that we can embed a graph in a tree
by simply routing ever edge over its tree path and that the congestion of this embedding will be
determined by the load the edges place on tree edges. We define these quantities formally below.

Definition 12.6.2 (Tree Path). For undirected graph 𝐺 = (𝑉,𝐸), spanning tree 𝑇 , and all 𝑎, 𝑏 ∈ 𝑉
we let 𝑃𝑎,𝑏 ⊆ 𝐸 denote the unique path from 𝑎 to 𝑏 using only edges in 𝑇 and we let 𝑝𝑎,𝑏 ∈ R𝐸 denote
the vector representation of this path corresponding to the unique vector sending one one unit from 𝑎
to 𝑏 that is nonzero only on 𝑇 (i.e. 𝐵𝑇𝑝𝑎,𝑏 = 𝜒𝑎,𝑏 and ∀𝑒 ∈ 𝐸 ∖ 𝑇 we have 𝑝𝑎,𝑏(𝑒) = 0).

Definition 12.6.3 (Tree Cuts). For undirected 𝐺 = (𝑉,𝐸) and spanning tree 𝑇 ⊆ 𝐸 the edges cut
by 𝑒, 𝜕𝑇 (𝐹 ), and the edges cut by 𝐹 , 𝜕𝑇 (𝑒), are given by

𝜕𝑇 (𝑒)
def
= {𝑒′ ∈ 𝐸 | 𝑒′ ∈ 𝑃𝑒} and 𝜕𝑇 (𝐹 )

def
= ∪𝑒∈𝐹𝜕(𝑒)

Definition 12.6.4 (Tree Load). For undirected capacitated 𝐺 = (𝑉,𝐸,𝜇) and spanning tree 𝑇 ⊆ 𝐸
the load on edge 𝑒 ∈ 𝐸 by 𝑇 , cong𝑇 (𝑒) is given by load𝑇 (𝑒) =

∑︀
𝑒′∈𝐸|𝑒∈𝑃𝑒′

𝜇𝑒′

While these properties do highlight the fact that we could just embed our graph into a collection
of trees to simplify the structure of our graph, this approach suffers from a high computational cost
[225]. Instead we show that we can embed parts of the graph onto collections of trees at a lower
computational cost but higher complexity. In particular we will consider what we call partial tree
embeddings.

Definition 12.6.5 ([Partial Tree Embedding 7]). For undirected capacititated graph 𝐺 = (𝑉,𝐸,𝜇),
spanning tree 𝑇 and spanning tree subset 𝐹 ⊆ 𝑇 we define the partial tree embedding graph 𝐻 =
𝐻(𝐺,𝑇, 𝐹 ) = (𝑉,𝐸′,𝜇′) to a be a graph on the same vertex set where 𝐸′ = 𝑇 ∪ 𝜕𝑇 (𝐹 ) and

∀𝑒 ∈ 𝐸′ : 𝜇′(𝑒) =

{︃
load𝑇 (𝑒) if 𝑒 ∈ 𝑇 ∖ 𝐹 .
𝜇(𝑒) otherwise

7This is a restatement of the 𝐻(𝑇, 𝐹 ) graphs in [182].



306 CHAPTER 12. UNDIRECTED MAXFLOW IN ALMOST-LINEAR TIME

Furthermore, we let 𝑀𝐻 ∈ R𝐸′×𝐸 denote the embedding from 𝐺 to 𝐻(𝐺,𝑇, 𝐹 ) where edges not cut
by 𝐹 are routed over the tree and other edges are mapped to themselves.

∀𝑒 ∈ 𝐸 : 𝑀𝐻(𝑒) =

{︃
𝑝𝑒 𝑒 /∈ 𝜕𝑇 (𝐹 )
1𝑒 otherwise

and we let 𝑀 ′
𝐻 ∈ R𝐸×𝐸′

denote the embeding from 𝐻 to 𝐺 that simply maps edges in 𝐻 to their
corresponding edges in 𝐺, i.e. ∀𝑒 ∈ 𝐸′, 𝑀 ′

𝐻(𝑒) = 1𝑒.

Note that by definition cong(𝑀𝐻) ≤ 1, i.e. a graph embeds into its partial tree embedding with
no congestion. However, to get embedding guarantees in the other direction more work is required.
For this purpose we use a lemma from Madry [182] saying that we can construct a convex combination
or a distribution of partial tree embeddings we can get such a guarantee.

Lemma 12.6.6 ([Probabilistic Partial Tree Embedding 8]). For any undirected capacitated graph
𝐺 = (𝑉,𝐸,𝜇) and any 𝑡 > 0 in ̃︀𝑂(𝑡 · 𝑚) time we can find a collection of partial tree embeddings
𝐻1 = 𝐻(𝐺,𝑇1, 𝐹1), . . . ,𝐻𝑡 = 𝐻(𝐺,𝑇𝑡, 𝐹𝑡) and coefficients 𝜆𝑖 ≥ 0 with

∑︀
𝑖 𝜆𝑖 = 1 such that ∀𝑖 ∈ [𝑡] we

have |𝐹𝑖| = ̃︀𝑂(𝑚 log𝑈
𝑡 ) and such that

∑︀
𝑖 𝜆𝑖𝑀

′
𝐻𝑖

embeds 𝐺′ =
∑︀

𝑖 𝜆𝑖𝐺𝑖 into 𝐺 with congestion ̃︀𝑂(1).

Using this lemma, we can prove that we can reduce constructing an oblivious routing for a graph
to constructing oblivious routings on several partial tree embeddings.

Lemma 12.6.7. Let the 𝐻𝑖 be graphs produced by Lemma 12.6.6 and for all 𝑖 let 𝐴𝑖 be an oblivious
routing algorithm for 𝐻𝑖. It follows that 𝐴 =

∑︀
𝑖 𝜆𝑖𝑀

′
𝐻𝑖
𝐴𝑖 is an oblivious routing on 𝐺 with 𝜌(𝐴) ≤̃︀𝑂(max𝑖 𝜌(𝐴𝑖) log 𝑛) and 𝒯 (𝐴) = 𝑂(

∑︀
𝑖 𝒯 (𝐴𝑖)).

Proof. The proof is similar to the proof of Lemma 12.4.8. For all 𝑖 let 𝑈 𝑖 denote the capacity matrix
of graph 𝐺𝑖. Then using Lemma 12.4.3 we get

𝜌(𝐴) = ‖𝑈−1𝐴𝐵𝑇𝑈‖∞ =

⃦⃦⃦⃦
⃦

𝑡∑︁
𝑖=1

𝜆𝑖𝑈
−1𝑀 ′

𝐻𝑖
𝐴𝑖𝐵

𝑇𝑈

⃦⃦⃦⃦
⃦
∞

Using that 𝑀𝐻𝑖 is an embedding and therefore 𝐵𝑇
𝐻𝑖
𝑀𝐻𝑖 = 𝐵

𝑇 we get

𝜌(𝐴) =

⃦⃦⃦⃦
⃦

𝑡∑︁
𝑖=1

𝜆𝑖𝑈
−1𝑀 ′

𝐻𝑖
𝐴𝑖𝐵

𝑇
𝐻𝑖
𝑀𝐻𝑖𝑈

⃦⃦⃦⃦
⃦
∞

≤ max
𝑗,𝑘

⃦⃦⃦⃦
⃦

𝑡∑︁
𝑖=1

𝜆𝑖𝑈
−1𝑀 ′

𝑖𝑈 𝑖

⃦⃦⃦⃦
⃦
∞

· 𝜌(𝐴𝑗) · cong(𝑀𝐻𝑘
)

Since
∑︀

𝑖 𝜆𝑖𝑀
′
𝐻𝑖

is an embedding of congestion of at most ̃︀𝑂(1) and cong(𝑀𝐻𝑘
) ≤ 1 we have the

desired result.

12.6.2 From Partial Tree Embeddings To Almost-j-trees

Here we show how to reduce constructing an oblivious routing for a partial tree embedding to con-
structing an oblivious routing for what Madry [182] calls an “almost 𝑗-tree,” the union of a tree plus
a subgraph on at most 𝑗 vertices. First we define such objects and then we prove the reduction.

Definition 12.6.8 (Almost -tree). We call a graph 𝐺 = (𝑉,𝐸) an almost 𝑗-tree if there is a spanning
tree 𝑇 ⊆ 𝐸 such that the endpoints of 𝐸 ∖ 𝑇 include at most 𝑗 vertices.

8This in an adaptation of Corollary 5.6 in [182]
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Lemma 12.6.9. For undirected capacitated 𝐺 = (𝑉,𝐸,𝜇) and partial tree embedding 𝐻 = 𝐻(𝐺,𝑇, 𝐹 )
in ̃︀𝑂(|𝐸|) time we can construct an almost 2·|𝐹 |-tree 𝐺′ = (𝑉,𝐸′,𝜇′) with |𝐸′| ≤ |𝐸| and an embedding
𝑀 ′ from 𝐺′ to 𝐻 such that 𝐻 is embeddable into 𝐺′ with congestion 2, cong(𝑀 ′) = 2, and 𝒯 (𝑀 ′) =̃︀𝑂(|𝐸|).

Proof. For every 𝑒 = (𝑎, 𝑏) ∈ 𝐸, we let 𝑣1(𝑒) ∈ 𝑉 denote the first vertex on tree path 𝑃(𝑎,𝑏) incident to
𝐹 and we let 𝑣2(𝑒) ∈ 𝑉 denote the last vertex incident to 𝐹 on tree path 𝑃(𝑎,𝑏). Note that for every
𝑒 = (𝑎, 𝑏) ∈ 𝑇 we have that (𝑣1(𝑒), 𝑣2(𝑒)) = 𝑒.

We define 𝐺′ = (𝑉,𝐸′,𝜇′) to simply be the graph that consists of all these (𝑣1(𝑒), 𝑣2(𝑒)) pairs

𝐸′ = {(𝑎, 𝑏) | ∃𝑒 ∈ 𝐸 such that (𝑎, 𝑏) = (𝑣1(𝑒), 𝑣2(𝑒))}
and we define the weights to simply be the sums

∀𝑒′ ∈ 𝐸′ : 𝜇′(𝑒′)
def
=

∑︁
𝑒∈𝐸 | 𝑒=(𝑣1(𝑒′),𝑣2(𝑒′))

𝜇(𝑒)

Now to embed 𝐻 in 𝐺′ we define 𝑀 by

∀𝑒 = (𝑎, 𝑏) ∈ 𝐸 : 𝑀1𝑒 = 𝑝𝑎,𝑣1(𝑒) + 1(𝑣1(𝑒),𝑣2(𝑒)) + 𝑝𝑣2(𝑒),𝑏

and to embed 𝐺′ in 𝐻 we define 𝑀 ′ by

∀𝑒′ ∈ 𝐸 : 𝑀 ′1𝑒′ =
∑︁

𝑒=(𝑎,𝑏)∈𝐸 | 𝑒′=(𝑣1(𝑒),𝑣2(𝑒))

𝜇(𝑒)

𝜇′(𝑒′)

[︁
𝑝𝑣1(𝑒),𝑎 + 1(𝑎,𝑏) + 𝑝𝑏,𝑣2(𝑒)

]︁
In other words we route edges in 𝐻 along the tree until we encounter nodes in 𝐹 and then we route
them along added edges and we simply route the other way for the reverse embedding. By construction
clearly the congestion of the embedding in either direction is 2.

To bound the running time, we note that by having every edge 𝑒 in 𝐻 maintain its 𝑣1(𝑒) and 𝑣2(𝑒)
information, having every edge 𝑒′ in 𝐸′ maintain the set {𝑒 ∈ 𝐸|𝑒′ = (𝑣1(𝑒), 𝑣2(𝑒))} in a list, and using
link cut trees [240] or the static tree structure in [141] to update information along tree paths we can
obtain the desired value of 𝒯 (𝑀 ′).

12.6.3 From Almost-J Trees to Less Vertices

Here we show that by “greedy elimination” [243] [147] [146], i.e. removing all degree 1 and degree 2
vertices in 𝑂(𝑚) time we can reduce oblivious routing in almost-𝑗-trees to oblivious routing in graphs
with 𝑂(𝑗) vertices while only losing 𝑂(1) in the competitive ratio. Again, we remark that the lemmas
in this section are derived heavily from [182] but repeated for completeness and to prove additional
properties that we will need for our purposes.

We start by showing that an almost-𝑗-tree with no degree 1 or degree 2 vertices has at most 𝑂(𝑗)
vertices.

Lemma 12.6.10. For any almost 𝑗-tree 𝐺 = (𝑉,𝐸) with no degree 1 or degree 2 vertices, we have
|𝑉 | ≤ 3𝑗 − 2.

Proof. Since 𝐺 is an almost 𝑗-tree, there is some 𝐽 ⊆ 𝑉 with |𝐽 | ≤ 𝑗 such that the removal of all
edges with both endpoints in 𝐽 creates a forest. Now, since 𝐾 = 𝑉 −𝐽 is incident only to forest edges
clearly the sum of the degrees of the vertices in 𝐾 is at most 2(|𝑉 | − 1) (otherwise there would be a
cycle). However, since the minimum degree in 𝐺 is 3, clearly this sum is at least 3(|𝑉 |−𝑗). Combining
yields that 3|𝑉 | − 3𝑗 ≤ 2|𝑉 | − 2.
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Next, we show how to remove degree one vertices efficiently.

Lemma 12.6.11 (Removing Degree One Vertices). Let 𝐺 = (𝑉,𝐸,𝜇) be an unweighted capacitated
graph, let 𝑎 ∈ 𝑉 be a degree 1 vertex, let 𝑒 = (𝑎, 𝑏) ∈ 𝐸 be the single edge incident to 𝑎, and let
𝐺′ = (𝑉 ′, 𝐸′,𝜇′) be the graph that results from simply removing 𝑒 and 𝑎, i.e. 𝑉 ′ = 𝑉 ∖ {𝑎} and
𝐸′ = 𝐸 ∖{𝑒}. Given 𝑎 ∈ 𝑉 and an oblivious routing algorithm 𝐴′ in 𝐺′ in 𝑂(1) time we can construct
an oblivious routing algorithm 𝐴 in 𝐺 such that

𝒯 (𝐴) = 𝑂(𝒯
(︀
𝐴′)︀+ 1) , and 𝜌(𝐴) = 𝜌(𝐴′)

Proof. For any demand vector 𝜒, the only way to route demand at 𝑎 in 𝐺 is over 𝑒. Therefore, if
𝐵𝑓 = 𝜒 then 𝑓(𝑒) = 𝜒. Therefore, to get an oblivious routing algorithm on 𝐺, we can simply send
demand at 𝑎 over edge 𝑒, modify the demand at 𝑏 accordingly, and then run the oblivious routing
algorithm on 𝐺′ on the remaining vertices. The routing algorithm we get is the following

𝐴
def
= 𝐼𝐸′→𝐸𝐴

′(𝐼 + 1𝑏1
𝑇
𝑎 ) + 1𝑒1

𝑇
𝑎

Since all routing algorithms send this flow on 𝑒 we get that 𝜌(𝐴) = 𝜌(𝐴′) and since the above operators
not counting𝐴 have only 𝑂(1) entries that are not the identity we can clearly implement the operations
in the desired running time.

Using the above lemma we show how to remove all degree 1 and 2 vertices in 𝑂(𝑚) time while
only increasing the congestion by 𝑂(1).

Lemma 12.6.12 (Greedy Elimination). Let 𝐺 = (𝑉,𝐸,𝜇) be an unweighted capacitated graph and let
𝐺′ = (𝑉 ′, 𝐸′,𝜇′) be the graph the results from iteratively removing vertices of degree 1 and replacing
degree 2 vertices with an edge connecting its neighbors of the minimum capacity of its adjacent edges.
We can construct 𝐺′ in 𝑂(𝑚) time and given an oblivious routing algorithm 𝐴′ in 𝐺′ in 𝑂(1) time we
can construct an oblivious routing algorithm 𝐴 in 𝐺 such that 9

𝒯 (𝐴) = 𝑂(𝒯
(︀
𝐴′)︀+ |𝐸|) , and 𝜌(𝐴) ≤ 4 · 𝜌(𝐴′)

Proof. First we repeatedly apply Lemma 12.6.11 repeatedly to in reduce to the case that there are no
degree 1 vertices. By simply array of the degrees of every vertex and a list of degree 1 vertices this
can be done in 𝑂(𝑚) time. We denote the result of these operations by graph 𝐾.

Next, we repeatedly find degree two vertices that have not been explored and explore this vertices
neighbors to get a path of vertices, 𝑎1, 𝑎2, . . . , 𝑎𝑘 ∈ 𝑉 for 𝑘 > 3 such that each vertex 𝑎2, . . . , 𝑎𝑘−1 is of
degree two. We then compute 𝑗 = argmin𝑖∈[𝑘−1]𝜇(𝑎𝑖, 𝑎𝑖+1), remove edge (𝑎𝑗 , 𝑎𝑗+1) and add an edge
(𝑎1, 𝑎𝑘) of capacity 𝜇(𝑎𝑗 , 𝑎𝑗+1). We denote the result of doing this for all degree two vertices by 𝐾 ′

and note that again by careful implementation this can be performed in 𝑂(𝑚) time.
Note that clearly 𝐾 is embeddable in 𝐾 ′ with congestion 2 just by routing every edge over itself

except the removed edges which we route by the path plus the added edges. Furthermore, 𝐾 ′ is
embeddable in 𝐾 with congestion 2 again by routing every edge on itself except for the edges which
we added which we route back over the paths they came from. Furthermore, we note that clearly this
embedding and the transpose of this operator is computable in 𝑂(𝑚) time.

Finally, by again repeatedly applying Lemma 12.6.11 to 𝐾 ′ until there are no degree 1 vertices we
get a graph 𝐺′ that has no degree one or degree two vertices (since nothing decreased the degree of
vertices with degree more than two). Furthermore, by Lemma 12.6.11 and by Lemma 12.4.8 we see
that we can compose these operators to compute 𝐴 with the desired properties.

9Note that the constant of 4 below is improved to 3 in [182].
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12.6.4 Putting It All Together

Here we put together the previous components to prove the main theorem of this section.

Node Reduction Theorem 12.4.10. Using Lemma 12.6.6, we can construct 𝐺′ =
∑︀𝑡

𝑖=1 𝜆𝑖𝐺𝑖 and em-
beddings𝑀1, . . . ,𝑀 𝑡 from 𝐺𝑖 to 𝐺. Next we can apply Lemma 12.6.9 to each 𝐺𝑖 to get almost-𝑗-trees
𝐺′

1, . . . , 𝐺
′
𝑡 and embeddings 𝑀 ′

1, . . . ,𝑀
′
𝑡 from 𝐺′

𝑖 to 𝐺𝑖. Furthermore, using Lemma 12.6.12 we can
construction graphs 𝐺′′

1, . . . , 𝐺
′′
𝑡 with the desired properties (the congestion ratio property follows from

the fact that we only add capacities during these reductions)
Now given oblivious routing algorithms 𝐴′′

1, . . . ,𝐴
′′
𝑡 on the 𝐺′′

𝑖 and again by Lemma 12.6.12 we
could get oblivious routing algorithms 𝐴′

1, . . . ,𝐴
′
𝑡 on the 𝐺′

𝑖 with constant times more congestion.
Finally, by the guarantees of Lemma 12.4.8 we have that 𝐴 def

=
∑︀𝑡

𝑖=1 𝜆𝑀 𝑖𝑀
′
𝑖𝐴

′
𝑖 is an oblivious

routing algorithm that satisfies the requirements.

12.7 Nonlinear Projection and Maximum Concurrent Flow

12.7.1 Gradient Descent Method for Nonlinear Projection Problem

In this section, we strengthen and generalize the MaxFlow algorithm to a more general setting. We
believe this algorithm may be of independent interest as it includes maximum concurrent flow problem,
the compressive sensing problem, etc. For some norms, e.g. ‖ · ‖1 as typically of interest compressive
sensing, the Nesterov algorithm [208] can be used to replace gradient descent. However, this kind of
accelerated method is not known in the general norm settings as good proxy function may not exist at
all. Even worse, in the non-smooth regime, the minimization problem on the ‖ · ‖𝑝 space with 𝑝 > 2 is
difficult under some oracle assumption [201]. For these reasons we focus here on the gradient descent
method which is always applicable.

Given a norm ‖ · ‖, we wish to solve the what we call the non-linear projection problem

min
𝑥∈𝐿
‖𝑥− 𝑦‖

where 𝑦 is an given point and 𝐿 is a linear subspace. We assume the following:

Assumption 12.7.1.

1. There are a family of convex differentiable functions 𝑓𝑡 such that for all 𝑥 ∈ 𝐿, we have

‖𝑥‖ ≤ 𝑓𝑡(𝑥) ≤ ‖𝑥‖+𝐾𝑡

and the Lipschitz constant of ∇𝑓𝑡 is 1
𝑡 .

2. There is a projection matrix 𝑃 onto the subspace 𝐿.

In other words we assume that there is a family of regularized objective functions 𝑓𝑡 and a projection
matrix 𝑃 , which we can think of as an approximation algorithm of this projection problem.

Now, let 𝑥* be a minimizer of min𝑥∈𝐿 ‖𝑥− 𝑦‖. Since 𝑥* ∈ 𝐿, we have 𝑃𝑥* = 𝑥* and hence

‖𝑃𝑦 − 𝑦‖ ≤ ‖𝑦 − 𝑥*‖+ ‖𝑥* − 𝑃𝑦‖
≤ ‖𝑦 − 𝑥*‖+ ‖𝑃𝑥* − 𝑃𝑦‖
≤ (1 + ‖𝑃 ‖)min

𝑥∈𝐿
‖𝑥− 𝑦‖. (12.4)
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Therefore, the approximation ratio of 𝑃 is 1 + ‖𝑃 ‖ and we see that our problem is to show that we
can solve nonlinear projection using a decent linear projection matrix. Our algorithm for solving this
problem is shown in NonlinearProjection.

Algorithm 34: NonlinearProjection

Input: a point 𝑦 and OPT = min𝑥∈𝐿 ‖𝑥− 𝑦‖.
Let 𝑦0 = (𝐼 − 𝑃 ) �⃗� and 𝑥0 = 0.
for 𝑗 = 0, · · · , until 2−𝑗‖𝑃 ‖ ≤ 1

2 do

If 2−𝑗‖𝑃 ‖ > 1, then let 𝑡𝑗 =
2−(𝑗+2)‖𝑃 ‖OPT

𝐾 and 𝑘𝑗 = 3200‖𝑃 ‖2𝐾.

If 2−𝑗‖𝑃 ‖ ≤ 1, then let 𝑡𝑗 = 𝜀OPT
2𝐾 and 𝑘𝑗 =

800‖𝑃 ‖2𝐾
𝜀2

.
Let 𝑔𝑗(𝑥) = 𝑓𝑡𝑗 (𝑃𝑥− 𝑦𝑗) and 𝑥0 = 0.
for 𝑖 = 0, · · · , 𝑘𝑗 − 1 do

𝑥𝑖+1 = 𝑥𝑖 − 𝑡
‖𝑃 ‖2 (∇𝑔𝑗(𝑥𝑖))

#.

end

Let 𝑦𝑗+1 = 𝑦𝑗 − 𝑃𝑥𝑘𝑗 .
end

Output: 𝑦 − 𝑦last.
Note that this algorithm and its proof are quite similar to Theorem 12.3.4 but modified to scale

parameters over an outer loop. By changing the parameter 𝑡 we can decrease the dependence of the
initial error.10

Theorem 12.7.2. Assume the conditions in Assumption 12.7.1 are satisfied. Let 𝒯 be the time
needed to compute 𝑃𝑥 and 𝑃 𝑇𝑥 and 𝑥#. Then, NonlinearProjection outputs a vector 𝑥 with
‖𝑥‖ ≤ (1 + 𝜀)min𝑥∈𝐿 ‖𝑥− 𝑦‖ and the algorithm takes time

𝑂

(︂
‖𝑃 ‖2𝐾 (𝒯 +𝑚)

(︂
1

𝜀2
+ log ‖𝑃 ‖

)︂)︂
.

Proof. We prove by induction on 𝑗 that when 2−(𝑗−1)‖𝑃 ‖ ≥ 1 we have ‖𝑦𝑗‖ ≤
(︀
1 + 2−𝑗‖𝑃 ‖

)︀
OPT.

For the base case (𝑗 = 0), (12.7.2) shows that ‖𝑦0‖ ≤ (1 + ‖𝑃 ‖)OPT.
For the inductive case we assume that the assertion holds for some 𝑗. We start by bounding the

corresponding 𝑅 in Theorem 12.3.1 for 𝑔𝑗 , which we denote 𝑅𝑗 . Note that

𝑔𝑗(𝑥0) = 𝑓𝑡𝑗 (−𝑦𝑗) ≤ ‖𝑦𝑗‖+𝐾𝑡𝑗 ≤
(︀
1 + 2−𝑗‖𝑃 ‖

)︀
OPT+𝐾𝑡𝑗 .

Hence, the condition that 𝑔𝑗(𝑥) ≤ 𝑔𝑗(𝑥0) implies that

‖𝑃𝑥− 𝑦𝑗‖ ≤
(︀
1 + 2−𝑗‖𝑃 ‖

)︀
OPT+𝐾𝑡𝑗 .

Take any 𝑦 ∈ 𝑋*, let 𝑐 = 𝑥 − 𝑃𝑥 + 𝑦, and note that 𝑃𝑐 = 𝑃𝑦 and therefore 𝑐 ∈ 𝑋*. Using these
facts, we can bound 𝑅𝑗 as follows

𝑅𝑗 = max
𝑥∈R𝐸 : 𝑔𝑗(𝑥)≤𝑔𝑗(𝑥0)

‖𝑥− 𝑐‖

≤ max
𝑥∈R𝐸 : 𝑔𝑗(𝑥)≤𝑔𝑗(𝑥0)

‖𝑃𝑥‖+ ‖𝑃𝑦‖

≤ 2‖𝑦0‖+ ‖𝑃𝑥− 𝑦𝑗‖+ ‖𝑃𝑦 − 𝑦𝑗‖
≤ 4

(︀
1 + 2−𝑗‖𝑃 ‖

)︀
OPT+ 2𝐾𝑡𝑗 .

10This is an idea that has been applied previously to solve linear programming problems [207].
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Similar to Lemma 12.3.3, the Lipschitz constant 𝐿𝑗 of 𝑔𝑗 is ‖𝑃 ‖2/𝑡𝑗 . Hence, Theorem 12.3.1 shows
that

𝑔𝑗(𝑥𝑘𝑗 ) ≤ min
𝑥
𝑔𝑗(𝑥) +

2 · 𝐿𝑗 ·𝑅2
𝑗

𝑘𝑗 + 4

≤ min
𝑥
‖𝑃 �⃗�− 𝑦𝑗‖+

2 · 𝐿𝑗 ·𝑅2
𝑗

𝑘𝑗 + 4
+𝐾𝑡𝑗

So, we have

‖𝑃𝑥𝑘𝑗 − 𝑦𝑗‖ ≤ 𝑓𝑡𝑗 (𝑃𝑥𝑘𝑗 − 𝑦𝑗)

≤ OPT+𝐾𝑡𝑗 +
2‖𝑃 ‖2

𝑡𝑗(𝑘𝑗 + 4)

(︀
4
(︀
1 + 2−𝑗‖𝑃 ‖

)︀
OPT+ 2𝐾𝑡𝑗

)︀2
.

When 2−𝑗‖𝑃 ‖ > 1, we have 𝑡𝑗 =
2−(𝑗+2)‖𝑃 ‖OPT

𝐾 and 𝑘𝑗 = 3200‖𝑃 ‖2𝐾 and hence

‖𝑦𝑗+1‖ = ‖𝑃𝑥𝑘𝑗 − 𝑦𝑗‖ ≤
(︀
1 + 2−𝑗−1‖𝑃 ‖

)︀
OPT.

When 2−𝑗‖𝑃 ‖ ≤ 1, we have 𝑡𝑗 = 𝜀OPT
2𝐾 and 𝑘𝑗 =

800‖𝑃 ‖2𝐾
𝜀2

and hence

‖𝑦𝑗+1‖ = ‖𝑃𝑥𝑘𝑗 − 𝑦𝑗‖ ≤ (1 + 𝜀)OPT.

Since 𝑦last is 𝑦 plus some vectors in 𝐿, 𝑦 − 𝑦last ∈ 𝐿 and ‖𝑡− 𝑦last − 𝑦‖ = ‖𝑦last‖ ≤ (1 + 𝜀)OPT.

12.7.2 Maximum Concurrent Flow

For an arbitrary set of demands 𝜒𝑖 ∈ R𝑉 with
∑︀

𝑣∈𝑉 𝜒𝑖(𝑣) = 0 for 𝑖 = 1, · · · , 𝑘, we wish to solve the
following maximum concurrent flow problem

max
𝛼∈𝑅,𝑓∈R𝐸

𝛼 subject to 𝐵𝑇𝑓 𝑖 = 𝛼𝜒𝑖 and ‖𝑈−1
𝑘∑︁
𝑖=1

|𝑓 𝑖|‖∞ ≤ 1.

Similar to Section 12.3.2, it is equivalent to the problem

min
𝑐∈R𝐸×[𝑘]

‖
𝑘∑︁
𝑖=1

|𝛼𝑖 + (𝑄𝑥)𝑖| ‖∞

where 𝑄 is a projection matrix onto the subspace {𝐵𝑇𝑈𝑥𝑖 = 0}, the output maximum concurrent
flow is

𝑓 𝑖(𝑥) = 𝑈(𝛼𝑖 + (𝑄𝑥)𝑖)/‖
𝑘∑︁
𝑖=1

|𝛼𝑖 + (𝑄𝑥)𝑖| ‖∞ ,

and 𝑈𝛼𝑖 is any flow such that 𝐵𝑇𝑈𝛼𝑖 = 𝜒𝑖. In order to apply NonlinearProjection, we need to
find a regularized norm and a good projection matrix. Let us define the norm

‖𝑥‖1;∞ = max
𝑒∈𝐸

𝑘∑︁
𝑖=1

|𝑥𝑖(𝑒)|.

The problem is simply ‖𝛼 + 𝑄𝑥‖1;∞ where 𝑄 is a projection matrix from R𝐸×[𝑘] to R𝐸×[𝑘] onto
some subspace. Since each copy R𝐸 is same, there is no reason that there is coupling in 𝑄 between
different copies of R𝐸 . In the next lemma, we formalize this by the fact that any good projection
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matrix𝑃 onto the subspace {𝐵𝑇𝑈 �⃗� = 0} ⊂ R𝐸 extends to a good projection 𝑄 onto the subspace
{𝐵𝑇𝑈𝑥𝑖 = 0} ⊂ R𝐸×[𝑘]. Therefore, we can simply extends the good circulation projection 𝑃 by
formula (𝑄𝑥)𝑖 = 𝑃𝑥𝑖. Thus, the only last piece needed is a regularized ‖ · ‖1;∞. However, it turns out
that smoothing via conjugate does not work well in this case because the dual space of ‖ ·‖1;∞ involves
with ‖ · ‖∞, which is unfavorable for this kind of smoothing procedure. It can be shown that there
is no such good regularized ‖ · ‖1;∞. Therefore, we could not do 𝑂(𝑚1+𝑜(1)𝑘/𝜀2) using this approach,
however, 𝑂(𝑚1+𝑜(1)𝑘2/𝜀2) is possible by using a bad regularized ‖ · ‖1;∞. We believe the dependence
of 𝑘 can be improved to 3/2 using this approach by suitable using Nesterov algorithm because the
‖ · ‖1 space caused by the multicommodity is a favorable geometry for accelerated methods.

Lemma 12.7.3. Let smax𝐿1𝑡(𝑥) = smax𝑡

(︂∑︀𝑘
𝑖=1

√︁
(𝑥𝑖(𝑒))

2 + 𝑡2
)︂
. It is a convex continuously differ-

entiable function. The Lipschitz constant of ∇smax𝐿1𝑡 is 2
𝑡 and

‖𝑥‖1;∞ − 𝑡 ln(2𝑚) ≤ smax𝐿1𝑡(𝑥) ≤ ‖𝑥‖1;∞ + 𝑘𝑡.

Proof. 1) It is clear that smax𝐿1𝑡 is smooth.
2) smax𝐿1𝑡 is convex.
Since smax𝑡 is increasing for positive values and

√
𝑥2 + 𝑡2 is convex, for any 𝑥,𝑦 ∈ R𝐸×[𝑘] and

0 ≤ 𝑡 ≤ 1, we have

smax𝐿1𝑡(𝑡𝑥+ (1− 𝑡)𝑦) = smax𝑡

(︃
𝑘∑︁
𝑖=1

√︁
((𝑡𝑥𝑖 + (1− 𝑡)𝑦𝑖)(𝑒))2 + 𝑡2

)︃

≤ smax𝑡

(︃
𝑘∑︁
𝑖=1

(︂
𝑡

√︁
(𝑥𝑖(𝑒))

2 + 𝑡2 + (1− 𝑡)
√︁

(𝑦𝑖(𝑒))
2 + 𝑡2

)︂)︃
≤ 𝑡smax𝐿1𝑡(𝑥) + (1− 𝑡)smax𝐿1𝑡(𝑦).

3) The Lipschitz constant of ∇smax𝐿1𝑡 is 2
𝑡 .

Note that smax𝑡 (not its gradient) has Lipschitz constant 1 because for any 𝑥,𝑦 ∈ R𝐸 ,

|smax𝑡(𝑥)− smax𝑡(𝑦)|

=

⃒⃒⃒⃒
⃒⃒𝑡 ln

⎛⎝∑︀𝑒∈𝐸

(︁
exp(−𝑥(𝑒)

𝑡 ) + exp(𝑥(𝑒)𝑡 )
)︁

2𝑚

⎞⎠− 𝑡 ln
⎛⎝∑︀𝑒∈𝐸

(︁
exp(−𝑦(𝑒)

𝑡 ) + exp(𝑦(𝑒)𝑡 )
)︁

2𝑚

⎞⎠⃒⃒⃒⃒⃒⃒
= 𝑡

⃒⃒⃒⃒
⃒⃒ln
⎛⎝∑︀𝑒∈𝐸

(︁
exp(−𝑥(𝑒)

𝑡 ) + exp(𝑥(𝑒)𝑡 )
)︁

∑︀
𝑒∈𝐸

(︁
exp(−𝑦(𝑒)

𝑡 ) + exp(𝑦(𝑒)𝑡 )
)︁
⎞⎠⃒⃒⃒⃒⃒⃒

≤ 𝑡

⃒⃒⃒⃒
ln

(︂
max
𝑒∈𝐸

exp(
|𝑥− 𝑦|(𝑒)

𝑡
)

)︂⃒⃒⃒⃒
= ‖𝑥− 𝑦‖∞.

Also, by the definition of derivative, for any 𝑥,𝑦 ∈ R𝑛 and 𝑡 ∈ R, we have

smax𝑡(𝑥+ 𝑡𝑦)− smax𝑡(𝑥) = 𝑡⟨∇smax𝑡(𝑥),𝑦⟩+ 𝑜(𝑡).

and it implies |⟨∇smax𝑡(𝑥),𝑦⟩| ≤ ‖𝑦‖∞ for arbitrary 𝑦 and hence

‖∇smax𝑡(𝑥)‖1 ≤ 1. (12.5)
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For notational simplicity, let 𝑠1 = smax𝐿1𝑡, 𝑠2 = smax𝑡 and 𝑠3(𝑥) =
√
𝑥2 + 𝑡2. Thus, we have

𝑠1(�⃗�) = 𝑠2

(︃
𝑘∑︁
𝑖=1

𝑠3(𝑥𝑖(𝑒))

)︃
.

Now, we want to prove

‖∇𝑠1(𝑥)−∇𝑠1(𝑦)‖∞;1 ≤
2

𝑡
‖𝑥− 𝑦‖1;∞.

Note that

𝜕𝑠1(𝑥)

𝜕𝑥𝑖(𝑒)
=
𝜕𝑠2
𝜕𝑒

⎛⎝∑︁
𝑗

𝑠3(𝑥𝑗(𝑒))

⎞⎠ 𝑑𝑠3
𝑑𝑥

(𝑥𝑖(𝑒)) .

Hence, we have

‖∇𝑠1(𝑥)−∇𝑠1(𝑦)‖∞;1

=
∑︁
𝑒

max
𝑖

⃒⃒⃒⃒
⃒⃒𝜕𝑠2𝜕𝑒

⎛⎝∑︁
𝑗

𝑠3(𝑥𝑗(𝑒))

⎞⎠ 𝑑𝑠3
𝑑𝑥

(𝑥𝑖(𝑒))−
𝜕𝑠2
𝜕𝑒

⎛⎝∑︁
𝑗

𝑠3(𝑦𝑗(𝑒))

⎞⎠ 𝑑𝑠3
𝑑𝑥

(𝑦𝑖(𝑒))

⃒⃒⃒⃒
⃒⃒

≤
∑︁
𝑒

⃒⃒⃒⃒
⃒⃒𝜕𝑠2𝜕𝑒

⎛⎝∑︁
𝑗

𝑠3(𝑥𝑗(𝑒))

⎞⎠⃒⃒⃒⃒⃒⃒max
𝑖

⃒⃒⃒⃒
𝑑𝑠3
𝑑𝑥

(𝑥𝑖(𝑒))−
𝑑𝑠3
𝑑𝑥

(𝑦𝑖(𝑒))

⃒⃒⃒⃒

+
∑︁
𝑒

max
𝑖

𝑑𝑠3
𝑑𝑥

(𝑦𝑖(𝑒))

⃒⃒⃒⃒
⃒⃒𝜕𝑠2𝜕𝑒

⎛⎝∑︁
𝑗

𝑠3(𝑥𝑗(𝑒))

⎞⎠− 𝜕𝑠2
𝜕𝑒

⎛⎝∑︁
𝑗

𝑠3(𝑦𝑗(𝑒))

⎞⎠⃒⃒⃒⃒⃒⃒ .

Since 𝑠3 has 1
𝑡 -Lipschitz gradient, we have⃒⃒⃒⃒

𝑑𝑠3
𝑑𝑥

(𝑥)− 𝑑𝑠3
𝑑𝑥

(𝑦)

⃒⃒⃒⃒
≤ 1

𝑡
|𝑥− 𝑦|.

By (12.5), we have ∑︁
𝑒

⃒⃒⃒⃒
𝜕𝑠2
𝜕𝑒

(𝑥(𝑒))

⃒⃒⃒⃒
≤ 1.

Hence, we have

∑︁
𝑒

max
𝑖

⃒⃒⃒⃒
𝑑𝑠3
𝑑𝑥

(𝑥𝑖(𝑒))−
𝑑𝑠3
𝑑𝑥

(𝑦𝑖(𝑒))

⃒⃒⃒⃒ ⃒⃒⃒⃒
⃒𝜕𝑠2𝜕𝑒

(︃∑︁
𝑖

𝑠3(𝑥𝑖(𝑒))

)︃⃒⃒⃒⃒
⃒

≤ 1

𝑡
max
𝑖,𝑒
|𝑥𝑖(𝑒)− 𝑦𝑖(𝑒)|

∑︁
𝑒

⃒⃒⃒⃒
⃒𝜕𝑠3𝜕𝑒

(︃∑︁
𝑖

𝑠3(𝑥𝑖(𝑒))

)︃⃒⃒⃒⃒
⃒

=
1

𝑡
‖�⃗�− �⃗�‖1;∞.

Since 𝑠3 is 1-Lipschitz, we have ⃒⃒⃒⃒
𝑑𝑠3
𝑑𝑥

⃒⃒⃒⃒
≤ 1.
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Since 𝑠2 has 1
𝑡 -Lipschitz gradient in ‖ · ‖∞, we have

∑︁
𝑒

⃒⃒⃒⃒
𝜕𝑠2
𝜕𝑒

(𝑥)− 𝜕𝑠2
𝜕𝑒

(𝑦)

⃒⃒⃒⃒
≤ 1

𝑡
‖𝑥− 𝑦‖∞.

Hence, we have

∑︁
𝑒

max
𝑖

𝑑𝑠3
𝑑𝑥

(𝑦𝑖(𝑒))

⃒⃒⃒⃒
⃒⃒𝜕𝑠2𝜕𝑒

⎛⎝∑︁
𝑗

𝑠3(𝑥𝑗(𝑒))

⎞⎠− 𝜕𝑠2
𝜕𝑒

⎛⎝∑︁
𝑗

𝑠3(𝑦𝑗(𝑒))

⎞⎠⃒⃒⃒⃒⃒⃒
≤

∑︁
𝑒

⃒⃒⃒⃒
⃒⃒𝜕𝑠2𝜕𝑒

⎛⎝∑︁
𝑗

𝑠3(𝑥𝑗(𝑒))

⎞⎠− 𝜕𝑠2
𝜕𝑒

⎛⎝∑︁
𝑗

𝑠3(𝑦𝑗(𝑒))

⎞⎠⃒⃒⃒⃒⃒⃒
≤ 1

𝑡
‖
∑︁
𝑖

𝑠3(𝑥𝑖(𝑒))−
∑︁

𝑠3(𝑦𝑖(𝑒))‖∞

≤ 1

𝑡
‖
∑︁
𝑖

|𝑥𝑖(𝑒)− 𝑦𝑖(𝑒)| ‖

=
1

𝑡
‖𝑥− 𝑦‖1;∞

Therefore, we have

‖∇𝑠1(𝑥)−∇𝑠1(𝑦)‖∞;1 ≤
2

𝑡
‖𝑥− 𝑦‖1;∞.

4) Using the fact that

‖𝑥(𝑒)‖ ≤
𝑘∑︁
𝑖=1

√︁
(𝑥𝑖(𝑒))

2 + 𝑡2 ≤ ‖𝑥(𝑒)‖1 + 𝑘𝑡

and smax is 1-Lipschitz, we have

‖𝑥‖1;∞ − 𝑡 ln(2𝑚) ≤ smax𝐿1𝑡(𝑥) ≤ ‖𝑥‖1;∞ + 𝑘𝑡.

The last thing needed is to check is that the # operator is easy to compute.

Lemma 12.7.4. In ‖ · ‖1;∞, the # operator is given by an explicit formula

(︁
𝑥#
)︁
𝑖
(𝑒) =

{︃
||𝑥||∞;1sign(𝑥𝑖(𝑒)) if 𝑖 is the smallest index such that max𝑗 𝑥𝑗(𝑒) = 𝑥𝑖(𝑒)

0 otherwises
.

Proof. It can be proved by direct computation.

Now, all the conditions in the Assumption 12.7.1 are satisfied. Therefore, Theorem 12.7.2 and
Theorem 12.4.12 gives us the following theorem:

Theorem 12.7.5. Given an undirected capacitated graph 𝐺 = (𝑉,𝐸,𝜇) with capacity ratio 𝑈 . Assume
𝑈 = poly(|𝑉 |). There is an algorithm finds an (1 − 𝜀) approximate Maximum Concurrent Flow in
time

𝑂

(︂
𝑘2

𝜀2
|𝐸|2𝑂

(︁√
log |𝑉 | log log |𝑉 |

)︁)︂
.
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Proof. Let 𝐴 be the oblivious routing algorithm given by Theorem 12.4.12. And we have 𝜌(𝐴) ≤

2
𝑂
(︁√

log |𝑉 | log log |𝑉 |
)︁
. Let us define the scaled circulation projection matrix 𝑃 = 𝐼 − 𝑈𝐴𝐵𝑇𝑈−1.

Lemma 12.4.5 shows that ‖𝑃 ‖∞ ≤ 1 + 2
𝑂
(︁√

log |𝑉 | log log |𝑉 |
)︁
.

Let the multi-commodity circulation projection matrix 𝑄 : R𝐸×[𝑘] → R𝐸×[𝑘] defined by (𝑄𝑥)𝑖 =
𝑃𝑥𝑖. Note that the definition of ‖𝑄‖1;∞ is similar to 𝜌(𝑄). By similar proof as Lemma 12.4.3,

we have ‖𝑄‖1;∞ = ‖𝑃 ‖∞. Hence, we have ‖𝑄‖1;∞ ≤ 1 + 2
𝑂
(︁√

log |𝑉 | log log |𝑉 |
)︁
. Also, since 𝑃 is a

projection matrix on the subspace {𝑥 ∈ R𝐸 : 𝐵𝑇𝑈𝑥 = 0}, 𝑄 is a projection matrix on the subspace
{𝑥 ∈ R𝐸×[𝑘] : 𝐵𝑇𝑈𝑥𝑖 = 0}.

By Lemma 12.7.3, the function smax𝐿1𝑡(𝑥) is a convex continuously differentiable function such
that the Lipschitz constant of ∇smax𝐿1𝑡 is 2

𝑡 and

‖𝑥‖1;∞ − 𝑡 ln(2𝑚) ≤ smax𝐿1𝑡(𝑥) ≤ ‖𝑥‖1;∞ + 𝑘𝑡.

Given an arbitrary set of demands 𝜒𝑖 ∈ R𝑉 , we find a vector �⃗� such that

𝐵𝑇𝑈𝑦 = −𝜒𝑖.
Then, we use the NonlinearProjection to solve

min
𝐵𝑇𝑈𝑥=0

‖𝑥− 𝑦‖1;∞

using a family of functions smax𝐿1𝑡(𝑥) + 𝑡 ln(2𝑛) and the projection matrix 𝑄. Since each iter-
ation involves calculation of gradients and # operator, it takes 𝑂(𝑚𝑘) each iteration. And it takes
�̃�
(︀
‖𝑄‖21;∞𝐾/𝜀2

)︀
iterations in total where 𝐾 = 𝑘+ln(2𝑚). In total, itNonlinearProjection outputs

a (1 + 𝜀) approximate minimizer 𝑥 in time

𝑂

(︂
𝑘2

𝜀2
|𝐸|2𝑂

(︁√
log |𝑉 | log log |𝑉 |

)︁)︂
.

And it gives a (1− 𝜀) approximate maximum concurrent flow 𝑓𝑖 by a direct formula.

12.8 Appendix

In this section, we present some basic fact used in this chapter about norm and dual norm. Also, we
presented some lemmas about convex functions with Lipschitz gradient. See [35, 206] for comprehensive
discussion.

12.8.1 Norms

Fact 12.8.1. 𝑥 = 0 ⇔ 𝑥# = 0.

Proof. If 𝑥 = 0 then ∀𝑠 ̸= 0 we have ⟨𝑥, 𝑠⟩ − 1
2‖𝑠‖

2 < 0 but ⟨𝑥,𝑥⟩ − 1
2‖𝑥‖

2 = 0. So we have 𝑥# = 0.

If 𝑥 ̸= 0 then let 𝑠 = ⟨𝑥,𝑥⟩
‖𝑥‖2 𝑥 with this choice we have ⟨𝑥, 𝑠⟩− 1

2‖𝑠‖
2 = 1

2
⟨𝑥,𝑥⟩2
‖𝑥‖2 > 0. However, for 𝑠 = 0

we have that ⟨𝑥, 𝑠⟩ − 1
2‖𝑠‖

2 = 0 therefore we have 𝑥# ̸= 0.

Fact 12.8.2. ∀𝑥 ∈ R𝑛 : ⟨𝑥, 𝑥#⟩ = ‖𝑥#‖2.

Proof. If 𝑥 = 0 then 𝑥# = 0 by Fact 12.8.1 and we have the result. Otherwise, again by Fact 12.8.1
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we know that 𝑥# ̸= 0 and therefore by the definition of 𝑥# we have

1 = argmax
𝑐∈R

⟨𝑥, 𝑐 · 𝑥#⟩ − 1

2
‖𝑐 · 𝑥#‖2 = argmax

𝑐∈R
𝑐 · ⟨𝑥, 𝑥#⟩ − 𝑐2

2
‖𝑥#‖2

Setting the derivative of with respect to 𝑐 to 0 we get that 1 = 𝑐 = ⟨𝑥,𝑥#⟩
‖𝑥#‖2 .

Fact 12.8.3. ∀𝑥 ∈ R𝑛 : ‖𝑥‖* = ‖𝑥#‖.

Proof. Note that if 𝑥 = 0 then the fact follows from Fact (12.8.1) otherwise we have

‖𝑥‖* = max
‖𝑦‖≤1

⟨𝑥, 𝑦⟩ = max
‖𝑦‖=1

⟨𝑥, 𝑦⟩ ≤ max
𝑦∈R𝑛

⟨𝑥, 𝑦⟩
‖𝑦‖

From this it is clear that ‖𝑥‖* ≥ ‖𝑥#‖. To see the other direction consider a 𝑦 that maximizes the
above and let 𝑧 = ⟨𝑥,𝑦⟩

‖𝑦‖2 𝑦

⟨𝑥, 𝑧⟩ − 1

2
‖𝑧‖2 ≤ ⟨𝑥,𝑥#⟩ − 1

2
‖𝑥#‖2

and therefore
‖𝑥‖*2 − 1

2
‖𝑥‖*2 ≤ 1

2
‖𝑥#‖2

Fact 12.8.4 (Cauchy Schwarz). ∀𝑥,𝑦 ∈ R𝑛 : ⟨𝑦,𝑥⟩ ≤ ‖𝑦‖*‖𝑥‖.

Proof. By the definition of dual norm, for all ‖𝑥‖ = 1, we have ⟨𝑦,𝑥⟩ ≤ ‖𝑦‖*. Hence, it follows by
linearity of both side.

12.8.2 Functions with Lipschitz Gradient

Lemma 12.8.5. Let 𝑓 be a continuously differentiable convex function. Then, the following are
equivalence:

∀𝑥,𝑦 ∈ R𝑛 : ‖∇𝑓(𝑥)−∇𝑓(𝑦)‖* ≤ 𝐿 · ‖𝑥− 𝑦‖
and

∀𝑥,𝑦 ∈ R𝑛 : 𝑓(𝑥) ≤ 𝑓(𝑦) + ⟨∇𝑓(𝑦),𝑥− 𝑦⟩+ 𝐿

2
‖𝑥− 𝑦‖2.

For any such 𝑓 and any 𝑥 ∈ R𝑛 , we have

𝑓

(︂
𝑥− 1

𝐿
∇𝑓(𝑥)#

)︂
≤ 𝑓(𝑥)− 1

2𝐿
‖∇𝑓(𝑥)‖*2.

Proof. From the first condition, we have

𝑓(𝑦) = 𝑓(𝑥) + ⟨∇𝑓(𝑥),𝑦 − 𝑥⟩+
ˆ 1

0
⟨∇𝑓(𝑥+ 𝑡(𝑦 − 𝑥))−∇𝑓(𝑥),𝑦 − 𝑥⟩𝑑𝑡

≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥),𝑦 − 𝑥⟩+
ˆ 1

0
‖∇𝑓(𝑥+ 𝑡(𝑦 − 𝑥))−∇𝑓(𝑥)‖*‖𝑦 − 𝑥‖𝑑𝑡

≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥),𝑦 − 𝑥⟩+
ˆ 1

0
𝐿𝑡‖𝑦 − 𝑥‖2𝑑𝑡

= 𝑓(𝑥) + ⟨∇𝑓(𝑥),𝑦 − 𝑥⟩+ 𝐿

2
‖𝑦 − 𝑥‖2.
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Given the second condition. For any 𝑥 ∈ R𝑛. let 𝜑𝑥(𝑦) = 𝑓(𝑦) − ⟨∇𝑓(𝑥),𝑦⟩. From the convexity of
𝑓 , for any 𝑦 ∈ R𝑛

𝑓(𝑦)− 𝑓(𝑥) ≥ ⟨∇𝑓(𝑥),𝑦 − 𝑥⟩.
Hence, 𝑥 is a minimizer of 𝜑𝑥. Hence, we have

𝜑𝑥(𝑥) ≤ 𝜑𝑥(𝑦 −
1

𝐿
∇𝜑𝑥(𝑦)#)

≤ 𝜑𝑥(𝑦)− ⟨∇𝜑𝑥(𝑦),
1

𝐿
∇𝜑𝑥(𝑦)#⟩+

𝐿

2
‖ 1
𝐿
∇𝜑𝑥(𝑦)#‖2 (First part of this lemma)

= 𝜑𝑥(𝑦)−
1

2𝐿
‖∇𝜑𝑥(𝑦)#‖2

= 𝜑𝑥(𝑦)−
1

2𝐿
(‖∇𝜑𝑥(𝑦)‖*)2 .

Hence,

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥),𝑦 − 𝑥⟩+ 1

2𝐿
(‖∇𝑓(𝑦)−∇𝑓(𝑥)‖*)2 .

Adding up this inequality with 𝑥 and 𝑦 interchanged, we have

1

𝐿
(‖∇𝑓(𝑦)−∇𝑓(𝑥)‖*)2 ≤ ⟨∇𝑓(𝑦)−∇𝑓(𝑥),𝑦 − 𝑥⟩

≤ ‖∇𝑓(𝑦)−∇𝑓(𝑥)‖*‖𝑦 − 𝑥‖.
The last inequality follows from similar proof in above for 𝜑𝑥.

The next lemma relate the Hessian of function with the Lipschitz parameter 𝐿 and this lemma
gives us a easy way to compute 𝐿.

Lemma 12.8.6. Let 𝑓 be a twice differentiable function such that for any 𝑥,𝑦 ∈ R𝑛

0 ≤ 𝑦𝑇
(︀
∇2𝑓(𝑥)

)︀
𝑦 ≤ 𝐿||𝑦||2.

Then, 𝑓 is convex and the gradient of 𝑓 is Lipschitz continuous with Lipschitz parameter 𝐿.

Proof. Similarly to Lemma 12.8.5, we have

𝑓(𝑦) = 𝑓(𝑥) + ⟨∇𝑓(𝑥),𝑦 − 𝑥⟩+
ˆ 1

0
⟨∇𝑓(𝑥+ 𝑡(𝑦 − 𝑥))−∇𝑓(𝑥),𝑦 − 𝑥⟩𝑑𝑡

= 𝑓(𝑥) + ⟨∇𝑓(𝑥),𝑦 − 𝑥⟩+
ˆ 1

0
𝑡(𝑦 − 𝑥)𝑇∇2𝑓(𝑥+ 𝜃𝑡(𝑦 − 𝑥))(𝑦 − 𝑥)𝑑𝑡

where the 0 ≤ 𝜃𝑡 ≤ 𝑡 comes from mean value theorem. By the assumption, we have

𝑓(𝑥) + ⟨∇𝑓(𝑥),𝑦 − 𝑥⟩ ≤ 𝑓(𝑦)

≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥),𝑦 − 𝑥⟩+
ˆ 1

0
𝑡𝐿‖𝑦 − 𝑥‖2𝑑𝑡

≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥),𝑦 − 𝑥⟩+ 𝐿

2
‖𝑦 − 𝑥‖2.

And the conclusion follows from Lemma 12.8.5.
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Chapter 13

Connection Laplacian In Nearly-Linear Time

13.1 Introduction

In this chapter, we introduce the sparsified Cholesky and sparsified multigrid algorithms for solving sys-
tems of linear equations. Two advantages of these algorithms over other nearly-linear time algorithms
for solving systems of equations in Laplacian matrices [256, 243, 147, 146, 141, 57] are:

1. They give nearly-linear time algorithms for solving systems of equations in a much broader
class of matrices—the connection Laplacians and Hermitian block diagonally dominant matri-
ces. Connection Laplacians [238, 29] are a generalization of graph Laplacians that arise in many
applications, including celebrated work on cryo-electron microscopy [237, 235, 275], phase re-
trieval [7, 186], and many image processing problems (e.g. [221, 16]). Previous algorithms for
solving systems of equations in graph Laplacians cannot be extended to solve equations in con-
nection Laplacians because the previous algorithms relied on some form of low stretch spanning
trees, a concept that has no analog for the more general connection Laplacians.

2. They provide linear-sized approximate inverses of connection Laplacian matrices. That is, for
every 𝑛-dimensional connection Laplacian M , the sparsified Cholesky factorization algorithm
produces an block-upper-triangular matrix U and block diagonal D with 𝑂(𝑛) nonzero entries
so that U 𝑇DU is a constant-factor approximation of M . Such matrices U and D allow one to
solve systems of equations in M to accuracy 𝜀 in time 𝑂(𝑚 log 𝜀−1), where 𝑚 is the number of
nonzero entries of M . Even for ordinary Laplacian matrices, the existence of such approximate
inverses is entirely new. The one caveat of this result is that we do not yet know how to compute
those approximate inverses in nearly linear time.

The sparsified Cholesky and sparsified multigrid algorithms work by sparsifying the matrices produced
during Gaussian elimination. Recall that Cholesky factorization is the version of Gaussian elimination
for symmetric matrices, and that the high running time of Gaussian elimination comes from fill—new
nonzero matrix entries that are created by row operations. If Gaussian elimination never produced
rows with a super-constant number of entries, then it would run in linear time. The sparsified Cholesky
algorithm accelerates Gaussian elimination by sparsifying the rows that are produced by elimination,
thereby guaranteeing that the elimination will be fast. Sparsified Cholesky is inspired by one of
the major advances in algorithms for solving linear equations in Laplacian matrices—the Incomplete
Cholesky factorization (ICC) [191]. However, ICC merely drops entries produced by elimination,
whereas sparsification also carefully increases ones that remain. The difference is crucial, and is why
ICC does not provide a nearly-linear time solver.

To control the error introduced by sparsification, we have to be careful not to do it too often. This
means that our algorithm actually chooses a large set of rows and columns to eliminate at once, and
then sparsifies the result. This is the basis of our first algorithms, which establish the existence of
linear time solvers and linear sized approximate inverses, after precomputation. This precomputation
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is analogous to the procedure of computing a matrix inverse: the approximate inverse takes much less
time to apply than to compute.

To produce entire algorithms that run in nearly linear time (both to compute and apply the
approximate inverse) requires a little more work. To avoid the work of computing the matrix obtained
by eliminating the large set of rows and columns, we design a fast algorithm for approximating it
quickly. This resulting algorithm produces a solver routine that does a little more work at each level,
and so resembles a multigrid V-cycle [252]. We call the resulting algorithm the sparsified multigrid.
We note that Krishnan, Fattal, and Szeliski [150] present experimental results from the use of a
sparsification heuristic in a multigrid algorithm for solving problems in computer vision.

Our new algorithms are most closely related to the Laplacian solver recently introduced by Peng
and Spielman [223]: unlike the other Laplacian solvers, they rely only on sparsification and do not
directly rely on “support theory” preconditioners or any form of low stretch spanning trees. This is
why our algorithms can solve a much broader family of linear systems. To sparsify without using
graph theoretic algorithms, we employ the algorithm in Chapter 3 that allows us to sparsify a matrix
by solving systems of equations in a subsampled matrix.

13.1.1 Connection Laplacians and Block DD Matrices

In this section, we define block diagonally dominant (bDD) matrices—the most general family of
matrices such that the associated systems of linear equations can be solved by our algorithms. We
begin by defining our motivating case: the connection Laplacians

Connection Laplacians may be thought of as a generalization of graph Laplacians where every
vertex is associated with a vector, instead of a real number, and every edge is associated with a
unitary matrix. Like graph Laplacians, they describe a natural quadratic form. Let M [𝑖,𝑗] ∈ C𝑟×𝑟
be the unitary matrix associated with edge (𝑖, 𝑗), and let 𝑤𝑖,𝑗 be the (nonnegative) weight of edge
(𝑖, 𝑗). We require that M [𝑖,𝑗] = M *

[𝑗,𝑖], where * denotes the conjugate transpose. The quadratic form
associated with this connection Laplacian is a function of vectors v (𝑖) ∈ C𝑟, one for each vertex 𝑖, that
equals ∑︀

(𝑖,𝑗)∈𝐸 w 𝑖,𝑗‖v (𝑖) −M [𝑖,𝑗]v
(𝑗)‖2.

The matrix corresponding to this quadratic form is a block matrix with blocks M [𝑖,𝑗]. Most appli-
cations of the connection Laplacian require one to either solve systems of linear equations in this
matrix, or to compute approximations of its smallest eigenvalues and eigenvectors. By applying the
inverse power method (or inverse Lanczos), we can perform these eigenvector calculations by solving
a logarithmic number of linear systems in the matrix (see [243, Section 7]).

The matrices obtained from the connection Laplacian are a special case of block diagonally dom-
inant (bDD) matrices, which we now define. Throughout this chapter, we consider block matrices
having entries in C𝑟×𝑟, where 𝑟 > 0 is a fixed integer. We say that M ∈ (C𝑟×𝑟)𝑚×𝑛 has 𝑚 block-rows,
and 𝑛 block-columns. For 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛], we letM [𝑖,𝑗] ∈ C𝑟×𝑟 denote the 𝑖, 𝑗-block inM , andM [𝑗] de-
note the 𝑗th block-column, i.e., M [𝑗] = [(M [1,𝑗])

*, (M [2,𝑗])
*, . . . , (M [𝑚,𝑗])

*]*. For sets 𝐹 ⊆ [𝑚], 𝐶 ⊆ [𝑛],

we let M [𝐹,𝐶] ∈ (C𝑟×𝑟)|𝐹 |×|𝐶| denote the block-submatrix with blocks M [𝑖,𝑗] for 𝑖 ∈ 𝐹, 𝑗 ∈ 𝐶. M is
block-diagonal, if M [𝑖,𝑗] = 0 for 𝑖 ̸= 𝑗. We emphasize that all computations are done over C, not over
a matrix group.

Definition 13.1.1. A Hermitian block-matrixM ∈ (C𝑟×𝑟)𝑛×𝑛 is block diagonally dominant (or bDD)
if

for all 𝑖 ∈ [𝑛], M [𝑖,𝑖] ⪰ 𝐼𝑟 ·
∑︀

𝑗:𝑗 ̸=𝑖 ‖M [𝑖,𝑗]‖2,

where 𝐼𝑟 ∈ C𝑟×𝑟 denotes the identity matrix.
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For the rest of this chapter, we use ‖ · ‖ to denote ‖ · ‖2. Equivalently, a Hermitian M is a bDD
matrix iff it can be written as D − A where D is block-diagonal, and D [𝑖,𝑖] ⪰ 𝐼𝑟

∑︀
𝑗 ‖A[𝑖,𝑗]‖ (see

Lemma 13.6.1).
Throughout this chapter we treat 𝑟 as a constant. The hidden dependence on 𝑟, of the running times
of the algorithms we present, is polynomial. The major results of this chapter are the following.

Theorem 13.1.2 (Sparsified Multigrid). There is an algorithm that, when given a bDD matrix M
with 𝑛 block rows and 𝑚 nonzero blocks, produces a solver for M in 𝑂(𝑚 log 𝑛 + 𝑛 log2+𝑜(1) 𝑛) work
and 𝑂(𝑛𝑜(1)) depth so that the solver finds 𝜀-approximate solutions to systems of equations in M in
𝑂((𝑚+ 𝑛 log1+𝑜(1) 𝑛) log(1/𝜀)) work and 𝑂(log2 𝑛 log log𝑛 log(1/𝜀)) depth.

Previously, the existence of nearly-linear time solvers was even unknown for the 1-dimensional case
(𝑟 = 1) when the off-diagonal entries were allowed to be complex numbers.

We can use the above algorithm to find approximations of the smallest eigenvalues and eigenvectors
of such matrices at an additional logarithmic cost.

Theorem 13.1.3 (Sparsified Cholesky). For every bDD matrix M with 𝑛 block-rows there exists a
diagonal matrix D and an upper triangular matrix U with 𝑂(𝑛) nonzero blocks so that

U 𝑇DU ≈3/4 M .

Moreover, linear equations in U , U 𝑇 , and D can be solved with linear work in depth 𝑂(log2 𝑛), and
these matrices can be computed in polynomial time.

These matrices allow one to solve systems of linear equations in M to 𝜀-accuracy in parallel time
𝑂(log2 𝑛 log−1 𝜀) and work 𝑂(𝑚 log−1 𝜀). Results of this form were previously unknown even for graph
Laplacians.

In the next two sections we explain the ideas used to prove these theorems. Proofs may be found
in the appendices that follow.

13.2 Preliminaries

We say that A is an 𝜀-approximation of B , written A ≈𝜀 B , if 𝑒𝜀B < A < 𝑒−𝜀B . This relation is
symmetric. We say that x̃ is an 𝜀-approximate solution to the system Ax = b if ‖x̃ − A−1b‖A ≤
𝜀‖x‖A, where ‖x‖A = (x𝑇Ax )1/2. If 𝜀 < 1/2, A ≈𝜀 B and Bx̃ = b, then x̃ is a 2𝜀 approximate
solution to Ax = b.

Fact 13.2.1. If A ≈𝜀 B and B ≈𝛿 C , then A ≈𝜀+𝛿 C .

We now address one technicality of dealing with 𝑏𝐷𝐷 matrices: it is not immediate whether or not
a 𝑏𝐷𝐷 matrix is singular. Moreover, if it is singular, the structure of its null space is not immediately
clear either. Throughout the rest of this chapter, we will consider 𝑏𝐷𝐷 matrices to which a small
multiple of the identity have been added. These matrices will be nonsingular. To reduce the problem
of solving equations in a general 𝑏𝐷𝐷 matrix M to that of solving equations in a nonsingular matrix,
we require an estimate of the smallest nonzero eigenvalue of M .

Fact 13.2.2. Suppose that all nonzero eigenvalues of M are at least 𝜇 and Z ≈𝜀 (M + 𝜀𝜇𝐼)−1 for
some 0 < 𝜀 < 1/2. Given any b such that Mx = b for some x , we have

‖x − Zb‖2M ≤ 6𝜀‖𝑥‖2M .
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Hence, we can solve systems in M by approximately solving systems in M + 𝜀𝜇I . Any lower
bound 𝜇 on the smallest nonzero eigenvalue of M will suffice. It only impacts the running times of
our algorithms in the numerical precision with which one must carry out the computations.

The above fact allows us to solve systems in M that have a solution. If M is singular and we want
to apply its pseudoinverse (that is, to find the closest solution in the range of M ), we can do so by
pre and post multiplying by M to project onto its range. The resulting algorithm, which is implicit
in the following fact, requires applying a solver for M three times. It also takes 𝑂(log 𝜅) times as long
to run, where 𝜅 is the finite condition number1 of M .

Fact 13.2.3. Let 𝜅 be an upper bound on the finite condition number of M . Given an error parameter
0 < 𝜀 < 1, let 𝛿 = 𝜀/56𝜅3. If all nonzero eigenvalues of M are at least 𝜇, and if Z ≈𝛿 (M + 𝜀𝜇I )−1,
then

MZ 3M ≈4𝜀 M
+.

13.3 Overview of the Algorithms

We index the block rows and columns of a block matrix by a set of vertices (or indices) 𝑉 . When we
perform an elimination, we eliminate a set 𝐹 ⊂ 𝑉 , and let 𝐶 = 𝑉 − 𝐹 . Here, 𝐹 stands for “fine” and
𝐶 stands for “coarse”. In contrast with standard multigrid methods, we will have |𝐹 | ≤ |𝐶|.

To describe block-Cholesky factorization, we write the matrix M with the rows and columns in 𝐹
first:

M =

[︂
M [𝐹,𝐹 ] M [𝐹,𝐶]

M [𝐶,𝐹 ] M [𝐶,𝐶]

]︂
.

Cholesky factorization writes the inverse of this matrix as

M−1 =

[︃
I −M−1

[𝐹,𝐹 ]M [𝐹,𝐶]

0 I

]︃[︃
M−1

[𝐹,𝐹 ] 0

0 𝑆𝑐 (M , 𝐹 )−1

]︃[︃
I 0

−M [𝐶,𝐹 ]M
−1
[𝐹,𝐹 ] I

]︃
, (13.1)

where
𝑆𝑐 (M , 𝐹 )

def
= M [𝐶,𝐶] −M [𝐶,𝐹 ]M

−1
[𝐹,𝐹 ]M [𝐹,𝐶]

is the Schur complement of M with respect to 𝐹 .
Our algorithms rely on two fundamental facts about 𝑏𝐷𝐷 matrices: that the Schur complement

of a 𝑏𝐷𝐷 matrix is a 𝑏𝐷𝐷 matrix (Lemma 13.6.3) and that one can sparsify 𝑏𝐷𝐷 matrices. The
following theorem is implicit in [46].

Theorem 13.3.1. For every 𝜀 ≤ 1, every bDD matrix M with 𝑛 𝑟-dimensional block rows and columns
can be 𝜀-approximated by a bDD matrix having at most 10𝑛𝑟/𝜀2 nonzero blocks.

We use the identity (13.1) to reduce the problem of solving a system of equations in M to that of
solving equations in its Schur complement. The easiest part of this is multiplication by M [𝐶,𝐹 ]: the
time is proportional to the number of nonzero entries in the submatrix, and we can sparsify M to
guarantee that this is small.

The costlier part of the reduction is the application of the inverse ofM [𝐹,𝐹 ] three times. This would
be fast if M [𝐹,𝐹 ] were block-diagonal, which corresponds to 𝐹 being an independent set. We cannot
find a sufficiently large independent set 𝐹 , but we can find a large set that is almost independent.
This results in a matrix M [𝐹,𝐹 ] that is well approximated by its diagonal, and thus linear equations

1The finite condition number is the ratio of the largest singular value to the smallest nonzero singular value.
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in this matrix can be quickly solved to high accuracy by a few Jacobi iterations (see Theorem 13.3.1
and Section 13.9).

We can prove the existence of linear sized approximate inverses by explicitly computing 𝑆𝑐 (M , 𝐹 ),
sparsifying it, and then recursively applying the algorithm just described. To make this algorithm
efficient, we must compute a sparse approximation to 𝑆𝑐 (M , 𝐹 ) without constructing 𝑆𝑐 (M , 𝐹 ).
This is the problem of spectral vertex sparsification, and we provide a fast algorithm for this task in
Sections 13.3.4 and 13.11.

13.3.1 Schur Complement Chains

We encode this recursive algorithm by a Schur complement chain (SCC). An SCC defines a linear
operator that can be used to approximately solve equations in an initial matrix M (0). If the 𝑏𝐷𝐷
matrix M is sparse, then it is the same as M (0); if not, then M (0) is a sparse approximation to M .
Let 𝐹1 be the first set of vertices eliminated, M (1) a sparse approximation to the Schur complement
of M (0) with respect to 𝐹1, and Z (1) an operators that approximates the inverse of M (0)

[𝐹1,𝐹1]
.

Definition 13.3.2 (Schur Complement Chain). An 𝜀-Schur complement chain (𝜀-SCC) for a matrix
M 0 indexed by vertex set 𝑉 is a sequence of operators and subsets,(︁

(M (1),Z (1)), . . . , (M (𝑑),Z (𝑑));𝐹1, . . . , 𝐹𝑑

)︁
,

so that for 𝐶0 = 𝑉 and 𝐶𝑖+1 = 𝐶𝑖 ∖ 𝐹𝑖+1, |𝐶𝑑| ≤ 1000 and for 1 ≤ 𝑖 ≤ 𝑑,

M (𝑖) ≈𝜀𝑖 𝑆𝑐
(︁
M (𝑖−1), 𝐹𝑖

)︁
and 0 ⪯ (Z (𝑖))−1 −M

(𝑖−1)
[𝐹𝑖,𝐹𝑖]

⪯ 𝜀𝑖 · 𝑆𝑐
(︁
M (𝑖−1), 𝐶𝑖

)︁
.

The algorithm ApplyChain, described in Section 13.7, applies an SCC to solve equations in M (0)

in the natural way and satisfies the following guarantee.

Lemma 13.3.1. Consider an 𝜀-SCC for M (0) where M (𝑖) and Z (𝑖) can be applied to a vector in work
𝑊M (𝑖) ,𝑊D(𝑖) and depth 𝐷M (𝑖) , 𝐷Z (𝑖) respectively.

The algorithm ApplyChain
(︁
(M (1),Z (1)), . . . , (M (𝑑),Z (𝑑));𝐹1, . . . , 𝐹𝑑; b

)︁
corresponds to a linear op-

erator W acting on b such that

1. W−1 ≈∑︀𝑑
𝑖=1 2𝜀𝑖

M (0), and

2. for any vector b, ApplyChain
(︁
(M (1),Z (1)), . . . , (M (𝑑),Z (𝑑));𝐹1, . . . , 𝐹𝑑; b

)︁
runs in

𝑂
(︁∑︀𝑑

𝑖=1 (𝐷M (𝑖) +𝐷Z (𝑖))
)︁
depth and 𝑂

(︁∑︀𝑑
𝑖=1 (𝑊M (𝑖) +𝑊Z (𝑖))

)︁
work.

For an 𝜀-SCC chain for M (0), we define the depth and work of the chain to be the work and depth
required by ApplyChain to apply the SCC.

13.3.2 Choosing 𝐹𝑖: 𝛼-bDD Matrices

We must choose the set of vertices 𝐹𝑖 so that we can approximate the inverse of M
(𝑖)
[𝐹𝑖,𝐹𝑖]

by an

operator Z (𝑖) that is efficiently computable. We do this by requiring that the matrix M
(𝑖)
[𝐹𝑖,𝐹𝑖]

be
𝛼-block diagonally dominant (𝛼-bDD), a term that we now define.

Definition 13.3.3. A Hermitian block-matrix M is 𝛼-bDD if

∀𝑖, M [𝑖,𝑖] < (1 + 𝛼)𝐼𝑟 ·
∑︀

𝑗:𝑗 ̸=𝑖 ‖M [𝑖,𝑗]‖. (13.2)
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We remark that a 0-bDD matrix is simply a bDD matrix. In particular, for 𝑟 = 1, Laplacian
matrices are 0-bDD.
By picking a subset of rows at random and discarding those that violate condition (13.2), the algorithm
bDDSubset (described in Section 13.8) finds a linear sized subset 𝐹 of the block-rows of a bDD matrix
M so that M [𝐹,𝐹 ] is 𝛼-bDD.

Lemma 13.3.2. Given a bDD matrix M with 𝑛 block-rows, and an 𝛼 ≥ 0, bDDSubset computes a
subset 𝐹 of size least 𝑛/(8(1+𝛼)) such that M [𝐹,𝐹 ] is 𝛼-bDD. It runs in runs in 𝑂(𝑚) expected work
and 𝑂(log 𝑛) expected depth, where 𝑚 is the number of nonzero blocks in M .

We can express an 𝛼-bDD matrix as a sum of a block diagonal matrix and a bDD matrix so that
it is well-approximated by the diagonal.

Lemma 13.3.3. Every 𝛼-bDD matrix M can be written in the form X +L where X is block-diagonal,
L is bDD, and X < 𝛼

2L.

As L is positive semidefinite, (1 + 2/𝛼)X < M < X , which means that X is a good approxima-
tion of M when 𝛼 is reasonably big. As block-diagonal matrices like X are easy to invert, systems in
these well-conditioned matrices can be solved rapidly using preconditioned iterative methods. In Sec-
tion 13.9, we show that a variant of Jacobi iteration provides an operator that satisfies the requirements
of Definition 13.3.2.

Theorem 13.3.1. Let M be a bDD matrix with index set 𝑉 , and let 𝐹 ⊆ 𝑉 such that M [𝐹,𝐹 ] is
𝛼-bDD for some 𝛼 ≥ 4, and has 𝑚𝐹𝐹 nonzero blocks. The algorithm Jacobi(𝜀,M [𝐹,𝐹 ], b) acts as a
linear operator Z on b that satisfies

0 ⪯ (Z )−1 −M [𝐹,𝐹 ] ⪯ 𝜀 · 𝑆𝑐 (M , 𝑉 ∖ 𝐹 ) .

The algorithm takes 𝑂(𝑚𝐹𝐹 log(1𝜀 )) work and 𝑂(log 𝑛 log(1𝜀 )) depth.

We now explain how Theorems 13.3.1 and 13.3.1 allow us to construct Schur complement chains
that can be applied in nearly linear time. We optimize the construction in the next section.

Theorem 13.3.1 tells us that there is a 𝑏𝐷𝐷 matrix M (0) with 𝑂(𝑛/𝜀2) nonzero blocks that that
𝜀-approximates M , and that for every 𝑖 there is a 𝑏𝐷𝐷 matrix M (𝑖+1) with 𝑂(|𝐶𝑖| /𝜀2) nonzero blocks
that is an 𝜀-approximation of 𝑆𝑐

(︁
M (𝑖), 𝐹𝑖

)︁
. We will pick 𝜀 later. Lemma 13.3.2 provides a set 𝐹𝑖

containing a constant fraction of the block-rows of M (𝑖) so that M
(𝑖)
[𝐹𝑖,𝐹𝑖]

is 4-bDD. Theorem 13.3.1

then provides an operator that solves systems in M
(𝑖)
[𝐹𝑖,𝐹𝑖]

to 𝜀 accuracy in time 𝑂(log 𝜀−1) times the

number of nonzero entries in M
(𝑖)
[𝐹𝑖,𝐹𝑖]

. This is at most the number of nonzero entries in M (𝑖), and thus

at most 𝑂(|𝐶𝑖| /𝜀2). As each 𝐹𝑖 contains at least a constant fraction of the rows of M (𝑖), the depth of
the recursion, 𝑑, is 𝑂(log 𝑛). Thus, we can obtain constant accuracy by setting 𝜀 = Θ(1/ log 𝑛). The
time required to apply the resulting SCC would thus be 𝑂(𝑛 log2 𝑛 log log𝑛).

We can reduce the running time by setting 𝜀1 to a constant and allowing it to shrink as 𝑖 increases.
For example, setting 𝜀𝑖 = 1/2(𝑖+1)2 results in a linear time algorithm that produces a constant-factor
approximation of the inverse of M . We refine this idea in the next section.

13.3.3 Linear Sized Approximate Inverses

In this section we sketch the proof of Theorem 13.1.3, which tells us that every 𝑏𝐷𝐷 matrix has a
linear-sized approximate inverse. The rest of the details appear in Section 13.10.

The linear-sized approximate inverse of a 𝑏𝐷𝐷 matrixM with 𝑛 block rows and columns is provided
by a 3/4-approximate of the form U 𝑇DU where D is block diagonal and U is block upper-triangular
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and has 𝑂(𝑛) nonzero blocks. As systems of linear equations in block-triangular matrices like U
and U 𝑇 can be solved in time proportional to their number of nonzero blocks, this provides a linear
time algorithm for computing a 3/4 approximation of the inverse of M . By iteratively refining the
solutions provided by the approximate inverse, this allows one to find 𝜀-accurate solutions to systems
of equations in M in time 𝑂(𝑚 log 𝜀−1).

The matrix U that we construct has meta-block structure that allows solves in U and U 𝑇 to be
performed with linear work and depth 𝑂(log2 𝑛). This results in a parallel algorithm for solving equa-
tions in M in work 𝑂(𝑚 log 𝜀−1) and depth 𝑂(log2 𝑛 log 𝜀−1). We remark that with some additional
work (analogous to Section 7 of [160]), one could reduce this depth to 𝑂(log 𝑛 log log 𝑛 log 𝜀−1).

The key to constructing U is realizing that the algorithm Jacobi corresponds to multiplying by
the matrix Z (𝑘) defined in equation (13.7). Moreover, this matrix is a polynomial in X and L of
degree log(3/𝜀), where M

(𝑖)
[𝐹𝑖,𝐹𝑖]

= X + L where L is bDD, and X block diagonal such that X < 2L.

To force Z 𝑘 to be a sparse matrix, we require L be sparse.
If we use the algorithm bSDDSubset to choose 𝐹𝑖, then L need not be sparse. However, this

problem is easily remedied by forbidding algorithm bSDDSubset from choosing any vertex of more
than twice average degree. Thus, we can ensure that all Z (𝑖) are sparse.

Lemma 13.3.4. For every bDD matrix M and every 𝛼 ≥ 0, there is a subset 𝐹 of size at least 𝑛
16(1+𝛼)

such that 𝑀[𝐹,𝐹 ] is 𝛼-bDD and the number of nonzeros blocks in each block-row of 𝐹 at most twice the
average number of nonzero blocks in a block-row of M .

Proof. Discard every block-row of M that has more than twice the average number of nonzeros blocks
per row-block. Then remove the corresponding row blocks. The remaining matrix has dimension at
least 𝑛/2. We can now use Lemma 13.3.2 to find an 𝛼-bDD submatrix.

We obtain the U 𝑇DU factorization by applying the inverse of the factorization (13.1):

M =

[︃
I 0

M−1
[𝐹,𝐹 ]M [𝐹,𝐶] I

]︃ [︂
M [𝐹,𝐹 ] 0

0 𝑆𝑐 (M , 𝐹 )

]︂[︃
I M [𝐶,𝐹 ]M

−1
[𝐹,𝐹 ]

0 I

]︃
.

In the left and right triangular matrices we replaceM−1
[𝐹,𝐹 ] with the polynomial we obtain from Jacobi.

In the middle matrix, it suffices to approximate M [𝐹,𝐹 ] by a block diagonal matrix, and 𝑆𝑐 (M , 𝐹 ) by
a factorization of its sparse approximation given by Theorem 13.3.1. The details, along with a careful
setting of 𝜀𝑖, are carried out in Section 13.10.

13.3.4 Spectral Vertex Sparsification Algorithm

In this section, we outline a procedure ApproxSchur that efficiently approximates the Schur com-
plement of a bDD matrix M w.r.t. a set of indices 𝐹 s.t. M [𝐹,𝐹 ] is 𝛼-bDD. The following lemma
summarizes the guarantees of ApproxSchur.

Lemma 13.3.4. Let M be a bDD matrix with index set 𝑉 , and 𝑚 nonzero blocks. Let 𝐹 ⊆ 𝑉 be
such that M [𝐹,𝐹 ] is 𝛼-bDD for some 𝛼 ≥ 4. The algorithm ApproxSchur(M , 𝐹, 𝜀), returns a matrix̃︁M 𝑆𝐶 s.t.

1. ̃︁M 𝑆𝐶 has 𝑂(𝑚(𝜀−1 log log 𝜀−1)𝑂(log log 𝜀−1)) nonzero blocks, and

2. ̃︁M 𝑆𝐶 ≈𝜀 𝑆𝑐 (M , 𝐹 ),

in 𝑂(𝑚(𝜀−1 log log 𝜀−1)𝑂(log log 𝜀−1)) work and 𝑂(log 𝑛(log log 𝜀−1)) depth.
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We sketch a proof of the above lemma in this section. A complete proof and pseudocode for
ApproxSchur are given in Section 13.11.
First consider a very simple special case: where 𝐹 is a singleton, 𝐹 = {𝑖}. Let 𝐶 = 𝑉 ∖ 𝐹 be the
remaining indices.

𝑆𝑐 (M , 𝑖) = M [𝐶,𝐶] −M [𝐶,𝑖]M
−1
[𝑖,𝑖]M [𝑖,𝐶]

Thus, if M [𝐶,𝑖] has 𝑘 nonzero blocks, 𝑆𝑐 (M , 𝑖) could have 𝑘2 additional nonzero blocks compared to
M [𝐶,𝐶], potentially making it dense. If M were a graph Laplacian, then M [𝐶,𝑖]M

−1
[𝑖,𝑖]M [𝑖,𝐶] would

represent the adjacency matrix of a weighted clique. In Section 13.14, we construct weighted expanders
that allow us to 𝜀-approximate 𝑆𝑐 (M , 𝑖) in this case using 𝑚+𝑂(𝑘𝜀−4) edges. In Section 13.11.4, we
show how to use such weighted expanders to sparsify 𝑆𝑐 (M , 𝑖) when M is a bDD matrix.

This reduction can also be performed in parallel. If 𝐹 is such that M [𝐹,𝐹 ] is block diagonal,
we can approximate 𝑆𝑐 (M , 𝐹 ) by expressing M [𝐶,𝑖]M

−1
[𝑖,𝑖]M [𝑖,𝐶] as

∑︀
𝑖∈𝐹 M [𝐶,𝑖]M

−1
[𝑖,𝑖]M [𝑖,𝐶], and us-

ing |𝐹 | weighted expanders. However, M [𝐹,𝐹 ] may not be diagonal. Instead, we give a procedure
SchurSquare that generates M ′ that is better approximated by its diagonal.

Invoking SchurSquare a few times leads a sequence of matrices M (0)
[𝐹,𝐹 ],M

(1)
[𝐹,𝐹 ], . . . ,M

(𝑖)
[𝐹,𝐹 ]. We

will show that M
(𝑖)
[𝐹,𝐹 ] is 𝜀-approximated by its diagonal and we call the procedure LastStep to

approximate 𝑆𝑐
(︁
M (𝑖), 𝐹

)︁
. An additional caveat is that replacing M

(𝑖)
[𝐹,𝐹 ] by its diagonal at this step

gives errors that are difficult to bound. We discuss the correct approximation below
SchurSquare is based on a squaring identity for matrix inverse developed in [223]. Given a

splitting of M [𝐹,𝐹 ] into D −A, where D is block-diagonal, and A has its diagonal blocks as zero, it
relies on the fact that the matrix

M 2 =
1

2

[︂
D −AD−1A M [𝐹,𝐶] +AD−1M [𝐹,𝐶]

M [𝐶,𝐹 ] +M [𝐶,𝐹 ]D
−1A 2M [𝐶,𝐶] −M [𝐶,𝐹 ]D

−1M [𝐹,𝐶]

]︂
(13.3)

satisfies 𝑆𝑐 (M , 𝐹 ) = 𝑆𝑐 (M 2, 𝐹 ). Furthermore, we can show that if M is 𝛼-bDD, D −AD−1A is
𝛼2-bDD, which indicates that the block on [𝐹, 𝐹 ] rapidly approaches being diagonal.

As M 2 may be dense, we construct a sparse approximation to it. Since D is diagonal, we can
construct sparse approximations to the blocks (M 2)[𝐹,𝐹 ] and (M 2)[𝐶,𝐶] in a manner analogous to the
case of diagonal M [𝐹,𝐹 ]. Similarly, we use bipartite expanders to construct sparse approximations to
(M 2)[𝐶,𝐹 ] and (M 2)[𝐹,𝐶].

Our sequence of calls to SchurSquare terminates with M
(𝑖)
[𝐹,𝐹 ] being roughly 𝜀

−1-bDD. We then

return LastStep(M (𝑖), 𝐹, 𝜀−1, 𝜀). As mentioned above, we cannot just replaceM (𝑖)
[𝐹,𝐹 ] by its diagonal.

Instead, LastStep performs one step of squaring similar to SchurSquare with a key difference:
Rather than expressing M

(𝑖)
[𝐹,𝐹 ] as D −A, it expresses it as X +L, where X is block-diagonal, and L

is just barely bDD. With this splitting, it constructs M (𝑙𝑎𝑠𝑡) after performing one iteration similar to
Eq. (13.3). After this step, it replaces the M (𝑙𝑎𝑠𝑡)

[𝐹,𝐹 ] block with the block-diagonal matrix X . Again, we

directly produce sparse approximations to M (𝑙𝑎𝑠𝑡) and its Schur complement via weighted (bipartite)
expanders. A precise description and proofs are given in Section 13.11.2.

13.3.5 Sparsifying bDD Matrices

The main technical hurdle left to address is how we sparsify bDD matrices. We to do this both to
approximate M by M (0), if M is not already sparse, and to ensure that all the matrices M (𝑖) remain
sparse. While the spectral vertex sparsification algorithm described in the previous section allows us
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to compute an approximation to a Schur complement 𝑆𝑐
(︁
M (𝑖), 𝐹𝑖

)︁
, it is sparse only when M (𝑖) is

already sparse. As we iteratively apply this procedure, the density of the matrices produced will grow
unacceptably. We overcome this problem by occasionally applying another sparsification routine that
substantially decreases the number of nonzero blocks. The cost of this sparsification routine is that it
requires solving systems of equations in sparse 𝑏𝐷𝐷 matrices. We, of course, do this recursively.

Our sparsification procedure begins by generalizing the observation that graph Laplacians can be
sparsified by sampling edges with probabilities determined by their effective resistances [242]. There
is a block analog of leverage scores (13.36) that provides probabilities of sampling blocks so that
the resulting sampled matrix approximates the original and has 𝑂(𝑛 log 𝑛) nonzero blocks with high
probability. To compute this block analog of leverage scores we employ the procedure developed in
Chapter 3.

Once we generalize their results to block matrices, they show that we can obtain sufficiently good
estimates of the block leverage scores by computing leverage scores in a bDD matrix obtained by
randomly subsampling blocks of the original. The block leverage scores in this matrix are obtained by
solving a logarithmic number of linear equations in this subsampled matrix. Thus, our sparsification
procedure requires constructing a solver for a subsampled matrix and then applying that solver a
logarithmic number of times. We compute this solver recursively.

There is a tradeoff between the number of nonzero blocks in the subsampled system and in the
resulting approximation of the original matrix. If the original matrix has 𝑚 nonzero blocks and we
subsample to a system of 𝑚/𝐾 nonzero blocks, then we obtain an 𝜀-approximation of the original
matrix with 𝑂(𝐾𝜀−2𝑛 log 𝑛) nonzero blocks.

The details of the analysis of the undersampling procedure appear in Section 13.12.

13.3.6 Our Algorithm

We now explain how we prove Theorem 13.1.2. The details supporting this exposition appear in
Section 13.13. Our main goal is to control the density of the Schur complement chain as we repeatedly
invoke Lemma 13.3.4.

Starting from some M (0), we compute sets 𝐹𝑖 (via calls to bDDSubset), approximate solvers Z (𝑖)

(via Jacobi), and approximations of Schur complements M (𝑖) (via ApproxSchur), until we obtain
a matrix M (𝑖) such that its dimension is a smaller than that of M (0) by a large constant factor (like
4). While the dimension of M (𝑖) is much smaller, its number of nonzero blocks is potentially larger
by an even larger factor. We use the procedure described in the previous section to sparsify it. This
sparsification procedure produces a sparse approximation of the matrix at the cost of solving systems
of equations in a subsampled version of that matrix. Some care is required to balance the cost of the
resulting recursion.

We now sketch an analysis of a nearly linear time algorithm that results from a simple choice of
parameters. We optimize the parameter choice and analysis in Section 13.13. Let 𝑛 be the dimension
of M (0) and let 𝑚 be its number of nonzero blocks. To begin, assume that 𝑚 ≤ 𝑛Δ log3 𝑛, for a Δ to
be specified later. We call this the sparse case, and address the case of dense M later.

We consider fixing 𝜀𝑖 = 𝑐/ log 𝑛 for all 𝑖, for some constant 𝑐. As the depth of the Schur complement
chain is 𝑂(log 𝑛), this results in a solver with constant accuracy. A constant number of iterations of the
procedure described above are required to produce an M (𝑖) whose dimension is a factor of 4 smaller
than M (0). Lemma 13.3.4 tells us that the edge density of this M (𝑖) is potentially higher than that
of M (0) by a factor of

𝑂
(︁(︀
𝜀−1 log log 𝜀−1

)︀𝑂(log log 𝜀−1)
)︁
= exp

(︀
𝑂(log log2 𝑛)

)︀
= 𝑛𝑜(1).
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Set Δ to be this factor. We use the sparsification procedure from the previous section to guarantee
that no matrix in the chain has density higher than that of this matrix, which is upper bounded by
(𝑚/𝑛)Δ = Δ2 log3 𝑛.

Setting 𝐾 = 2Δ, the subsampling produces a matrix of density half that of M (0), and it produces
a sparse approximation of M (𝑖) of density 𝑂(𝐾𝜀−2

𝑖 log 𝑛) ≤ 𝑂(Δ log3 𝑛), which, by setting constants
appropriately, we can also force to be half that of M (0). In order to perform the sparsification
procedure, we need to construct a Schur complement chain for the subsampled matrix, and then use
it to solve 𝑂(log 𝑛) systems of linear equations. The cost of using this chain to solve equations in the
subsampled system is at most 𝑂(𝑛Δ2 log4 𝑛), and the cost of using the solutions to these equations to
sparsify M (𝑖) is 𝑂(𝑚 log 𝑛). The cost of the calls to bDDSubset and ApproxSchur are proportional
to the number of edges in the matrices, which is 𝑂(𝑛Δ log4 𝑛).

We repeat this procedure all the way down the chain, only using sparsification when the dimension
of M (𝑖) shrinks by a factor of 4. Since none of the matrices that we generate have density higher than
Δ log3 𝑛, we remain in the sparse case. Let 𝑇𝑠𝑝𝑎𝑟𝑠𝑒(𝑛) be the time required to construct a solver chain
on systems of size 𝑛 with 𝑚 ≤ 𝑛Δ log3 𝑛. We obtain the following recurrence

𝑇𝑠𝑝𝑎𝑟𝑠𝑒(𝑛) ≤ 2𝑇𝑠𝑝𝑎𝑟𝑠𝑒(𝑛/4)+𝑛Δ
2 log4 𝑛+𝑚 log 𝑛+𝑚Δ ≤ 2𝑇𝑠𝑝𝑎𝑟𝑠𝑒(𝑛/4)+𝑛Δ

2 log4 𝑛+𝑛Δ log 𝑛+𝑛Δ2,

which gives
𝑇 (𝑛)𝑠𝑝𝑎𝑟𝑠𝑒 ≤ 𝑂(𝑛Δ2 + 𝑛Δ2 log4 𝑛) ≤ 𝑛1+𝑜(1).

To handle the case of dense M , we repeatedly sparsify while keeping 𝑛 fixed until we obtain a matrix
with fewer than 𝑛Δ log3 𝑛 edges, at which point we switch to the algorithm described above. The
running time of this algorithm on a graph with 𝑚 edges, 𝑇𝑑𝑒𝑛𝑠𝑒(𝑚), satisfies the recurrence

𝑇𝑑𝑒𝑛𝑠𝑒(𝑚) ≤

{︃
𝑇𝑠𝑝𝑎𝑟𝑠𝑒(𝑛) if 𝑚 ≤ 𝑛Δ log3 𝑛, and

2𝑇𝑑𝑒𝑛𝑠𝑒 (𝑚/2) + 𝑛Δ2 log4 𝑛+𝑚 log 𝑛+𝑚Δ otherwise.

Thus 𝑇𝑑𝑒𝑛𝑠𝑒(𝑚) is upper bounded bounded by 𝑂(𝑚𝑛𝑜(1) + 𝑛1+𝑜(1)).
We tighten this bound in Section 13.13 to prove Theorem 13.1.2 by carefully choosing the param-

eters to accompany a sequence 𝜀 that starts constant and decreases slowly.

13.4 Summary

We introduce a new approach to solving systems of linear equations that gives the first nearly linear
time algorithms for solving systems proof that connection Laplacians have linear-sized approximate
inverses. This was unknown even for graph Laplacians.

Our algorithms build on ideas introduced in [223] and are a break from those used in the previ-
ous work on solving systems of equations in graph Laplacians [256, 243, 147, 146, 141, 57]. Those
algorithms all rest on support theory [34], originally introduced by Vaidya [256], and rely on the fact
that the Laplacian of one edge is approximated by the Laplacian of a path between its endpoints. No
analogous fact is true for connection Laplacians, even those with complex entries for 𝑟 = 1.

Instead, our algorithms rely on many new ideas, the first being that of sparsifying the matrices
that appear during elimination. Other critical ideas are finding 𝛼-bDD subsets of vertices to elimi-
nate in bulk, approximating Schur complements without computing them explicitly, and the use of
sub-sampling to sparsify in a recursive fashion. To efficiently compute approximations of the Schur
complements, we introduce a new operation that transforms a matrix into one with the same Schur
complement but a much better conditioned upper block (13.3). To obtain the sharp bounds in Theorem
13.1.2, we exploit a new linear-time algorithm for constructing linear-sized sparse approximations to
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implicitly represented weighted cliques whose edge weights are products of weights at vertices (Section
13.14), and extend this to the analog for bDD matrices (Section 13.11.4).

13.5 Background

Proof. (of Fact 13.2.2) Note that

‖x − Z 𝑏‖2M = x *M 𝑥− 2x *MZMx + x *MZMZMx

Since all nonzero eigenvalues of M are at least 𝜇, the eigenvalues of M 1/2(M + 𝜀𝜇I )−1M 1/2 lie
between 1/(1 + 𝜀) and 1. Using Z ≈𝜀 (M + 𝜀𝜇I )−1, we see that the eigenvalues of M 1/2ZM 1/2 lie
between 𝑒−2𝜀 and 𝑒𝜀. Using 0 < 𝜀 < 1/2, we have

‖x − Zb‖2M ≤ (1− 2𝑒−2𝜀 + 𝑒2𝜀)x *Mx ≤ 6𝜀‖x‖2M .

Fact 13.5.1. Let A be a matrix of condition number 𝜅 and let A ≈𝜀 B for 𝜀 ≤ (56𝜅3)−1. Then,
A3 ≈28𝜅3𝜀 B

3.

Proof. First, observe that A ≈𝜀 B implies that ‖B‖ ≤ (1 + 𝑒𝜀)‖A‖ ≤ 2‖A‖. It also implies that
‖A−B‖ ≤ 2𝜀‖A‖. As

A2 −B2 =
1

2
(A−B)(A+B) +

1

2
(A+B)(A−B),

‖A2 −B2‖ ≤ 6𝜀‖A‖2. Similarly, as

A3 −B3 =
1

2
(A−B)(A2 +B2) +

1

2
(A+B)(A2 −B2),

‖A3 −B3‖ ≤ 28𝜀‖A‖3.
Let 𝜅 = ‖A‖/𝜆𝑚𝑖𝑛(A). The above relation implies that

‖A3 −B3‖ ≤ 28𝜀𝜅3𝜆𝑚𝑖𝑛(A)3 = 28𝜀𝜅3𝜆𝑚𝑖𝑛(A
3).

Thus, as 28𝜀𝜅3 ≤ 1/2,
A3 ≈56𝜀𝜅3 B3.

Proof. (of Fact 13.2.3)
By Fact 13.5.1, using 𝛿 = 𝜀

56𝜅3
,

MZ 3M ≈𝜀 M (M + 𝜀𝜇𝐼)−3M .

M has an eigendecomposition in the same basis as (M + 𝜀𝜇𝐼)−3, and so it follows that M (M +
𝜀𝜇𝐼)−3M has the same eigenbasis, and the same null space as M .

When 𝜆−1 is the eigenvalue of M+ of an eigenvector v , the corresponding eigenvalue of M (M +

𝜀𝜇𝐼)−3M is 𝛽 def
= 𝜆2

(𝜆+𝜀𝜇)3
and

𝜆−1 > 𝛽 ≥ 𝜆2

(1 + 𝜀)3𝜆3
= 𝑒−3𝜀𝜆−1.

So M (M + 𝜀𝜇𝐼)−3M ≈3𝜀 M
+, and MZ 3M ≈4𝜀 M

+.
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Fact 13.5.2. For every d ∈ C𝑟×𝑟, we can find Q (1),Q (2) ∈ C𝑟×𝑟 where

(Q (1))(Q (1))* = (Q (1))*(Q (1)) = (Q (2))(Q (2))* = (Q (2))*(Q (2)) = 𝐼𝑟,

such that

d =
1

2
‖d‖(Q (1) +Q (2)).

Proof. Let d̂ = 1
‖d‖d . Thus, ‖d̂‖ = 1. Write d̂ using its singular value decomposition as UDV *,

where D ,U ,V ∈ C𝑟×𝑟, D is a real diagonal matrix with the singular values of d on the diagonal,
and UU * = U *U = VV * = V *V = 𝐼𝑟. Since ‖d̂‖ = 1, we have D𝑗,𝑗 ∈ [0, 1] for all 𝑗 ∈ [𝑟].
Thus, there exists a real 𝜃𝑗 such that cos 𝜃𝑗 = D𝑗,𝑗 . If we let D (1),D (2) be diagonal matrices usch that

D
(1)
𝑗,𝑗 = exp(𝑖𝜃𝑗),D

(2)
𝑗,𝑗 = exp(−𝑖𝜃𝑗), we have D = 1

2(D
(1) +D (2)). Moreover,

(D (1))(D (1))* = (D (1))*(D (1)) = (D (2))(D (2))* = (D (2))*(D (2)) = 𝐼𝑟.

Letting Q (𝑘) = UD (𝑘)V * for 𝑘 = 1, 2, we get d̂ = 1
2(Q

(1) +Q (2)) and hence d = 1
2‖d‖(Q

(1) +Q (2)).
Moreover,

(Q(1))(Q (1))* = (Q (1))*(Q (1)) = (Q (2))(Q (2))* = (Q(2))*(Q (2)) = 𝐼𝑟.

Fact 13.5.3 (Lemma B.1. from [194]). If M and ̃︁M are positive semidefinite matrices satisfying

M ⪯ ̃︁M , then

𝑆𝑐 (M , 𝐹 ) ⪯ 𝑆𝑐
(︁̃︁M , 𝐹

)︁
.

This fact can be proven via an energy minimization definition of Schur complement. More details
on this formulation can be found in [194].

13.6 Block Diagonally Dominant Matrices

In this section, we prove a few basic facts about bDDmatrices. The following lemma gives an equivalent
definition of bDD matrices.

Lemma 13.6.1. A Hermitian block-matrix M ∈ (C𝑟×𝑟)𝑛×𝑛 is bDD iff it can be written as D − A
where D is block-diagonal, A is Hermitian, and D [𝑖,𝑖] ⪰ 𝐼𝑟

∑︀
𝑗 ‖A[𝑖,𝑗]‖, for all 𝑖 ∈ 𝑉.

Proof. The only if direction is easy. For bDD matrix M , if we let D be the block diagonal matrix
such that D [𝑖,𝑖] = M [𝑖,𝑖], and A be the matrix such that

A[𝑖,𝑗] =

{︃
0 𝑖 = 𝑗

M [𝑖,𝑗] 𝑖 ̸= 𝑗

It is immediate that A is Hermitian. Moreover, M is bDD implies that D [𝑖,𝑖] ⪰ 𝐼𝑟
∑︀

𝑗 ‖A[𝑖,𝑗]‖.
For the if direction. Suppose we have D ,A such that D is block-diagonal, and for all 𝑖 D [𝑖,𝑖] ⪰

𝐼𝑟
∑︀

𝑗 ‖A[𝑖,𝑗]‖. Thus, letting M = D −A, we have, for all 𝑖 ∈ 𝑉,

𝐼𝑟 ·
∑︁
𝑗 ̸=𝑖
‖M [𝑖,𝑗]‖ = 𝐼𝑟 ·

∑︁
𝑗 ̸=𝑖
‖A[𝑖,𝑗]‖ 4 D [𝑖,𝑖] − 𝐼𝑟 · ‖A[𝑖,𝑖]‖ 4 D [𝑖,𝑖] −A[𝑖,𝑖] = M [𝑖,𝑖],

where we used that sinceA,M are Hermitian,D is also Hermitian, and thusD [𝑖,𝑖],A[𝑖,𝑖] are Hermitian.
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This immediately implies the corollary that flipping the sign of off-diagonal blocks preserves bDD-
ness.

Corollary 13.6.2. Given a bDD matrix M , write it as D −A, where D is a block-diagonal, and A
has its diagonal blocks as zero. Then, D +A is also PSD.

Proof. First observe that for all 𝑖, (D +A)[𝑖,𝑖] = (D −A)[𝑖,𝑖] = M [𝑖,𝑖], i.e., their diagonal blocks are
identical. Moreover, for all 𝑖 ̸= 𝑗, we have ‖(D +A)[𝑖,𝑗]‖ = ‖(D −A)[𝑖,𝑗]‖ = ‖M [𝑖,𝑗]‖. Thus D +A is
also bDD, and hence PSD.

Next, we show that the class of bDD matrices is closed under Schur complement.

Lemma 13.6.3. The class of bDD matrices is closed under Schur complement.

Proof. Since Schur complementation does not depend on the order of indices eliminated, it suffices to
prove that for any bDD matrix M ∈ (C𝑟×𝑟)𝑛×𝑛, 𝑆𝑐 (M , 1) is a bDD matrix. Let 𝐶 = 𝑉 ∖ {1}.

We have 𝑆𝑐 (M , 1) = M [𝐶,𝐶]−M [𝐶,1]M
−1
[1,1]M [1,𝐶]. Let D ∈ (C𝑟×𝑟)𝐶×𝐶 be the block diagonal ma-

trix such thatD [𝑖,𝑖] = M [𝑖,𝑖] for 𝑖 ∈ 𝐶. Expressing 𝑆𝑐 (M , 1) asD+(M [𝐶,𝐶]−D+M [𝐶,1]M
−1
[1,1]M [1,𝐶]),

we have for any 𝑖 ∈ 𝐶,

∑︁
𝑗∈𝐶
‖(M [𝐶,𝐶] −D +M [𝐶,1]M

−1
[1,1]M [1,𝐶])

[𝑖,𝑗]
‖ ≤

⎛⎝ ∑︁
𝑗∈𝐶:𝑗 ̸=𝑖

‖M [𝑖,𝑗]‖

⎞⎠+
∑︁
𝑗∈𝐶
‖M [𝑖,1]M

−1
[1,1]M [1,𝑗]‖

≤

⎛⎝ ∑︁
𝑗∈𝐶:𝑗 ̸=𝑖

‖M [𝑖,𝑗]‖

⎞⎠+ ‖M [𝑖,1]‖‖M−1
[1,1]‖

∑︁
𝑗∈𝐶
‖M [1,𝑗]‖

≤

⎛⎝ ∑︁
𝑗∈𝐶:𝑗 ̸=𝑖

‖M [𝑖,𝑗]‖

⎞⎠+ ‖M [𝑖,1]‖ =
∑︁

𝑗∈𝑉 :𝑗 ̸=𝑖
‖M [𝑖,𝑗]‖,

where the last inequality uses ‖M−1
[1,1]‖

(︁∑︀
𝑗 ̸=1 ‖M [1,𝑗]‖

)︁
≤ 1, since M [1,1] < 𝐼𝑟 ·

∑︀
𝑗 ̸=1 ‖M [1,𝑗]‖. Thus

using Lemma 13.6.1, we have 𝑆𝑐 (M , 1) = D − (−(M [𝐶,𝐶] −D +M [𝐶,1]M
−1
[1,1]M [1,𝐶])) is bDD.

The next definition describes a special form that we can express any bDD matrix in, which will
occasionally be useful.

Definition 13.6.4. A matrix B ∈ (C𝑟×𝑟)𝑛×𝑚 is called a unitary edge-vertex transfer matrix, when
each block column of B [𝑒] has exactly two nonzero blocks U 𝑒,V 𝑒 ∈ C𝑟×𝑟 s.t. U 𝑒U

*
𝑒 = V 𝑒V

*
𝑒 = 𝑤𝑒𝐼𝑟

where 𝑤𝑒 ≥ 0.

Lemma 13.6.5. Every bDD matrix M ∈ (C𝑟×𝑟)𝑛×𝑛 with 𝑚 nonzero off-diagonal blocks can be written
as X +BB* where B ∈ (C𝑟×𝑟)𝑛×2𝑚 is a unitary edge-vertex transfer matrix and X is a block diagonal
PSD matrix. This implies that every bDD matrix is PSD. Furthermore, for every block diagonal matrix
Y s.t. M −Y is bDD, we have X < Y . This decomposition can be found in 𝑂(𝑚) time and 𝑂(log 𝑛)
depth.

Proof. Consider a pair {𝑖, 𝑗} ∈ 𝑉 ×𝑉 such that 𝑖 ̸= 𝑗, and M [𝑖,𝑗] ̸= 0. Using Fact 13.5.2, we can write

such a M [𝑖,𝑗] as
1
2‖M [𝑖,𝑗]‖(Q

(1)
{𝑖,𝑗}+Q

(2)
{𝑖,𝑗}), where Q

(1)
{𝑖,𝑗}(Q

(1)
{𝑖,𝑗})

* = Q
(2)
{𝑖,𝑗}(Q

(2)
{𝑖,𝑗})

* = 𝐼𝑟. we construct

two vectors vector B
(1)
{𝑖,𝑗},B

(2)
{𝑖,𝑗} ∈ (C𝑟×𝑟)𝑛 such that for 𝑘 = 1, 2,

(︁
B

(𝑘)
{𝑖,𝑗}

)︁
[𝑖]

= 1√
2
‖M [𝑖,𝑗]‖1/2𝐼𝑟,
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(︁
B

(𝑘)
{𝑖,𝑗}

)︁
[𝑗]

= 1√
2
‖M [𝑖,𝑗]‖1/2

(︁
Q

(𝑘)
{𝑖,𝑗}

)︁*
, and all other blocks are zero. We can verify that for all

𝑘, ℓ ∈ 𝑉,

(︁
B

(1)
{𝑖,𝑗}(B

(1)
{𝑖,𝑗})

* +B
(2)
{𝑖,𝑗}(B

(2)
{𝑖,𝑗})

*
)︁
[𝑘,ℓ]

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

‖M [𝑖,𝑗]‖𝐼𝑟 𝑘 = ℓ = 𝑖,

‖M [𝑖,𝑗]‖𝐼𝑟 𝑘 = ℓ = 𝑗,

M [𝑖,𝑗] 𝑘 = 𝑖, ℓ = 𝑗,

M *
[𝑖,𝑗] = M [𝑗,𝑖] 𝑘 = 𝑗, ℓ = 𝑖,

0 otherwise.

We let X = M −
∑︀

{𝑖,𝑗}:𝑖 ̸=𝑗

(︁
B

(1)
{𝑖,𝑗}(B

(1)
{𝑖,𝑗})

* +B
(2)
{𝑖,𝑗}(B

(2)
{𝑖,𝑗})

*
)︁
, which must be block-diagonal. We

now show that for all 𝑖 ∈ 𝑉, the block X [𝑖,𝑖] is PSD. We have for all 𝑖 ∈ 𝑉,

X [𝑖,𝑖] = M [𝑖,𝑖] − 𝐼𝑟 ·
∑︁
𝑗:𝑗 ̸=𝑖
‖M [𝑖,𝑗]‖ < 0,

where the last inequality holds since M is bDD.
Thus, if we define B ∈ (C𝑟×𝑟)𝑛×2𝑚 such that its columns are all the vectors B (1)

{𝑖,𝑗},B
(2)
{𝑖,𝑗} defined

above, we have M = X +BB*, and every column of B has exactly 2 nonzero blocks.
To show that for every block diagonal Y s.t. M −Y is bDD, X < Y , first consider applying the

decomposition described above to M −Y instead of M . Since the construction of B only depends
on the off-diagonal blocks, we get M − Y = Λ + BB*, where Λ is block diagonal and PSD. So,
X −Y = M −BB* −Y = Λ < 0.

It is immediate that the decomposition can be found in 𝑂(𝑚) time and 𝑂(log 𝑛) depth.

13.7 Schur Complement Chains

In this section, we give a proof of Lemma 13.3.1. We restate the lemma here for convenience.

Lemma 13.3.1. Consider an 𝜀-SCC for M (0) where M (𝑖) and Z (𝑖) can be applied to a vector in work
𝑊M (𝑖) ,𝑊D(𝑖) and depth 𝐷M (𝑖) , 𝐷Z (𝑖) respectively.

The algorithm ApplyChain
(︁
(M (1),Z (1)), . . . , (M (𝑑),Z (𝑑));𝐹1, . . . , 𝐹𝑑; b

)︁
corresponds to a linear op-

erator W acting on b such that

1. W−1 ≈∑︀𝑑
𝑖=1 2𝜀𝑖

M (0), and

2. for any vector b, ApplyChain
(︁
(M (1),Z (1)), . . . , (M (𝑑),Z (𝑑));𝐹1, . . . , 𝐹𝑑; b

)︁
runs in

𝑂
(︁∑︀𝑑

𝑖=1 (𝐷M (𝑖) +𝐷Z (𝑖))
)︁
depth and 𝑂

(︁∑︀𝑑
𝑖=1 (𝑊M (𝑖) +𝑊Z (𝑖))

)︁
work.

The pseudocode for procedure ApplyChain that uses an 𝜀-vertex sparsifier chain to approximately
solve a system of equations in M (0) is given in Figure 13-1.

Proof. We begin by observing that the output vector x (0) is a linear transformation of the input vector
b(0). Let W (0) be the matrix that realizes this transformation. Similarly, for 1 ≤ 𝑖 ≤ 𝑑, define W (𝑖)

to be the matrix so that
x (𝑖) = W (𝑖)b(𝑖).

An examination of the algorithm reveals that

W (𝑑) =
(︁
M (𝑑)

)︁−1
, (13.4)
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Algorithm 35: x (0) = ApplyChain

(︁
(M (1),Z (1)), . . . , (M (𝑑),Z (𝑑));𝐹1, . . . , 𝐹𝑑

)︁
Initialize b(0) ← b.
for 𝑖 = 1, . . . , 𝑑 do

x
(𝑖−1)
[𝐹𝑖]

← Z (𝑖)b
(𝑖−1)
[𝐹𝑖]

,

b(𝑖) ← b
(𝑖−1)
[𝐶𝑖]

−M
(𝑖−1)
[𝐶𝑖,𝐹𝑖]

x
(𝑖−1)
[𝐹𝑖]

.

end

x (𝑑) ←
(︁
M (𝑑)

)︁−1
b(𝑑).

for 𝑖 = 𝑑, . . . , 1 do

x
(𝑖−1)
[𝐶𝑖]

← x (𝑖).

x
(𝑖−1)
[𝐹𝑖]

← x
(𝑖−1)
[𝐹𝑖]

− Z (𝑖)M
(𝑖−1)
[𝐹𝑖,𝐶𝑖]

x (𝑖).

end

Figure 13-1: Solver Algorithm using Vertex Sparsifier Chain

and for 1 ≤ 𝑖 ≤ 𝑑,

W (𝑖−1) =

[︃
I −Z (𝑖)M

(𝑖−1)
[𝐹𝑖,𝐶𝑖]

0 I

]︃ [︂
Z (𝑖) 0

0 W (𝑖)

]︂[︃
I 0

−M (𝑖−1)
[𝐶𝑖,𝐹𝑖]

Z (𝑖) I

]︃
. (13.5)

We will now prove by backwards induction on 𝑖 that(︁
W (𝑖)

)︁−1
≈∑︀𝑑

𝑗=𝑖+1 2𝜀𝑗
M (𝑖).

The base case of 𝑖 = 𝑑 follows from (13.4). Using the definition of an 𝜀-SCC, we know that 0 ⪯
(Z (𝑖))−1 −M

(𝑖−1)
[𝐹𝑖,𝐹𝑖]

⪯ 𝜀𝑖 · 𝑆𝑐
(︁
M (𝑖−1), 𝐶𝑖

)︁
. We show in Lemma 13.7.1 that this implies

[︃
I −Z (𝑖)M

(𝑖−1)
[𝐹𝑖,𝐶𝑖]

0 I

]︃[︃
Z (𝑖) 0

0 𝑆𝑐
(︁
M (𝑖−1), 𝐹𝑖

)︁−1

]︃[︃
I 0

−M (𝑖−1)
[𝐶𝑖,𝐹𝑖]

Z (𝑖) I

]︃
≈𝜀𝑖

(︁
M (𝑖−1)

)︁−1
.

As M (𝑖) ≈𝜀𝑖 𝑆𝑐
(︁
M (𝑖−1), 𝐹𝑖

)︁
,

[︃
I −Z (𝑖)M

(𝑖−1)
[𝐹𝑖,𝐶𝑖]

0 I

]︃[︃
Z (𝑖) 0

0
(︁
M (𝑖)

)︁−1

]︃[︃
I 0

−M (𝑖−1)
[𝐶𝑖,𝐹𝑖]

Z (𝑖) I

]︃
≈2𝜀𝑖

(︁
M (𝑖−1)

)︁−1
.

By combining this identity with (13.5) and our inductive hypothesis, we obtain

W (𝑖−1) ≈∑︀𝑑
𝑗=𝑖 2𝜀𝑗

(︁
M (𝑖−1)

)︁−1
.

Thus, by induction, we obtain

W (0) ≈∑︀𝑑
𝑗=1 2𝜀𝑗

(︁
M (0)

)︁−1
.

The whole algorithm involves a constant number of applications of Z (𝑖),M
(𝑖−1)
[𝐹𝑖,𝐶𝑖]

, and M
(𝑖−1)
[𝐶𝑖,𝐹𝑖]

.

We observe that in order to compute M (𝑖−1)
[𝐹𝑖,𝐶𝑖]

𝑥𝐶𝑖 , using a multiplication procedure for M (𝑖−1), we can
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pad 𝑥𝐶𝑖 with zeros, multiply by M (𝑖−1), and read off the answer on the indices in 𝐶𝑖. Similarly, we can

multiply vectors with M
(𝑖−1)
[𝐶𝑖,𝐹𝑖]

. This immediately gives the claimed bounds on work and depth.

We now prove the deferred claims from the above proof.

Lemma 13.7.1. Let M ∈ (C𝑟×𝑟)𝑛×𝑛 be a bDD matrix, 𝐹 ⊆ 𝑉 be a subset of the indices, and
Z ∈ (C𝑟×𝑟)|𝐹 |×|𝐹 | be an hermitian operator satisfying 0 ⪯ Z−1 −M [𝐹,𝐹 ] ⪯ 𝜀 · 𝑆𝑐 (M , 𝐶) . Then,[︂

I −ZM [𝐹,𝐶]

0 I

]︂ [︂
Z 0

0 𝑆𝑐 (M , 𝐹 )−1

]︂ [︂
I 0

−M [𝐶,𝐹 ]Z I

]︂
≈𝜀 M−1.

Proof. Define ̂︁M =

[︂
(Z )−1 M [𝐹,𝐶]

M [𝐶,𝐹 ] M [𝐶,𝐶]

]︂
.

Using Lemma 13.7.2, we know that the assumption on Z is equivalent to

M 4 ̂︁M 4 (1 + 𝜀)M .

By Eq. (13.1), this implies

M−1 <

[︂
I −ZM [𝐹,𝐶]

0 I

]︂ [︃ Z 0

0 𝑆𝑐
(︁̂︁M , 𝐹

)︁−1

]︃ [︂
I 0

−M [𝐶,𝐹 ]Z I

]︂
< (1 + 𝜀)−1M−1.

From Facts 13.5.3, we know that

𝑆𝑐 (M , 𝐹 )−1 < 𝑆𝑐
(︁̂︁M , 𝐹

)︁−1
< (1 + 𝜀)−1𝑆𝑐 (M , 𝐹 )−1 .

Now, we substitute this inequality into the one above and obtain

(1 + 𝜀)M−1 <

[︂
I −ZM [𝐹,𝐶]

0 I

]︂ [︂
Z 0

0 𝑆𝑐 (M , 𝐹 )−1

]︂ [︂
I 0

−M [𝐶,𝐹 ]Z I

]︂
< (1 + 𝜀)−1M−1,

which implies the lemma.

Lemma 13.7.2. Given a bDD matrix M , a partition of its indices (𝐹,𝐶) such that M [𝐹,𝐹 ],M [𝐶,𝐶]

are invertible, and an invertible hermitian operator Z ∈ (C𝑟×𝑟)|𝐹 |×|𝐹 |, the following two conditions
are equivalent:

1. 0 ⪯ (Z )−1 −M [𝐹,𝐹 ] ⪯ 𝜀 · 𝑆𝑐 (M , 𝐶) .

2.

M 4

[︂
(Z )−1 M [𝐹,𝐶]

M [𝐶,𝐹 ] M [𝐶,𝐶]

]︂
4 (1 + 𝜀)M .

Proof. Writing

𝑀 =

[︂
M [𝐹,𝐹 ] M [𝐹,𝐶]

M [𝐶,𝐹 ] M [𝐶,𝐶]

]︂
,

condition 2 is equivalent to

0 4

[︂
(Z )−1 −M [𝐹,𝐹 ] 0

0 0

]︂
4 𝜀M .

The left inequality in this statement is equivalent to the left inequality in condition 1. Thus, it suffices
to prove the right sides are equivalent.
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To this end, using M [𝐹,𝐶] = M *
[𝐶,𝐹 ], it suffices to prove that ∀𝑥 ∈ (C𝑟)|𝐹 |, 𝑦 ∈ (C𝑟)|𝐶|,

𝑥*((Z )−1 −M [𝐹,𝐹 ])𝑥 ≤ 𝜀(𝑥*M [𝐹,𝐹 ]𝑥+ 2𝑥*M [𝐹,𝐶]𝑦 + 𝑦*M [𝐶,𝐶]𝑦).

This is equivalent to proving ∀𝑥 ∈ (C𝑟)|𝐹 |,

𝑥*((Z )−1 −M [𝐹,𝐹 ])𝑥 ≤ 𝜀 inf
𝑦∈(C𝑟)|𝐶|

(𝑥*M [𝐹,𝐹 ]𝑥+ 2𝑥*M [𝐹,𝐶]𝑦 + 𝑦*M [𝐶,𝐶]𝑦).

Since M [𝐶,𝐶] < 0, the rhs is a convex function of 𝑦. The minimum is achieved at 𝑦 = −M−1
[𝐶,𝐶]M

*
[𝐹,𝐶]𝑥,

and we obtain the equivalent condition

𝑥*((Z )−1 −M [𝐹,𝐹 ])𝑥 ≤ 𝜀𝑥*(M [𝐹,𝐹 ] −M [𝐹,𝐶]M
−1
[𝐶,𝐶]M

*
[𝐹,𝐶])𝑥.

Since 𝑆𝑐 (M , 𝐶) = M [𝐹,𝐹 ] −M [𝐹,𝐶]M
−1
[𝐶,𝐶]M [𝐶,𝐹 ] = M [𝐹,𝐹 ] −M [𝐹,𝐶]M

−1
[𝐶,𝐶]M

*
[𝐹,𝐶], we obtain our

claim.

13.8 Finding 𝛼-bDD Subsets

In this section we check that a simple randomized sampling procedure leads to 𝛼-bDD subsets. Specif-
ically we will prove Lemma 13.3.2:

Lemma 13.3.2. Given a bDD matrix M with 𝑛 block-rows, and an 𝛼 ≥ 0, bDDSubset computes a
subset 𝐹 of size least 𝑛/(8(1+𝛼)) such that M [𝐹,𝐹 ] is 𝛼-bDD. It runs in runs in 𝑂(𝑚) expected work
and 𝑂(log 𝑛) expected depth, where 𝑚 is the number of nonzero blocks in M .

Pseudocode for this routine is given in Figure 13-2.

Algorithm 36: 𝐹 = bDDSubset(M , 𝛼), where M is a bDD matrix with 𝑛 rows.

Let 𝐹 ′ be a uniform random subset of {1, . . . , 𝑛} of size 𝑛
4(1+𝛼) .

Set

𝐹 =

⎧⎨⎩𝑖 ∈ 𝐹 ′ such that
∑︁
𝑗:𝑗 ̸=𝑖
‖M [𝑖,𝑗]‖ ≥ (1 + 𝛼)

∑︁
𝑗∈𝐹 ′:𝑗 ̸=𝑖

‖M [𝑖,𝑗]‖

⎫⎬⎭ .

If |𝐹 | < 𝑛
8(1+𝛼) , goto Step 36.

Output 𝐹 .

Figure 13-2: Routine for finding an 𝛼-strongly block diagonally dominant submatrix

We first show that the set returned is guaranteed to be 𝛼-strongly block diagonally dominant.

Lemma 13.8.1. If bSDDSubset terminates, it returns 𝐹 such that M [𝐹,𝐹 ] is 𝛼-bDD.

Proof. Consider some 𝑖 ∈ 𝐹 , the criteria for including 𝑖 in 𝐹 in Step 36 gives:∑︁
𝑗:𝑗 ̸=𝑖
‖M [𝑖,𝑗]‖ ≥ (1 + 𝛼)

∑︁
𝑗∈𝐹 ′,𝑗 ̸=𝑖

‖M [𝑖,𝑗]‖ ≥ (1 + 𝛼)
∑︁

𝑗∈𝐹,𝑗 ̸=𝑖
‖M [𝑖,𝑗]‖,

where the last inequality follows since 𝐹 is a subset of 𝐹 ′.
Incorporating this into the definition of M being bDD gives

M [𝑖,𝑖] < 𝐼𝑟 ·
∑︁
𝑗:𝑗 ̸=𝑖
‖M [𝑖,𝑗]‖ ≥ (1 + 𝛼)𝐼𝑟 ·

∑︁
𝑗∈𝐹,𝑗 ̸=𝑖

‖M [𝑖,𝑗]‖.
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which means M [𝐹,𝐹 ] is 𝛼-bDD.

It remains to show that the algorithm finds a big 𝐹 quickly. This can be done by upper bounding
the expected size of 𝐹 , or the probability of a single index being in 𝐹 .

Lemma 13.8.2. For any 𝑖, we have

Pr
[︀
𝑖 ∈ 𝐹 ′ and 𝑖 /∈ 𝐹

]︀
≤ 1

16 (1 + 𝛼)
.

Proof. This event only happens if 𝑖 ∈ 𝐹 ′ and∑︁
𝑗∈𝐹 ′,𝑗 ̸=𝑖

‖M [𝑖,𝑗]‖ >
1

1 + 𝛼

∑︁
𝑗:𝑗 ̸=𝑖
‖M [𝑖,𝑗]‖. (13.6)

Conditioning on 𝑖 being selected initially, or 𝑖 ∈ 𝐹 ′, the probability that each other 𝑗 ̸= 𝑖 is in 𝐹 ′

is
1

𝑛− 1

(︂
𝑛

4(1 + 𝛼)
− 1

)︂
<

1

4(𝛼+ 1)
,

which gives:

E

⎡⎣ ∑︁
𝑗∈𝐹 ′,𝑗 ̸=𝑖

‖M [𝑖,𝑗]‖
⃒⃒⃒
𝑖 ∈ 𝐹 ′

⎤⎦ < 1

4(1 + 𝛼)

∑︁
𝑗:𝑗 ̸=𝑖
‖M [𝑖,𝑗]‖.

Markov’s inequality then gives:

Pr

⎡⎣ ∑︁
𝑗∈𝐹 ′,𝑗 ̸=𝑖

‖M [𝑖,𝑗]‖ >
1

1 + 𝛼

∑︁
𝑗:𝑗 ̸=𝑖
‖M [𝑖,𝑗]‖

⃒⃒⃒
𝑖 ∈ 𝐹 ′

⎤⎦ < 1/4,

and thus

Pr
[︀
𝑖 ∈ 𝐹 ′ and 𝑖 /∈ 𝐹

]︀
= Pr

[︀
𝑖 ̸∈ 𝐹 |𝑖 ∈ 𝐹 ′]︀Pr [︀𝑖 ∈ 𝐹 ′]︀ < 1

4

1

4(1 + 𝛼)
=

1

16(1 + 𝛼)
.

Combining these two bounds gives Lemma 13.3.2.

Proof. (of Lemma 13.3.2) Applying Linearity of Expectation to Lemma 13.8.2 gives

E
[︀⃒⃒
𝐹 ′ ∖ 𝐹

⃒⃒]︀
≤ 𝑛

16 (1 + 𝛼)
.

Markov’s inequality then gives

Pr
[︂⃒⃒
𝐹 ′ ∖ 𝐹

⃒⃒
≥ 𝑛

8(1 + 𝛼)

]︂
< 1/2.

So, with probability at least 1/2, |𝐹 | ≥ 𝑛/(8(1 + 𝛼)), and the algorithm will pass the test in line 3.
Thus, the expected number of iterations made by the algorithm is at most 2. The claimed bounds on
the expected work and depth of the algorithm follow.
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13.9 Jacobi Iteration on 𝛼-bDD Matrices

From an 𝛼-bDD set 𝐹 , we will construct an operator Z that approximates M−1
[𝐹,𝐹 ] and that can be

applied quickly. Specifically, we will show:

Theorem 13.3.1. Let M be a bDD matrix with index set 𝑉 , and let 𝐹 ⊆ 𝑉 such that M [𝐹,𝐹 ] is
𝛼-bDD for some 𝛼 ≥ 4, and has 𝑚𝐹𝐹 nonzero blocks. The algorithm Jacobi(𝜀,M [𝐹,𝐹 ], b) acts as a
linear operator Z on b that satisfies

0 ⪯ (Z )−1 −M [𝐹,𝐹 ] ⪯ 𝜀 · 𝑆𝑐 (M , 𝑉 ∖ 𝐹 ) .

The algorithm takes 𝑂(𝑚𝐹𝐹 log(1𝜀 )) work and 𝑂(log 𝑛 log(1𝜀 )) depth.

Pseudocode of this routine is given in Figure 13-3.

Algorithm 37: x = Jacobi(𝜀,M , b)

Create the matrix L where

L[𝑖,𝑗] =

{︃
𝐼𝑟 ·

∑︀
𝑗:𝑗 ̸=𝑖 ‖M [𝑖,𝑗]‖ if 𝑖 = 𝑗,

M [𝑖,𝑗] otherwise.

Set X = M − L.
Set 𝑘 to be an odd integer that is greater than log (3/𝜀).
Set x (0) = X−1b.
for 𝑖 = 1 · · · 𝑘 do

Set x (𝑖) = −X−1Lx (𝑖−1) +X−1b.
end

Output x (𝑘).

Figure 13-3: Jacobi Iteration for Solving Linear Systems in an 𝛼-bDD Matrix

We first verify that any 𝛼-bDD matrix has a good block-diagonal preconditioner.

Lemma 13.3.3. Every 𝛼-bDD matrix M can be written in the form X +L where X is block-diagonal,
L is bDD, and X < 𝛼

2L.

Proof. Write L = Y − A where Y is block-diagonal and A has its diagonal blocks as zeros. Note
that L is bDD by definition. Thus, by Corollary 13.6.5, L = Y −A < 0.

Using Lemma 13.6.2, we know that Y +A < 0, or Y < −A. This implies 2Y < L.
As M is 𝛼-strongly diagonally dominant and M [𝑖,𝑖] = X [𝑖,𝑖] +Y [𝑖,𝑖], we have

(X +Y )[𝑖,𝑖] < (1 + 𝛼) 𝐼𝑟 ·
∑︁
𝑗 ̸=𝑖
‖M [𝑖,𝑗]‖ = (1 + 𝛼)Y [𝑖,𝑖].

Manipulating this then gives:
X < 𝛼Y <

𝛼

2
L.

We now move on to measuring the quality of the operator generated by Jacobi. It can be checked
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that running it 𝑘 steps gives the operator

Z (𝑘) def
=

𝑘∑︁
𝑖=0

X−1
[𝐹,𝐹 ]

(︁
−L[𝐹,𝐹 ]X

−1
[𝐹,𝐹 ]

)︁𝑖
, (13.7)

which is equivalent to evaluating a truncation of the Neumann series for M−1

Lemma 13.9.1. Let M be a matrix with splitting M = X+L where 0 4 L 4 𝛽X for some parameter
1 > 𝛽 > 0. Then, for odd 𝑘 and for Z (𝑘) as defined in (13.7) we have:

X + L ⪯ (Z (𝑘))−1 ⪯ X + (1 + 𝛿)L (13.8)

where

𝛿 = 𝛽𝑘
1 + 𝛽

1− 𝛽𝑘+1
.

Proof. The left-hand inequality is equivalent to the statement that all the eigenvalues of Z (𝑘)(X +L)
are at most 1 (see [34, Lemma 2.2] or [243, Proposition 3.3]). To see that this is the case, expand

Z (𝑘)(X + L) =

(︃
𝑘∑︁
𝑖=0

X−1(−LX−1)𝑖

)︃
(X + L)

=
𝑘∑︁
𝑖=0

(−X−1L)𝑖 −
𝑘+1∑︁
𝑖=1

(−X−1L)𝑖

= I − (X−1L)𝑘+1.

As all the eigenvalues of an even power of a matrix are nonnegative, all of the eigenvalues of this last
matrix are at most 1.

Similarly, the other inequality is equivalent to the assertion that all of the eigenvalues of Z (𝑘)(X +
(1 + 𝛿)L) are at least one. Expanding this product yields(︃

𝑘∑︁
𝑖=0

X−1(−LX−1)𝑖

)︃
(X + (1 + 𝛿)L) = I − (X−1L)𝑘+1 + 𝛿

𝑘∑︁
𝑖=0

(−1)𝑖(X−1L)𝑖+1

The eigenvalues of this matrix are precisely the numbers

1− 𝜆𝑘+1 + 𝛿

𝑘∑︁
𝑖=0

(−1)𝑖𝜆𝑖+1, (13.9)

where 𝜆 ranges over the eigenvalues of X−1L. The assumption L 4 𝛽X implies that the eigenvalues
of X−1L are at most 𝛽, so 0 ≤ 𝜆 ≤ 𝛽. We have chosen the value of 𝛿 precisely to guarantee that,
under this condition on 𝜆, the value of (13.9) is at least 1.

This error crucially depends only on L, which for any choice of 𝐹 can be upper bounded by M .
Propagating the error this way allows us to prove the guarantees for Jacobi

Proof. (of Theorem 13.3.1) Consider the matrix L[𝐹,𝐹 ] generated when calling Jacobi with M [𝐹,𝐹 ].
M being bDD means for each 𝑖 we have

M [𝑖,𝑖] < 𝐼𝑟 ·
∑︁
𝑗 ̸=𝑖
‖M [𝑖,𝑗]‖,



13.10. Existence of Linear-Sized Approximate Inverses 339

which means for all 𝑖 ∈ 𝐹

M [𝑖,𝑖] − 𝐼𝑟 ·
∑︁

𝑗 ̸=𝑖,𝑗∈𝐹
‖M [𝑖,𝑗]‖ < 𝐼𝑟 ·

∑︁
𝑗 /∈𝐹

‖M [𝑖,𝑗]‖.

Therefore if we extend L[𝐹,𝐹 ] onto the full matrix by putting zeros everywhere else, we have L 4 M .
Fact 13.5.3 then gives L[𝐹,𝐹 ] 4 𝑆𝑐 (M , 𝑉 ∖ 𝐹 ).

Lemma 13.3.3 gives that X [𝐹,𝐹 ] <
𝛼
2L[𝐹,𝐹 ]. As 𝛼 ≥ 4, we can invoke Lemma 13.9.1 with 𝛽 = 1

2 .

Since 1+𝛽
1−𝛽𝑘+1 ≤ (32)/(

1
2) ≤ 3, our choice of 𝑘 = log(3/𝜀) gives the desired error. Each of these steps

involve a matrix vector multiplication in L[𝐹,𝐹 ] and two linear system solves in X [𝐹,𝐹 ]. The former
takes 𝑂(𝑚) work and 𝑂(log 𝑛) depth since the blocks of L[𝐹,𝐹 ] are a subset of the blocks of M , while
the latter takes 𝑂(𝑛) work and 𝑂(log 𝑛) depth due to X [𝐹,𝐹 ] being block-diagonal.

13.10 Existence of Linear-Sized Approximate Inverses

In this section we prove Theorem 13.1.3, which tells us that every 𝑏𝐷𝐷 matrix has a linear-sized
approximate inverse. In particular, this implies that for every 𝑏𝐷𝐷 matrix there is a linear-time
algorithm that approximately solves systems of equations in that matrix. To save space, we will not
dwell on this algorithm, but rather will develop the linear-sized approximate inverses directly. There
is some cost in doing so: there are very large constants in the linear-sized approximate inverses that
are not present in a simpler linear-time solver.

To obtain a U 𝑇DU factorization from an 𝜀-SCC in which each M (𝑖)
[𝐹𝑖𝐹𝑖] is 4-bDD, we employ

the procedure in Figure 13-4.

Algorithm 38: (D ,U ) = Decompose

(︁
M (1), . . . ,M (𝑑), 𝐹1, . . . , 𝐹𝑑−1

)︁
, where each M (𝑖) is a

bDD matrix and each M (𝑖)
[𝐹𝑖𝐹𝑖] is 4-bDD.

Use (13.7) to compute the matrix Z (𝑖) such that Jacobi(𝜀𝑖,M , b) = Z (𝑖)b.
For each 𝑖 < 𝑑, write M (𝑖) = X (𝑖) + L(𝑖), where X (𝑖) is block diagonal and L(𝑖) is 𝑏𝐷𝐷, as in
Jacobi.
Let X (𝑑) = 𝐼 |𝐶𝑑−1| and let ̂︁U be the upper-triangular Cholesky factor of M (𝑑).

Let D be the block diagonal matrix with D [𝐹𝑖,𝐹𝑖] = X (𝑖), for 1 ≤ 𝑖 < 𝑑, and
D [𝐶𝑑−1,𝐶𝑑−1] = 𝐼 |𝐶𝑑−1|.

Let U be the upper-triangular matrix with 1𝑠 on the diagonal, U [𝐶𝑑−1,𝐶𝑑−1] =
̂︁U , and

U [𝐹𝑖,𝐶𝑖] = Z (𝑖)M (𝑖)
[𝐹𝑖,𝐶𝑖], for 1 ≤ 𝑖 < 𝑑.

Figure 13-4: Converting a vertex sparsifier chain into U and D .

Lemma 13.10.1. On input an 𝜀-SCC of M (0) in which each M (𝑖)
[𝐹𝑖𝐹𝑖] is 4-bDD, the algorithm

Decompose produces matrices D and U such that

U 𝑇DU ≈𝛾 M ,

where

𝛾 ≤ 2
𝑑−1∑︁
𝑖=0

𝜀𝑖 +max
𝑖
𝜀𝑖 + 1/2.
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Proof. Consider the inverse of the operator W = W (1) realized by the algorithm ApplyChain, and
the operators W (𝑖) that appear in the proof of Lemma 13.3.1.

We have

(︁
W (𝑖)

)︁−1
=

[︂
I 0

M [𝐶𝑖,𝐹𝑖]Z
(𝑖) I

]︂⎡⎣ (︁Z (𝑖)
)︁−1

0

0
(︁
W (𝑖+1)

)︁−1

⎤⎦[︂ I Z (𝑖)M [𝐹𝑖,𝐶𝑖]

0 I

]︂
,

and (︁
W (𝑑)

)︁−1
= M (𝑑) = ̂︁U 𝑇̂︁U .

After expanding and multiplying the matrices in this recursive factorization, we obtain

(︁
W (1)

)︁−1
= U 𝑇

⎡⎢⎢⎢⎢⎢⎣

(︁
Z (1)

)︁−1
. . . 0 0

0
. . . 0 0

0 . . .
(︁
Z (𝑑−1)

)︁−1
0

0 . . . 0 𝐼 |𝐶𝑑−1|

⎤⎥⎥⎥⎥⎥⎦U .

Moreover, we know that this latter matrix is a 2
∑︀𝑑−1

𝑖=0 𝜀𝑖 approximation of M . It remains to determine
the impact of replacing the matrix in the middle of this expression with D .

Lemma 13.9.1 implies that each M [𝐹𝑖𝐹𝑖] ≈𝜀𝑖
(︁
Z (𝑖)

)︁−1
and Lemma 13.3.3 implies that X (𝑖) ≈1/2

M [𝐹𝑖𝐹𝑖]. So, the loss in approximation quality when we substitute the diagonal matrices is max𝑖 𝜀𝑖 +
1/2.

Invoking this decomposition procedure in conjunction with the the near-optimal sparsification
routine from Theorem 13.3.1 gives a nearly-linear work routine. Repeatedly picking subsets using
Lemma 13.3.4 gives then gives the linear sized decomposition.

Theorem 13.1.3 (Sparsified Cholesky). For every bDD matrix M with 𝑛 block-rows there exists a
diagonal matrix D and an upper triangular matrix U with 𝑂(𝑛) nonzero blocks so that

U 𝑇DU ≈3/4 M .

Moreover, linear equations in U , U 𝑇 , and D can be solved with linear work in depth 𝑂(log2 𝑛), and
these matrices can be computed in polynomial time.

Proof. We set 𝛼 = 4 throughout and 𝜀𝑖 = 1/8(𝑖 + 2)2. Theorem 13.3.1 then guarantees that the
average number of nonzero blocks in each column of M (𝑖) is at most 10𝑟/𝜀2𝑖 = 640𝑟(𝑖+2)4. If we now
apply Lemma 13.3.4 to find 4-diagonally dominant subsets 𝐹𝑖 of each M (𝑖), we find that each such
subset contains at least a 1/80 fraction of the block columns of its matrix and that each column and
row of M (𝑖) indexed by 𝐹 has at most 1280𝑟(𝑖 + 2)4 nonzero entries. This implies that each row of
Z (𝑖)M [𝐹𝑖,𝐶𝑖] has at most (1280𝑟(𝑖+ 2)4)𝑘𝑖+1 nonzero entries.

Let 𝑛𝑖 denote the number of block columns of M (𝑖). By induction, we know that

𝑛𝑖 ≤ 𝑛
(︂
1− 1

80

)︂𝑖−1

.

So, the total number of nonzero blocks in U is at most

𝑑∑︁
𝑖=1

𝑛𝑖(1280𝑟(𝑖+ 2)4)𝑘𝑖+1 ≤ 𝑛
𝑑∑︁
𝑖=1

(︂
1− 1

80

)︂𝑖−1

(1280𝑟(𝑖+ 2)4)𝑘𝑖+1.
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We will show that the term multiplying 𝑛 in this later expression is upper bounded by a constant.
To see this, note that 𝑘𝑖 ≤ 1 + log(2𝜀−1

𝑖 ) ≤ 𝜈 log(𝑖 + 1) for some constant 𝜈. So, there is some other
constant 𝜇 for which

(1280𝑟(𝑖+ 2)4)𝑘𝑖+1 ≤ exp(𝜇 log2(𝑖+ 1)).

This implies that the sum is at most∑︁
𝑖≥1

exp(𝜇 log2(𝑖+ 1)− 𝑖/80),

which is bounded by a constant.
To bound the quality of the approximation, we compute

2
∑︁
𝑖

𝜀𝑖 +max
𝑖
𝜀𝑖 + 1/2 = 2

∑︁
𝑖

1/8(𝑖+ 2)2 + 1/72 + 1/2 < 3/4.

The claimed bound on the work to perform backwards and forwards substitution with U is standard:
these operations require work linear in the number of nonzero entries of U . The bound on the depth
follows from the fact that the substitutions can be performed level-by-level, take depth 𝑂(log 𝑛) for
each level, and the number of levels, 𝑑, is logarithmic in 𝑛.

13.11 Spectral Vertex Sparsification Algorithm

In this section, we give a proof of the following lemma that immediately implies Lemma 13.3.4.

Lemma 13.11.1. Let M be a bDD matrix with index set 𝑉 , and 𝑚 nonzero blocks. Let 𝐹 ⊆ 𝑉 be
such that M [𝐹,𝐹 ] is 𝛼-bDD for some 𝛼 ≥ 4. The algorithm ApproxSchur(M , 𝐹, 𝜀), returns a matrix̃︁M 𝑆𝐶 s.t.

1. ̃︁M 𝑆𝐶 has 𝑂(𝑚(𝜀−1 log log 𝜀−1)𝑂(log log 𝜀−1)) nonzero blocks, and

2. ̃︁M 𝑆𝐶 ≈𝜀 𝑆𝑐 (M , 𝐹 ),

in 𝑂(𝑚(𝜀−1 log log 𝜀−1)𝑂(log log 𝜀−1)) work and 𝑂(log 𝑛(log log 𝜀−1)) depth.

Moreover, if T is a matrix such that only the submatrix T [𝐶,𝐶] is nonzero, and M + T is bDD,
then ApproxSchur(M +T , 𝐹, 𝜀) = ApproxSchur(M , 𝐹, 𝜀) +T [𝐶,𝐶].

We show how to sparsify the Schur complement of M after eliminating a set of indices 𝐹 such that
M [𝐹,𝐹 ] is an 𝛼-bDD matrix. The procedure ApproxSchur is described in Figure 13-5 and uses two
key subroutines SchurSquare and LastStep. SchurSquare allows us to approximate 𝑆𝑐 (M , 𝐹 )
as the Schur complement of another matrix M 1 such that M 1[𝐹,𝐹 ] is roughly 𝛼2-bDD. LastStep
allows us to approximate 𝑆𝑐 (M , 𝐹 ) with 𝑂(𝜀) error, when M [𝐹,𝐹 ] is roughly 1/𝜀-bDD.

Lemma 13.11.2. Let M be an bDD matrix with index set 𝑉 , and 𝑚 nonzero blocks and let 𝐹 ⊆ 𝑉
be such that M [𝐹,𝐹 ] is 𝛼-bDD for some 𝛼 ≥ 4. Given 𝜀 < 1/2, the algorithm SchurSquare(M , 𝐹, 𝜀),
returns a bDD matrix M 1 in 𝑂(𝑚𝜀−4) work and 𝑂(log 𝑛) depth, such that

1. 𝑆𝑐 (M , 𝐹 ) ≈𝜀 𝑆𝑐 (M 1, 𝐹 ) , and

2. (M 1)[𝐹,𝐹 ] is 𝛼
2/2-bDD.

3. M 1 has 𝑂(𝑚𝜀−4) nonzero blocks,



342 CHAPTER 13. CONNECTION LAPLACIAN IN NEARLY-LINEAR TIME

Algorithm 39: ̃︁M 𝑆𝐶 = ApproxSchur (M , 𝐹, 𝛼, 𝜀)

Initialize M (0) ←M , 𝑑 = 2 log2 log𝛼/2
(︀
4𝜀−1

)︀
for 𝑖 = 1, · · · , 𝑑 do

M (𝑖) ← SchurSquare

(︁
M (𝑖−1), 𝐹, 𝜀2𝑑

)︁
.

end̃︁M 𝑆𝐶 ← LastStep

(︁
M (𝑑), 𝐹, 4𝜀−1, 𝜀4

)︁
.

Output ̃︁M 𝑆𝐶 .

Figure 13-5: Pseudocode for Computing Spectral Vertex Sparsifiers

If T is a matrix such that only the submatrix T [𝐶,𝐶] is nonzero, and M +T is bDD, then

SchurSquare(M +T , 𝐹, 𝜀) = SchurSquare(M , 𝐹, 𝜀) +T [𝐶,𝐶].

We can repeatedly applying the above lemma, to approximate 𝑆𝑐 (M , 𝐹 ) as 𝑆𝑐 (M 1, 𝐹 ) , where
M 1 is 𝑂(𝜀−1)-bDD. LastStep allows us to approximate the Schur complement for such a strongly
block diagonally dominant matrixM 1. The guarantees of LastStep are given by the following lemma.

Lemma 13.11.3. Let M be an bDD matrix with index set 𝑉 , and 𝑚 nonzero blocks and let 𝐹 ⊆
𝑉 be such that M [𝐹,𝐹 ] is 𝛼-bDD for some 𝛼 ≥ 4. There exist a procedure LastStep such that

LastStep(M , 𝐹, 𝛼, 𝜀) returns in 𝑂(𝑚𝜀−8) work and 𝑂(log 𝑛) depth a matrix ̃︁M 𝑆𝐶 s.t. ̃︁M 𝑆𝐶 has

𝑂(𝑚𝜀−8) nonzero blocks and ̃︁M 𝑆𝐶 ≈𝜀+2/𝛼 𝑆𝑐 (M , 𝐹 ). If T is a matrix such that only the submatrix
T [𝐶,𝐶] is nonzero, and M +T is bDD, then LastStep(M +T , 𝐹, 𝛼, 𝜀) = LastStep(M , 𝐹, 𝛼, 𝜀) +
T [𝐶,𝐶].

Combining the above two lemmas, we obtain a proof of Lemma 13.3.4.

Proof. (of Lemma 13.11.1). By induction, after 𝑖 steps of the main loop in ApproxSchur,

𝑆𝑐 (M , 𝐹 ) ≈ 𝜀𝑖
2𝑑
𝑆𝑐
(︁
M (𝑖), 𝐹

)︁
.

Lemma 13.11.2 also implies that M (𝑖) is 2(𝛼2 )
2𝑖-bDD. Thus, we have that M (𝑑)

𝐹𝐹 is 8𝜀−1-strongly
diagonally dominant at the last step. Hence, Lemma 13.11.3 then gives

𝑆𝑐
(︁
M (𝑑), 𝐹

)︁
≈ 1

2
𝜀 LastStep

(︁
M (𝑑), 𝐹, 4𝜀−1,

𝜀

4

)︁
.

Composing this bound with the guarantees of the iterations then gives the bound on overall error.
The property that if T is a matrix such that only the submatrix T [𝐶,𝐶] is nonzero, and M +

T is bDD, then ApproxSchur(M + T , 𝐹, 𝜀) = ApproxSchur(M , 𝐹, 𝜀) + T [𝐶,𝐶] follows from
Lemma 13.11.2 and 13.11.3, which ensure that this property holds for all our calls to SchurSquare
and LastStep.

The work of these steps, and the size of the output graph follow from Lemma 13.11.2 and 13.11.3.

13.11.1 Iterative Squaring and Sparsification

In this section, we give a proof of Lemma 13.11.2. At the core of procedure is a squaring identity that
preserves Schur complements, and efficient sparsification of special classes of bDD matrices that we
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call product demand block-Laplacians.

Definition 13.11.4. The product demand block-Laplacian of a vector d ∈ (C𝑟×𝑟)𝑛, is a bDD matrix
L𝐺(d) ∈ (C𝑟×𝑟)𝑛×𝑛, defined as

(L𝐺(d))[𝑖,𝑗] =

{︃
−d [𝑖]d

*
[𝑗] 𝑖 ̸= 𝑗,

𝐼𝑟 · ‖d [𝑖]‖
∑︀

𝑘:𝑘 ̸=𝑖 ‖d [𝑘]‖ otherwise.

Definition 13.11.5. Given a vector d ∈ (C𝑟×𝑟)𝑛 and an index set 𝐹 ⊆ 𝑉, let 𝐶 = 𝑉 ∖ 𝐹 . The
bipartite product demand block-Laplacian of (d , 𝐹 ) is a bDD matrix L𝐺(d),𝐹 ∈ (C𝑟×𝑟)𝑛×𝑛, defined as

(L𝐺(d ,𝐹 ))[𝑖,𝑗] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐼𝑟 · ‖d [𝑖]‖

∑︀
𝑘∈𝐶 ‖d [𝑘]‖ 𝑖 = 𝑗, and 𝑖 ∈ 𝐹

𝐼𝑟 · ‖d [𝑖]‖
∑︀

𝑘∈𝐹 ‖d [𝑘]‖ 𝑖 = 𝑗, and 𝑖 ∈ 𝐶
0 𝑖 ̸= 𝑗, and (𝑖, 𝑗 ∈ 𝐹 or 𝑖, 𝑗 ∈ 𝐶)
−d [𝑖]d

*
[𝑗] 𝑖 ̸= 𝑗, otherwise.

In Section 13.11.4, we prove the following lemmas that allows us to efficiently construct sparse
approximations to these matrices.

Lemma 13.11.6. There is a routine CliqueSparsification(d , 𝜀) such that for any demand vector
d ∈ (C𝑟×𝑟)𝑛, and 𝜀 > 0, CliqueSparsification(d , 𝜀) returns in 𝑂(𝑛𝜀−4) work and 𝑂(log 𝑛) depth a
bDD matrix L𝐻 with 𝑂(𝑛𝜀−4) nonzero blocks such that

L𝐻 ≈𝜀 L𝐺(d).

Lemma 13.11.7. There is a routine BipartiteCliqueSparsification(d , 𝐹, 𝜀) such that for any
demand vector d ∈ (C𝑟×𝑟)𝑛, 𝜀 > 0, and 𝐹 ⊆ 𝑉 , BipartiteCliqueSparsification(d , 𝜀) returns in
𝑂(𝑛𝜀−4) work and 𝑂(log 𝑛) depth a bDD matrix L𝐻 with 𝑂(𝑛𝜀−4) nonzero blocks such that

L𝐻 ≈𝜀 L𝐺(d ,𝐹 ).

Moreover, (L𝐻)[𝐹,𝐹 ], and (L𝐻)[𝐶,𝐶] are block-diagonal, where 𝐶 = 𝑉 ∖ 𝐹.

We now use these efficient sparse approximations to give a proof of the guarantees of the procedure
SchurSquare.

Algorithm 40: M 1 = SchurSquare (M , 𝐹, 𝜀)

Construct sparse representations of d (𝑗)
𝐹 ,d

(𝑗)
𝐶 , f (𝑗) defined by Eqs. (13.11), (13.12), and (13.13).

Construct M 4 as given by Eq. (13.14).
Compute M 3 as given by Eq. (13.15).
For all 𝑗 ∈ 𝐹, let L̃

𝐺(d
(𝑗)
𝐹 )
← CliqueSparsification(d𝐹 , 𝜀).

For all 𝑗 ∈ 𝐹, let L̃
𝐺(d

(𝑗)
𝐶 )
← CliqueSparsification(d

(𝑗)
𝐶 , 𝜀).

For all 𝑗 ∈ 𝐹, let L̃𝐺(f (𝑗),𝐹 ) ← BipartiteCliqueSparsification(f (𝑗), 𝜀).

Construct and return M 1 defined by Eq. (13.16).

Figure 13-6: Pseudocode for procedure SchurSquare Iterative Squaring and Sparsification
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Proof. (of Lemma 13.11.2) Let 𝐶 denote 𝑉 ∖𝐹.Write M [𝐹,𝐹 ] as D −A, where D is a block-diagonal,
and A has its diagonal blocks as zero. The proof is based on the identity 𝑆𝑐 (M , 𝐹 ) = 𝑆𝑐 (M 2, 𝐹 ) ,
where M 2 is the following matrix.

M 2 =
1

2

[︂
D −AD−1A M [𝐹,𝐶] +AD−1M [𝐹,𝐶]

M [𝐶,𝐹 ] +M [𝐶,𝐹 ]D
−1A 2M [𝐶,𝐶] −M [𝐶,𝐹 ]D

−1M [𝐹,𝐶]

]︂
. (13.10)

It is straightforward to prove that M 2 satisfies 𝑆𝑐 (M , 𝐹 ) = 𝑆𝑐 (M 2, 𝐹 ) (see Lemma 13.11.8). is also
straightforward to show that D − AD−1A is ((𝛼 + 1)2 − 1)-bDD. Thus, M 2 satisfies the first two
requirements.

However,M 2 is likely to be a dense matrix, and we will not construct it in full. The key observation
is that M 2 can be written as a sum of an explicit sparse bDD matrix, and several product demand
block-Laplacians. Formally, for every 𝑗 ∈ 𝐹, we define d

(𝑗)
𝐹 ,d

(𝑗)
𝐶 ∈ (C𝑟×𝑟)𝑛 as follows

(d
(𝑗)
𝐹 )[𝑖] =

{︃
A[𝑖,𝑗]D

−1/2
[𝑗,𝑗] 𝑖 ∈ 𝐹,

0 𝑖 ∈ 𝐶.
(13.11)

(d
(𝑗)
𝐶 )[𝑖] =

{︃
0 𝑖 ∈ 𝐹,
M [𝑖,𝑗]D

−1/2
[𝑗,𝑗] 𝑖 ∈ 𝐶.

(13.12)

For every 𝑗 ∈ 𝐹, we need to define a bipartite product demand block-Laplacian given by f (𝑗) ∈ (C𝑟×𝑟)𝑛
defined as

f
(𝑗)
[𝑖] =

{︃
A[𝑖,𝑗]D

−1/2
[𝑗,𝑗] 𝑖 ∈ 𝐹,

−M [𝑖,𝑗]D
−1/2
[𝑗,𝑗] 𝑖 ∈ 𝐶.

(13.13)

Letting deg𝑗 denote the number of nonzero blocks in M [𝑗], the number of nonzero blocks in each of

d
(𝑗)
𝐹 ,d

(𝑗)
𝐶 , f (𝑗) is at most deg𝑗 . We construct a sparse representation of each of them using 𝑂(deg𝑗)

work. Thus, the total number of nonzero blocks in all these block-vectors is at most 𝑂(𝑚) and we can
explicitly construct sparse representations for them using 𝑂(𝑚) work and 𝑂(log 𝑛) depth.

We can now express M 2 as

M 2 = M 3 +
1
2

∑︀
𝑗∈𝐹 L

𝐺(d
(𝑗)
𝐹 )

+ 1
2

∑︀
𝑗∈𝐹 L

𝐺(d
(𝑗)
𝐶 )

+ 1
2

∑︀
𝑗∈𝐹 L𝐺(f (𝑗),𝐹 ).

For all 𝑖, 𝑗 ∈ 𝑉, we compute 𝛽𝑖,𝑗 = ‖f (𝑗)
𝑖 ‖. Define M 4 to be the block diagonal matrix such that

M 4[𝑖,𝑖] =
1
2𝐼𝑟 ·

∑︀
𝑗∈𝐹 𝛽𝑖,𝑗

(︀(︀∑︀
𝑘∈𝑉 𝛽𝑘,𝑗

)︀
− 𝛽𝑖,𝑗

)︀
. (13.14)

Since at most 𝑚 of 𝛽𝑖,𝑗 are nonzero, and we can compute 𝛽𝑖,𝑗 and construct M 4 using using 𝑂(𝑚)
work and 𝑂(log 𝑛) depth. It is easy to verify that we can express M 3 explicitly as

M 3 =
1
2

[︂
D M [𝐹,𝐶]

M [𝐶,𝐹 ] 2M [𝐶,𝐶]

]︂
−M 4. (13.15)

For each 𝑗, we use Lemmas 13.11.6 and 13.11.7 to construct, in 𝑂(deg𝑗 𝜀
−4) work and 𝑂(log 𝑛)

depth, bDD matrices L̃
𝐺(d

(𝑗)
𝐹 )
, L̃

𝐺(d
(𝑗)
𝐶 )
, L̃𝐺(f (𝑗),𝐹 ), each with 𝑂(deg𝑗 𝜀

−4) nonzero blocks such that

L̃
𝐺(d

(𝑗)
𝐹 )
≈𝜀 L𝐺(d

(𝑗)
𝐹 )
, L̃

𝐺(d
(𝑗)
𝐶 )
≈𝜀 L𝐺(d

(𝑗)
𝐶 )
, and L̃𝐺(f (𝑗),𝐹 ) ≈𝜀 L𝐺(f (𝑗),𝐹 ).

We can now construct the matrix

M 1 = M 3 +
1
2

∑︀
𝑗∈𝐹 L̃

𝐺(d
(𝑗)
𝐹 )

+ 1
2

∑︀
𝑗∈𝐹 L̃

𝐺(d
(𝑗)
𝐶 )

+ 1
2

∑︀
𝑗∈𝐹 L̃𝐺(f (𝑗),𝐹 ), (13.16)
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in 𝑂(𝑚𝜀−4) time and 𝑂(log 𝑛) depth. M 1 has 𝑂(𝑚𝜀−4) nonzero blocks and is our required matrix.

We first show that M 3 is bDD. Using 𝛽𝑘,𝑗 ≤ ‖D
−1/2
[𝑗,𝑗] M [𝑖,𝑘]‖ for all 𝑗 ∈ 𝐹, 𝑘 ∈ 𝑉, we have for all

𝑖 ∈ 𝐹,

2‖M 4[𝑖,𝑖]‖ ≤
∑︁
𝑗∈𝐹

𝛽𝑖,𝑗
∑︁
𝑘∈𝑉

𝛽𝑘,𝑗 ≤
∑︁
𝑗∈𝐹
‖A[𝑖,𝑗]‖‖D

−1/2
[𝑗,𝑗] ‖

2
∑︁
𝑘∈𝑉
‖M [𝑗,𝑘]‖ ≤

∑︁
𝑗∈𝐹
‖A[𝑖,𝑗]‖, (13.17)

where the last inequality uses that M is bDD. Again, using M is bDD, for all 𝑖 ∈ 𝐹, we have

D [𝑖,𝑖] < 𝐼𝑟
∑︁
𝑗∈𝐹
‖A[𝑖,𝑗]‖+ 𝐼𝑟

∑︁
𝑘∈𝐶
‖M [𝑖,𝑘]‖.

Now combining with Eqs. (13.15) and (13.17), we obtain M 3[𝑖,𝑖] < 𝐼𝑟
∑︀

𝑘∈𝐶 ‖M [𝑖,𝑘]‖. Thus, M 3 is
bDD, and hence M 1 is bDD.

We also have M 1 ≈𝜀 M 2. Thus, using Fact 13.5.3, we obtain 𝑆𝑐 (M 1, 𝐹 ) ≈𝜀 𝑆𝑐 (M 2, 𝐹 ) . It
remains to show that M 1[𝐹,𝐹 ] is 𝛼2/2-bDD.

The key observation is that only the matrices L̃
𝐺(d

(𝑗)
𝐶 )

contribute to off-diagonal blocks in M 1[𝐹,𝐹 ].

By construction,

∀𝑖, 𝑗 ∈ 𝐹, L
𝐺(d

(𝑗)
𝐹 )[𝑖,𝑖]

= 𝐼𝑟
∑︁

𝑘∈𝐹 :𝑘 ̸=𝑖
𝛽𝑖,𝑗𝛽𝑘,𝑗 .

Thus, for all 𝑖 ∈ 𝐹∑︁
𝑗∈𝐹
‖L

𝐺(d
(𝑗)
𝐹 )[𝑖,𝑖]

‖ ≤
∑︁
𝑗∈𝐹

∑︁
𝑘∈𝐹

𝛽𝑖,𝑗𝛽𝑘,𝑗 ≤
∑︁
𝑗∈𝐹
‖A[𝑖,𝑗]‖‖D

−1/2
[𝑗,𝑗] ‖

2
∑︁
𝑘∈𝐹
‖A[𝑗,𝑘]‖

≤ (1 + 𝛼)−1𝐼𝑟 ·
∑︁
𝑗∈𝐹
‖A[𝑖,𝑗]‖, (13.18)

where the last inequality follows since D − A = M [𝐹,𝐹 ] is 𝛼-bDD. Moreover D − A being 𝛼-bDD
implies that for each 𝑖 ∈ 𝐹, D [𝑖,𝑖] < (𝛼+ 1)𝐼𝑟

∑︀
𝑗∈𝐹 ‖A[𝑖,𝑗]‖. Thus, using Eqs. (13.15) and (13.17), we

obtain, 2M 3[𝑖,𝑖] < 𝛼𝐼𝑟
∑︀

𝑗∈𝐹 ‖A[𝑖,𝑗]‖.
Since for each 𝑗, L̃𝐺(d (𝑗)) ≈𝜀 L̃𝐺(d (𝑗)), we have (L̃𝐺(d (𝑗)))[𝑖,𝑖]

4 𝑒𝜀(L𝐺(d (𝑗)))[𝑖,𝑖]
. Thus,

∑︀
𝑗 L̃𝐺(d

(𝑗)
𝐹 )

is bDD with sums of norms of off-diagonal blocks at most 𝑒𝜀(1 + 𝛼)−1
∑︀

𝑗∈𝐹 ‖A[𝑖,𝑗]‖. Since these are
the only matrices that contribute to off-diagonal blocks in M 1[𝐹,𝐹 ], we get that M 1[𝐹,𝐹 ] is at least

𝛼
𝑒𝜀(1+𝛼)−1 -bDD. Using 𝜀 < 1/2 gives us our claim.

It is easy to verify that our transformations maintain that if T is a matrix that is only nonzero
inside the submatrix T [𝐶,𝐶], and M +T is bDD, then

SchurSquare(M +T , 𝐹, 𝜀) = SchurSquare(M , 𝐹, 𝜀) +T [𝐶,𝐶].

We now prove the claims deferred from the above proof.

Lemma 13.11.8. The matrix M 2 defined by Eq. (13.10) satisfies 𝑆𝑐 (M 2, 𝐹 ) = 𝑆𝑐 (M , 𝐹 ) .

Proof. We need the following identity from [223]:

(D −A)−1 = 1/2 · (D−1 +
(︀
I +D−1A

)︀ (︀
D −AD−1A

)︀−1 (︀
I +AD−1

)︀
). (13.19)
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We have,

𝑆𝑐 (M 2, 𝐹 ) = M [𝐶,𝐶] − 1/2 ·M [𝐶,𝐹 ]D
−1M [𝐹,𝐶]

− 1/2 ·M [𝐶,𝐹 ](I +D−1A)(D −AD−1A)−1(I +AD−1)M [𝐹,𝐶]

= M [𝐶,𝐶]

− 1/2 ·M [𝐶,𝐹 ](D
−1 + (I +D−1A)(D −AD−1A)−1(I +AD−1))M [𝐹,𝐶]

= M [𝐶,𝐶] −M [𝐶,𝐹 ](D −A)−1M [𝐹,𝐶]

= 𝑆𝑐 (M , 𝐹 ) .

13.11.2 Schur Complement w.r.t. Highly 𝛼-bDD Submatrices

Algorithm 41: ̃︁M 𝑆𝐶 = LastStep (M , 𝐹, 𝛼, 𝜀)

Compute X , D , and A as given by equations (13.20), (13.21), and (13.22).
Construct Y as defined by equations (13.33), (13.34), and (13.35).
Construct sparse vectors d (𝑗), g (𝑗) for all 𝑗 ∈ 𝐹 as defined by equations (13.26) and (13.27).
For all 𝑗 ∈ 𝐹 , let L̃𝐺(d (𝑗),𝐹 ) ← BipartiteCliqueSparsification(d (𝑗), 𝐹, 𝜀/2)

For all 𝑗 ∈ 𝐹 , let L̃𝐺(g(𝑗)) ← CliqueSparsification(g (𝑗), 𝜀/2).
Compute R as given by equation (13.29).
Construct sparse vectors r (𝑗) for all 𝑗 ∈ 𝐹 as defined by equations (13.30).
For all 𝑗 ∈ 𝐹 , let L̃𝐺(r (𝑗)) ← CliqueSparsification(r (𝑗), 𝜀/2).
Compute S as given by equation (13.31).
Output ̃︁M 𝑆𝐶 = S +

∑︁
𝑖

L̃𝐺(r (𝑖)).

Figure 13-7: Pseudocode for procedure LastStep: Computing an approximate Schur complement w.r.t. a
highly 𝛼-bDD submatrices.

In this section, we describe the LastStep procedure for computing an approximate Schur com-
plement of a bDD matrix M with a highly 𝛼-bDD submatrix M [𝐹,𝐹 ]. LastStep is the final step
of the ApproxSchur algorithm. The key element of the procedure is a formula for approximating
the inverse of M [𝐹,𝐹 ] that is leveraged to approximate the Schur complement of M as the Schur
complement of matrix with the 𝐹𝐹 submatrix being block diagonal.

We prove guarantees for the LastStep algorithm as stated in Lemma 13.11.3.
One could attempt to deal with the highly 𝛼-bDD matrix at the last step by directly replacing it

with its diagonal, but this is problematic. Consider the case where 𝐹 contains 𝑢 and 𝑣 with a weight
𝜀 edge between them, and 𝑢 and 𝑣 are connected to 𝑢′ and 𝑣′ in 𝐶 by weight 1 edges respectively.
Keeping only the diagonal results in a Schur complement that disconnects 𝑢′ and 𝑣′. This however
can be fixed by taking a step of random walk within 𝐹 .

Given a bDD matrixM , s.t. M [𝐹,𝐹 ] is 𝛼-bDD we define a block diagonal matrixX ∈ (C𝑟×𝑟)|𝐹 |×|𝐹 |

s.t. for each 𝑖 ∈ 𝐹
X [𝑖,𝑖] =

𝛼

𝛼+ 1
M [𝑖,𝑖] (13.20)
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and another block diagonal matrix D ∈ (C𝑟×𝑟)|𝐹 |×|𝐹 | s.t. for each 𝑖 ∈ 𝐹

D [𝑖,𝑖] =
1

𝛼+ 1
M [𝑖,𝑖], (13.21)

and we define a matrix A ∈ (C𝑟×𝑟)|𝐹 |×|𝐹 |

A[𝑖,𝑗] =

{︃
0 𝑖 = 𝑗

−M [𝑖,𝑗] otherwise.
(13.22)

Thus M [𝐹,𝐹 ] = X + D − A. One can check that because M is bDD and M [𝐹,𝐹 ] is 𝛼-bDD, it
follows that D −A is bDD and the matrix[︂

X M [𝐹,𝐶]

M [𝐶,𝐹 ] M [𝐶,𝐶]

]︂
is also bDD.

We will consider the linear operator

Z (𝑙𝑎𝑠𝑡) def
=

1

2
X−1 +

1

2
X−1 (X −D +A)X−1 (X −D +A)X−1. (13.23)

We define

M (𝑙𝑎𝑠𝑡) =

(︃(︁
Z (𝑙𝑎𝑠𝑡)

)︁−1
M [𝐹,𝐶]

M [𝐹,𝐶] M [𝐶,𝐶]

)︃

Lemma 13.11.9.

M 4 M (𝑙𝑎𝑠𝑡) 4

(︂
1 +

2

𝛼

)︂
M .

We defer the proof of Lemma 13.11.9 to Section 13.11.3.
To utilize Z (𝑙𝑎𝑠𝑡), define

M
(𝑙𝑎𝑠𝑡)
2

def
=

[︂
1
2X

1
2 (X −D +A)X−1M [𝐹,𝐶]

1
2M [𝐶,𝐹 ]X

−1 (X −D +A) M [𝐶,𝐶] − 1
2M [𝐶,𝐹 ]X

−1M [𝐹,𝐶].

]︂
(13.24)

and note
𝑆𝑐
(︁
M (𝑙𝑎𝑠𝑡), 𝐹

)︁
= 𝑆𝑐

(︁
M

(𝑙𝑎𝑠𝑡)
2 , 𝐹

)︁
(13.25)

Lemma 13.11.9 tells us that for large enough 𝛼, we can approximate the Schur complement of M by
approximating the the Schur complement of M (𝑙𝑎𝑠𝑡)

2 .
The next lemma tells us that 𝑀2 is bDD and that we can write the matrix as a sum of an explicit

bDD matrix and sparse implicitly represented product demand block-Laplacians and bipartite product
demand block-Laplacians.

Lemma 13.11.10. Consider a bDD matrix M , where M [𝐹,𝐹 ] is 𝛼-bDD for some 𝛼 ≥ 4, and let

M
(𝑙𝑎𝑠𝑡)
2 be the associated matrix defined by equation (13.24). Let 𝑚 be the number of nonzero blocks

of M .

For 𝑗 ∈ 𝐹 , we define d (𝑖) ∈ (C𝑟×𝑟)𝑛

d
(𝑗)
[𝑖] =

{︃
A[𝑖,𝑗]X

−1/2
[𝑗,𝑗] for 𝑖 ∈ 𝐹

M [𝑖,𝑗]X
−1/2
[𝑗,𝑗] for 𝑖 ∈ 𝐶

(13.26)
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For 𝑗 ∈ 𝐹 , we define g (𝑗) ∈ (C𝑟×𝑟)𝑛

g
(𝑗)
[𝑖] =

{︃
0 for 𝑖 ∈ 𝐹
M [𝑖,𝑗]X

−1/2
[𝑗,𝑗] for 𝑖 ∈ 𝐶

(13.27)

Then

M
(𝑙𝑎𝑠𝑡)
2 = Y +

1

2

∑︁
𝑗∈𝐹

L𝐺(g(𝑖)) +
1

2

∑︁
𝑗∈𝐹

L𝐺(d (𝑖),𝐹 )

where Y is bDD and has 𝑂(𝑚) nonzero blocks, and the total number of nonzero blocks in d (𝑖) and
g (𝑖) for all 𝑖 combined is also 𝑂(𝑚).

Y as well as d (𝑖) and g (𝑖) for all 𝑖 can be computed in 𝑂(𝑚) time and 𝑂(log 𝑛) depth.
If T is a matrix that is only nonzero inside the submatrix T [𝐶,𝐶], then if we apply the transforma-

tion of Eq. 13.24, to M +T instead of M , we find (M +T )
(𝑙𝑎𝑠𝑡)
2 = M

(𝑙𝑎𝑠𝑡)
2 +T [𝐶,𝐶], and in particular

Y (M +T ) = Y (M ) +T [𝐶,𝐶].

We defer the proof of Lemma 13.11.10 to Section 13.11.3.

Proof. (of Lemma 13.11.3) The procedure LastStep(𝑀,𝐹, 𝛼, 𝜀) first computes Y and d (𝑖) and g (𝑖)

for all 𝑖 s.t.
M

(𝑙𝑎𝑠𝑡)
2 = Y +

1

2

∑︁
𝑗∈𝐹

L𝐺(g(𝑖)) +
1

2

∑︁
𝑗∈𝐹

L𝐺(d (𝑖),𝐹 ), (13.28)

where M
(𝑙𝑎𝑠𝑡)
2 ≈2/𝛼 M . Let 𝑛d (𝑖) and 𝑛g(𝑖) denote the number of nonzero blocks in each d (𝑖) and

g (𝑖). By Lemma 13.11.6, we may call CliqueSparsification(g (𝑖), 𝜀/2) in 𝑂(𝑛g(𝑖)𝜀−4) time to spar-

sify L𝐺(g(𝑖)), producing a bDD matrix L̃𝐺(g(𝑖)) ≈𝜀/2 L𝐺(g(𝑖)) with 𝑂(𝑛g(𝑖)𝜀−4) nonzero blocks. By

Lemma 13.11.7, we may call BipartiteCliqueSparsification(d (𝑖), 𝐹, 𝜀/2) in 𝑂(𝑛d (𝑖)𝜀−4) time to
sparsify L𝐺(d (𝑖),𝐹 ), producing a bDD matrix L̃𝐺(d (𝑖),𝐹 ) ≈𝜀/2 L𝐺(d (𝑖),𝐹 ) with 𝑂(𝑛d (𝑖)𝜀−4) nonzero blocks.

The total running time of this is 𝑂(𝜀−4
∑︀

𝑖(𝑛d (𝑖) +𝑛g(𝑖))) = 𝑂(𝜀−4𝑚), and the total number of nonzero
blocks in

1

2

∑︁
𝑗∈𝐹

L̃𝐺(g(𝑖)) +
1

2

∑︁
𝑗∈𝐹

L̃𝐺(d (𝑖),𝐹 ),

is 𝑂(𝜀−4(
∑︀

𝑖 𝑛d (𝑖) + 𝑛g(𝑖))) = 𝑂(𝜀−4𝑚). We define

R = Y +
1

2

∑︁
𝑗∈𝐹

L̃𝐺(g(𝑖)) +
1

2

∑︁
𝑗∈𝐹

L̃𝐺(d (𝑖),𝐹 ). (13.29)

which we can compute in𝑂(𝜀−4𝑚) time and𝑂(log 𝑛) depth. We haveM ≈2/𝛼 M
(𝑙𝑎𝑠𝑡)
2 andM

(𝑙𝑎𝑠𝑡)
2 ≈𝜀/2

R, so that M ≈2/𝛼+𝜀/2 R. It follows from Fact 13.5.3 that 𝑆𝑐 (M , 𝐹 ) ≈2/𝛼+𝜀/2 𝑆𝑐 (R, 𝐹 ).
Because the sparsifiers computed by BipartiteCliqueSparsificationpreserve the graph bipar-

tition, R[𝐹,𝐹 ] is block diagonal.
We can use the block diagonal structure of R[𝐹,𝐹 ] quickly compute a sparse approximation to

𝑆𝑐 (R, 𝐹 ).
For 𝑗 ∈ 𝐹 , we define g (𝑗) ∈ (C𝑟×𝑟)|𝐶|

r
(𝑗)
𝑖 = R[𝑖,𝑗]R

−1/2
[𝑗,𝑗] for 𝑖 ∈ 𝐶 (13.30)

Then
𝑆𝑐 (R, 𝐹 ) = R[𝐶,𝐶] −R[𝐶,𝐹 ]R

−1
[𝐹,𝐹 ]R[𝐹,𝐶] = S +

∑︁
𝑗∈𝐹

L𝐺(r (𝑖)).
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where

S =R[𝐶,𝐶] −Diag
𝑖∈𝐶

⎛⎝𝐼𝑟∑︁
𝑗∈𝐹

∑︁
𝑘∈𝐶∖{𝑖}

‖R[𝑖,𝑗]R
−1/2
[𝑗,𝑗] ‖‖R[𝑘,𝑗]R

−1/2
[𝑗,𝑗] ‖

⎞⎠ (13.31)

−Diag
𝑖∈𝐶

∑︁
𝑗∈𝐹

(︁
R[𝑖,𝑗]R

−1
[𝑗,𝑗]R[𝑗,𝑖]

)︁
.

Let us define, for each block row 𝑖 ∈ 𝐹 , 𝜌𝑖 =
∑︀

𝑗∈𝐶 ‖R[𝑖,𝑗]‖, and for each block row 𝑖 ∈ 𝐶,
𝜌𝑖 =

∑︀
𝑗∈𝐹 ‖R[𝑖,𝑗]‖. From R being bDD, we then conclude for each 𝑖 ∈ 𝐹

R[𝑖,𝑖] < 𝐼𝑟𝜌𝑖

and for each 𝑖 ∈ 𝐶

R[𝑖,𝑖] < 𝐼𝑟

⎛⎝𝜌𝑖 +∑︁
𝑗∈𝐶
‖R[𝑖,𝑗]‖

⎞⎠ .

With this in mind, we check that each for 𝑖 ∈ 𝐶 of S is bDD.
The diagonal block satisfies

S [𝑖,𝑖] < 𝐼𝑟

⎛⎝∑︁
𝑗∈𝐶
‖R[𝑖,𝑗]‖+ 𝜌𝑖 −

∑︁
𝑗∈𝐹

∑︁
𝑘∈𝐶
‖R[𝑖,𝑗]R

−1/2
[𝑗,𝑗]‖‖R[𝑘,𝑗]R

−1/2
[𝑗,𝑗]‖

⎞⎠
< 𝐼𝑟

⎛⎝∑︁
𝑗∈𝐶
‖R[𝑖,𝑗]‖+ 𝜌𝑖 −

∑︁
𝑗∈𝐹

∑︁
𝑘∈𝐶

1

𝜌𝑗
‖R[𝑖,𝑗]‖‖R[𝑘,𝑗]‖

⎞⎠
< 𝐼𝑟

⎛⎝∑︁
𝑗∈𝐶
‖R[𝑖,𝑗]‖+ 𝜌𝑖 −

∑︁
𝑗∈𝐹

1

𝜌𝑗
‖R[𝑖,𝑗]‖

⎞⎠
< 𝐼𝑟

∑︁
𝑗∈𝐶
‖R[𝑖,𝑗]‖

We can compute S and all r (𝑗)
𝑖 in 𝑂(𝑚𝜀−4) time and 𝑂(log 𝑛) depth, since this is an upper bound

to the number of nonzero blocks in R. Let 𝑛r (𝑖) denote the number of nonzero blocks in r (𝑖). By
Lemma 13.11.6, we may call CliqueSparsification(r (𝑖), 𝜀/2) in 𝑂(𝑛r (𝑖)𝜀−4) time to sparsify L𝐺(r (𝑖)),

producing a bDD matrix L̃𝐺(r (𝑖)) ≈𝜀/2 L𝐺(r (𝑖)) with 𝑂(𝑛r (𝑖)𝜀−4) nonzero blocks.
The total number of nonzero blocks in

S +
∑︁
𝑖

L̃𝐺(r (𝑖))

is also 𝑂(𝜀−8𝑚), and S +
∑︀

𝑖 L̃𝐺(r (𝑖)) ≈𝜀/2 𝑆𝑐 (R, 𝐹 ) . So

̃︁M 𝑆𝐶 = S +
∑︁
𝑖

L̃𝐺(r (𝑖)) ≈𝜀+2/𝛼 𝑆𝑐 (M , 𝐹 )

The total amount of work to compute these L̃𝐺(r (𝑖)) is 𝑂(𝜀−4(
∑︀

𝑖 𝑛r (𝑖))) = 𝑂(𝜀−8𝑚). The depth
for this computation is 𝑂(log 𝑛).

Suppose T is a matrix that is only nonzero inside the submatrix T [𝐶,𝐶], and M + T is bDD.
We can show that LastStep(M +T , 𝐹, 𝛼, 𝜀) = LastStep(M , 𝐹, 𝛼, 𝜀) +T [𝐶,𝐶], by first noting that
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this type of property holds for Y by Lemma 13.11.10, and from this concluding that similarly if we
consider R as a function of M then R[𝐶,𝐶](M + T ) = R[𝐶,𝐶](M ) + T [𝐶,𝐶], and finally considering̃︁M 𝑆𝐶 as a function of M , we can then easily show that (𝑀 + 𝑇 )𝑆𝐶 = ̃︁M 𝑆𝐶 +T [𝐶,𝐶].

13.11.3 Deferred Proofs from Section 13.11.2

To help us prove Lemma 13.11.9, we first prove the next lemma.

Lemma 13.11.11. If M [𝐹,𝐹 ] = X +D −A be a 𝛼-bDD matrix for some 𝛼 ≥ 4, then the operator

Z (𝑙𝑎𝑠𝑡) as defined in Equation 13.23 satisfies:

M [𝐹,𝐹 ] 4
(︁
Z (𝑙𝑎𝑠𝑡)

)︁−1
4 M [𝐹,𝐹 ] +

2

𝛼
(D −A) .

Proof. Composing both sides by X−1/2 and substituting in ℒ = X−1/2 (D −A)X−1/2 means it
suffices to show

I + ℒ 4

(︂
1

2
I +

1

2
(I − ℒ)2

)︂−1

4 I + ℒ+
2

𝛼
ℒ.

We can use the fact that M [𝐹,𝐹 ] is 𝛼-strongly diagonally dominant to show 0 4 L 4 2
𝛼X , and

equivalently 0 4 ℒ 4 2
𝛼I , as follows:

Firstly, D −A < 0 as D −A is bDD, similarly, D +A < 0 as D +A is also bDD. From the latter
D < −A, so 2D < D −A. Finally, X < 𝛼D < 𝛼

2 (D −A).
As ℒ and I commute, the spectral theorem means it suffices to show this for any scalar 0 ≤ 𝑡 ≤ 2

𝛼 .
Note that

1

2
+

1

2
(1− 𝑡)2 = 1− 𝑡+ 1

2
𝑡2

Taking the difference between the inverse of this and the ‘true’ value of 1 + 𝑡 gives:(︂
1− 𝑡+ 1

2
𝑡2
)︂−1

− (1 + 𝑡) =
1− (1 + 𝑡)

(︀
1− 𝑡+ 1

2 𝑡
2
)︀

1− 𝑡+ 1
2 𝑡

2
=

1
2 𝑡

2 (1− 𝑡)
1− 𝑡+ 1

2 𝑡
2

Incorporating the assumption that 0 ≤ 𝑡 ≤ 2
𝛼 and 𝛼 ≥ 4 gives that the denominator is at least

1 − 2
𝛼 ≥

1
2 , and the numerator term can be bounded by 0 ≤ 𝑡2

2 (1− 𝑡) ≤ 𝑡
𝛼 . Combining these two

bounds then gives the result.

Lemma 13.11.9 allows us to extend the approximation of M [𝐹,𝐹 ] by the inverse of Z (𝑙𝑎𝑠𝑡) to the
entire matrix M .

Proof. (of Lemma 13.11.9) Recall that when a matrix T is PSD,(︂
T 0
0 0

)︂
< 0. (13.32)

The left-hand inequality of our lemma follows immediately from Eq. 13.32 and the left-hand side
of the guarantee of Lemma 13.11.11. To prove the right-hand inequality we apply Eq. 13.32 and the
right-hand side of the guarantee of Lemma 13.11.11. to conclude(︃(︁

Z (𝑙𝑎𝑠𝑡)
)︁−1

M [𝐹,𝐶]

M [𝐹,𝐶] M [𝐶,𝐶]

)︃
4

(︂
M [𝐹,𝐹 ] +

2
𝛼L M [𝐹,𝐶]

M [𝐹,𝐶] M [𝐶,𝐶]

)︂
= M +

2

𝛼

(︂
L 0
0 0

)︂
.
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The matrix
[︂

X M [𝐹,𝐶]

M [𝐶,𝐹 ] M [𝐶,𝐶]

]︂
is bDD and hence PSD. It follows that

(︂
D −A 0

0 0

)︂
4 M , by which

we may conclude that M + 2
𝛼

(︂
D −A 0

0 0

)︂
4 M + 2

𝛼M .

Proof. (of Lemma 13.11.10)

Each product demand clique L𝐺(g(𝑖)) and bipartite product demand clique L𝐺(d (𝑖),𝐹 ) is bDD.
We now have to find an expression for Y and show that Y is bDD. Let us write Y in terms of

its blocks From

Y = M −

⎛⎝1

2

∑︁
𝑗∈𝐹

L𝐺(g(𝑖)) +
1

2

∑︁
𝑗∈𝐹

L𝐺(d (𝑖),𝐹 )

⎞⎠
it then follows by a simple check that

Y *
[𝐶,𝐹 ] = Y [𝐹,𝐶] =

1

2
(X −D)X−1M [𝐹,𝐶] =

1

2

(︂
1− 1

𝛼

)︂
M [𝐹,𝐶] (13.33)

and that

Y [𝐹,𝐹 ] =
1

2
X − 1

2
Diag
𝑖∈𝐹

⎛⎝𝐼𝑟∑︁
𝑗∈𝐹

∑︁
𝑘∈𝐶
‖A[𝑖,𝑗]X

−1/2
[𝑗,𝑗] ‖‖M [𝑘,𝑗]X

−1/2
[𝑗,𝑗]‖

⎞⎠ (13.34)

and

Y [𝐶,𝐶] =M [𝐶,𝐶] −
1

2
Diag
𝑖∈𝐶

(︀
M [𝑖,𝐹 ]X

−1M [𝐹,𝑖]

)︀
− 1

2
Diag
𝑖∈𝐶

⎛⎝𝐼𝑟∑︁
𝑗∈𝐹

∑︁
𝑘∈𝐶∖{𝑖}

‖M [𝑖,𝑗]X
−1/2
[𝑗,𝑗] ‖‖M [𝑘,𝑗]X

−1/2
[𝑗,𝑗] ‖

⎞⎠
− 1

2
Diag
𝑖∈𝐶

⎛⎝𝐼𝑟∑︁
𝑗∈𝐹

∑︁
𝑘∈𝐹
‖M [𝑖,𝑗]X

−1/2
[𝑗,𝑗] ‖‖A[𝑘,𝑗]X

−1/2
[𝑗,𝑗]‖

⎞⎠ . (13.35)

Next, we check that Y is bDD. First, let us define, for each block row 𝑖 ∈ 𝐹 , 𝜌𝑖 =
∑︀

𝑗∈𝐹 ‖A[𝑖,𝑗]‖.
From M [𝐹,𝐹 ] being 𝛼-bDD, we then conclude M [𝑖,𝑖] < 𝐼𝑟(1 + 𝛼)𝜌𝑖. And from M being bDD, we find
that

∑︀
𝑗∈𝐶 ‖M [𝑖,𝑗]‖ ≤ 𝛼𝜌𝑖. We now check that each block row 𝑖 ∈ 𝐹 of Y is bDD. The off-diagonal

block norm sum is at most 1
2

(︀
1− 1

𝛼

)︀
𝛼𝜌𝑖.

The diagonal satisfies

Y [𝑖,𝑖] < 𝐼𝑟

⎛⎝1

2
𝛼𝜌𝑖 −

1

2

⎛⎝∑︁
𝑗∈𝐹

∑︁
𝑘∈𝐶
‖A[𝑖,𝑗]X

−1/2
[𝑗,𝑗] ‖‖M [𝑘,𝑗]X

−1/2
[𝑗,𝑗] ‖

⎞⎠⎞⎠
< 𝐼𝑟

⎛⎝1

2
𝛼𝜌𝑖 −

1

2

⎛⎝∑︁
𝑗∈𝐹

∑︁
𝑘∈𝐶

1

𝛼𝜌𝑗
‖A[𝑖,𝑗]‖‖M [𝑘,𝑗]‖

⎞⎠⎞⎠
< 𝐼𝑟

⎛⎝1

2
𝛼𝜌𝑖 −

1

2

⎛⎝∑︁
𝑗∈𝐹
‖A[𝑖,𝑗]‖

⎞⎠⎞⎠ = 𝐼𝑟

(︂
1

2

(︂
1− 1

𝛼

)︂
𝛼𝜌𝑖.

)︂
So the block rows with 𝑖 ∈ 𝐹 are bDD.
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Next we check the block rows for 𝑖 ∈ 𝐶. Let us define for each 𝑖 ∈ 𝐶, 𝜌𝑖 =
∑︀

𝑗∈𝐹 ‖M [𝑖,𝑗]‖. Thus
for Y , the sum of block norms of row 𝑖 over columns 𝑗 ∈ 𝐹∑︁

𝑗∈𝐹
‖Y [𝑖,𝑗]‖ =

1

2

(︂
1− 1

𝛼

)︂∑︁
𝑗∈𝐹
‖M [𝑖,𝑗]‖ =

1

2

(︂
1− 1

𝛼

)︂
𝜌𝑖.

For Y , the sum of block norms of row 𝑖 over columns 𝑗 ∈ 𝐶 is
∑︀

𝑗∈𝐶∖{𝑖} ‖M [𝑖,𝑗]‖. So the total sum of
the blocks norms of off-diagonals is

1

2
𝜌𝑖

(︂
1− 1

𝛼

)︂
+

∑︁
𝑗∈𝐶∖{𝑖}

‖M [𝑖,𝑗]‖

The diagonal block satisfies

Y [𝑖,𝑖] < 𝐼𝑟

(︂
𝜌𝑖 −

1

2
‖M [𝑖,𝐹 ]X

−1M [𝐹,𝑖]‖

− 1

2

⎛⎝∑︁
𝑗∈𝐹

∑︁
𝑘∈𝐶∖{𝑖}

‖M [𝑖,𝑗]X
−1/2
[𝑗,𝑗] ‖‖M [𝑘,𝑗]X

−1/2
[𝑗,𝑗] ‖

⎞⎠
−1

2

⎛⎝∑︁
𝑗∈𝐹

∑︁
𝑘∈𝐹
‖M [𝑖,𝑗]X

−1/2
[𝑗,𝑗] ‖‖A[𝑘,𝑗]X

−1/2
[𝑗,𝑗] ‖

⎞⎠⎞⎠
< 𝐼𝑟

⎛⎝𝜌𝑖 + ∑︁
𝑗∈𝐶∖{𝑖}

‖M [𝑖,𝑗]‖

− 1

2

⎛⎝∑︁
𝑗∈𝐹

∑︁
𝑘∈𝐶

1

𝛼𝜌𝑗
‖M [𝑖,𝑗]‖‖M [𝑘,𝑗]‖

⎞⎠
−1

2

⎛⎝∑︁
𝑗∈𝐹

∑︁
𝑘∈𝐹

1

𝛼𝜌𝑗
‖M [𝑖,𝑗]‖‖A[𝑘,𝑗]‖

⎞⎠⎞⎠
< 𝐼𝑟

⎛⎝𝜌𝑖 + ∑︁
𝑗∈𝐶∖{𝑖}

‖M [𝑖,𝑗]‖ −
1

2
𝜌𝑖 −

1

2

1

𝛼
𝜌𝑖

⎞⎠
= 𝐼𝑟

⎛⎝1

2
𝜌𝑖

(︂
1− 1

𝛼

)︂
+

∑︁
𝑗∈𝐶∖{𝑖}

‖M [𝑖,𝑗]‖

⎞⎠ .

For these block rows are also bDD, and hence Y is bDD. It is clear from the definitions that Y as
well as d (𝑖) and g (𝑖) for all 𝑖 can be computed in 𝑂(𝑚) time and 𝑂(log 𝑛) depth.

It is easy to verify that if T is a matrix that is only nonzero inside the submatrix T [𝐶,𝐶], then if we

apply the transformation of Eq. 13.24, toM+T instead ofM , we find (M+T )
(𝑙𝑎𝑠𝑡)
2 = M

(𝑙𝑎𝑠𝑡)
2 +T [𝐶,𝐶],

and in particular Y (M +T ) = Y (M ) +T [𝐶,𝐶].

13.11.4 Sparsifying Product Demand Block-Laplacians

In this section, we show how to efficiently sparsify product demand block-Laplacians and their bipartite
analogs. We prove the following key lemma later in this section that allows us to transfer results on
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graph sparsification to sparsifying these product block-Laplacians.

Lemma 13.11.12. Suppose we have two graphs on 𝑛 vertices, 𝐻(1) and 𝐻(2) such that 𝐻(1) ≈𝜀 𝐻(2).
Given d ∈ (C𝑟×𝑟)𝑛, define the bDD matrix L(ℓ) ∈ (C𝑟×𝑟)𝑛×𝑛 for each ℓ = 1, 2, as

L(ℓ)
[𝑖,𝑗] =

⎧⎨⎩−
ℎ
(ℓ)
𝑖,𝑗

‖d [𝑖]‖‖d [𝑗]‖
d [𝑖]d

*
[𝑗] 𝑖 ̸= 𝑗,

𝐼𝑟 ·
∑︀

𝑘:𝑘 ̸=𝑖 ℎ
(ℓ)
𝑖,𝑘 otherwise,

where ℎ
(ℓ)
𝑖,𝑗 denotes the weight of the edge 𝑖, 𝑗 in 𝐻(ℓ). Then, L(1) ≈𝜀 L(2).

We now introduce scalar versions of product block-Laplacian matrices that will be useful.

Definition 13.11.13. The product demand graph of a vector d ∈ (R>0)
𝑛, 𝐺(d), is a complete

weighted graph on 𝑛 vertices whose weight between vertices 𝑖 and 𝑗 is given by w 𝑖𝑗 = d 𝑖d 𝑗 .
The Laplacian of 𝐺(d), denoted L𝐺(d) is called the product demand Laplacian of d .

Definition 13.11.14. The bipartite product demand graph of two vectors d𝐴 ∈ (R>0)
|𝐴|, d𝐵 ∈

(R>0)
|𝐵|, 𝐺(d𝐴,d𝐵), is a weighted bipartite graph on vertices 𝐴 ∪ 𝐵, whose weight between vertices

𝑖 ∈ 𝐴 and 𝑗 ∈ 𝐵 is given by w 𝑖𝑗 = d𝐴𝑖 d
𝐵
𝑗 .

The Laplacian of 𝐺(d𝐴,d𝐵), denoted L𝐺(d𝐴,d𝐵) is called the bipartite product demand Laplacian

of (d𝐴,d𝐵).

In Section 13.14, we give results on efficiently constructing approximations to product demand
Laplacians that can be summarized as follows:

Lemma 13.11.1. There is a routineWeightedExpander(d , 𝜀) such that for any 𝜀 > 0, and a demand
vector d ∈ (ℜ>0)

𝑛, WeightedExpander(d , 𝜀) returns in 𝑂(𝑛𝜀−4) work and 𝑂(log 𝑛) depth a graph
𝐻 with 𝑂(𝑛𝜀−4) edges such that

L𝐻 ≈𝜀 L𝐺(d).

Lemma 13.11.2. There is a routine WeightedBipartiteExpander(d𝐴,d𝐵, 𝜀) such that for any
demand vectors d𝐴 and d𝐵 of total length 𝑛, and a parameter 𝜀, it returns in 𝑂(𝑛𝜀−4) work and
𝑂(log 𝑛) depth a bipartite graph 𝐻 between 𝐴 and 𝐵 with 𝑂(𝑛𝜀−4) edges such that

L𝐻 ≈𝜀 L𝐺(d𝐴,d𝐵).

Finally, we need to define an operation on graphs: Given a graph 𝐺, define 𝐺(𝐾2) to be the graph
obtained by duplicating each vertex in 𝐺, and for each edge (𝑖, 𝑗) in 𝐺, add a 2 × 2 bipartite clique
between the two copies of 𝑖 and 𝑗.

We now combine the above construction of sparsifiers fo product demand graphs with Lemma 13.11.12
to efficiently construct sparse approximations to product demand block-Laplacians.

Proof. (of Lemma 13.11.6) The procedure CliqueSparsification(d , 𝜀) returns the matrix L where

L[𝑖,𝑗] =

{︃
− ℎ𝑖,𝑗

‖d [𝑖]‖‖d [𝑗]‖
d [𝑖]d

*
[𝑗] 𝑖 ̸= 𝑗,

𝐼𝑟 ·
∑︀

𝑘:𝑘 ̸=𝑖 ℎ𝑖,𝑘 otherwise.

By construction L𝐻 ≈𝜀 L𝐺(w). Thus, applying Lemma 13.11.12, with 𝐻(1) = 𝐻 and 𝐻(2) = 𝐺(w), we
know that L ≈𝜀 L(2), where L(2) is given by

L(2)
[𝑖,𝑗] =

{︃
− w 𝑖w𝑗

‖d [𝑖]‖‖d [𝑗]‖
d [𝑖]d

*
[𝑗] 𝑖 ̸= 𝑗,

𝐼𝑟 ·w 𝑖
∑︀

𝑘:𝑘 ̸=𝑖w𝑘 otherwise.
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Algorithm 42: L = CliqueSparsification (d , 𝜀)

Initialize L ∈ (C𝑟×𝑟)𝑛×𝑛 to 0.
Construct w where w 𝑖 = ‖d [𝑖]‖.
𝐻 ←WeightedExpander(w , 𝜀).
for edge (𝑖, 𝑗) ∈ 𝐻, with weight ℎ𝑖,𝑗 , do

L[𝑖,𝑖] ← L[𝑖,𝑖] + ℎ𝑖,𝑗𝐼𝑟.
L[𝑗,𝑗] ← L[𝑗,𝑗] + ℎ𝑖,𝑗𝐼𝑟.

L[𝑖,𝑗] ← L[𝑖,𝑗] −
ℎ𝑖,𝑗
w 𝑖w𝑗

d [𝑖]d
*
[𝑗].

L[𝑗,𝑖] ← L[𝑗,𝑖] −
ℎ𝑖,𝑗
w 𝑖w𝑗

d [𝑗]d
*
[𝑖].

end

Output L.

Figure 13-8: Pseudocode for Sparsifying Product Demand Block-Laplacians

Algorithm 43: L = BipartiteCliqueSparsification (b, 𝐹, 𝜀)

Initialize L ∈ (C𝑟×𝑟)𝑛×𝑛 to 0.
Construct w where w 𝑖 = ‖d [𝑖]‖. Let 𝐶 = 𝑉 ∖ 𝐹.
𝐻 ←WeightedBipartiteExpander(w |𝐹 ,w |𝐶 , 𝜀).
for edge (𝑖, 𝑗) ∈ 𝐻, with weight ℎ𝑖,𝑗 , do

L[𝑖,𝑖] ← L[𝑖,𝑖] + ℎ𝑖,𝑗𝐼𝑟.
L[𝑗,𝑗] ← L[𝑗,𝑗] + ℎ𝑖,𝑗𝐼𝑟.

L[𝑖,𝑗] ← L[𝑖,𝑗] −
ℎ𝑖,𝑗
w 𝑖w𝑗

d [𝑖]d
*
[𝑗].

L[𝑗,𝑖] ← L[𝑗,𝑖] −
ℎ𝑖,𝑗
w 𝑖w𝑗

d [𝑗]d
*
[𝑖].

end

Output L.

Figure 13-9: Pseudocode for Sparsifying Bipartite Product Demand Block-Laplacians

Since w 𝑖 = ‖d [𝑖]‖, we have L(2) = L𝐺(d), proving our claim.

Proof. (of Lemma 13.11.7) The procedure BipartiteCliqueSparsification(d , 𝐹, 𝜀) returns the ma-
trix L where

L[𝑖,𝑗] =

{︃
− ℎ𝑖,𝑗

‖d [𝑖]‖‖d [𝑗]‖
d [𝑖]d

*
[𝑗] 𝑖 ̸= 𝑗,

𝐼𝑟 ·
∑︀

𝑘:𝑘 ̸=𝑖 ℎ𝑖,𝑘 otherwise.

Since𝐻 returned byWeightedBipartiteExpander is guaranteed to be bipartite using Lemma 13.11.2,
we obtain that (L𝐻)[𝐹,𝐹 ], and (L𝐻)[𝐶,𝐶] are block-diagonal.

By construction L𝐻 ≈𝜀 L𝐺(w |𝐹 ,w |𝐶). Thus, applying Lemma 13.11.12, with 𝐻(1) = 𝐻 and 𝐻(2) =

𝐺(w |𝐹 ,w |𝐶), we know that L ≈𝜀 L(2), where L(2) is given by

L(2)
[𝑖,𝑗] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐼𝑟 ·w 𝑖

∑︀
𝑘∈𝐶 w𝑘 𝑖 = 𝑗, and 𝑖 ∈ 𝐹,

𝐼𝑟 ·w 𝑖
∑︀

𝑘∈𝐹 w𝑘 𝑖 = 𝑗, and 𝑖 ∈ 𝐶,
0 𝑖 ̸= 𝑗, and (𝑖, 𝑗 ∈ 𝐹 or 𝑖, 𝑗 ∈ 𝐶),
− w 𝑖w𝑗

‖d [𝑖]‖‖d [𝑗]‖
d [𝑖]d

*
[𝑗] 𝑖 ̸= 𝑗, otherwise.
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Since w 𝑖 = ‖d [𝑖]‖, we have L(2) = L𝐺(d |𝐹 ,d |𝐶), proving our claim.

Finally, we give a proof of Lemma 13.11.12.

Proof. (of Lemma 13.11.12) Using Fact 13.5.2, we can write each d [𝑖] as
1
2‖d [𝑖]‖(Q

(1)
𝑖 +Q

(2)
𝑖 ), where

Q
(1)
𝑖 (Q

(1)
𝑖 )* = Q

(2)
𝑖 (Q

(2)
𝑖 )* = 𝐼𝑟. Construct the matrix F ∈ (C𝑟×𝑟)2𝑛×2𝑛 as follows:

F =

⎡⎢⎣ Q
(1)
1 Q

(2)
1 0 0 . . .

0 0 Q
(1)
2 Q

(2)
2 . . .

...
...

. . .

⎤⎥⎦ .
Now, observe that for each ℓ = 1, 2,

L(ℓ)
[𝑖,𝑖] =

1

2

⎛⎝∑︁
𝑘:𝑘 ̸=𝑖

ℎ
(ℓ)
𝑖,𝑘

⎞⎠ · (︁Q (1)
𝑖 (Q

(1)
𝑖 )* +Q

(2)
𝑖 (Q

(2)
𝑖 )*

)︁
=

1

4

(︁
F (L

(𝐻(ℓ))
(𝐾2) ⊗ 𝐼𝑟)F *

)︁
[𝑖,𝑖]
,

where L
(𝐻(ℓ))

(𝐾2) is the Laplacian of the graph (𝐻(ℓ))
(𝐾2)

defined above, and ⊗ tensor product. Also,

for 𝑖 ̸= 𝑗,

L(ℓ)
[𝑖,𝑗] = −

ℎ
(ℓ)
𝑖,𝑗

w 𝑖w 𝑗
d [𝑖]d

*
[𝑗] = −

ℎ
(ℓ)
𝑖,𝑗

4
·
(︁
Q

(1)
𝑖 +Q

(2)
𝑖

)︁(︁
Q

(1)
𝑗 +Q

(2)
𝑗

)︁*
=

1

4

(︁
F (L

(𝐻(ℓ))
(𝐾2) ⊗ 𝐼𝑟)F *

)︁
[𝑖,𝑗]

,

Thus,

L(ℓ) =
1

4
F (L

(𝐻(ℓ))
(𝐾2) ⊗ 𝐼𝑟)F *.

By assumption, we have L𝐻(1) ≈𝜀 L𝐻(2) . Using Lemma 13.11.15, we get that L
𝐻(1)(𝐾2) ≈𝜀 𝐿𝐻(2)(𝐾2) .

This implies
L
(𝐻(1))

(𝐾2) ⊗ 𝐼𝑟 ≈𝜀 L(𝐻(2))
(𝐾2) ⊗ 𝐼𝑟,

and thus, L(1) ≈𝜀 L(2).

13.11.5 Constructing sparsifiers for lifts of graphs

Given a graph 𝐺, define 𝐺(𝐾2) to be the graph obtained by duplicating each vertex in 𝐺, and for each
edge (𝑖, 𝑗) in 𝐺, add a 2× 2 bipartite clique between the two copies of 𝑖 and 𝑗.

Lemma 13.11.15. If 𝐻 is a sparsifier for 𝐺, i.e., 𝐿𝐺 ≈𝜀 𝐿𝐻 , then 𝐻(𝐾2) is a sparsifier for 𝐺(𝐾2),
i.e. 𝐿𝐺(𝐾2) ≈𝜀 𝐿𝐻(𝐾2) .

Proof. Since 𝐿𝐺 ≈𝜀 𝐿𝐻 , we have 𝑒⊤𝑖 𝐿𝐺𝑒𝑖 ≈𝜀 𝑒⊤𝑖 𝐿𝐻𝑒𝑖. Thus, if 𝐷𝐺 denotes the diagonal matrix of
degrees of 𝐺, we have 𝐷𝐺 ≈𝜀 𝐷𝐻 . The Laplacian for 𝐺(𝐾2) is

𝐿𝐺(𝐾2) = 𝐿𝐺 ⊗
[︂
1 1
1 1

]︂
+𝐷𝐺 ⊗

[︂
1 −1
−1 1

]︂
.

Similarly,

𝐿𝐻(𝐾2) = 𝐿𝐻 ⊗
[︂
1 1
1 1

]︂
+𝐷𝐻 ⊗

[︂
1 −1
−1 1

]︂
.
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Observe that we can write

𝐿𝐺 ⊗
[︂
1 1
1 1

]︂
=

⎡⎢⎣ 1 1 0 0 . . .
0 0 1 1 . . .
...

...
. . .

⎤⎥⎦𝐿𝐺
⎡⎢⎣ 1 1 0 0 . . .

0 0 1 1 . . .
...

...
. . .

⎤⎥⎦
⊤

.

Since 𝐿𝐺 ≈𝜀 𝐿𝐻 , this implies

𝐿𝐺 ⊗
[︂
1 1
1 1

]︂
≈𝜀 𝐿𝐻 ⊗

[︂
1 1
1 1

]︂
.

Similarly, we get,

𝐷𝐺 ⊗
[︂

1 −1
−1 1

]︂
≈𝜀 𝐷𝐻 ⊗

[︂
1 −1
−1 1

]︂
.

Adding the above two, we get 𝐿𝐺(𝐾2) ≈𝜀 𝐿𝐻(𝐾2) .

13.12 Estimating Leverage Scores by Undersampling

We will control the densities of all intermediate bDD matrices using the uniform sampling technique
introduced in Chapter 3. It relies on sampling columns 2 of matrices by upper bounds of their true
leverage scores,

𝜏 𝑖 (A) = 𝑎𝑇𝑖 (AA*)−1 𝑎𝑖.

These upper bounds are measured w.r.t. a different matrix, giving generalized leverage scores of the
form:

𝜏B𝑖 (A) =

{︃
𝑎*𝑖 (BB*)−1𝑎𝑖 if 𝑎𝑖 ⊥ ker(B),

1 otherwise.

We introduced unitary edge-vertex transfer matrices in Definition 13.6.4. Sparsifying bDD matrices
can be transformed into the more general setting described above via a unitary edge-vertex transfer
matrix, which is analogous to the edge-vertex incidence matrix.

Lemma 13.6.5 proves that every bDD matrix M ∈ (C𝑟×𝑟)𝑛×𝑛 with 𝑚 nonzero off-diagonal blocks
can be written as X +BB* where B ∈ (C𝑟×𝑟)𝑛×2𝑚 is a unitary edge-vertex transfer matrix and X is
a block diagonal PSD matrix. Additionally, for every block diagonal matrix Y s.t. M −Y is bDD,
we have X < Y . This decomposition can be found in 𝑂(𝑚) time and 𝑂(log 𝑛) depth. We rely on this
X to detect some cases of high leverage scores as samples of B may have lower rank.

We will reduce the number of nonzero blocks in M by sampling columns blocks from this matrix.
This is more restrictive than sampling individual columns. Nonetheless, it can be checked via matrix
concentration bounds [3, 251] that it suffices to sample the block by analogs of leverage scores:

𝜏 [𝑖] = tr
(︁
B*

[𝑖](X +BB*)−1B [𝑖]

)︁
(13.36)

As in Chapter 3, we recursively estimate upper bounds for these scores, leading to the pseudocode
given in Figure 13-10.

Lemma 13.12.1. Given a positive definite bDD matrix M ∈ (C𝑟×𝑟)𝑛×𝑛 with 𝑚 nonzero blocks.
Assume that for any positive definite bDD matrix M ′ ∈ (C𝑟×𝑟)𝑛×𝑛 with ̂︀𝑚 nonzero blocks, we can

find an implicit representation of a matrix W such that W ≈1 (M
′)
−1

in depth 𝑑𝑐𝑜𝑛(̂︀𝑚,𝑛) and work
𝑤𝑐𝑜𝑛(̂︀𝑚,𝑛) and for any vector 𝑏, we can evaluate Wb in depth 𝑑𝑒𝑣𝑎𝑙(̂︀𝑚,𝑛) and work 𝑤𝑒𝑣𝑎𝑙(̂︀𝑚,𝑛).

2In Chapter 3, we sample rows of matrices. Here, we sample columns instead in order to use a more natural set of
notations.
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Algorithm 44: ̃︁M = Sparsify(M , 𝜀,𝐾)

Write M into the form X +BB* where X is a block diagonal positive definite matrix X and
B is an unitary edge-vertex transfer matrix.
Uniformly sample 𝑚

𝐾 column blocks of B to form C .
Find an implicit representation of (X +CC *)−1, W .

Approximate tr
(︁
B*

[𝑖](X +CC *)−1B [𝑖]

)︁
using Johnson-Lindenstrauss projections.

This involves applying W to 𝑂(log 𝑛) random vectors.
Use these estimates to sample blocks of B to form B̃ .
Return X + B̃B̃

*
.

Figure 13-10: Sparsification via. Uniform Sampling

For any 𝐾 ≥ 1, 1 ≥ 𝜀 > 0, the algorithm Sparsify(M , 𝜀,𝐾) outputs an explicit positive definite

bDD matrix ̃︁M with 𝑂(𝐾𝑛 log 𝑛/𝜀2) nonzero blocks and ̃︁M ≈𝜀 M .
Also, this algorithm runs in

𝑑𝑐𝑜𝑛

(︁𝑚
𝐾
,𝑛
)︁
+𝑂

(︁
𝑑𝑒𝑣𝑎𝑙

(︁𝑚
𝐾
,𝑛
)︁
+ log 𝑛

)︁
depth and

𝑤𝑐𝑜𝑛

(︁𝑚
𝐾
,𝑛
)︁
+𝑂

(︁
𝑤𝑒𝑣𝑎𝑙

(︁𝑚
𝐾
,𝑛
)︁
log 𝑛+𝑚 log 𝑛

)︁
work.

The guarantees of this process can be obtained from the main result from Chapter 3:

Theorem 13.12.2. Let A be a 𝑛 by 𝑚 matrix, and 𝛼 ∈ (0, 1] a density parameter. Consider the
matrix A′ consisting of a random 𝛼 fraction of the columns of A. Then, with high probability we have
u 𝑖 = 𝜏A

′
𝑖 (A) is a vector of leverage score overestimates, i.e. 𝜏𝑖(A) ≤ u 𝑖, and

𝑚∑︁
𝑖=1

u 𝑖 ≤
3𝑛

𝛼
.

Proof. (Sketch of Lemma 13.12.1) Instead of sampling 𝑚/𝐾 column blocks, consider sampling 𝑚/𝐾
individual columns to form ̂︀C . Theorem 13.12.2 gives that the total leverage scores of all the columns
of B w.r.t. ̂︀C is at most 𝑂(𝑛𝐾𝑟2).

As C is formed by taking blocks instead of columns, we have

X +CC * < X + ̂︀C ̂︀C *
,

so the individual leverage scores computed w.r.t. C (and in turn W ) sums up to less than the ones
computed w.r.t. ̂︀C .

Let us use b [𝑖],𝑗 ∈ C𝑛 to denote the 𝑗th column of the B [𝑖] block column. Note that

B [𝑖]B
*
[𝑖] =

∑︁
𝑗

b [𝑖],𝑗b
*
[𝑖],𝑗 .

Define 𝜏X+CC*

[𝑖],𝑗 = tr
(︁
b*
[𝑖],𝑗(X +CC *)−1b [𝑖],𝑗

)︁
.

We then have
tr
(︁
B*

[𝑖](X +CC *)−1B [𝑖]

)︁
=
∑︁
𝑗

𝜏X+CC*

[𝑖],𝑗 ,
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so the total sum of the estimates we obtain is at most 𝑂(𝑛𝑟2𝐾), which gives B̃ with 𝑂(𝐾𝑛 log 𝑛𝜀−2)
blocks.

To approximate
∑︀

𝑗 𝜏
X+CC*

[𝑖],𝑗 , we apply a standard technique given by [242, 23, 170]. The rough
idea is to write

𝜏X+CC*

[𝑖],𝑗 = ‖C *(X +CC *)−1b [𝑖],𝑗‖2 + ‖
√
X (X +CC *)−1b [𝑖],𝑗‖2

By Johnson-Lindenstrauss Lemma, for a random Gaussian matrix G with Θ(log(𝑛)) rows, we know
that

𝜏X+CC*

[𝑖],𝑗 ≈2 ‖GC *(X +CC *)−1b [𝑖],𝑗‖2 + ‖G
√
X (X +CC *)−1b [𝑖],𝑗‖2

for high probability. Since G has 𝑂(log(𝑛)) rows, this can be approximated by applying the ap-
proximate inverse W to 𝑂(log(𝑛)) vectors. Hence, step 3 runs in 𝑂(𝑑𝑒𝑣𝑎𝑙(

𝑚
𝐾 , 𝑛) + log 𝑛) depth and

𝑂(𝑤𝑒𝑣𝑎𝑙(
𝑚
𝐾 , 𝑛) log 𝑛+𝑚 log 𝑛) work.

We remark that the extra factor of 𝑟2 can likely be improved by modifying the proof of The-
orem 13.12.2 to work with blocks. We omit this improvement for simplicity, especially since we’re
already treating 𝑟 as a constant.

13.13 Recursive Construction of Schur Complement Chains

We now give the full details for the recursive algorithm that proves the running times as stated in
Theorem 13.1.2:

Theorem 13.1.2 (Sparsified Multigrid). There is an algorithm that, when given a bDD matrix M
with 𝑛 block rows and 𝑚 nonzero blocks, produces a solver for M in 𝑂(𝑚 log 𝑛 + 𝑛 log2+𝑜(1) 𝑛) work
and 𝑂(𝑛𝑜(1)) depth so that the solver finds 𝜀-approximate solutions to systems of equations in M in
𝑂((𝑚+ 𝑛 log1+𝑜(1) 𝑛) log(1/𝜀)) work and 𝑂(log2 𝑛 log log𝑛 log(1/𝜀)) depth.

This argument can be viewed as a more sophisticated version of the one in Section 13.3.6. The
main idea is to invoke routines for reducing edges and vertices in a slightly unbalanced recursion,
where several steps of vertex reductions take place before a single edge reduction. The routines that
we will call are:

1. bDDSubset given by Lemma 13.3.2 proven in Section 13.8 for finding a large set of 𝛼-bDD
subset.

2. ApproxSchur given by Lemma 13.11.1 proven in Section 13.11 that gives sparse approximations
to Schur complements.

3. Sparsify given by Lemma 13.12.1 proven in Section 13.12 that allows us to sparsify a bDD
matrix by recursing on a uniform subsample of its non-zero blocks.

An additional level of complication comes from the fact that the approximation guarantees of our
constructions rely on gradually decreasing errors down the Schur complement chain. This means
that the density increases faster and larger reduction factors 𝐾 are required as the iteration goes on.
Pseudocode of our algorithm is given in Figure 13-11.

Note that since M (0) may be initially dense, we first make a recursive call to Sparsify before
computing the approximate Schur complements.

In our analysis, we will use 𝑛(𝑖) to denote the number of non-zero column/row blocks in M (𝑖),
and 𝑚(𝑖) to denote the number of non-zero blocks in M (𝑖). These are analogous to dimension and
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Algorithm 45: (M (1),M (2), · · · ;𝐹1, 𝐹2, · · · ) = RecursiveConstruct(M (0))

Set 𝑖← 0, and 𝑘 and 𝑐 are parameters to be decided.
while M (𝑖) has more than Θ(1) blocks do

If 𝑖 mod 𝑘 = 0, ThenM (𝑖) ← Sparsify(M (𝑖), (𝑖+ 8)−2, 22𝑐𝑘 log
2(𝑖+1)).

𝐹𝑖+1 ← bDDSubset

(︁
M (𝑖), 4

)︁
.

M (𝑖+1) ← ApproxSchur(M (𝑖), 𝐹𝑖+1, 4, (𝑖+ 8)−2).
𝑖← 𝑖+ 1.

end

Figure 13-11: Pseudocode for Recursively Constructing Schur Complement Chains, the recursive calls happen
through Sparsify, which constructs its own Schur Complement Chains to perform the sparsification

number of non-zeros in the matrix. It is also useful to refer to the steps between calls to Sparsify as
phases. Specifically, phase 𝑗 consists of iterations (𝑗 − 1)𝑘 to 𝑗𝑘 − 1. We will also use 𝐾𝑗 to denote
the reduction factor used to perform the sparsification at the start of phase 𝑗, aka.

𝐾𝑗 = 22𝑐𝑘 log
2((𝑗−1)𝑘+1).

A further technicality is that Lemma 13.12.1 require a strictly positive definite block-diagonal part
to facilitate the detection of vectors in the null space of the sample. We do so by padding M with
a small copy of the identity, and will check below that this copy stays throughout the course of this
algorithm.

Lemma 13.13.1. For any bDD matrix M (0) expressible as 𝜉𝐼 + B (0)(B (0))* for some 𝜉 > 0 and
unitary edge-vertex transfer matrix B , all intermediate matrices M ′ generated during the algorithm
RecursiveConstruct(M (0)) can be expressed as 𝜉𝐼 +B ′(B ′)*.

Proof. There are two mechanisms by which this recursive algorithm generates new matrices: through
uniform sampling within Sparsify and via ApproxSchur. We will show inductively down the
algorithmic calls that all matrices satisfy this property.

Lemma 13.12.1 gives that this X is preserved in the sample.
For calls to ApproxSchur(M , 𝐶), the inductive hypothesis gives that M [𝐶,𝐶] is expressible aŝ︁M + 𝜉𝐼𝐶 . The last condition in Lemma 13.3.4 then gives that the result also has a 𝜉𝐼𝐶 part, which

gives the inductive hypothesis for it as well.

As the interaction between this padding and our recursion is minimal, we will simply state the
input conditions as M = 𝜉𝐼 +BB* for some 𝜉 > 0. We will first bound the sizes of the matrices in
the Schur complement chain produced by RecursiveConstruct.

Lemma 13.13.2. For any bDD matrix M (0) = 𝜉𝐼 + B (0)(B (0))* for some 𝜉 > 0, the algorithm
RecursiveConstruct(M (0)) returns a Schur complement chain (M (1),M (2), · · · ;𝐹1, 𝐹2, · · · ) such
that:

1. 𝑛(𝑖) ≤ 𝛽𝑖𝑛(0) for some absolute constant 𝛽 < 1.

2. The number of non-zero blocks in any iteration 𝑖 of phase 𝑗 is at most 23𝑐𝑘 log
2(𝑗𝑘)𝑛((𝑗−1)𝑘) log 𝑛((𝑗−1)𝑘).
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Proof. Lemma 13.3.2 and the choice of 𝛼 = 4 ensures |𝐹𝑘| = Ω(𝑛(𝑖)), which means there is constant
𝛽 < 1 such that 𝑛(𝑖) ≤ 𝛽𝑘𝑛. Furthermore, we do not increase vertex count at any point in this
recursion, and all recursive calls are made to smaller graphs. Therefore, the recursion terminates.

Lemma 13.11.1 shows that after computing each approximate Schur complement,

𝑚(𝑖+1) = 𝑂(𝑚(𝑖)(𝑖2 log(𝑖+ 8))𝑂(log(𝑖+8)))

≤ 2𝑂(log
2(𝑖+1))𝑚(𝑖).

Hence, by picking 𝑐 appropriately we can guarantee that the density increases by a factor of most
2𝑐 log

2(𝑖+1) during each iteration. This size increase is controlled by calls to Sparsify. Specifically,
Lemma 13.12.1 gives that at the start of phase 𝑗 we have:

𝑚((𝑗−1)𝑘)

𝑛((𝑗−1)𝑘) log 𝑛((𝑗−1)𝑘)
≤ 22𝑐𝑘 log

2((𝑗−1)𝑘).

Then, since we go at most 𝑘 steps without calling Sparsify, this increase in density can be bounded
by:

22𝑐𝑘 log
2((𝑗−1)𝑘)2𝑐 log

2(𝑗𝑘−1) · · · 2𝑐 log
2((𝑗−1)𝑘+1) ≤ 23𝑐𝑘 log

2(𝑗𝑘).

Lemma 13.13.3. For any bDD matrix M (0) = 𝜉𝐼 + B (0)(B (0))* for some 𝜉 > 0 that has 𝑛 blocks,
the algorithm RecursiveConstruct(M (0)) returns a Schur Complement Chain (M (1), · · · ;𝐹1, · · · )
whose corresponding the linear operator W satisfies

W ≈𝑂(1)

(︁
M (0)

)︁−1
.

Also, we can evaluate Wb in 𝑂(log2 𝑛 log log𝑛) depth and 2𝑂(𝑘 log2 𝑘)𝑛 log 𝑛 work for any vector b.

Proof. We first bound the quality of approximation between W and
(︁
M (0)

)︁−1
. The approximate

Schur complement M (𝑖+1) was constructed so that M (𝑖+1) ≈(𝑖+8)−2 𝑆𝑐
(︁
M (𝑖), 𝐹𝑖

)︁
. The other source

of error, Sparsify, is called only for some 𝑖. In those iterations, Lemma 13.12.1 guarantee that M (𝑖)

changes only by (𝑖 + 8)−2 factor. This means overall we have M (𝑖+1) ≈2(𝑖+8)−2 𝑆𝑐
(︁
M (𝑖), 𝐹𝑖

)︁
. By

Lemma 13.3.1, we have:

W ≈1/2+4
∑︀

𝑖(𝑖+8)−2

(︁
M (0)

)︁−1
,

and it can be checked that
∑︀

𝑖(𝑖+ 8)−2 is a constant.
The cost of ApplyChain is dominated by the sequence of calls to Jacobi. As each 𝐹𝑖 is chosen to

be 4-bDD, the number of iterations required is 𝑂(log(𝜀𝑖)) = 𝑂(log 𝑖). As matrix-vector multiplications
take 𝑂(log 𝑛) depth, the total depth can be bounded by.

𝑂

(︃∑︁
𝑖

log 𝑖 log 𝑛(𝑖)

)︃
= 𝑂

(︀
log2 𝑛 log log 𝑛

)︀
The total work of these steps depend on the number of non-zero blocks, 𝑚(𝑖). Substituting the

bounds from Lemma 13.13.2 into Jacobi gives a total of:

𝑂

(︃∑︁
𝑖

23𝑐𝑘 log
2(𝑖+𝑘)𝑛(𝑖) log 𝑛(𝑖) log 𝑖

)︃
≤ 2𝑂(𝑘 log2 𝑘)𝑛 log 𝑛
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where the inequality follows from the fact that the 𝑛(𝑖)s are geometrically decreasing.

This allows us to view the additional overhead of Sparsify as a black box, and analyze the total
cost incurred by the non-recursive parts of RecursiveConstruct during each phase.

Lemma 13.13.4. The total cost of RecursiveConstruct during phase 𝑗, including the linear
system solves made by Sparsify at iteration (𝑗− 1)𝑘 (but not its recursive invocation to Recursive-
Construct) is

2𝑂(𝑘 log2(𝑗𝑘))𝑛((𝑗−1)𝑘) log2 𝑛((𝑗−1)𝑘)

in work and
𝑂
(︁
𝑘 log(𝑗𝑘) log2 𝑛((𝑗−1)𝑘)

)︁
+𝑂

(︁
log2 𝑛((𝑗−1)𝑘) log log 𝑛((𝑗−1)𝑘)

)︁
in depth.

Proof. Let 𝑚(𝑖) and 𝑛(𝑖) be the number of non zeros and variables in M (𝑖) before the Sparsify
call if there is. Lemmas 13.3.2 and 13.11.1 show that the 𝑖𝑡ℎ iteration takes 𝑂(𝑚(𝑖) +𝑚(𝑖+1)) work
and 𝑂(log 𝑖 log 𝑛(𝑖)) depth. By Lemma 13.13.2 the cost during these iterations excluding the call to
Sparsify is:

𝑗𝑘−1∑︁
𝑖=(𝑗−1)𝑘

𝑂
(︁
𝑚(𝑖) +𝑚(𝑖+1)

)︁
≤

𝑗𝑘−1∑︁
𝑖=(𝑗−1)𝑘

2𝑂(𝑘 log2 𝑖)𝑛(𝑖) log 𝑛(𝑖)

≤ 2𝑂(𝑘 log2(𝑗𝑘))𝑛((𝑗−1)𝑘) log 𝑛((𝑗−1)𝑘)

work and

𝑗𝑘−1∑︁
𝑖=(𝑗−1)𝑘

𝑂
(︁
log 𝑖 log 𝑛(𝑖)

)︁
≤ 𝑂(𝑘 log((𝑗 − 1)𝑘) log 𝑛((𝑗−1)𝑘))

depth.
We now consider the call to Sparsify made during iteration (𝑗 − 1)𝑘. Access to a fast solver for

the sampled bDD matrix is obtained via recursive calls to RecursiveConstruct. The guarantees
of the chain given by Lemma 13.13.3 above means each solve takes depth

𝑑𝑒𝑣𝑎𝑙 = log2 𝑛((𝑗−1)𝑘) log log 𝑛((𝑗−1)𝑘),

and work
𝑤𝑒𝑣𝑎𝑙 = 𝑛((𝑗−1)𝑘) log 𝑛((𝑗−1)𝑘)

Incorporating these parameters into Lemma 13.12.1 allows us to bound the overhead from these solves
by

2𝑂(𝑘 log2(𝑗𝑘)))𝑛((𝑗−1)𝑘) log2 𝑛((𝑗−1)𝑘)

work and
𝑂
(︁
𝑘 log (𝑗𝑘) log 𝑛(𝑗𝑘)

)︁
+𝑂

(︁
log2 𝑛((𝑗−1)𝑘) log log

(︁
𝑛((𝑗−1)𝑘)

)︁)︁
depth.

Note that at the end of the 𝑗𝑡ℎ phase, the time required to construct an extra Schur complement
chain for the Sparsify call is less than the remaining cost after the 𝑗𝑡ℎ phase. This is the reason why
we use 22𝑐𝑘 log

2(𝑖+1) as the reduction factor for the Sparsify call. The following theorem takes account
for the recursive call and show the total running time for the algorithm.
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Lemma 13.13.5. With high probability, RecursiveConstruct
(︁
M (0)

)︁
takes 2𝑂(log𝑛/𝑘) depth and

𝑚 log 𝑛+ 2𝑂(𝑘 log2 𝑘)𝑛 log2 𝑛 work.

Proof. Lemma 13.13.2 shows that the call to Sparsify at the start of each phase 𝑗 requires the
construction of an extra Schur complement chain on a matrix with 𝑛((𝑗−1)𝑘) row/column blocks and
at most 2𝑐𝑘 log

2((𝑗−1)𝑘)𝑛((𝑗−2)𝑘) log 𝑛((𝑗−2)𝑘) non-zeros blocks. The guarantees of Lemma 13.12.1 gives
that the number of non-zero block in the sparsified matrix is at most

𝐶22𝑐𝑘 log
2((𝑗−1)𝑘)𝑛((𝑗−1)𝑘) log 𝑛((𝑗−1)𝑘)

for some absolute constant 𝐶. Therefore the cost of this additional call is less than the cost of
constructing the rest of the phases during the construction process. Therefore, every recursive call
except the first one can be viewed as an extra branching factor of 2 at each subsequent phase.

Depth can be bounded by the total number of recursive invocations to RecursiveConstruct.
The fact that 𝑛(𝑖) is geometrically decreasing means there are 𝑂(log 𝑛/𝑘) phases. Choosing 𝑘 so that
𝑘 log2 𝑘 = 𝑜(log 𝑛) gives a depth of:

𝑂(log𝑛/𝑘)∑︁
𝑗=1

2𝑗
(︁
𝑘 log(𝑗𝑘) log 𝑛(𝑗𝑘) + log2 𝑛(𝑗𝑘) log log𝑛(𝑗𝑘)

)︁
= 2𝑂(log𝑛/𝑘)𝑂

(︁
𝑘 log log𝑛 log 𝑛(𝑙𝑎𝑠𝑡) + log2 𝑛(𝑙𝑎𝑠𝑡) log log𝑛(𝑙𝑎𝑠𝑡)

)︁
= 2𝑂(log𝑛/𝑘)𝑂

(︀
𝑘2 log log 𝑛+ 𝑘2 log 𝑘

)︀
= 2𝑂(log𝑛/𝑘)𝑘2 log log(𝑛)

= 2𝑂(log𝑛/𝑘).

For bounding work, we start with the sparse case since all intermediate matrices generated during
the construction process have density at most 2𝑂(𝑘 log2 𝑘). In this case, the extra branching factor of 2
at each phase can be accounted for by weighting the cost of iteration 𝑗 by 2𝑗 , giving:

𝑂(log𝑛/𝑘)∑︁
𝑗=1

2𝑗
(︁
2𝑂(𝑘 log2(𝑗𝑘))𝑛(𝑗𝑘) log2 𝑛(𝑗𝑘)

)︁
= 2𝑂(𝑘 log2 𝑘)𝑛 log2 𝑛.

For the dense case, the first recursive call to Sparsify(M (0), 𝑂(1), 22𝑐𝑘) is made to a graph whose
edge count is much less. This leads to a geometric series, and an overhead of 𝑂(𝑚 log 𝑛) work at each
step. As this can happen at most 𝑂(log 𝑛) times, it gives an additional factor of 𝑂(log 𝑛) in depth,
which is still 2𝑂(log𝑛/𝑘). The work obeys the recurrence:

𝑊 (𝑚)𝑑𝑒𝑛𝑠𝑒 ≤

{︃
2𝑂(𝑘 log2 𝑘)𝑛 log2 𝑛 if 𝑚 ≤ 2𝑂(𝑘 log2 𝑘)𝑛 log 𝑛, and

𝑊𝑑𝑒𝑛𝑠𝑒 (𝑚/2) +𝑚 log 𝑛+ 2𝑂(𝑘 log2 𝑘)𝑛 log2 𝑛 otherwise.

which solves to:
𝑊𝑑𝑒𝑛𝑠𝑒(𝑚) ≤ 𝑂(𝑚 log 𝑛) + 2𝑂(𝑘 log2 𝑘)𝑛 log2 𝑛.

To obtain Theorem 13.1.2, we simply choose an appropriate initial padding and set the parameter
𝑘.
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Proof. (of Theorem 13.1.2) Lemma 13.2.2 allows us to solve the linear system M + 𝜀𝜇𝐼 instead.
Invoking Lemma 13.13.5 with 𝑘 = log log log 𝑛 gives a depth of 2𝑂(log𝑛/ log log log𝑛), and work of𝑚 log 𝑛+
2𝑂(log log log𝑛 log log log log4 𝑛)𝑛 log2 𝑛. The depth term can be simplified to 𝑛𝑜(1) while the work term can
be simplified to 2𝑂(log log log2 𝑛) = log𝑜(1) 𝑛.

13.14 Weighted Expander Constructions

In this section, we give a linear time algorithm for computing linear sized spectral sparsifiers of com-
plete and bipartite product demand graphs. These routines give Lemmas 13.11.2 and 13.11.1, which
are crucial for controlling the densities of intermediate matrices in the spectral vertex sparsification
algorithm from Section 13.11. Recall that the product demand graph with vertex set 𝑉 and demands
d : 𝑉 → R>0 is the complete graph in which the weight of edge (𝑢, 𝑣) is the product 𝑑𝑢𝑑𝑣. Similarly,
the bipartite demand graph with vertex set 𝑈 ∪ 𝑉 and demands d : 𝑈 ∪ 𝑉 → R>0 is the complete
bipartite graph on which the weight of the edge (𝑢, 𝑣) is the product 𝑑𝑢𝑑𝑣. Our routines are based on
reductions to the unweighted, uniform case. In particular, we

1. Split all of the high demand vertices into many vertices that all have the same demand. This
demand will still be the highest.

2. Given a graph in which almost all of the vertices have the same highest demand, we

(a) drop all of the edges between vertices of lower demand,

(b) replace the complete graph between the vertices of highest demand with an expander, and

(c) replace the bipartite graph between the high and low demand vertices with a union of stars.

3. To finish, we merge back together the vertices that split off from each original vertex.

We start by showing how to construct the expanders that we need for step (2b). We state formally
and analyze the rest of the algorithm for the complete case in the following two sections. We explain
how to handle the bipartite case in Section 13.14.3.

Expanders give good approximations to unweighted complete graphs, and our constructions will
use the spectrally best expanders—Ramanujan graphs. These are defined in terms of the eigenvalues of
their adjacency matrices. We recall that the adjacency matrix of every 𝑑-regular graph has eigenvalue
𝑑 with multiplicity 1 corresponding to the constant eigenvector. If the graph is bipartite, then it
also has an eigenvalue of −𝑑 corresponding to an eigenvector that takes value 1 on one side of the
bipartition and −1 on the other side. These are called the trivial eigenvalues. A 𝑑-regular graph is
called a Ramanujan graph if all of its non-trivial eigenvalues have absolute value at most 2

√
𝑑− 1.

Ramanujan graphs were constructed independently by Margulis [188] and Lubotzky, Phillips, and
Sarnak [181]. The following theorem and proposition summarizes part of their results.

Theorem 13.14.1. Let 𝑝 and 𝑞 be unequal primes congruent to 1 modulo 4. If 𝑝 is a quadratic residue
modulo 𝑞, then there is a non-bipartite Ramanujan graph of degree 𝑝+ 1 with 𝑞2(𝑞 − 1)/2 vertices. If
𝑝 is not a quadratic residue modulo 𝑞, then there is a bipartite Ramanujan graph of degree 𝑝+ 1 with
𝑞2(𝑞 − 1) vertices.

The construction is explicit.

Proposition 13.14.2. If 𝑝 < 𝑞, then the graph guaranteed to exist by Theorem 13.14.1 can be con-
structed in parallel depth 𝑂(log 𝑛) and work 𝑂(𝑛), where 𝑛 is its number of vertices.
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Proof. When 𝑝 is a quadratic residue modulo 𝑞, the graph is a Cayley graph of 𝑃𝑆𝐿(2, 𝑍/𝑞𝑍). In the
other case, it is a Cayley graph of 𝑃𝐺𝐿(2, 𝑍/𝑞𝑍). In both cases, the generators are determined by
the 𝑝 + 1 solutions to the equation 𝑝 = 𝑎20 + 𝑎21 + 𝑎22 + 𝑎23 where 𝑎0 > 0 is odd and 𝑎1, 𝑎2, and 𝑎3 are
even. Clearly, all of the numbers 𝑎0, 𝑎1, 𝑎2 and 𝑎3 must be at most

√
𝑝. So, we can compute a list of

all sums 𝑎20 + 𝑎21 and all of the sums 𝑎22 + 𝑎23 with work 𝑂(𝑝), and thus a list of all 𝑝+1 solutions with
work 𝑂(𝑝2) < 𝑂(𝑛).

As the construction requires arithmetic modulo 𝑞, it is convenient to compute the entire multipli-
cation table modulo 𝑞. This takes time 𝑂(𝑞2) < 𝑂(𝑛). The construction also requires the computation
of a square root of −1 modulo 𝑞, which may be computed from the multiplication table. Given this
data, the list of edges attached to each vertex of the graph may be produced using linear work and
logarithmic depth.

For our purposes, there are three obstacles to using these graphs:

1. They do not come in every degree.

2. They do not come in every number of vertices.

3. Some are bipartite and some are not.

We handle the first two issues by observing that the primes congruent to 1 modulo 4 are sufficiently
dense. To address the third issue, we give a procedure to convert a non-bipartite expander into a
bipartite expander, and vice versa.

An upper bound on the gaps between consecutive primes congruent to 1 modulo 4 can be obtained
from the following theorem of Tchudakoff.

Theorem 13.14.3. For two integers 𝑎 and 𝑏, let 𝑝𝑖 be the 𝑖th prime congruent to 𝑎 modulo 𝑏. For
every 𝜀 > 0,

𝑝𝑖+1 − 𝑝𝑖 ≤ 𝑂(𝑝
3/4+𝜀
𝑖 ).

Corollary 13.14.4. There exists an 𝑛0 so that for all 𝑛 ≥ 𝑛0 there is a prime congruent to 1 modulo
4 between 𝑛 and 2𝑛.

We now explain how we convert between bipartite and non-bipartite expander graphs. To convert a
non-bipartite expander into a bipartite expander, we take its double-cover. We recall that if 𝐺 = (𝑉,𝐸)
is a graph with adjacency matrix A, then its double-cover is the graph with adjacency matrix(︂

0 A

A𝑇 0

)︂
.

It is immediate from this construction that the eigenvalues of the adjacency matrix of the double-cover
are the union of the eigenvalues of A with the eigenvalues of −A.

Proposition 13.14.5. Let 𝐺 be a connected, 𝑑-regular graph in which all matrix eigenvalues other
than 𝑑 are bounded in absolute value by 𝜆. Then, all non-trivial adjacency matrix eigenvalues of the
double-cover of 𝐺 are also bounded in absolute value by 𝜆.

To convert a bipartite expander into a non-bipartite expander, we will simply collapse the two
vertex sets onto one another. If 𝐺 = (𝑈 ∪ 𝑉,𝐸) is a bipartite graph, we specify how the vertices of 𝑉
are mapped onto 𝑈 by a permutation 𝜋 : 𝑉 → 𝑈 . We then define the collapse of 𝐺 induced by 𝜋 to
be the graph with vertex set 𝑈 and edge set

{(𝑢, 𝜋(𝑣)) : (𝑢, 𝑣) ∈ 𝐸} .
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Note that the collapse will have self-loops at vertices 𝑢 for which (𝑢, 𝑣) ∈ 𝐸 and 𝑢 = 𝜋(𝑣). We assign
a weight of 2 to every self loop. When a double-edge would be created, that is when (𝜋(𝑣), 𝜋−1(𝑢)) is
also an edge in the graph, we give the edge a weight of 2. Thus, the collapse can be a weighted graph.

Proposition 13.14.6. Let 𝐺 be a 𝑑-regular bipartite graph with all non-trivial adjacency matrix
eigenvalues bounded by 𝜆, and let 𝐻 be a collapse of 𝐺. Then, every vertex in 𝐻 has weighted degree
2𝑑 and all adjacency matrix eigenvalues of 𝐻 other than 𝑑 are bounded in absolute value by 2𝜆.

Proof. To prove the bound on the eigenvalues, let 𝐺 have adjacency matrix(︂
0 A

A𝑇 0

)︂
.

After possibly rearranging rows and columns, we may assume that the adjacency matrix of the collapse
is given by

A+A𝑇 .

Note that the self-loops, if they exist, correspond to diagonal entries of value 2. Now, let x be a unit
vector orthogonal to the all-1s vector. We have

x𝑇 (A+A𝑇 )x =

(︂
x
x

)︂𝑇 (︂
0 A

A𝑇 0

)︂(︂
x
x

)︂
≤ 𝜆‖

(︂
x
x

)︂
‖2 ≤ 2𝜆,

as the vector [x ;x ] is orthogonal to the eigenvectors of the trivial eigenvalues of the adjacency matrix
of 𝐺.

We now state how bounds on the eigenvalues of the adjacency matrices of graphs lead to approxi-
mations of complete graphs and complete bipartite graphs.

Proposition 13.14.7. Let 𝐺 be a graph with 𝑛 vertices, possibly with self-loops and weighted edges,
such that every vertex of 𝐺 has weighted degree 𝑑 and such that all non-trivial eigenvalues of the
adjacency matrix of 𝐺 have absolute value at most 𝜆 ≤ 𝑑/2. If 𝐺 is not bipartite, then (𝑛/𝑑)L𝐺 is an
𝜀-approximation of 𝐾𝑛 for 𝜀 = (2 ln 2)(𝜆)/𝑑. If 𝐺 is bipartite, then (𝑛/𝑑)L𝐺 is an 𝜀-approximation of
𝐾𝑛,𝑛 for 𝜀 = (2 ln 2)(𝜆)/𝑑.

Proof. Let A be the adjacency matrix of 𝐺. Then,

L𝐺 = 𝑑I −A.

In the non-bipartite case, we observe that all of the non-zero eigenvalues of L𝐾𝑛 are 𝑛, so for all
vectors 𝑥 orthogonal to the constant vector,

𝑥𝑇L𝐾𝑛𝑥 = 𝑛𝑥𝑇𝑥.

As all of the non-zero eigenvalues of L𝐺 are between 𝑑− 𝜆 and 𝑑+ 𝜆, for all vectors 𝑥 orthogonal to
the constant vector

𝑛

(︂
1− 𝜆

𝑑

)︂
𝑥𝑇𝑥 ≤ 𝑥𝑇 (𝑛/𝑑)L𝐺𝑥 ≤ 𝑛

(︂
1 +

𝜆

𝑑

)︂
𝑥𝑇𝑥.

Thus, (︂
1− 𝜆

𝑑

)︂
L𝐾𝑛 4 L𝐺 4

(︂
1 +

𝜆

𝑑

)︂
L𝐾𝑛 .

In the bipartite case, we naturally assume that the bipartition is the same in both 𝐺 and 𝐾𝑛,𝑛.
Now, let x be any vector on the vertex set of 𝐺. Both the graphs 𝐾𝑛,𝑛 and (𝑛/𝑑)𝐺 have Laplacian
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matrix eigenvalue 0 with the constant eigenvector, and eigenvalue 2𝑛 with eigenvector [1;−1]. The
other eigenvalues of the Laplacian of 𝐾𝑛,𝑛 are 𝑛, while the other eigenvalues of the Laplacian of (𝑛/𝑑)𝐺
are between

𝑛

(︂
1− 𝜆

𝑑

)︂
and 𝑛

(︂
1 +

𝜆

𝑑

)︂
.

Thus, (︂
1− 𝜆

𝑑

)︂
L𝐾𝑛,𝑛 4 L𝐺 4

(︂
1 +

𝜆

𝑑

)︂
L𝐾𝑛,𝑛 .

The proposition now follows from our choice of 𝜀, which guarantees that

𝑒−𝜀 ≤ 1− 𝜆/𝑑 and 1 + 𝜆/𝑑 ≤ 𝑒𝜀,
provided that 𝜆/𝑑 ≤ 1/2.

Lemma 13.14.8. There are algorithms that on input 𝑛 and 𝜀 > 𝑛−1/6 produce a graph having 𝑂(𝑛/𝜀2)
edges that is an 𝑂(𝜀) approximation of 𝐾𝑛′ or 𝐾𝑛′,𝑛′ for some 𝑛 ≤ 𝑛′ ≤ 8𝑛. These algorithms run in
𝑂(log 𝑛) depth and 𝑂(𝑛/𝜀2) work.

Proof. We first consider the problem of constructing an approximation of 𝐾𝑛′,𝑛′ . By Corollary 13.14.4
there is a constant 𝑛0 so that if 𝑛 > 𝑛0, then there is a prime 𝑞 that is equivalent to 1 modulo 4 so
that 𝑞2(𝑞 − 1) is between and 𝑛 and 8𝑛. Let 𝑞 be such a prime and let 𝑛′ = 𝑞2(𝑞 − 1). Similarly,
for 𝜀 sufficiently small, there is a prime 𝑝 equivalent to 1 modulo 4 that is between 𝜀−2/2 and 𝜀−2.
Our algorithm should construct the corresponding Ramanujan graph, as described in Theorem 13.14.1
and Proposition 13.14.2. If the graph is bipartite, then Proposition 13.14.7 tells us that it provides
the desired approximation of 𝐾𝑛′,𝑛′ . If the graph is not bipartite, then we form its double cover to
obtain a bipartite graph and use Proposition 13.14.5 and Proposition 13.14.7 to see that it provides
the desired approximation of 𝐾𝑛′,𝑛′ .

The non-bipartite case is similar, except that we require a prime 𝑞 so that 𝑞2(𝑞 − 1)/2 is between
𝑛 and 8𝑛, and we use a collapse to convert a bipartite expander to a non-bipartite one, as analyzed in
Proposition 13.14.6.

For the existence results in Section 13.10, we just need to know that there exist graphs of low degree
that are good approximations of complete graphs. We may obtain them from the recent theorem of
Marcus, Spielman and Srivastava that there exist bipartite Ramanujan graphs of every degree and
number of vertices [187].

Lemma 13.14.9. For every integer 𝑛 and even integer 𝑑, there is a weighted graph on 𝑛 vertices of
degree at most 𝑑 that is a 4/

√
𝑑 approximation of 𝐾𝑛.

Proof. The main theorem of [187] tells us that there is a bipartite Ramanujan graph on 2𝑛 vertices of
degree 𝑘 for every 𝑘 ≤ 𝑛. By Propositions 13.14.6 and 13.14.7, a collapse of this graph is a weighted
graph of degree at most 2𝑘 that is a (4 ln 2)/

√
𝑘 approximation of 𝐾𝑛,𝑛. The result now follows by

setting 𝑑 = 2𝑘.

13.14.1 Sparsifying Complete Product Demand Graphs

In the rest of the section, we will adapt these expander constructions to weighted settings. We start
with product demand graphs.
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Algorithm 46: 𝐺′ =WeightedExpander(d , 𝜀)

1. Let �̂� be the least integer greater than 2𝑛/𝜀2 such that the algorithm described in Lemma
13.14.8 produces an 𝜀-approximation of 𝐾�̂�.

2. Let 𝑡 =
∑︀

𝑘 𝑑𝑘
�̂� .

3. Create a new product demand graph ̂︀𝐺 with demand vector d̂ by splitting each vertex 𝑖 into a
set of ⌈𝑑𝑖/𝑡⌉ vertices, 𝑆𝑖:

(a) ⌊𝑑𝑖/𝑡⌋ vertices with demand 𝑡.

(b) one vertex with demand 𝑑𝑖 − 𝑡 ⌊𝑑𝑖/𝑡⌋.

4. Let 𝐻 be a set of �̂� vertices in ̂︀𝐺 with demand 𝑡, and let 𝐿 contain the other vertices. Set
𝑘 = |𝐿|.

5. Partition 𝐻 arbitrarily into sets 𝑉1, . . . , 𝑉𝑘, so that |𝑉𝑖| ≥ ⌊�̂�/𝑘⌋ for all 1 ≤ 𝑖 ≤ 𝑘.

6. Use the algorithm described in Lemma 13.14.8 to produce �̃�𝐻𝐻 , an 𝜀-approximation of the
complete graph on 𝐻. Set

̃︀𝐺 = 𝑡2�̃�𝐻𝐻 +
∑︁
𝑙∈𝐿

|𝐻|
|𝑉𝑙|

∑︁
ℎ∈𝑉𝑙

𝑑𝑙𝑑ℎ(((𝑙, ℎ))).

7. Let 𝐺′ be the graph obtained by collapsing together all vertices in each set 𝑆𝑖.
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Lemma 13.11.1. There is a routineWeightedExpander(d , 𝜀) such that for any 𝜀 > 0, and a demand
vector d ∈ (ℜ>0)

𝑛, WeightedExpander(d , 𝜀) returns in 𝑂(𝑛𝜀−4) work and 𝑂(log 𝑛) depth a graph
𝐻 with 𝑂(𝑛𝜀−4) edges such that

L𝐻 ≈𝜀 L𝐺(d).

Our algorithm for sparsifying complete product demand graphs begins by splitting the vertices of
highest demands into many vertices. By splitting a vertex, we mean replacing it by many vertices
whose demands sum to its original demand. In this way, we obtain a larger product demand graph.
We observe that we can obtain a sparsifier of the original graph by sparsifying the larger graph, and
then collapsing back together the vertices that were split.

Proposition 13.14.10. Let 𝐺 be a product demand graph with vertex set {1, . . . , 𝑛} and demands d ,
and let ̂︀𝐺 = (̂︀𝑉 , ̂︀𝐸) be a product demand graph with demands d̂ . If there is a partition of ̂︀𝑉 into sets
𝑆1, . . . , 𝑆𝑛 so that for all 𝑖 ∈ 𝑉 ,

∑︀
𝑗∈𝑆𝑖

𝑑𝑗 = 𝑑𝑖, then ̂︀𝐺 is a splitting of 𝐺 and there is a matrix M so
that

L𝐺 = ML ̂︀𝐺M 𝑇 .

Proof. The (𝑖, 𝑗) entry of matrix M is 1 if and only if 𝑗 ∈ 𝑆𝑖. Otherwise, it is zero.

We now show that we can sparsify 𝐺 by sparsifying ̂︀𝐺.
Proposition 13.14.11. Let ̂︀𝐺1 and ̂︀𝐺2 be graphs on the same vertex set ̂︀𝑉 such that ̂︀𝐺1 ≈𝜀 ̂︀𝐺2 for
some 𝜀. Let 𝑆1, . . . , 𝑆𝑛 be a partition of ̂︀𝑉 , and let 𝐺1 and 𝐺2 be the graphs obtained by collapsing
together all the vertices in each set 𝑆𝑖 and eliminating any self loops that are created. Then

𝐺1 ≈𝜀 𝐺2.

Proof. Let M be the matrix introduced in Proposition 13.14.10. The proof follows from the fact that

L𝐺1 = ML ̂︀𝐺1
M 𝑇 and L𝐺2 = ML ̂︀𝐺2

M 𝑇 .

For distinct vertices 𝑖 and 𝑗, we let (((𝑖, 𝑗))) denote the graph with an edge of weight 1 between vertex
𝑖 and vertex 𝑗. If 𝑖 = 𝑗, we let (((𝑖, 𝑗))) be the empty graph. With this notation, we can express the
product demand graph as ∑︁

𝑖<𝑗

𝑑𝑖𝑑𝑗(((𝑖, 𝑗))) =
1

2

∑︁
𝑖,𝑗∈𝑉

𝑑𝑖𝑑𝑗(((𝑖, 𝑗))).

This notation also allows us to precisely express our algorithm for sparsifying product demand
graphs. This section and the next are devoted to the analysis of this algorithm. Given Proposi-
tion 13.14.11, we just need to show that ̃︀𝐺 is a good approximation to ̂︀𝐺.
Proposition 13.14.12. The number of vertices in ̂︀𝐺 is at most 𝑛+ �̂�.

Proof. The number of vertices in ̂︀𝐺 is∑︁
𝑖∈𝑉
⌈𝑑𝑖/𝑡⌉ ≤ 𝑛+

∑︁
𝑖∈𝑉

𝑑𝑖/𝑡 = 𝑛+ �̂�.

So, 𝑘 ≤ 𝑛 and �̂� ≥ 2𝑘/𝜀2. That is, |𝐻| ≥ 2 |𝐿| /𝜀2. In the next section, we prove the lemmas that
show that for these special product demand graphs ̂︀𝐺 in which almost all weights are the maximum,
our algorithm produces a graph ̃︀𝐺 that is a good approximation of ̂︀𝐺.
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Proof. (of Lemma 13.11.1) The number of vertices in the graph ̂︀𝐺 will be between 𝑛 + 2𝑛/𝜀2 and
𝑛+16𝑛/𝜀2. So, the algorithm described in Lemma 13.14.8 will take 𝑂(log 𝑛) depth and 𝑂(𝑛/𝜀4) work
to produce an 𝜀 approximation of the complete graph on �̂� vertices. This dominates the computational
cost of the algorithm.

Proposition 13.14.11 tells us that 𝐺′ approximates 𝐺 at least as well as ̃︀𝐺 approximates ̂︀𝐺. To
bound how well ̃︀𝐺 approximates ̂︀𝐺, we use two lemmas that are stated in the next section. Lemma
13.14.14 shows that ̂︀𝐺𝐻𝐻 + ̂︀𝐺𝐿𝐻 ≈𝑂(𝜀2)

̂︀𝐺.
Lemma 13.14.16 shows that

̂︀𝐺𝐻𝐻 + ̂︀𝐺𝐿𝐻 ≈4𝜀
̂︀𝐺𝐻𝐻 +

∑︁
𝑙∈𝐿

|𝐻|
|𝑉𝑙|

∑︁
ℎ∈𝑉𝑙

𝑑𝑙𝑑ℎ(((𝑙, ℎ))).

And, we already know that 𝑡2�̃� is an 𝜀-approximation of ̂︀𝐺𝐻𝐻 . Fact 13.2.1 says that we can combine
these three approximations to conclude that ̃︀𝐺 is an 𝑂(𝜀)-approximation of ̂︀𝐺.
13.14.2 Product demand graphs with most weights maximal

In this section, we consider product demand graphs in which almost all weights are the maximum.
For simplicity, we make a slight change of notation from the previous section. We drop the hats, we
let 𝑛 be the number of vertices in the product demand graph, and we order the demands so that

𝑑1 ≤ 𝑑2 ≤ · · · ≤ 𝑑𝑘 ≤ 𝑑𝑘+1 = · · · = 𝑑𝑛 = 1.

We let 𝐿 = {1, . . . , 𝑘} and 𝐻 = {𝑘 + 1, . . . , 𝑛} be the set of low and high demand vertices,
respectively. Let 𝐺 be the product demand graph corresponding to d , and let 𝐺𝐿𝐿, 𝐺𝐻𝐻 and 𝐺𝐿𝐻 be
the subgraphs containing the low-low, high-high and low-high edges respectively. We now show that
little is lost by dropping the edges in 𝐺𝐿𝐿 when 𝑘 is small.

Our analysis will make frequent use of the following Poincare inequality:

Lemma 13.14.13. Let 𝑐(((𝑢, 𝑣))) be an edge of weight 𝑐 and let 𝑃 be a path from from 𝑢 to 𝑣 consisting
of edges of weights 𝑐1, 𝑐2, · · · , 𝑐𝑘. Then

𝑐(((𝑢, 𝑣))) ⪯ 𝑐
(︁∑︁

𝑐−1
𝑖

)︁
𝑃.

As the weights of the edges we consider in this section are determined by the demands of their
vertices, we introduce the notation

(((𝑖, 𝑗)))2 = 𝑑𝑖𝑑𝑗(((𝑖, 𝑗))).

With this notation, we can express the product demand graph as∑︁
𝑖<𝑗

(((𝑖, 𝑗)))2 =
1

2

∑︁
𝑖,𝑗∈𝑉

(((𝑖, 𝑗)))2.

Lemma 13.14.14. If |𝐿| ≤ |𝐻|, then

𝐺𝐻𝐻 +𝐺𝐿𝐻 ≈3
|𝐿|
|𝐻|

𝐺.

Proof. The lower bound 𝐺𝐻𝐻 +𝐺𝐿𝐻 ⪯ 𝐺𝐻𝐻 +𝐺𝐿𝐻 +𝐺𝐿𝐿 follows from 𝐺𝐿𝐿 ⪰ 0.
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Using lemma 13.14.13 and the assumptions 𝑑𝑙 ≤ 1 for 𝑙 ∈ 𝐿 and and 𝑑ℎ = 1 for ℎ ∈ 𝐻, we derive
for every 𝑙1, 𝑙2 ∈ 𝐿,

(((𝑙1, 𝑙2)))2 =
1

|𝐻|2
∑︁

ℎ1,ℎ2∈𝐻
(((𝑙1, 𝑙2)))2

(by Lemma 13.14.13)

⪯ 1

|𝐻|2
∑︁

ℎ1,ℎ2∈𝐻
𝑑𝑙1𝑑𝑙2

(︂
1

𝑑𝑙1𝑑ℎ1
+

1

𝑑ℎ1𝑑ℎ2
+

1

𝑑ℎ2𝑑𝑙2

)︂
((((𝑙1, ℎ1)))2 + (((ℎ1, ℎ2)))2 + (((ℎ2, 𝑙2)))2)

⪯ 3

|𝐻|2
∑︁

ℎ1,ℎ2∈𝐻
((((𝑙1, ℎ1)))2 + (((ℎ1, ℎ2)))2 + (((ℎ2, 𝑙2)))2)

=
3

|𝐻|
∑︁
ℎ∈𝐻

((((𝑙1, ℎ)))2 + (((𝑙2, ℎ)))2) +
6

|𝐻|2
𝐺𝐻𝐻 .

So,

𝐺𝐿𝐿 =
1

2

∑︁
𝑙1,𝑙2∈𝐿

(((𝑙1, 𝑙2)))2

⪯ 1

2

∑︁
𝑙1,𝑙2

(︃
3

|𝐻|
∑︁
ℎ∈𝐻

((((𝑙1, ℎ)))2 + (((𝑙2, ℎ)))2) +
6

|𝐻|2
𝐺𝐻𝐻

)︃

=
3 |𝐿|
|𝐻|

𝐺𝐿𝐻 +
3 |𝐿|2

|𝐻|2
𝐺𝐻𝐻 .

The assumption |𝐿| ≤ |𝐻| then allows us to conclude

𝐺𝐻𝐻 +𝐺𝐿𝐻 +𝐺𝐿𝐿 ⪯
(︂
1 + 3

|𝐿|
|𝐻|

)︂
(𝐺𝐻𝐻 +𝐺𝐿𝐻) .

Using a similar technique, we will show that the edges between 𝐿 and 𝐻 can be replaced by the
union of a small number of stars. In particular, we will partition the vertices of 𝐻 into 𝑘 sets, and for
each of these sets we will create one star connecting the vertices in that set to a corresponding vertex
in 𝐿.

We employ the following consequence of the Poincare inequality in Lemma 13.14.13.

Lemma 13.14.15. For any 𝜀 ≤ 1, 𝑙 ∈ 𝐿 and ℎ1, ℎ2 ∈ 𝐻,

𝜀(((ℎ1, 𝑙)))2 + (1/2)(((ℎ1, ℎ2)))2 ≈4
√
𝜀 𝜀(((ℎ2, 𝑙)))2 + (1/2)(((ℎ1, ℎ2)))2.

Proof. By applying Lemma 13.14.13 and recalling that 𝑑ℎ1 = 𝑑ℎ2 = 1 and 𝑑𝑙 ≤ 1, we compute

(((ℎ1, 𝑙)))2 ⪯ 𝑑ℎ1𝑑𝑙
(︂ √

𝜀

𝑑ℎ1𝑑ℎ2
+

1

𝑑ℎ2𝑑𝑙

)︂(︂
1√
𝜀
(((ℎ1, ℎ2)))2 + (((ℎ2, 𝑙)))2

)︂
⪯ 1 +

√
𝜀√

𝜀
(((ℎ1, ℎ2)))2 + (1 +

√
𝜀)(((ℎ2, 𝑙)))2

⪯ (1 +
√
𝜀)(((ℎ2, 𝑙)))2 +

2√
𝜀
(((ℎ1, ℎ2)))2.
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Multiplying both sides by 𝜀 and adding (1/2)(((ℎ1, ℎ2)))2 then gives

𝜀(((ℎ1, 𝑙)))2 + (1/2)(((ℎ1, ℎ2)))2 4 (1 +
√
𝜀)𝜀(((ℎ2, 𝑙)))2 + (2

√
𝜀+ 1/2)(((ℎ1, ℎ2)))2

4 (1 + 4
√
𝜀) (𝜀(((ℎ2, 𝑙)))2 + (1/2)(((ℎ1, ℎ2)))2)

4 𝑒4
√
𝜀 (𝜀(((ℎ2, 𝑙)))2 + (1/2)(((ℎ1, ℎ2)))2) .

By symmetry, we also have

𝜀(((ℎ2, 𝑙)))2 + (1/2)(((ℎ1, ℎ2)))2 4 𝑒4
√
𝜀 (𝜀(((ℎ1, 𝑙)))2 + (1/2)(((ℎ1, ℎ2)))2) .

Lemma 13.14.16. Recall that 𝐿 = {1, . . . , 𝑘} and let 𝑉1, . . . , 𝑉𝑘 be a partition of 𝐻 = {𝑘 + 1, . . . , 𝑛}
so that |𝑉𝑙| ≥ 𝑠 for all 𝑙. Then,

𝐺𝐻𝐻 +𝐺𝐿𝐻 ≈4/
√
𝑠 𝐺𝐻𝐻 +

∑︁
𝑙∈𝐿

|𝐻|
|𝑉𝑙|

∑︁
ℎ∈𝑉𝑙

(((𝑙, ℎ)))2.

Proof. Observe that
𝐺𝐿𝐻 =

∑︁
𝑙∈𝐿

∑︁
ℎ∈𝐻

(((𝑙, ℎ)))2.

For each 𝑙 ∈ 𝐿, ℎ1 ∈ 𝐻 and ℎ2 ∈ 𝑉𝑙 we apply Lemma 13.14.15 to show that

1

|𝑉𝑙|
(((𝑙, ℎ1)))2 +

1

2
(((ℎ1, ℎ2)))2 ≈4/

√
𝑠

1

|𝑉𝑙|
(((𝑙, ℎ2)))2 +

1

2
(((ℎ1, ℎ2)))2.

Summing this approximation over all ℎ2 ∈ 𝑉𝑙 gives

(((𝑙, ℎ1)))2 +
∑︁
ℎ2∈𝑉𝑙

1

2
(((ℎ1, ℎ2)))2 ≈4/

√
𝑠

∑︁
ℎ2∈𝑉𝑙

(︂
1

|𝑉𝑙|
(((𝑙, ℎ2)))2 +

1

2
(((ℎ1, ℎ2)))2

)︂
.

Summing the left-hand side of this this approximation over all 𝑙 ∈ 𝐿 and ℎ1 ∈ 𝐻 gives∑︁
𝑙∈𝐿,ℎ1∈𝐻

(((𝑙, ℎ1)))2 +
∑︁
ℎ2∈𝑉𝑙

1

2
(((ℎ1, ℎ2)))2 =

∑︁
𝑙∈𝐿,ℎ1∈𝐻

(((𝑙, ℎ1)))2 +
1

2

∑︁
ℎ1∈𝐻,𝑙∈𝐿

∑︁
ℎ2∈𝑉𝑙

(((ℎ1, ℎ2)))2 = 𝐺𝐿𝐻 +𝐺𝐻𝐻 .

On the other hand, the sum of the right-hand terms gives

𝐺𝐻𝐻 +
∑︁

𝑙∈𝐿,ℎ1∈𝐻

∑︁
ℎ2∈𝑉𝑙

1

|𝑉𝑙|
(((𝑙, ℎ2)))2 = 𝐺𝐻𝐻 +

∑︁
𝑙∈𝐿

∑︁
ℎ2∈𝑉𝑙

|𝐻|
|𝑉𝑙|

(((𝑙, ℎ2)))2.

13.14.3 Weighted Bipartite Expanders

This construction extends analogously to bipartite product graphs. The bipartite product demand
graph of vectors (d𝐴,d𝐵) is a complete bipartite graph whose weight between vertices 𝑖 ∈ 𝐴 and
𝑗 ∈ 𝐵 is given by 𝑤𝑖𝑗 = 𝑑𝐴𝑖 𝑑

𝐵
𝑗 . The main result that we will prove is:

Lemma 13.11.2. There is a routine WeightedBipartiteExpander(d𝐴,d𝐵, 𝜀) such that for any
demand vectors d𝐴 and d𝐵 of total length 𝑛, and a parameter 𝜀, it returns in 𝑂(𝑛𝜀−4) work and
𝑂(log 𝑛) depth a bipartite graph 𝐻 between 𝐴 and 𝐵 with 𝑂(𝑛𝜀−4) edges such that

L𝐻 ≈𝜀 L𝐺(d𝐴,d𝐵).
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Without loss of generality, we will assume 𝑑𝐴1 ≥ 𝑑𝐴2 ≥ · · · ≥ 𝑑𝐴𝑛𝐴 and 𝑑𝐵1 ≥ 𝑑𝐵2 ≥ · · · ≥ 𝑑𝐵𝑛𝐵 . As the
weights of the edges we consider in this section are determined by the demands of their vertices, we
introduce the notation

(((𝑖, 𝑗)))2 = 𝑑𝐴𝑖 𝑑
𝐵
𝑗 (((𝑖, 𝑗))).

Our construction is based on a similar observation that if most vertices on 𝐴 side have 𝑑𝐴𝑖 equaling
to 𝑑𝐴1 and most vertices on 𝐵 side have 𝑑𝐵𝑖 equaling to 𝑑𝐵1 , then the uniform demand graph on these
vertices dominates the graph.

Algorithm 47: 𝐺′ =WeightedBipartiteExpander(d𝐴,d𝐵, 𝜀)

1. Let 𝑛′ = max(𝑛𝐴, 𝑛𝐵) and �̂� be the least integer greater than 2𝑛′/𝜀2 such that the algorithm
described in Lemma 13.14.8 produces an 𝜀-approximation of 𝐾�̂�,�̂�.

2. Let 𝑡𝐴 =
∑︀

𝑘 𝑑
𝐴
𝑘

�̂� and 𝑡𝐵 =
∑︀

𝑘 𝑑
𝐵
𝑘

�̂� .

3. Create a new bipartite demand graph ̂︀𝐺 with demands d̂
𝐴
and d̂

𝐵
follows:

(a) On the side 𝐴 of the graph, for each vertex 𝑖, create a subset 𝑆𝑖 consisting of
⌈︀
𝑑𝐴𝑖 /𝑡

𝐴
⌉︀

vertices:

i.
⌊︀
𝑑𝐴𝑖 /𝑡

𝐴
⌋︀
with demand 𝑡𝐴.

ii. one vertex with demand 𝑑𝐴𝑖 − 𝑡𝐴
⌊︀
𝑑𝐴𝑖 /𝑡

𝐴
⌋︀
.

(b) Let 𝐻𝐴 contain �̂� vertices of 𝐴 of with demand 𝑡𝐴, and let 𝐿𝐴 contain the rest. Set
𝑘𝐴 =

⃒⃒
𝐿𝐴
⃒⃒
.

(c) Create the side 𝐵 of the graph with partition 𝐻𝐵, 𝐿𝐵 and demand vector d̂
𝐵
similarly.

4. Partition 𝐻𝐴 into sets of size
⃒⃒
𝑉 𝐴
𝑖

⃒⃒
≥
⌊︀
�̂�/𝑘𝐴

⌋︀
, one corresponding to each vertex 𝑙 ∈ 𝐿𝐴.

Partition 𝑉𝐵 similarly.

5. Let �̃�𝐻𝐴𝐻𝐵 be a bipartite expander produced by Lemma 13.14.8 that 𝜀-approximates 𝐾�̂��̂�,
identified with the vertices 𝐻𝐴 and 𝐻𝐵.

6. Set ̃︀𝐺 = 𝑡𝐴𝑡𝐵�̃� +
∑︁
𝑙∈𝐿𝐴

⃒⃒
𝐻𝐵
⃒⃒⃒⃒

𝑉 𝐵
𝑙

⃒⃒ ∑︁
ℎ∈𝑉 𝐵

𝑙

𝑑𝐴𝑙 𝑑
𝐵
ℎ (((𝑙, ℎ)))+

∑︁
𝑙∈𝐿𝐵

⃒⃒
𝐻𝐴
⃒⃒⃒⃒

𝑉 𝐴
𝑙

⃒⃒ ∑︁
ℎ∈𝑉 𝐴

𝑙

𝑑𝐵𝑙 𝑑
𝐴
ℎ (((𝑙, ℎ))).

7. Let 𝐺′ be the graph obtained by collapsing together all vertices in each set 𝑆𝐴𝑖 and 𝑆𝐵𝑖 .

Similarly to the non-bipartite case, the Poincare inequality show that the edges between low
demand vertices can be completely omitted if there are many high demand vertices which allows the
demand routes through high demand vertices.

Lemma 13.14.17. Let 𝐺 be the bipartite product demand graph of the demand (d𝐴𝑖 ,d
𝐵
𝑗 ). Let 𝐻𝐴

a subset of vertices on 𝐴 side with demand higher than the set of remaining vertices 𝐿𝐴 on 𝐴 side.
Define 𝐻𝐵, 𝐿𝐵 similarly. Assume that

⃒⃒
𝐿𝐴
⃒⃒
≤
⃒⃒
𝐻𝐴
⃒⃒
and

⃒⃒
𝐿𝐵
⃒⃒
≤
⃒⃒
𝐻𝐵
⃒⃒
, then

𝐺𝐻𝐴𝐻𝐵 +𝐺𝐻𝐴𝐿𝐵 +𝐺𝐿𝐴𝐻𝐵 ≈
3max

(︂
|𝐿𝐴|
|𝐻𝐴| ,

|𝐿𝐵 |
|𝐻𝐵 |

)︂ 𝐺.
Proof. The proof is analogous to Lemma 13.14.14, but with the upper bound modified for bipartite
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graphs.
For every edge 𝑙𝐴, 𝑙𝐵, we embed it evenly into paths of the form 𝑙𝐴, ℎ𝐵, ℎ𝐴, 𝑙𝐵 over all choices of

ℎ𝐴 and ℎ𝐵. The support of this embedding can be calculated using Lemma 13.14.13, and the overall
accounting follows in the same manner as Lemma 13.14.14.

It remains to show that the edges between low demand and high demand vertices can be compressed
into a few edges. The proof here is also analogous to Lemma 13.14.15: we use the Poincare inequality
to show that all demands can routes through high demand vertices. The structure of the bipartite
graph makes it helpful to further abstract these inequalities via the following Lemma for four edges.

Lemma 13.14.18. Let 𝐺 be the bipartite product demand graph of the demand (d𝐴𝑖 ,d
𝐵
𝑗 ). Given

ℎ𝐴, 𝑙𝐴 ∈ 𝐴 and ℎ𝐵,1, ℎ𝐵,2 ∈ 𝐵. Assume that 𝑑𝐴ℎ𝐴 = 𝑑𝐵ℎ𝐵,1
= 𝑑𝐵ℎ𝐵,2

≥ 𝑑𝐴𝑙𝐴. For any 𝜀 < 1 , we have

𝜀(((𝑙𝐴, ℎ𝐵,1)))2 + (((ℎ𝐴, ℎ𝐵,2)))2 + (((ℎ𝐴, ℎ𝐵,1)))2 ≈3
√
𝜀 𝜀(((𝑙𝐴, ℎ𝐵,2)))2 + (((ℎ𝐴, ℎ𝐵,2)))2 + (((ℎ𝐴, ℎ𝐵,1)))2.

Proof. Using Lemma 13.14.13 and 𝑑𝐴ℎ𝐴 = 𝑑𝐵ℎ𝐵,1
= 𝑑𝐵ℎ𝐵,2

≥ 𝑑𝐴𝑙𝐴 , we have

(((𝑙𝐴, ℎ𝐵,1)))2

⪯ 𝑑𝐴𝑙𝐴𝑑
𝐵
ℎ𝐵,1

(︃
1

𝑑𝐴𝑙𝐴𝑑
𝐵
ℎ𝐵,2

+

√
𝜀

𝑑𝐴ℎ𝐴𝑑
𝐵
ℎ𝐵,2

+

√
𝜀

𝑑𝐴ℎ𝐴𝑑
𝐵
ℎ𝐵,1

)︃(︂
(((𝑙𝐴, ℎ𝐵,2)))2 +

1√
𝜀
(((ℎ𝐴, ℎ𝐵,2)))2 +

1√
𝜀
(((ℎ𝐴, ℎ𝐵,1)))2

)︂
⪯ (1 + 2

√
𝜀)(((𝑙𝐴, ℎ𝐵,2)))2 +

1 + 2
√
𝜀√

𝜀
(((ℎ𝐴, ℎ𝐵,2)))2 +

1 + 2
√
𝜀√

𝜀
(((ℎ𝐴, ℎ𝐵,1)))2.

Therefore,

𝜀(((𝑙𝐴, ℎ𝐵,1)))2 + (((ℎ𝐴, ℎ𝐵,2)))2 + (((ℎ𝐴, ℎ𝐵,1)))2 ⪯ (1 + 3
√
𝜀) (𝜀(((𝑙𝐴, ℎ𝐵,2)))2 + (((ℎ𝐴, ℎ𝐵,2)))2 + (((ℎ𝐴, ℎ𝐵,1)))2) .

The other side is similar due to the symmetry.

(of Lemma 13.11.2) The proof is analogous to Lemma 13.11.1. After the splitting, the demands in
𝐻𝐴 are higher than the demands in 𝐿𝐴 and so is 𝐻𝐵 to 𝐿𝐵. Therefore, Lemma 13.14.17 shows that
that

Proof. ̂︀𝐺𝐻𝐴𝐻𝐵 + ̂︀𝐺𝐻𝐴𝐿𝐵 + ̂︀𝐺𝐿𝐴𝐻𝐵 ≈3𝜀2/2
̂︀𝐺.

By a proof analogous to Lemma 13.14.16, one can use Lemma 13.14.18 to show that

̂︀𝐺𝐻𝐴𝐻𝐵 + ̂︀𝐺𝐻𝐴𝐿𝐵 + ̂︀𝐺𝐿𝐴𝐻𝐵 ≈𝑂(𝜀)
̂︀𝐺𝐻𝐴𝐻𝐵 +

⃒⃒
𝐻𝐵
⃒⃒⃒⃒

𝑉 𝐵
𝑙

⃒⃒ ∑︁
ℎ∈𝑉 𝐵

𝑙

𝑑𝐴𝑙 𝑑
𝐵
ℎ (((𝑙, ℎ)))+

∑︁
𝑙∈𝐿𝐵

⃒⃒
𝐻𝐴
⃒⃒⃒⃒

𝑉 𝐴
𝑙

⃒⃒ ∑︁
ℎ∈𝑉 𝐴

𝑙

𝑑𝐵𝑙 𝑑
𝐴
ℎ (((𝑙, ℎ))).

And, we already know that 𝑡𝐴𝑡𝐵�̃� is an 𝜀-approximation of ̂︀𝐺𝐻𝐴𝐻𝐵 . Fact 13.2.1 says that we can
combine these three approximations to conclude that ̃︀𝐺 is an 𝑂(𝜀)-approximation of ̂︀𝐺.
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Chapter 14

Sampling In Sub-Quadratic Steps

14.1 Introduction

In this chapter, we study the problem of sampling a high-dimensional polytope, a fundamental al-
gorithmic problem with many applications. The problem can be solved in randomized polynomial
time. Progress on the more general problem of sampling a convex body given only by a membership
oracle [78, 79, 175, 176, 177, 131, 179, 178, 261] has lead to a set of general-purpose techniques, both
for algorithms and for analysis in high dimension. All known algorithms are based on sampling by
discrete-time Markov chains. These include the ball walk [174], hit-and-run [241, 179] and the Dikin
walk [132], the last requiring stronger access than a membership oracle. In each case, the main chal-
lenge is analyzing the mixing time of the Markov chain. For a polytope defined by 𝑚 inequalities
in R𝑛, the current best complexity of sampling is roughly the minimum of 𝑛3 ·𝑚𝑛 and 𝑚𝑛 ·𝑚𝑛𝜔−1

where the first factor in each term is the mixing time and the second factor is the time to implement
one step. In fact, the bound of 𝑛3 on the mixing time (achieved by the ball walk and hit-and-run)
holds for arbitrary convex bodies, and 𝑂(𝑚𝑛) is just the time to implement a membership oracle. The
second term is for the Dikin walk, for which Kannan and Narayanan showed a mixing time of 𝑂(𝑚𝑛)
for the Dikin walk [132], with each step implementable in roughly matrix multiplication time. For
general convex bodies given by membership oracles, Ω(𝑛2) is a lower bound on the number of oracle
calls for all known walks. A quadratic upper bound would essentially follow from a positive resolution
of the KLS hyperplane conjecture (we mention that [59] show a mixing bound of �̃�(𝑛2) for the ball
walk for sampling from a Gaussian distribution restricted to a convex body). The quadratic barrier
seems inherent for sampling convex bodies given by membership oracles, holding even for cubes and
cylinders for the known walks based on membership oracles. It has not been surpassed thus far for
explicitly described polytopes by any means.

For a polytope in R𝑛, the Euclidean perspective is natural and predominant. The game has been
to define a process on the points of the polytope so that the distribution of the current point quickly
approaches the uniform (or a desired stationary distribution). The difficulty is that for points near
the boundary of a body, steps are necessarily small due to the nature of volume distribution in high
dimension. The Dikin walk departs from the standard perspective by making the distribution of the
next step depend on the distance(s) of the current point to the boundary of the polytope. At each
step, the process picks a random point from a suitable ellipsoid that is guaranteed to almost lie inside.
This process adapts to the boundary, but runs into the similar difficulties — the ellipsoid has to shrink
as the point approaches the boundary in order to ensure that (a) the stationary distribution is close
to uniform and (b) the 1-step distribution has to be smooth, both necessary properties for rapidly
converging to the uniform distribution. While the walk has the appealing property of being affine-
invariant, and thus avoiding having to explicitly round the polytope, the current best upper bound is
still quadratic, even for cylinders.

An alternative approach for sampling is the simulation of Brownian motion with boundary reflec-
tion [114, 67, 64, 43]. While there has been much study of this process, several difficulties arise in
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turning it into an efficient algorithm. In particular, if the current point is close to the boundary of
the polytope, extra care is needed in simulation and the process effectively slows down. However, if
it is deep inside the polytope, we should expect that Brownian motion locally looks like a Gaussian
distribution and hence it is easier to simulate. This suggests that the standard Euclidean metric,
which does not take into account distance to the boundary, is perhaps not the right notion for getting
a fast sampling algorithm.

In this chapter, we combine the use of stochastic differential equations (SDE) with non-Euclidean
geometries (Riemannian manifolds) to break the quadratic barrier for mixing in polytopes. As a result
we obtain significantly faster sampling algorithms.

Roughly speaking, our work is based on three key conceptual ideas. The first is the use of a
Riemannian metric rather than the Euclidean metric. This allows us to scale space as we get closer
to the boundary and incorporate boundary information much more smoothly. This idea was already
used by Narayanan [198] to extend the Dikin walk to more general classes of convex bodies. The
relevant metrics are induced by Hessians of convex barrier functions, objects that have been put to
remarkable use for efficient linear and convex optimization [211]. The second idea is to simulate a
Stochastic Differential Equation (SDE) on the manifold corresponding to the metric, via its geodesics
(shortest-path curves, to be defined presently). Unlike straight lines, geodesics bend away from the
boundary and this allows us to take larger steps while staying inside the polytope. The third idea is
to use a modification of standard Brownian motion via a drift term, i.e., rather than centering the
next step at the current point, we first shift the current point deterministically, then take a random
step. This drift term compensates the changes of the step size and this makes the process closer to
symmetric. Taken together, these ideas allow us to simulate an SDE by a discrete series of ordinary
differential equations (ODE), which we are able to solve efficiently to the required accuracy. In order
to state our contributions and results more precisely, we introduce some background, under three
headings.

Riemannian Geometry. A manifold can be viewed as a surface embedded in a Euclidean space.
Each point in the manifold (on the surface), has a tangent space (the linear approximate of the surface
at that point) and a local metric. For a point 𝑥 in a manifold 𝑀 , the metric at 𝑥 is defined by a
positive definite matrix 𝑔(𝑥) and the length of a vector 𝑢 in the tangent space 𝑇𝑥𝑀 is defined as
‖𝑢‖𝑥

def
= 𝑢𝑇 𝑔(𝑥)𝑢. By integration, the length of any curve on the manifold is defined as

´
‖𝑑𝑐𝑑𝑡‖𝑐(𝑡) . A

basic fact about Riemannian manifolds is that for any point in the manifold, in any direction (from
the tangent space), there is locally a shortest path (geodesic) starting in that direction. In Euclidean
space, this is just a straight line in the starting direction. Previous random walks involve generating a
random direction and going along a straight line in that direction. However such straight lines do not
take into account the local geometry, while geodesics do. We give formal definitions in Section 14.2.1.

Hessian Manifolds. In this chapter, we are concerned primarily with Riemannian manifolds in-
duced by the Hessians of smooth (infinitely differentiable) convex functions. More precisely, for any
such function 𝜑, the metric (of the manifold induced by 𝜑) at a point 𝑥 ∈ 𝑀 is given by the Hessian
of 𝜑 at 𝑥, i.e., ∇2𝜑(𝑥). Since 𝜑 is convex, the Hessian is positive definite and hence the Riemannian
manifold induced by 𝜑 is well-defined and is called a Hessian manifold. In the context of convex
optimization, we are interested in a class of convex functions called self-concordant barriers. Such
convex function is smooth in a certain sense and blows up on the boundary of a certain convex set.
The class of Hessian manifolds corresponding to self-concordant barriers has been studied and used to
study interior-point methods (IPM) [137, 214, 212].

The barrier we are particularly interested is the logarithmic barrier. For a polytope 𝐴𝑥 > 𝑏, with
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𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚, for any 𝑥 in the polytope, the logarithmic barrier is given by

𝜑(𝑥) = −
∑︁
𝑖

ln(𝐴𝑥− 𝑏)𝑖.

In this chapter, we study the logarithmic barrier and show how to use this to develop a faster algorithm
for sampling polytopes.

Stochastic Differential Equations. Given a self-concordant barrier 𝜑 on a convex set 𝐾, there is
an “unique” Brownian motion with drift on the Hessian manifold 𝑀 induced by 𝜑 that has uniform
stationary distribution. In the Euclidean coordinate system, the SDE is given by

𝑑𝑥𝑡 = 𝜇(𝑥𝑡)𝑑𝑡+
(︀
∇2𝜑(𝑥𝑡)

)︀−1/2
𝑑𝑊𝑡 (14.1)

where the first term, called drift, is given by:

𝜇𝑖(𝑥𝑡) =
1

2

𝑛∑︁
𝑗=1

𝜕

𝜕𝑥𝑗

(︁(︀
∇2𝜑(𝑥𝑡)

)︀−1
)︁
𝑖𝑗
. (14.2)

This suggests an approach for generating a random point in a polytope, namely to simulate the SDE.
The running time of such an algorithm depends on the convergence rate of the SDE and the cost of
simulating the SDE in discrete time steps.

Since the SDE is defined on the Riemannian manifold 𝑀 , it is natural to consider the following
geodesic walk:

𝑥(𝑗+1) = exp𝑋(𝑗)(
√
ℎ𝑤 +

ℎ

2
𝜇(𝑥(𝑗))) (14.3)

where exp𝑥(𝑗) is a map from 𝑇𝑥(𝑗)𝑀 back to the manifold, 𝑤 is a random Gaussian vector on 𝑇𝑥(𝑗)𝑀 ,
𝜇(𝑥(𝑗)) ∈ 𝑇𝑥(𝑗)𝑀 is the drift term and ℎ is the step size. The coefficient of the drift term depends
on the coordinate system we use; as we show in Lemma 14.3.1, for the coordinate system induced by
a geodesic, the drift term is 𝜇/2 instead of 𝜇 as in (14.1). The Gaussian vector 𝑤 has mean 0 and
variance 1 in the metric at 𝑥, i.e.E𝑤‖𝑤‖2𝑥 = 1. We write it as 𝑤 ∼ 𝑁𝑥(0, 𝐼).

It can be shown that this discrete walk converges to (14.1) as ℎ → 0 and it converges in a
rate faster than the walk suggested by Euclidean coordinates (Theorem 14.3.3), namely, 𝑥(𝑗+1) =
𝑥(𝑗) +

√
ℎ𝑤 + ℎ𝜇(𝑥(𝑗)). (Note the drift here is proportional to ℎ and not ℎ/2.) This is the reason we

study the geodesic walk.

14.1.1 Algorithm

The algorithm is a discrete-time simulation of the geodesic process (14.3). For step-size ℎ chosen in
advance, let 𝑝(𝑥 𝑤→ 𝑦) be the probability density (in Euclidean coordinates) of going from 𝑥 to 𝑦 using
the local step 𝑤. In general, the stationary distribution of the geodesic process is not uniform and it
is difficult to analyze the stationary distribution unless ℎ is very small, which would lead to a high
number of steps. To get around this issue, we use the standard method of rejection sampling to get a
uniform stationary distribution. We call this geodesic walk.

To implement the geodesic walk, we need to compute the exponential map exp𝑥 and 𝑝(𝑥
𝑤→ 𝑦)

efficiently. We show how to implement this in Section 14.4.6.Our goal is to make sure that each
iteration of geodesic walks only uses matrix multiplication and matrix inverse for 𝑂(log𝑂(1)𝑚) many
𝑂(𝑚)×𝑂(𝑚)-size matrices, and the rejection probability is small.

It turns out that the problems of computing the exponential map and 𝑝(𝑥 𝑤→ 𝑦) are similar; both
involve solving some ordinary differential equations (ODEs) to accuracy 1/𝑛Θ(1). Hence, one can view
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Algorithm 48: Geodesic Walk (See Algo 49 for details)

Pick a Gaussian random vector 𝑤 ∼ 𝑁𝑥(0, 1), i.e. E𝑤‖𝑤‖2𝑥 = 1.
Compute 𝑦 = exp𝑥(

√
ℎ𝑤 + ℎ

2𝜇(𝑥)) where 𝜇(𝑥) is given by (14.2).
Let 𝑝(𝑥 𝑤→ 𝑦) is the probability density of going from 𝑥 to 𝑦 using the above step 𝑤.
Compute a corresponding 𝑤′ s.t. 𝑥 = exp𝑦(

√
ℎ𝑤′ + ℎ

2𝜇(𝑦)).

With probability min

(︂
1, 𝑝(𝑦

𝑤′
→𝑥)

𝑝(𝑥
𝑤→𝑦)

)︂
, go to 𝑦;

Otherwise, stay at 𝑥.

the geodesic walk as reducing the problem of simulating an SDE 14.1 to solving a sequence of ODEs.
Although solving ODEs is well-studied, existing literature seems quite implicit about the dependence
on the dimension and hence it is difficult to apply it directly. In Section 14.6, we rederive some
existing result about solving ODEs efficiently, but with quantitative estimates of the dependence on
the dimension and desired error.

14.1.2 Main results

In this chapter, we analyze the geodesic walk for the logarithmic barrier. The convergence analysis will
need tools from Riemannian geometry and stochastic calculus, while the implementation uses efficient
(approximate) solution of ODEs. Both aspects appear to be of independent interest. For the reader
unfamiliar with these topics, we include an exposition of the relevant background.

We analyze geodesic walk in general and give a bound on the mixing time in terms of a set of
manifold parameters (Theorem 14.4.2). Applying this on the logarithmic barrier, we obtain a faster
sampling algorithm, going below the 𝑚𝑛 mixing time of the Dikin walk, while maintaining the same
per-step complexity.

Theorem 14.1.1 (Sampling with logarithmic barrier). Given a polytope {𝐴𝑥 ≥ 𝑏} with an uniformly
random initial point in the polytope. Using the logarithmic barrier, we can sample another uniformly

random point in the polytope via geodesic walk using �̃�
(︁
𝑚𝑛

3
4

)︁
steps, with each step taking �̃�

(︀
𝑚𝑛𝜔−1

)︀
time to implement.

The implementation of each step of sampling is based on the efficient solution of high-dimensional
ODEs (Theorem 14.6.4); this might have other applications.

14.1.3 Discussion and open problems

At a high level, our algorithm is based on the following sequence of natural choices. First, we consider
an Brownian motion that gives uniform stationary distribution and such Brownian motion is unique
for a given metric (Fokker-Planck equation). Since the set we sample is a polytope, we use the metric
given by the Hessian of a self-concordant barrier, a well-studied class of metrics in convex optimization.
This allows us to reduce the sampling problem to the problem of simulating an SDE1. To simulate
an SDE, we apply the Milstein method, well-known in that field. To implement the Milstein method,
we perform a change of coordinates to make the metric locally constant and this makes most of the
terms in the Milstein approximation method vanish. These coordinates are called normal coordinates

1Coincidentally, when we use the best known self-concordant barrier, the canonical barrier, our SDE becomes a
Brownian motion with drift on an Einstein manifold. This is similar to how physical particles mix under general
relativity, a sampling algorithm that has been executed for over 10 billion years!
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and can be calculated by geodesics (Lemma 14.3.1). After all of this, we obtain the step of our walk
(14.3).

There are two choices which are not natural. First, it is unclear that Hessians of self-concordant
barriers are the best metrics for the sampling problems; after all, these barriers are designed for
solving linear programs. Second, it is unclear that Milstein method is the best choice. There are other
numerical method for SDE with better convergence rates, such as higher-order Runge-Kutta schemes.
However, these methods are very complex and it is not clear how to implement the steps of these
methods in �̃�

(︀
𝑚𝑛𝜔−1

)︀
time.

Clearly, we are not simultaneously experts on Riemannian geometry, numerical SDE, numerical
ODE and convex geometry; we view this chapter as a sampling algorithm that connects different areas
while improving the state of the art. Although the sampling problem is a harder problem than solving
linear programs, the step size of geodesic walk we use is larger than that of the short-step interior point
method. We hope that the relations revealed in this chapter might be useful for further development
of both samplers and linear programming solvers.

There are several avenues for improving the sampling complexity further. One is to take longer
steps and use a higher-order simulation of the SDE that is accurate up to a larger distance. Another
part that is not tight in the analysis is the isoperimetry. At the moment, we incur a linear factor
in the mixing time due to the isoperimetry (𝑚 for the log barrier, �̃�(𝑛) for the LS barrier). As far
as we know, this factor might in fact be as small as 𝑂(1). We make this precise via the following
generalization of the KLS hyperplane conjecture. If true, it would directly improve our mixing time

bound to �̃�
(︁
𝑛

3
4

)︁
.

Conjecture 14.1.2. For any Hessian manifold𝑀 with metric 𝑑, let the isoperimetric ratio of a subset
𝑆 w.r.t. 𝑑 be defined as

𝜓𝑑(𝑆) = inf
𝜀>0

vol({𝑥 ∈ 𝐾 ∖ 𝑆, 𝑑(𝑥, 𝑦) ≤ 𝜀})
𝜀 ·min{vol(𝑆), vol(𝐾 ∖ 𝑆)}

and the isoperimetric ratio of 𝑑 as 𝜓 = inf𝑆⊂𝐾 𝜓𝑑(𝑆). Then there is a subset 𝑆 defined as a halfspace
intersected with 𝐾 with𝜓𝑑(𝑆) = 𝑂(𝜓).

14.1.4 Outline

In the next section, we recall the basic definitions and properties of Riemannian geometry and Hessian
manifolds. Following that, in Section 14.3, we derive the discrete-time geodesic walk, showing how
the magic formula naturally arises. In Section 14.4, we prove the main mixing bound for the geodesic
walk in terms of a set of manifold parameters. In subsequent sections, we bound these parameters for
the logarithmic barrier, thus proving Theorem 14.1.1. The algorithm for solving ODEs (collocation
method) is presented and analyzed in Section 14.6.

14.2 Preliminaries

Throughout the chapter, we use lowercase letter for vectors and vector fields and uppercase letter for
matrices and tensors. We use 𝑒𝑘 to denote coordinate vectors. We use 𝑑

𝑑𝑡 for the usual derivative,

e.g. 𝑑𝑓(𝑐(𝑡))
𝑑𝑡 is the derivative of some function along a curve parametrized by 𝑡, ∇ for the connection

(manifold derivative, defined below which takes into account the local metric), 𝐷𝑣 for the directional
derivative wrt to the vector (or vector field) 𝑣, and 𝐷𝑡 if the parametrization is clear from the context.
We use 𝑔 for the local metric. Given a point 𝑥 ∈ 𝑀 , 𝑔 is a matrix with entries 𝑔𝑖𝑗 . Its inverse has
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𝑝

Tangent Vector𝑇𝑝𝑀

Manifold

Figure 14-1: Riemannian Manifold and Tangent Space

entries 𝑔𝑖𝑗 . Also 𝑛 is the dimension, 𝑚 the number of inequalities, 𝛾 is a geodesic, and 𝜑 is a smooth
convex function.

14.2.1 Basic Definitions of Riemannian geometry

Here we first introduce basic notions of Riemannian geometry. In this chapter, we use lowercase letter
for vectors and vector fields and uppercase letter for matrices (this is not the convention used in
Riemannian geometry). One can think of a manifold 𝑀 as a 𝑛-dimensional “surface” in R𝑚 for some
𝑚 ≥ 𝑛.

1. Tangent space 𝑇𝑝𝑀 : For any point 𝑝, the tangent space 𝑇𝑝𝑀 of 𝑀 at point 𝑝 is a linear
subspace of R𝑚. Intuitively, 𝑇𝑝𝑀 is the vector space of possible directions that are tangential to
the manifold at 𝑥. Equivalently, it can be thought as the first-order linear approximation of the
manifold 𝑀 at 𝑝. For any curve 𝑐 on 𝑀 , the direction 𝑑

𝑑𝑡𝑐(𝑡) is tangent to 𝑀 and hence lies in
𝑇𝑐(𝑡)𝑀 . When it is clear from context, we define 𝑐′(𝑡) = 𝑑𝑐

𝑑𝑡 (𝑡). For any open subset 𝑀 of R𝑛, we
can identify 𝑇𝑝𝑀 with R𝑛 because all directions can be realized by derivatives of some curves in
R𝑛.

2. Riemannian metric: For any 𝑣, 𝑢 ∈ 𝑇𝑝𝑀 , the inner product (Riemannian metric) at 𝑝 is given by

⟨𝑣, 𝑢⟩𝑝 and this allows us to define the norm of a vector ‖𝑣‖𝑝 =
√︁
⟨𝑣, 𝑣⟩𝑝. We call a manifold a

Riemannian manifold if it is equipped with a Riemannian metric. When it is clear from context,
we define ⟨𝑣, 𝑢⟩ = ⟨𝑣, 𝑢⟩𝑝. In R𝑛 , ⟨𝑣, 𝑢⟩𝑝 is the usual ℓ2 inner product.

3. Pushforward 𝑑: Given a function 𝑓 from a manifold 𝑀 to a manifold 𝑁 , we define 𝑑𝑓(𝑥) as the
linear map from 𝑇𝑥𝑀 to 𝑇𝑓(𝑥)𝑁 such that

𝑑𝑓(𝑥)(𝑐′(0)) = (𝑓 ∘ 𝑐)′(0)
for any curve 𝑐 on 𝑀 starting at 𝑥 = 𝑐(0). When 𝑀 and 𝑁 are Euclidean spaces, 𝑑𝑓(𝑥) is the
Jacobian of 𝑓 at 𝑥.

4. Hessian manifold: We call 𝑀 a Hessian manifold if 𝑀 is an open subset of R𝑛 with the Rieman-
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nian metric at a point 𝑝 ∈𝑀 defined by

⟨𝑣, 𝑢⟩𝑝 = 𝑣𝑇∇2𝜑(𝑝)𝑢

where 𝑣, 𝑢 ∈ 𝑇𝑝𝑀 and 𝜑 is a smooth convex function on 𝑀 .

5. Length: For any curve 𝑐 : [0, 1]→𝑀 , we define its length by

𝐿(𝑐) =

ˆ 1

0
‖ 𝑑
𝑑𝑡
𝑐(𝑡)‖𝑐(𝑡)𝑑𝑡.

6. Distance: For any 𝑥, 𝑦 ∈𝑀 , we define 𝑑(𝑥, 𝑦) be the infimum of the lengths of all paths connecting
𝑥 and 𝑦. In R𝑛 , 𝑑(𝑥, 𝑦) = ‖𝑥− 𝑦‖2.

7. Geodesic: We call a curve 𝛾(𝑡) : [𝑎, 𝑏]→𝑀 a geodesic if

(a) The curve 𝛾(𝑡) is parameterized with constant velocity. Namely, there is some 𝑐 such that
‖ 𝑑𝑑𝑡𝛾(𝑡)‖𝛾(𝑡) = 𝑐 for all 𝑎 ≤ 𝑡 ≤ 𝑏.

(b) The curve is the locally shortest length curve between 𝛾(𝑎) and 𝛾(𝑏). Namely, for any
family of curve 𝑐(𝑡, 𝑠) with 𝑐(𝑡, 0) = 𝛾(𝑡) and 𝑐(0, 𝑎) = 𝛾(𝑎) and 𝑐(0, 𝑏) = 𝛾(𝑏), we have that
𝑑
𝑑𝑠

⃒⃒
𝑠=0

´ 𝑏
𝑎 ‖

𝑑
𝑑𝑡𝑐(𝑡, 𝑠)‖𝑐(𝑡,𝑠)𝑑𝑡 = 0.

Note that, if 𝛾(𝑡) is a geodesic, then 𝛾(𝛼𝑡) is a geodesic for any 𝛼. Intuitively, geodesics are local
shortest-path curves. In R𝑛, geodesics are straight lines.

8. Exponential map: The map 𝑒𝑥𝑝𝑝 : 𝑇𝑝𝑀 →𝑀 is defined as

𝑒𝑥𝑝𝑝(𝑣) = 𝛾𝑣(1)

where 𝛾𝑣 is the unique geodesic starting at 𝑝 with initial velocity 𝛾′𝑣(0) equals to 𝑣. The expo-
nential map takes a straight line 𝑡𝑣 ∈ 𝑇𝑝𝑀 to a geodesic 𝛾𝑡𝑣(1) = 𝛾𝑣(𝑡) ∈ 𝑀 . Intuitively, the
exponential map can be thought as vector addition in a manifold. In R𝑛, we have exp𝑝(𝑣) = 𝑝+𝑣.

9. Parallel transport: Given any geodesic 𝑐(𝑡) and a vector 𝑣 such that ⟨𝑣, 𝑐′(0)⟩𝑐(0) = 0, we define
the parallel transport of 𝑣 along 𝑐(𝑡) by the following process: Take ℎ to be infinitesimally small
and 𝑣0 = 𝑣. For 𝑖 = 1, 2, · · · , 1/ℎ, we let 𝑣𝑖ℎ be the vector orthogonal to 𝑐′(𝑖ℎ) that minimizes
the distance between exp𝑐(𝑖ℎ)(ℎ𝑣𝑖ℎ) and exp𝑐((𝑖−1)ℎ)(ℎ𝑣(𝑖−1)ℎ). Intuitively, the parallel transport
finds the vectors on the curve such that their end points are closest to the end points of 𝑣. For
general vector 𝑣 ∈ 𝑇𝑐′(0), we write 𝑣 = 𝛼𝑐′(0)+𝑤 and we define the parallel transport of 𝑣 along
𝑐(𝑡) is the sum of 𝛼𝑐′(𝑡) and the parallel transport of 𝑤 along 𝑐(𝑡). For non-geodesic curve, see
the definition in Fact 14.2.1.

10. Orthonormal frame: Given a vector fields 𝑣1, 𝑣2, · · · , 𝑣𝑛 on a subset of 𝑀 , we call {𝑣𝑖}𝑛𝑖=1 is an
orthonormal frame if ⟨𝑣𝑖, 𝑣𝑗⟩𝑥 = 𝛿𝑖𝑗 for all 𝑥. Given a curve 𝑐(𝑡) and an orthonormal frame at
𝑐(0), we can extend it on the whole curve by parallel transport and it remains orthonormal on
the whole curve.

11. Directional derivatives and Levi-Civita connection: Given any vector 𝑣 ∈ 𝑇𝑝𝑀 and a vector
field 𝑢 in a neighborhood of 𝑝. Let 𝛾𝑣 is the unique geodesic starting at 𝑝 with initial velocity
𝛾′𝑣(0) = 𝑣, we define

∇𝑣𝑢 = lim
ℎ→0

𝑢(ℎ)− 𝑢(0)
ℎ
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where 𝑢(ℎ) is the parallel transport of 𝑢(𝛾(ℎ)) from 𝛾(ℎ) to 𝛾(0). Intuitively, Levi-Civita con-
nection is the directional derivative of 𝑢 along direction 𝑣, taking the metric into account. In
particular, for R𝑛, we have ∇𝑣𝑢(𝑥) = 𝑑

𝑑𝑡𝑢(𝑥 + 𝑡𝑣). When 𝑢 is defined on a curve 𝑐, we define
𝐷𝑡𝑢 = ∇𝑐′(0)𝑢. In R𝑛, we have 𝐷𝑡𝑢(𝛾(𝑡)) = 𝑑

𝑑𝑡𝑢(𝛾(𝑡)). We reserve 𝑑
𝑑𝑡 for the usual derivative

with Euclidean coordinates.

We list some basic facts about the definitions introduced above that are useful for computation and
intuition.

Fact 14.2.1. Given a manifold 𝑀 , a curve 𝑐(𝑡) ∈𝑀 , a vector 𝑣 and vector fields 𝑢,𝑤 on 𝑀 , we have
the following:

1. (alternative definition of parallel transport) 𝑣(𝑡) is the parallel transport of 𝑣 along 𝑐(𝑡) if and
only if ∇𝑐′(𝑡)𝑣(𝑡) = 0.

2. (alternative definition of geodesic) 𝑐 is a geodesic if and only if ∇𝑐′(𝑡)𝑐′(𝑡) = 0.

3. (linearity) ∇𝑣(𝑢+ 𝑤) = ∇𝑣𝑢+∇𝑣𝑤.

4. (product rule) For any scalar-valued function f, ∇𝑣(𝑓 · 𝑢) = 𝜕𝑓
𝜕𝑣𝑢+ 𝑓 · ∇𝑣𝑢.

5. (metric preserving) 𝑑
𝑑𝑡 ⟨𝑢,𝑤⟩𝑐(𝑡) = ⟨𝐷𝑡𝑢,𝑤⟩+ ⟨𝑢,𝐷𝑡𝑤⟩.

6. (torsion free-ness) For any map 𝑐(𝑡, 𝑠) from a subset of R2 to 𝑀 , we have that 𝐷𝑠
𝜕𝑐
𝜕𝑡 = 𝐷𝑡

𝜕𝑐
𝜕𝑠

where 𝐷𝑠 = ∇ 𝜕𝑐
𝜕𝑠

and 𝐷𝑡 = ∇ 𝜕𝑐
𝜕𝑡
.

7. (alternative definition of Levi-Civita connection) ∇𝑣𝑢 is the unique linear mapping from the
product of vector and vector field to vector field that satisfies (3), (4), (5) and (6).

14.2.1.1 Curvature

Here, we define various notions of curvature. Roughly speaking, they measure the amount by which a
manifold deviates from Euclidean space.

Given vector 𝑢, 𝑣 ∈ 𝑇𝑝𝑀 , in this section, we define 𝑢𝑣 be the point obtained from moving from 𝑥
along direction 𝑢 with distance ‖𝑢‖𝑝 (using geodesic), then moving along direction “𝑣” with distance
‖𝑣‖𝑝 where “𝑣” is the parallel transport of 𝑣 along the path 𝑢. In R𝑛, 𝑢𝑣 is exactly 𝑝+𝑢+𝑣 and hence
𝑢𝑣 = 𝑣𝑢, namely, parallelograms close up. For a manifold, parallelograms almost close up, namely,
𝑑(𝑢𝑣, 𝑣𝑢) = 𝑜(‖𝑢‖‖𝑣‖). This property is called being torsion-free.

1. Riemann curvature tensor: Three-dimensional parallelepipeds might not close up, and the cur-
vature tensor measures how far they are from closing up. Given vector 𝑢, 𝑣, 𝑤 ∈ 𝑇𝑝𝑀 , we define
𝑢𝑣𝑤 as the point obtained from moving from 𝑢𝑣 along direction “𝑤” for distance ‖𝑤‖𝑝 where
“𝑤” is the parallel transport of 𝑤 along the path 𝑢𝑣. In a manifold, parallelepipeds do not close
up and the Riemann curvature tensor how much 𝑢𝑣𝑤 deviates from 𝑣𝑢𝑤. Formally, for vector
fields 𝑣, 𝑤, we define 𝜏𝑣𝑤 be the parallel transport of 𝑤 along the vector field 𝑣 for one unit of
time. Given vector field 𝑣, 𝑤, 𝑢, we define the Riemann curvature tensor by

𝑅(𝑢, 𝑣)𝑤 =
𝑑

𝑑𝑠

𝑑

𝑑𝑡
𝜏−1
𝑠𝑢 𝜏

−1
𝑡𝑣 𝜏𝑠𝑢𝜏𝑡𝑣𝑤

⃒⃒⃒⃒
𝑡,𝑠=0

. (14.4)

Riemann curvature tensor is a tensor, namely, 𝑅(𝑢, 𝑣)𝑤 at point 𝑝 depends only on 𝑢(𝑝), 𝑣(𝑝)
and 𝑤(𝑝).
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𝑤

𝑢𝑣𝑤𝑣𝑢𝑤

𝑣

𝑝 𝑢

𝑣𝑢 ∼ 𝑢𝑣

𝑆(0)

𝑆(𝑡)𝑣 𝑣

𝑣
𝑣

Figure 14-2: Riemann curvature tensor measures the deviation of parallelepipeds (14.4) and Ricci curvature
measures the change of volumes (14.5).

2. Ricci curvature: Given a vector 𝑣 ∈ 𝑇𝑝𝑀 , the Ricci curvature Ric(𝑣) measures if the geodesics
starting around 𝑝 with direction 𝑣 converge together. Positive Ricci curvature indicates the
geodesics converge while negative curvature indicates they diverge. For example, let 𝑆(0) be a
small shape around 𝑝 and 𝑆(𝑡) be the set of point obtained from moving 𝑆(0) along direction 𝑣
with 𝑡 unit of time. Then,

vol𝑆(𝑡) = vol𝑆(0)(1− 𝑡2

2
Ric(𝑣) + smaller terms). (14.5)

Formally, we define
Ric(𝑣) =

∑︁
𝑢𝑖

⟨𝑅(𝑣, 𝑢𝑖)𝑢𝑖, 𝑣⟩

where 𝑢𝑖 is an orthonormal basis of 𝑇𝑝𝑀 . Equivalently, we have Ric(𝑣) = E𝑢∼𝑁(0,𝐼) ⟨𝑅(𝑣, 𝑢)𝑢, 𝑣⟩.
For R𝑛, Ric(𝑣) = 0. For a sphere in 𝑛+ 1 dimension with radius 𝑟, Ric(𝑣) = 𝑛−1

𝑟2
‖𝑣‖2.

Fact 14.2.2 (Alternative definition of Riemann curvature tensor). Given vector fields 𝑥, 𝑦, 𝑧 on 𝑀 .
Then, we have

𝑅(𝑥, 𝑦)𝑧 = ∇𝑥∇𝑦𝑧 −∇𝑦∇𝑥𝑧 −∇[𝑥,𝑦]𝑧

where [𝑥, 𝑦] is the vector field such that ∇[𝑥,𝑦]𝑓 = ∇𝑥∇𝑦𝑓 −∇𝑦∇𝑥𝑓 for any smooth scalar function 𝑓 .

Given any 𝑀 -valued function 𝑐(𝑡, 𝑠), we have vector fields 𝜕𝑐
𝜕𝑡 and

𝜕𝑐
𝜕𝑠 on 𝑀 . Then, we have that

𝑅(
𝜕𝑐

𝜕𝑡
,
𝜕𝑐

𝜕𝑠
)𝑧 = ∇ 𝜕𝑐

𝜕𝑡
∇ 𝜕𝑐

𝜕𝑠
𝑧 −∇ 𝜕𝑐

𝜕𝑠
∇ 𝜕𝑐

𝜕𝑡
𝑧.

Sometimes, we simply write it as 𝑅(𝜕𝑡𝑐, 𝜕𝑠𝑐)𝑧 = 𝐷𝑡𝐷𝑠𝑧 −𝐷𝑠𝐷𝑡𝑧.

Fact 14.2.3. Given vector fields 𝑣, 𝑢, 𝑤, 𝑧 on 𝑀 . Then, we have

⟨𝑅(𝑣, 𝑢)𝑤, 𝑧⟩ = ⟨𝑅(𝑤, 𝑧)𝑣, 𝑢⟩ = −⟨𝑅(𝑢, 𝑣)𝑤, 𝑧⟩ = −⟨𝑅(𝑣, 𝑢)𝑧, 𝑤⟩ .
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14.2.1.2 Jacobi field

Let 𝑐 : [0, ℓ] → 𝑀 be a geodesic and 𝑐(𝑡, 𝑠) be a variation of 𝑐(𝑡) (i.e. 𝑐(𝑡, 0) = 𝑐(𝑡)) such that
𝑐𝑠(𝑡)

def
= 𝑐(𝑡, 𝑠) is a geodesic for all 𝑠. Then, 𝑥(𝑡) def

= 𝜕
𝜕𝑠𝑐(𝑡, 𝑠)

⃒⃒
𝑠=0

satisfies the following equation

𝐷𝑡𝐷𝑡𝑥+𝑅(𝑥,
𝑑𝑐

𝑑𝑡
)
𝑑𝑐

𝑑𝑡
= 0

where 𝑅(·, ·)· is Riemann curvature tensor defined before. We call any vector field satisfying the
equation above a Jacobi field. In R𝑛, geodesics are straight lines and Jacobi field is linear, namely,
𝑥(𝑡) = 𝑥(0) + 𝑥′(0)𝑡.

Fact 14.2.4. Every Jacobi field 𝑥 can be split into the tangential part 𝑥1 and the normal part 𝑥2 such
that

1. 𝑥 = 𝑥1 + 𝑥2,

2. 𝑥1 and 𝑥2 are Jacobi fields, namely, 𝐷𝑡𝐷𝑡𝑥1 +𝑅(𝑥1,
𝑑𝑐
𝑑𝑡 )

𝑑𝑐
𝑑𝑡 = 0 and 𝐷𝑡𝐷𝑡𝑥2 +𝑅(𝑥2,

𝑑𝑐
𝑑𝑡 )

𝑑𝑐
𝑑𝑡 = 0,

3. 𝑥1 is parallel to
𝑑𝑐
𝑑𝑡 and is linear, namely, 𝑥1(𝑡) =

(︁⟨︀
𝑥(0), 𝑑𝑐𝑑𝑡 (0)

⟩︀
𝑐(0)

+
⟨︀
𝐷𝑡𝑥(0),

𝑑𝑐
𝑑𝑡 (0)

⟩︀
𝑐(0)

𝑡
)︁
𝑑𝑐
𝑑𝑡 (𝑡),

4. 𝑥2 is orthogonal to 𝑑𝑐
𝑑𝑡 , namely,

⟨︀
𝑥2(𝑡),

𝑑𝑐
𝑑𝑡 (𝑡)

⟩︀
𝑐(𝑡)

= 0.

14.2.1.3 Hessian manifolds

Recall that a manifold is called Hessian if it is a subset of R𝑛 and its metric is given by 𝑔𝑖𝑗 = 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝜑

for some smooth convex function 𝜑. We let 𝑔𝑖𝑗 be entries of the inverse matrix of 𝑔𝑖𝑗 . For example,
we have

∑︀
𝑗 𝑔

𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑖𝑘. We use 𝜑𝑖𝑗 to denote 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝜑 and 𝜑𝑖𝑗𝑘 to denote 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘
𝜑.

Since Hessian manifold is a subset of Euclidean space, we identify tangent spaces 𝑇𝑝𝑀 by Euclidean
coordinates. The following lemma give formulas for Levi-Civita connection and curvature under the
Euclidean coordinates.

Lemma 14.2.5 ([250]). Given a Hessian manifold 𝑀 , vector fields 𝑣, 𝑢, 𝑤, 𝑧 on 𝑀 , we have the
following:

1. (Levi-Civita connection) ∇𝑣𝑢 =
∑︀

𝑖𝑘 𝑣𝑖
𝜕𝑢𝑘
𝜕𝑥𝑖

𝑒𝑘 +
∑︀

𝑖𝑗𝑘 𝑣𝑖𝑢𝑗Γ
𝑘
𝑖𝑗𝑒𝑘 where 𝑒𝑘 are coordinate vectors

and the Christoffel symbol

Γ𝑘𝑖𝑗 =
1

2

∑︁
𝑙

𝑔𝑘𝑙𝜑𝑖𝑗𝑙

.

2. (Riemann curvature tensor) ⟨𝑅(𝑢, 𝑣)𝑤, 𝑧⟩ =
∑︀

𝑖𝑗𝑙𝑘 𝑅𝑘𝑙𝑖𝑗𝑢𝑖𝑣𝑖𝑤𝑙𝑧𝑘 where

𝑅𝑘𝑙𝑖𝑗 =
1

4

∑︁
𝑝𝑞

𝑔𝑝𝑞 (𝜑𝑗𝑘𝑝𝜑𝑖𝑙𝑞 − 𝜑𝑖𝑘𝑝𝜑𝑗𝑙𝑞) .

3. (Ricci curvature) 𝑅𝑖𝑐(𝑣) = 1
4

∑︀
𝑖𝑗𝑙𝑘𝑝𝑞 𝑔

𝑝𝑞𝑔𝑗𝑙 (𝜑𝑗𝑘𝑝𝜑𝑖𝑙𝑞 − 𝜑𝑖𝑘𝑝𝜑𝑗𝑙𝑞) 𝑣𝑖𝑣𝑘.

In this chapter, geodesic is used everywhere and we will implicitly using the following lemma in
all of our calculations.
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Lemma 14.2.6 ([214, Cor 3.1]). If 𝜑 is a self-concordant function, namely,
⃒⃒
𝐷3𝑓(𝑥)[ℎ, ℎ, ℎ]

⃒⃒
≤

2
⃒⃒
𝐷2𝑓(𝑥)[ℎ, ℎ]

⃒⃒3/2
, then the corresponding Hessian manifold 𝑀 is geodesically complete, namely, for

any 𝑝 ∈ 𝑀 , the exponential map is defined on the entire tangent space 𝑇𝑝𝑀 and for any two points
𝑝, 𝑞 ∈𝑀 , there is a length minimizing geodesic connecting them.

In particular, for a polytope 𝑀 = {𝑥 : 𝐴𝑥 > 𝑏}, the Hessian manifold induced by the function
𝜑(𝑥) = −

∑︀
𝑖 log(𝑎

𝑇
𝑖 𝑥− 𝑏𝑖) is geodesically complete.

14.2.1.4 Normal coordinates

For any manifold 𝑀 , and any 𝑝 ∈ 𝑀 , the exponential map exp𝑥 maps from 𝑇𝑥𝑀 to 𝑀 . Since 𝑇𝑥𝑀
is isomorphic to R𝑛, exp−1

𝑥 gives a local coordinate system of 𝑀 around 𝑥. We call this system the
normal coordinates at 𝑥. In a normal coordinate system, the metric is locally constant.

Lemma 14.2.7. In normal coordinates, we have

𝑔𝑖𝑗 = 𝛿𝑖𝑗 −
1

3

∑︁
𝑘𝑙

𝑅𝑖𝑘𝑗𝑙𝑥
𝑘𝑥𝑙 +𝑂(|𝑥|3).

For a Hessian manifold, one can do a linear transformation on the normal coordinate to make this
coincide with Euclidean coordinate up to the first order.

Lemma 14.2.8. Given a Hessian manifold 𝑀 and any point 𝑥 ∈ 𝑀 . We pick a basis of 𝑇𝑥𝑀 such
that

exp𝑥(𝑡𝑣) = 𝑥+ 𝑡𝑣 +𝑂(𝑡2).

Let a local coordinate system 𝐹 :𝑀 → R𝑛 defined by 𝐹 (𝑦) = exp−1
𝑥 . Then, we have

𝐷𝐹 [ℎ] = ℎ and 𝐷2𝐹𝑘(𝑥)[ℎ, ℎ] = ℎ𝑇Γ𝑘ℎ

where 𝐹𝑘 is the 𝑘𝑡ℎ coordinate of 𝐹 and Γ𝑘 is the matrix with entries Γ𝑘𝑖𝑗 defined in Lemma 14.2.5.

14.2.2 Stochastic calculus

A stochastic differential equation (SDE) describes a stochastic process over a domain Ω. It has the
form 𝑑𝑥𝑡 = 𝜇(𝑥𝑡, 𝑡)𝑑𝑡+𝜎(𝑥𝑡, 𝑡)𝑑𝑊𝑡 where 𝑥𝑡 is the current point at time 𝑡, 𝑊𝑡 is a standard Brownian
motion, and 𝜇(𝑥𝑡, 𝑡), 𝜎(𝑥𝑡, 𝑡) are the mean and covariance of the next infinitesimal step at time 𝑡.

Lemma 14.2.9 (Itō’s lemma). Given a SDE 𝑑𝑥𝑡 = 𝜇(𝑥𝑡)𝑑𝑡 + 𝜎(𝑥𝑡)𝑑𝑊𝑡 and any smooth function 𝑓 ,
we have

𝑑𝑓(𝑡, 𝑥𝑡) =

{︂
𝜕𝑓

𝜕𝑡
+ ⟨∇𝑓, 𝜇⟩+ 1

2
Tr
[︀
𝜎𝑇
(︀
∇2𝑓

)︀
𝜎
]︀}︂

𝑑𝑡+ (∇𝑓)𝑇 𝜎𝑑𝑊𝑡.

SDEs are closely related to diffusion equations:

𝜕

𝜕𝑡
𝑝(𝑥, 𝑡) =

1

2
∇ · (𝐴(𝑥, 𝑡)∇𝑝(𝑥, 𝑡))

where 𝑝(𝑥, 𝑡) is the density at point 𝑥 and time 𝑡, ∇· is the usual divergence operator, ∇𝑝 is the
gradient of 𝑝 and the matrix 𝐴(𝑥, 𝑡) represents the diffusion coefficient at point 𝑥 and time 𝑡. When
𝐴(𝑥, 𝑡) = 𝐼, we get the familiar heat equation:

𝜕

𝜕𝑡
𝑝(𝑥, 𝑡) =

1

2
Δ𝑝(𝑥, 𝑡).



386 CHAPTER 14. SAMPLING IN SUB-QUADRATIC STEPS

In this chapter, the diffusion coefficient will be a symmetric positive definite matrix given by the
Hessian

(︀
∇2𝜑(𝑥)

)︀−1of a convex function 𝜑(𝑥).
The Fokker-Planck equation connects an SDE to a diffusion equation.

Theorem 14.2.10 (Fokker-Planck equation). For any stochastic differential equation (SDE) of the
form

𝑑𝑥𝑡 = 𝜇(𝑥𝑡, 𝑡)𝑑𝑡+
√︀
𝐴(𝑥𝑡, 𝑡)𝑑𝑊𝑡,

the probability density of the SDE is given by the diffusion equation

𝜕

𝜕𝑡
𝑝(𝑥, 𝑡) = −

𝑛∑︁
𝑖=1

𝜕

𝜕𝑥𝑖
[𝜇𝑖(𝑥, 𝑡)𝑝(𝑥, 𝑡)] +

1

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜕2

𝜕𝑥𝑖𝑥𝑗
[𝐴𝑖𝑗(𝑥, 𝑡)𝑝(𝑥, 𝑡)].

14.2.3 Complex analysis

A complex function is said to be (complex) analytic (equivalently, holomorphic) if it is locally defined
by a convergent power series. Hartog’s theorem shows that a complex function in several variables
𝑓 : C𝑛 → C is holomorphic iff it is analytic in each variable (while fixing all the other variables). For
any power series expansion, we define the radius of convergence at 𝑥 as the largest number 𝑟 such that
the series converges on the sphere with radius 𝑟 centered at 𝑥. Roughly speaking, complex analytic
functions behave very nicely up to the radius of convergence, and one can avoid complex and tedious
computations via general convergence theorems.

Theorem 14.2.11 (Cauchy’s Estimates). Suppose 𝑓 is holomorphic on a neighborhood of the ball

𝐵
def
= {𝑧 ∈ C : |𝑧 − 𝑧0| ≤ 𝑟}, then we have that⃒⃒⃒

𝑓 (𝑘)(𝑧0)
⃒⃒⃒
≤ 𝑘!

𝑟𝑘
sup
𝑧∈𝐵
|𝑓(𝑧)| .

In particular, for any rational function 𝑓(𝑧) =
∏︀𝛼

𝑖=1(𝑧−𝑎𝑖)∏︀𝛽
𝑗=1(𝑧−𝑏𝑗)

and any ball 𝐵
def
= {𝑧 ∈ C : |𝑧 − 𝑧0| ≤ 𝑟}

such that 𝑏𝑗 /∈ 𝐵, we have that ⃒⃒⃒
𝑓 (𝑘)(𝑧0)

⃒⃒⃒
≤ 𝑘!

𝑟𝑘
sup
𝑧∈𝐵
|𝑓(𝑧)| .

A similar estimate holds for analytic functions in several variables.

14.3 Intuition

In this section, we derive the formula of the geodesic walk from first principles.

14.3.1 Derivation of the Geodesic walk

Given a smooth convex function 𝜑 on the convex domain 𝑀 , namely that it is convex and is infinitely
differentiable at every interior point of 𝑀 , we consider the corresponding diffusion equation

𝜕

𝜕𝑡
𝑝(𝑥, 𝑡) =

1

2
∇ ·
(︀
∇2𝜑

)︀−1∇𝑝.
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We can expand it by

𝜕

𝜕𝑡
𝑝(𝑥, 𝑡) =

1

2

𝑛∑︁
𝑖=1

𝜕

𝜕𝑥𝑖

⎛⎝ 𝑛∑︁
𝑗=1

(︁(︀
∇2𝜑

)︀−1
)︁
𝑖𝑗

𝜕

𝜕𝑥𝑗
𝑝(𝑥, 𝑡)

⎞⎠
=

1

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜕2

𝜕𝑥𝑖𝑥𝑗

(︂(︁(︀
∇2𝜑

)︀−1
)︁
𝑖𝑗
𝑝(𝑥, 𝑡)

)︂
− 1

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜕

𝜕𝑥𝑖

(︂
𝜕

𝜕𝑥𝑗

(︁(︀
∇2𝜑

)︀−1
)︁
𝑖𝑗
𝑝(𝑥, 𝑡)

)︂
.

The uniform distribution is the stationary distribution of this diffusion equation. Now applying the
Fokker-Planck equation (Theorem 14.2.10) with 𝐴 =

(︀
∇2𝜑

)︀−1, the SDE for the above diffusion is
given by:

𝑑𝑥𝑡 = 𝜇(𝑥𝑡)𝑑𝑡+
(︀
∇2𝜑(𝑥𝑡)

)︀−1/2
𝑑𝑊𝑡.

This explains the definition of (14.1). To simplify the notation, we write the SDE as

𝑑𝑥𝑡 = 𝜇(𝑥𝑡)𝑑𝑡+ 𝜎(𝑥𝑡)𝑑𝑊𝑡 (14.6)

where 𝜎(𝑥𝑡) =
(︀
∇2𝜑(𝑥𝑡)

)︀−1/2. One way to simulate this is via the Euler–Maruyama method, namely

𝑥(𝑡+1)ℎ = 𝑥𝑡ℎ + 𝜇(𝑥𝑡ℎ)ℎ+ 𝜎(𝑥𝑡ℎ)𝑤𝑡ℎ
√
ℎ

where 𝑤𝑡ℎ ∼ 𝑁𝑥𝑡ℎ(0, 𝐼). We find the direction we are heading and take a small step along that direction.
However, if we view 𝑀 as a manifold, then directly adding the direction 𝜇(𝑥𝑡ℎ)ℎ + 𝜎(𝑥𝑡ℎ)𝑤𝑡ℎ

√
ℎ to

𝑥𝑡ℎ is not natural; the Euclidean coordinate is just an arbitrary coordinate system and we could pick
any other coordinate systems and add the direction into 𝑥𝑡ℎ, giving a different step. Instead, we take
the step in normal coordinates (Section 14.2.1.4).

In particular, given an initial point 𝑥0, we define 𝐹 = exp−1
𝑥0 and we note that 𝐹 (𝑥𝑡) is another

SDE. To see the defining equation of this transformed SDE, we use Itō’s lemma to show that the
transformed SDE looks the same but with half the drift term. This explains the formulation of
geodesic walk: 𝑥(𝑗+1) = exp𝑥(𝑗)(

√
ℎ𝑤 + ℎ

2𝜇(𝑥
(𝑗))).

Lemma 14.3.1. Let 𝐹 = exp−1
𝑥0 and 𝑥𝑡 satisfies the SDE (14.6) Then we have

𝑑𝐹 (𝑥0) =
1

2
𝜇(𝑥0)𝑑𝑡+ 𝜎(𝑥0)𝑑𝑊0. (14.7)

Proof. Itō’s lemma (Lemma 14.2.9) shows that

𝑑𝐹𝑘(𝑥𝑡) =

{︂
⟨∇𝐹𝑘, 𝜇⟩+

1

2
Tr
[︀
𝜎𝑇
(︀
∇2𝐹𝑘

)︀
𝜎
]︀}︂

𝑑𝑡+ (∇𝐹𝑘)𝑇 𝜎𝑑𝑊𝑡

where 𝐹𝑘 indicates the 𝑘𝑡ℎ coordinate of 𝐹 . From Lemma 14.2.8, we have that ⟨∇𝐹𝑘(𝑥0), 𝜇⟩ = 𝜇𝑘,
(∇𝐹𝑘(𝑥0))𝑇 𝜎 = 𝑒𝑇𝑘 𝜎 and

Tr
[︀
𝜎(𝑥0)

𝑇
(︀
∇2𝐹𝑘(𝑥0)

)︀
𝜎(𝑥0)

]︀
=

∑︁
𝑖

𝐷2𝐹𝑘[𝜎𝑒𝑖, 𝜎𝑒𝑖]

=
∑︁
𝑖

𝑒𝑇𝑖 𝜎
𝑇Γ𝑘𝜎𝑒𝑖

= Tr
(︁
𝜎𝑇Γ𝑘𝜎

)︁
=

∑︁
𝑒𝑇𝑖 Γ

𝑘
(︀
∇2𝜑

)︀−1
𝑒𝑖.
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Now, using Lemma 14.2.5, we have that

Tr
[︀
𝜎(𝑥0)

𝑇
(︀
∇2𝐹𝑘(𝑥0)

)︀
𝜎(𝑥0)

]︀
=

1

2

∑︁
𝑖𝑗𝑙

𝑔𝑘𝑙𝜑𝑖𝑗𝑙𝑔
𝑗𝑖

Hence, we have that

𝑑𝐹𝑘(𝑥0) =

⎧⎨⎩𝜇𝑘 + 1

4

∑︁
𝑖𝑗𝑙

𝑔𝑘𝑙𝜑𝑖𝑗𝑙𝑔
𝑗𝑖

⎫⎬⎭ 𝑑𝑡+ 𝑒𝑇𝑘 𝜎𝑑𝑊𝑡

Recall that the drift term (14.2) is given by

𝜇𝑘 =
1

2

𝑛∑︁
𝑖=1

𝜕

𝜕𝑥𝑖

(︁(︀
∇2𝜑

)︀−1
)︁
𝑘𝑖

= −1

2

∑︁
𝑖

𝑒𝑇𝑘
(︀
∇2𝜑

)︀−1 𝜕

𝜕𝑥𝑖
∇2𝜑

(︀
∇2𝜑

)︀−1
𝑒𝑖

= −1

2

∑︁
𝑙,𝑖,𝑗

𝑔𝑘𝑙
𝜕

𝜕𝑥𝑖
𝜑𝑙𝑗𝑔

𝑗𝑖

= −1

2

∑︁
𝑖𝑗𝑙

𝑔𝑘𝑙𝜑𝑖𝑗𝑙𝑔
𝑗𝑖. (14.8)

Therefore, we have the result.

14.3.2 Discussion of Geodesic Walk

In this section, we relate our geodesic walk with the following commonly-used method for solving SDE.

Theorem 14.3.2 (Milstein Method). Given a SDE 𝑑𝑥𝑡 = 𝜇(𝑥𝑡)𝑑𝑡+𝜎(𝑥𝑡)𝑑𝑊𝑡, consider the algorithm

𝑥ℎ = 𝑥0 + 𝜇(𝑥0)ℎ+ 𝜎(𝑥0)Δ𝑊 +

𝑚∑︁
𝑗1,𝑗2=1

𝐿𝑗1𝜎𝑘,𝑗2𝐼𝑗1𝑗2

where 𝐿𝑗 =
∑︀𝑑

𝑘=1 𝜎
𝑘,𝑗 𝜕

𝜕𝑥𝑘
, Δ𝑊𝑗 ∼

´ ℎ
0 𝑑𝑊

𝑗
𝑡 and 𝐼𝑗1𝑗2 ∼

´ ℎ
0

´ 𝑡1
0 𝑑𝑊 𝑗2

𝑡2
𝑑𝑊 𝑗1

𝑡1
. Then, we have

E‖𝑥ℎ − 𝑥ℎ‖2 = 𝑂(ℎ2)

where the 𝑂(.) notation hides constants related to anything except ℎ.

Under normal coordinates, the metric is locally constant (Lemma 14.2.7). Due to this, the term∑︀𝑚
𝑗1,𝑗2=1 𝐿

𝑗1𝜎𝑘,𝑗2𝐼𝑗1𝑗2 in the Milstein method vanishes. Hence, we have the following result.

Theorem 14.3.3 (Geodesic Walk). Let 𝑋𝑡 satisfies the SDE (14.6). Consider the discrete step

𝑥ℎ = exp𝑥0

(︂
1

2
𝜇(𝑥0)ℎ+ 𝜎(𝑥0)Δ𝑊

)︂
where Δ𝑊 ∼ 𝑁(0, ℎ𝐼). Then,

E‖𝑥ℎ − 𝑥ℎ‖2 = 𝑂(ℎ2)

where the 𝑂(.) notation hides constants related to anything except ℎ.
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Proof. In normal coordinates, we consider the step

𝐹 (𝑥ℎ) =
1

2
𝜇(𝑥0)ℎ+ 𝜎(𝑥0)Δ𝑊.

Since 𝐹 (𝑥ℎ) satisfies 14.7 and 𝜎 is locally constant at 𝑋0 (Lemma 14.2.7), Theorem 14.3.2 (Milstein
Method) shows that

‖𝐹 (𝑥ℎ)− 𝐹 (𝑥ℎ)‖2 = 𝑂(ℎ2).

The result follows from 𝑥ℎ = exp𝑋0
(𝐹 (𝑥ℎ)), 𝑥ℎ = exp𝑋0

(𝐹 (𝑥ℎ)) and the smoothness of exp𝑥0 .

For the Euler-Maruyama method, 𝑥ℎ = 𝑥0+𝜇(𝑥0)ℎ+𝜎(𝑥0)Δ𝑊 , we only get 𝑂(ℎ1.5) as the bound
on the error, rather than 𝑂(ℎ2). This is one of the reasons we use geodesic instead of just adding up
the vector in Euclidean coordinates.

14.4 Convergence of the Geodesic Walk

The geodesic walk is a Metropolis-filtered Markov chain, whose stationary distribution is the uniform
distribution over the polytope to be sampled. We will prove that the conductance of this chain is
large with an appropriate choice of the step-size parameter. Therefore, its mixing time to converge
to the stationary distribution will be small. The proof of high conductance involves showing (a) the
acceptance probability of the Metropolis filter is at least a constant (b) the induced metric satisfies a
strong isoperimetric inequality (c) two points that are close in metric distance are also close in prob-
abilistic distance, namely, the one-step distributions from them have large overlap. Besides bounding
the number of steps, we also have to show that each step of the Markov chain can be implemented
efficiently. We describe the implementation via reduction to solving ODEs in Section 14.4.6. We do
this in later sections via an efficient algorithm for approximately solving ODEs.

In this section, we present the general conductance proof for Hessian manifolds. The proof will
need bounds on seven parameters determined by the specific barrier function. In Section 14.5, we will
bound these parameters for the logarithmic barrier.

For a Markov chain with state space 𝑀 , stationary distribution 𝑄 and next step distribution 𝑃𝑢(·)
for any 𝑢 ∈𝑀 , the conductance of the Markov chain is

𝜑 = inf
𝑆⊂𝑀

´
𝑃𝑢(𝑀 ∖ 𝑆)𝑑𝑄(𝑢)

min {𝑄(𝑆), 𝑄(𝑀 ∖ 𝑆)}
.

The conductance of an ergodic Markov chain allows us to bound its mixing time, i.e., the rate of
convergence to its stationary distribution, e.g., via the following theorem of Lovász and Simonovits.

Theorem 14.4.1 ([177]). Let 𝑄𝑡 be the distribution of the current point after 𝑡 steps of a Markov
chain with stationary distribution 𝑄 and conductance at least 𝜑, starting from initial distribution 𝑄0.
Then,

𝑑𝑇𝑉 (𝑄𝑡, 𝑄) ≤
√︀
𝑑0

(︂
1− 𝜑2

2

)︂𝑡
where 𝑑0 = E𝑄0(𝑑𝑄0(𝑢)/𝑑𝑄(𝑢)) is a measure of the distance of the starting distribution from the
stationary and 𝑑𝑇𝑉 is the total variation distance.
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14.4.1 Hessian parameters

The mixing of the walk depends on the maximum values of several smoothness parameters of the
manifold. For some of them, we only need to bound the parameters with high probability over the
choice of steps of the geodesic walk. For 𝑥 ∈ 𝑀 , let ̃︀Π𝑥 be the set of geodesics used in one step of
the geodesic walk starting at 𝑥 with the parameterization 𝛾 : [0, ℓ] → 𝑀 and ℓ =

√
𝑛ℎ. Parameters

𝐷1, 𝐺1, 𝑅1, 𝑅2 below will be bounded with high probability over the choice of the next step (the
others hold for all points in the domain). Let Π𝑥 denote a 1 − exp(𝑛−Θ(1)) probability subset of ̃︀Π𝑥
and Π =

⋃︀
𝑥∈𝑀 Π𝑥. These will be fixed when bounding the parameters for specific manifolds.

1. The maximum norm of the drift, 𝐷0 = sup𝑥∈𝑀 ‖𝜇(𝑥)‖𝑥.

2. The smoothness of drift norm, 𝐷1 = sup𝛾∈Π,0≤𝑡≤ℓ
𝑑
𝑑𝑡‖𝜇(𝛾(𝑡))‖

2.

3. The smoothness of the drift, 𝐷2 = sup𝑥∈𝑀,‖𝑠‖𝑥≤1 ‖∇𝑠𝜇(𝑥)‖𝑥.

4. The smoothness of the volume, 𝐺1 = sup𝛾∈Π,0≤𝑡≤ℓ |log det(𝑔(𝛾(𝑡))))′′′| where 𝑔(𝑥) is the metric
at 𝑥.

5. The smoothness of the metric, 𝐺2 = sup 𝑑(𝑥,𝑦)
𝑑𝐻(𝑥,𝑦) where 𝑑𝐻 is the Hilbert distance defined in

Section 14.4.3 and 𝑑 is the shortest path distance in 𝑀 .

6. The stability of the Jacobian field, 𝑅1 = sup𝛾∈Π,0≤𝑡≤ℓ ‖𝑅(𝑡)‖𝐹 where𝑅(𝑡)𝑖𝑗 = ⟨𝑅(𝑋𝑖, 𝛾
′(𝑡))𝛾′(𝑡), 𝑋𝑗⟩

where {𝑋𝑖} is any orthonormal frame at 𝛾(𝑡).

7. The smoothness of the Ricci curvature, 𝑅2 = sup𝛾∈Π
⃒⃒
𝑑
𝑑𝑠𝑅𝑖𝑐(𝛾

′
𝑠(𝑡))

⃒⃒
(see Definition 14.4.16).

We refer to these as the smoothness parameters of a Hessian manifold. Our main theorem for conver-
gence can be stated as follows.

Theorem 14.4.2. On a Hessian manifold with smoothness parameters 𝐷0, 𝐷1, 𝐷2,𝐺1, 𝐺2, 𝑅1, 𝑅2 and
assumption 14.4.23, the geodesic walk with step size

0 < ℎ ≤ Θ(1)min

{︃
1

(𝑛𝐷0𝑅1)2/3
,
1

𝐷2
,

1

𝑛𝑅1
,

1

𝑛1/3𝐷
2/3
1

,
1

𝑛𝐺
2/3
1

,
1

(𝑛𝑅2)
2/3

}︃
has conductance Ω(

√
ℎ/𝐺2) and its mixing time is 𝑂(𝐺2

2/ℎ).

14.4.2 1-step distribution

We derive a formula for the drift term — it is in fact a Newton step of the volumetric barrier function
log det∇2𝜑(𝑥).

Lemma 14.4.3. We have
𝜇(𝑥) = −

(︀
∇2𝜑(𝑥)

)︀−1∇𝜓(𝑥)
where 𝜓(𝑥) = 1

2 log det∇
2𝜑(𝑥).
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Proof. We note that

𝜕

𝜕𝑥𝑗
log det

(︀
∇2𝜑

)︀−1
= Tr

(︂(︀
∇2𝜑

)︀ 𝜕

𝜕𝑥𝑗

(︀
∇2𝜑

)︀−1
)︂

= −Tr
(︂(︀
∇2𝜑

)︀ (︀
∇2𝜑

)︀−1
(︂

𝜕

𝜕𝑥𝑗
∇2𝜑

)︂(︀
∇2𝜑

)︀−1
)︂

= −
∑︁
𝑘

𝑒𝑇𝑘

(︂
𝜕

𝜕𝑥𝑗
∇2𝜑

)︂(︀
∇2𝜑

)︀−1
𝑒𝑘.

Hence, we have

1

2
𝑒𝑇𝑖
(︀
∇2𝜑

)︀−1∇ log det
(︀
∇2𝜑

)︀−1
= −1

2

∑︁
𝑗𝑘

(︀
∇2𝜑

)︀−1

𝑖𝑗
𝑒𝑇𝑘

(︂
𝜕

𝜕𝑥𝑗
∇2𝜑

)︂(︀
∇2𝜑

)︀−1
𝑒𝑘

= −1

2

∑︁
𝑗𝑘

𝑒𝑇𝑖
(︀
∇2𝜑

)︀−1
(︂

𝜕

𝜕𝑥𝑘
∇2𝜑

)︂(︀
∇2𝜑

)︀−1
𝑒𝑘

On the other hand, we have

𝜇𝑖 =
1

2

∑︁
𝑘

𝜕

𝜕𝑥𝑘

(︁(︀
∇2𝜑

)︀−1
)︁
𝑖𝑘

= −1

2

∑︁
𝑘

𝑒𝑇𝑖
(︀
∇2𝜑

)︀−1
(︂

𝜕

𝜕𝑥𝑘
∇2𝜑

)︂(︀
∇2𝜑

)︀−1
𝑒𝑘.

To have a uniform stationary distribution, the geodesic walk uses a Metropolis filter. The transition
probability before applying the filter is given as follows.

Lemma 14.4.4. For any 𝑥 ∈ 𝑀 and ℎ > 0, the probability density of the 1-step distribution from 𝑥
(before applying the Metropolis filter) is given by

𝑝𝑥(𝑦) =
∑︁

𝑣𝑥:exp𝑥(𝑣𝑥)=𝑦

det(𝑑 exp𝑥(𝑣𝑥))
−1

√︃
det (𝑔(𝑦))

(2𝜋ℎ)𝑛
exp

(︃
−1

2
‖
𝑣𝑥 − ℎ

2𝜇(𝑥)√
ℎ

‖2𝑥

)︃
(14.9)

where 𝑦 = exp𝑥(𝑣𝑥) and 𝑑 exp𝑥 is the differential of the exponential map at 𝑥.

Proof. We prove the formula by separately considering each 𝑣𝑥 ∈ 𝑇𝑥𝑀 s.t. 𝑒𝑥𝑝𝑥(𝑣𝑥) = 𝑦, then
summing up. In the tangent space 𝑇𝑥𝑀 , the point 𝑣𝑥 is a Gaussian step. Therefore, the probability
density of 𝑣𝑥 in 𝑇𝑥𝑀 as follows.

𝑝𝑇𝑥𝑀𝑥 (𝑣𝑥) =
1

(2𝜋ℎ)𝑛/2
exp

(︃
−1

2
‖
𝑣𝑥 − ℎ

2𝜇(𝑥)√
ℎ

‖2𝑥

)︃
.

Note that 𝑣𝑥, 𝜇(𝑥) ∈ 𝑇𝑥𝑀. Let 𝑦 = exp𝑥(𝑣𝑥). In the tangent space 𝑇𝑦𝑀, we have that 𝑦 maps to 0.
Let 𝜑 : 𝑇𝑥𝑀 → 𝐾 defined by 𝐹 (𝑣) = id𝑀→𝐾 ∘ exp𝑥(𝑣). Here 𝐾 is the same set as 𝑀 but endowed
with the Euclidean metric (we use 𝐹 instead of exp−1

𝑦 (exp𝑥(𝑣)) since the exponential map might not
be 1-1). Hence, we have

𝑑𝐹 (𝑣𝑥) = 𝑑id𝑀→𝐾(𝑦)𝑑 exp𝑥(𝑣𝑥).
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The result follows from 𝑝𝑥(𝑦) = det(𝑑𝐹 (𝑣𝑥))
−1𝑝𝑇𝑥𝑀𝑥 (𝑣𝑥) and

det 𝑑𝐹 (𝑣𝑥) = det (𝑑id𝑀→𝐾(𝑦)) det (𝑑 exp𝑥(𝑣𝑥))

= det(𝑔(𝑦))−1/2 det (𝑑 exp𝑥(𝑣𝑥)) .

In Section 14.4.5, we bound the acceptance probability of the Metropolis filter.

Lemma 14.4.5. Under the condition on ℎ of Theorem 14.4.2,⃒⃒⃒⃒
log

(︂
𝑝𝑥(𝑦)

𝑝𝑦(𝑥)

)︂⃒⃒⃒⃒
= 𝑂

(︁√
𝑛ℎ3/2𝐷1 + (𝑛ℎ)3/2𝐺1 + (𝑛ℎ𝑅1)

2
)︁
<

1

4
.

In Section 14.4.7, we bound the overlap of one-step distributions from nearby points.

Lemma 14.4.6. Let 𝑥, 𝑦 ∈ 𝑀 be such that 𝑑(𝑥, 𝑦) ≤ 0.1
√
ℎ. Then, under the condition on ℎ of

Theorem 14.4.2, the one-step distributions 𝑃𝑥, 𝑃𝑦 from 𝑥, 𝑦 satisfy

𝑑𝑇𝑉 (𝑃𝑥, 𝑃𝑦) = 𝑂(𝑛ℎ3/2𝑅2 + ℎ𝐷2 + 𝑛ℎ3/2𝑅1𝐷0) < 0.3.

14.4.3 Isoperimetry

For a convex body 𝐾, the cross-ratio distance of 𝑥 and 𝑦 is

𝑑𝐾(𝑥, 𝑦) =
|𝑥− 𝑦||𝑝− 𝑞|
|𝑝− 𝑥||𝑦 − 𝑞|

where 𝑝 and 𝑞 are on the boundary of 𝐾 such that 𝑝, 𝑥, 𝑦, 𝑞 are on the straight line 𝑥𝑦 and are in
order. In this section, we show that if the distance 𝑑(𝑥, 𝑦) induced by the Riemannian metric is upper
bounded by the cross-ratio distance, then the body has good isoperimetric constant in terms of 𝑑. We
note that although the cross-ratio distance is not a metric, the closely-related Hilbert distance is a
metric:

𝑑𝐻(𝑥, 𝑦) = log

(︂
1 +
|𝑥− 𝑦||𝑝− 𝑞|
|𝑝− 𝑥||𝑦 − 𝑞|

)︂
.

Theorem 14.4.7. For a Hessian manifold 𝑀 with smoothness parameters 𝐺2, for any partition of
𝑀 into three measurable subsets 𝑆1, 𝑆2, 𝑆3, we have that

vol(𝑆3) ≥
𝑑(𝑆1, 𝑆2)

𝐺2
min{vol(𝑆1), vol(𝑆2)}.

The theorem follows from the following isoperimetric inequality from [173], the definition of 𝐺2

and the fact 𝑑𝐻 ≤ 𝑑𝐾 .

Theorem 14.4.8 ([173]). For any convex body 𝐾 and any partition of 𝐾 into disjoint measurable
subsets 𝑆1, 𝑆2, 𝑆3

vol(𝑆3) ≥ 𝑑𝐾(𝑆1, 𝑆2)vol(𝑆1)vol(𝑆2).
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14.4.4 Conductance and Mixing

Proof of Theorem 14.4.2. The proof follows the standard outline for geometric random walks (see e.g.,
[261]). Let 𝑄 be the uniform distribution over 𝑀 and 𝑆 be any measurable subset of 𝑀 . Then our
goal is to show that

´
𝑆 𝑃𝑥(𝑀 ∖ 𝑆) 𝑑𝑄(𝑥)

min {𝑄(𝑆), 𝑄(𝑀 ∖ 𝑆)}
= Ω

(︃√
ℎ

𝐺2

)︃
.

Since the Markov chain is time-reversible (For any two subsets 𝐴,𝐵,
´
𝐴 𝑃𝑥(𝐵) 𝑑𝑥 =

´
𝐵 𝑃𝑥(𝐴) 𝑑𝑥), we

can write the numerator of the LHS above as

1

2

(︃ˆ
𝑆
𝑃𝑥(𝑀 ∖ 𝑆) 𝑑𝑄(𝑥) +

ˆ
𝑀∖𝑆

𝑃𝑥(𝑆) 𝑑𝑄(𝑥)

)︃
.

Define

𝑆1 = {𝑥 ∈ 𝑆 : 𝑃𝑥(𝑀 ∖ 𝑆) < 0.05}
𝑆2 = {𝑥 ∈𝑀 ∖ 𝑆 : 𝑃𝑥(𝑆) < 0.05}
𝑆3 =𝑀 ∖ 𝑆1 ∖ 𝑆2.

We can assume wlog that 𝑄(𝑆1) ≥ (1/2)𝑄(𝑆) and 𝑄(𝑆2) ≥ (1/2)𝑄(𝑀 ∖𝑆) (if not, the conductance is
Ω(1)).

Next, we note that for any two points 𝑥 ∈ 𝑆1 and 𝑦 ∈ 𝑆2, 𝑑𝑇𝑉 (𝑃𝑥, 𝑃𝑦) > 0.9. Therefore, by Lemma
14.4.6, we have that 𝑑(𝑥, 𝑦) ≥ 0.1

√
ℎ and hence 𝑑(𝑆1, 𝑆2) ≥ 0.1

√
ℎ. Therefore, using Theorem 14.4.7,

vol(𝑆3) ≥
0.1
√
ℎ

𝐺2
min{vol(𝑆1), vol(𝑆2)}.

Going back to the conductance,

1

2

(︃ˆ
𝑆
𝑃𝑥(𝑀 ∖ 𝑆) 𝑑𝑄(𝑥) +

ˆ
𝑀∖𝑆

𝑃𝑥(𝑆) 𝑑𝑄(𝑥)

)︃
≥ 1

2

ˆ
𝑆3

(0.05)𝑑𝑄(𝑥)

≥
√
ℎ

800𝐺2
min{vol(𝑆1), vol(𝑆2)}

1

vol(𝐾)

=

√
ℎ

1600𝐺2
min

{︂
vol(𝑆)

vol(𝑀)
,
vol(𝑀 ∖ 𝑆)
vol(𝑀)

}︂
=

√
ℎ

1600𝐺2
min{𝑄(𝑆), 𝑄(𝑀 ∖ 𝑆)}

Therefore, 𝜑(𝑆) ≥ (1/1600)
√
ℎ/𝐺2.

Corollary 14.4.9. Let 𝐾 be a polytope with 𝑚 facets. Let 𝑄 be the uniform distribution over 𝐾
and 𝑄𝑡 be the distribution obtained after 𝑡 steps of the geodesic walk started from a distribution 𝑄0

with 𝑑0 = sup𝐾
𝑑𝑄0

𝑑𝑄 . Then after 𝑡 > 𝐶(𝐺2
2/ℎ) log

(︁
𝑑0
𝜀

)︁
steps, with probability at least 1 − 𝛿, we have

𝑑𝑇𝑉 (𝑄𝑡, 𝑄) ≤ 𝜀.
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14.4.5 Rejection Probability

The goal of this section is to prove Lemma 14.4.5, i.e., the rejection probability of the Metropolis filter
is small. For a transition from 𝑥 to 𝑦 on the manifold, the filter is applied with respect to a randomly
chosen 𝑣𝑥, i.e., for one geodesic from 𝑥 to 𝑦. We will bound the ratio of the transition probabilities
(without the filter) as follows:

log

(︃
𝑝(𝑥

𝑣𝑥→ 𝑦)

𝑝(𝑦
𝑣𝑦→ 𝑥)

)︃
= log

(︃
det (𝑑 exp𝑥(𝑣𝑥))

−1

det
(︀
𝑑 exp𝑦(𝑣𝑦)

)︀−1

)︃
+

1

2
log det (𝑔(𝑦))− 1

2
log det (𝑔(𝑥))

−1

2
‖
𝑣𝑥 − ℎ

2𝜇(𝑥)√
ℎ

‖22 + ‖
𝑣𝑦 − ℎ

2𝜇(𝑦)√
ℎ

‖22.

Since a geodesic has constant speed, we have ‖𝑣𝑥‖ = ‖𝑣𝑦‖. Therefore, we have that

log

(︃
𝑝(𝑥

𝑣𝑥→ 𝑦)

𝑝(𝑦
𝑣𝑦→ 𝑥)

)︃
= log

(︃
det
(︀
𝑑 exp𝑦(𝑣𝑦)

)︀
det (𝑑 exp𝑥(𝑣𝑥))

)︃
+

1

2
log det (𝑔(𝑦))− 1

2
log det (𝑔(𝑥)) (14.10)

+
1

2
⟨𝑣𝑥, 𝜇(𝑥)⟩ −

ℎ

8
‖𝜇(𝑥)‖2 − 1

2
⟨𝑣𝑦, 𝜇(𝑦)⟩+

ℎ

8
‖𝜇(𝑦)‖2.

We separate the proof into three parts:

∙
⃒⃒
‖𝜇(𝑥)‖2 − ‖𝜇(𝑦)‖2

⃒⃒
≤ 𝑂

(︁√
𝑛ℎ𝐷1

)︁
, immediate from the definition of 𝐷1 and the fact that the

‖𝑥− 𝑦‖ = 𝑂
(︁√

𝑛ℎ
)︁
whp.

∙ Sec 14.4.5.1: |log det (𝑔(𝑦))− log det (𝑔(𝑥)) + ⟨𝑣𝑥, 𝜇(𝑥)⟩ − ⟨𝑣𝑦𝜇(𝑦)⟩| = 𝑂((𝑛ℎ)3/2𝐺1),

∙ Sec 14.4.5.2: Assuming that ℎ < 1
2𝑛𝑅1

, we have

⃒⃒⃒⃒
log

(︂
det(𝑑 exp𝑦(𝑣𝑦))
det(𝑑 exp𝑥(𝑣𝑥))

)︂⃒⃒⃒⃒
= 𝑂((𝑛ℎ𝑅1)

2).

Together, these facts imply the lemma.

14.4.5.1 Trapezoidal Rule for Volumetric Barrier

Recall that the Trapezoidal rule is to approximate
´ ℎ
0 𝑓(𝑡)𝑑𝑡 by

ℎ
2 (𝑓(0) + 𝑓(ℎ)). The nice thing about

this rule is that the error is 𝑂(ℎ3) instead of 𝑂(ℎ2) because the second order term cancels by symmetry.
Our main observation here is that the geodesic walk is implicitly following a trapezoidal rule on the
metric and hence it has a small error.

Lemma 14.4.10. We have that⃒⃒⃒⃒ˆ ℓ

0
𝑓 ′(𝑡)𝑑𝑡− ℓ

2

(︀
𝑓 ′(0) + 𝑓 ′(ℓ)

)︀⃒⃒⃒⃒
≤ ℓ3

12
max
0≤𝑡≤ℓ

⃒⃒
𝑓 ′′′(𝑡)

⃒⃒
.
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Proof. Note that

ˆ ℓ

0
𝑓 ′(𝑡)𝑑𝑡− ℓ

2

(︀
𝑓 ′(0) + 𝑓 ′(ℓ)

)︀
=

ˆ ℓ

0

(︂
𝑓 ′(0) +

ˆ 𝑡

0
𝑓 ′′(𝑠)𝑑𝑠

)︂
𝑑𝑡− ℓ𝑓 ′(0)− ℓ

2

ˆ ℓ

0
𝑓 ′′(𝑠)𝑑𝑠

=

ˆ ℓ

0

ˆ 𝑡

0
𝑓 ′′(𝑠)𝑑𝑠𝑑𝑡− ℓ

2

ˆ ℓ

0
𝑓 ′′(𝑠)𝑑𝑠

=

ˆ ℓ

0
(
ℓ

2
− 𝑠)𝑓 ′′(𝑠)𝑑𝑠

=

ˆ ℓ

0
(
ℓ

2
− 𝑠)

(︂
𝑓 ′′(0) +

ˆ 𝑠

0
𝑓 ′′′(𝑡)𝑑𝑡

)︂
𝑑𝑠

=

ˆ ℓ

0
(
ℓ

2
− 𝑠)

ˆ 𝑠

0
𝑓 ′′′(𝑡)𝑑𝑡𝑑𝑠

≤ ℓ3

12
max
0≤𝑡≤ℓ

⃒⃒
𝑓 ′′′(𝑡)

⃒⃒
.

We apply this to the logdet function.

Lemma 14.4.11. Let 𝑓(𝑡) = log det(𝑔(𝛾(𝑡)) where 𝛾(𝑡) = exp𝑥(
𝑡
ℓ𝑣𝑥) ∈ Π (See Definition of Π in

Section 14.4.1). Then,⃒⃒⃒
log det(𝑔(𝑦))− log det(𝑔(𝑥)) + ⟨𝑣𝑥, 𝜇(𝑥)⟩𝑥 − ⟨𝑣𝑦, 𝜇(𝑦)⟩𝑦

⃒⃒⃒
= 𝑂((𝑛ℎ)3/2𝐺1).

Proof. Let 𝑓(𝑡) = log det 𝑔(𝛾(𝑡)) and 𝑧 = 𝛾(𝑡). By Lemma 14.4.3, 𝜇(𝑧) = −1
2𝑔(𝑧)

−1∇𝑓(𝑧). Using this,

𝑓 ′(𝑡) = ⟨∇𝑧 log det 𝑔(𝑧), 𝛾′(𝑡)⟩2
= ⟨𝑔(𝑧)−1∇𝑧 log det 𝑔(𝑧), 𝛾′(𝑡)⟩𝑧
= −⟨2𝜇(𝑧), 𝛾′(𝑡)⟩𝑧.

Noting that 𝑣𝑥 = ℓ𝛾′(0) and 𝑣𝑦 = −ℓ𝛾′(ℓ), and using Lemma 14.4.10, we have⃒⃒⃒
log det(𝑔(𝑦))− log det(𝑔(𝑥)) + ⟨𝑣𝑥, 𝜇(𝑥)⟩𝑥 − ⟨𝑣𝑦, 𝜇(𝑦)⟩𝑦

⃒⃒⃒
=

⃒⃒⃒
log det(𝑔(𝑦))− log det(𝑔(𝑥)) + ℓ

(︁⟨︀
𝛾′(0), 𝜇(𝑥)

⟩︀
𝑥
+
⟨︀
𝛾′(ℓ), 𝜇(𝑦)

⟩︀
𝑦

)︁⃒⃒⃒
=

⃒⃒⃒⃒ˆ ℓ

0
𝑓 ′(𝑡)𝑑𝑡− ℓ

2

(︀
𝑓 ′(0) + 𝑓 ′(ℓ)

)︀⃒⃒⃒⃒
≤ ℓ3

12
max
0≤𝑡≤ℓ

⃒⃒
𝑓 ′′′(𝑡)

⃒⃒
= 𝑂

(︁
(𝑛ℎ)3/2𝐺1

)︁
.

14.4.5.2 Smoothness of exponential map

First, we show the relation between the differential of exponential map 𝑑 exp𝑥(𝑣𝑥) and the Jacobi field
along the geodesic exp𝑥(𝑡𝑣𝑥).
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Lemma 14.4.12. Given a geodesic 𝛾(𝑡) = exp𝑥(
𝑡
ℓ𝑣𝑥) ∈ Π, let {𝑋𝑖(𝑡)}𝑛𝑖=1 be the parallel transport of

some orthonormal frame along 𝛾(𝑡) . Then, for any 𝑤 ∈ R𝑛, we have that

𝑑 exp𝑥(𝑣𝑥)
(︁∑︁

𝑤𝑖𝑋𝑖(0)
)︁
=
∑︁
𝑖

𝜓𝑤(ℓ)𝑖𝑋𝑖(ℓ)

where 𝜓𝑤 satisfies the Jacobi field along 𝛾(𝑡), i.e.,

𝑑2

𝑑𝑡2
𝜓𝑤(𝑡) +𝑅(𝑡)𝜓𝑤(𝑡) = 0,

𝑑

𝑑𝑡
𝜓𝑤(0) = 𝑤/ℓ, (14.11)

𝜓𝑤(𝑡) = 0,

and 𝑅(𝑡) is a matrix given by 𝑅𝑖𝑗(𝑡) = ⟨𝑅(𝑋𝑖(𝑡), 𝛾
′(𝑡))𝛾′(𝑡), 𝑋𝑗(𝑡)⟩.

Proof. We want to compute 𝑑 exp𝑥(𝑣𝑥)(𝑤) for some 𝑤 ∈ 𝑇𝑦𝑀 . By definition, we have that

𝑑 exp𝑥(𝑣𝑥)(𝑤) =
𝑑

𝑑𝑠
𝛾(𝑡, 𝑠)|𝑡=ℓ,𝑠=0

where 𝛾(𝑡, 𝑠) = exp𝑥(𝑡𝑣𝑥/ℓ+ 𝑠𝑤). Let 𝜂𝑤(𝑡) = 𝑑
𝑑𝑠𝛾(𝑡, 𝑠)|𝑠=0 be a Jacobi field given by the formula

𝐷𝑡𝐷𝑡𝜂𝑤 +𝑅(𝜂𝑤, 𝛾
′(𝑡))𝛾′(𝑡) = 0, for 0 ≤ 𝑡 ≤ ℓ
𝐷𝑡𝜂𝑤(0) = 𝑤/ℓ,

�̇�𝑤(0) = 0.

Recall that the parallel transport of an orthonormal frame remains orthonormal because 𝑑
𝑑𝑡 ⟨𝑋𝑖, 𝑋𝑗⟩ =

⟨𝐷𝑡𝑋𝑖, 𝑋𝑗⟩+ ⟨𝑋𝑖, 𝐷𝑡𝑋𝑗⟩ = 0. Since 𝑋𝑖(𝑡) is an orthonormal basis at 𝑇𝛾(𝑡)𝑀 , we can write

𝜂𝑤(𝑡) =
∑︁
𝑖

𝜓𝑖(𝑡)𝑋𝑖(𝑡).

Since 𝜂𝑤 satisfies the ODE above, we have

𝐷𝑡𝐷𝑡

∑︁
𝑖

𝜓𝑖(𝑡)𝑋𝑖(𝑡) +𝑅(
∑︁
𝑖

𝜓𝑖(𝑡)𝑋𝑖(𝑡), 𝛾
′(𝑡))𝛾′(𝑡) = 0.

Since 𝑋𝑖(𝑡) is a parallel transport, we have that 𝐷𝑡𝐷𝑡 (𝜓𝑖(𝑡)𝑋𝑖(𝑡)) =
𝑑2𝜓𝑖(𝑡)
𝑑𝑡2

𝑋𝑖(𝑡) and hence

∑︁
𝑖

𝑑2

𝑑𝑡2
𝜓𝑖(𝑡)𝑋𝑖(𝑡) +

∑︁
𝑖

𝜓𝑖(𝑡)𝑅(𝑋𝑖(𝑡), 𝛾
′(𝑡))𝛾′(𝑡) = 0

Let 𝑅𝑖𝑗(𝑡) = ⟨𝑅(𝑋𝑖(𝑡), 𝛾
′(𝑡))𝛾′(𝑡), 𝑋𝑗(𝑡)⟩. Since 𝑅(𝑡) is a symmetric matrix (Fact 14.2.3), we have

𝑑2

𝑑𝑡2
𝜓(𝑡) +𝑅(𝑡)𝜓(𝑡) = 0.

Hence, we have
𝑑 exp𝑥(𝑣𝑥)(𝑤) = 𝜓(ℓ).

Next, we have a lemma about determinant.
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Lemma 14.4.13. Suppose that 𝐸 is a matrix (not necessarily symmetric) with ‖𝐸‖𝐹 ≤ 1
4 , we have

|log det(𝐼 + 𝐸)− Tr𝐸| ≤ ‖𝐸‖2𝐹 .

Proof. Let 𝑓(𝑡) = log det(𝐼 + 𝑡𝐸). Then, by Jacobi’s formula, we have

𝑓 ′(𝑡) = Tr
(︀
(𝐼 + 𝑡𝐸)−1𝐸

)︀
,

𝑓 ′′(𝑡) = −Tr((𝐼 + 𝑡𝐸)−1𝐸(𝐼 + 𝑡𝐸)−1𝐸).

Therefore, we have

𝑓(1) = 𝑓(0) + 𝑓 ′(0) +

ˆ 1

0
(1− 𝑠)𝑓 ′′(𝑠)𝑑𝑠

= Tr(𝐸) +

ˆ 1

0
(1− 𝑠)𝑓 ′′(𝑠)𝑑𝑠.

We note that ⃒⃒
𝑓 ′′(𝑠)

⃒⃒
=

⃒⃒
Tr((𝐼 + 𝑡𝐸)−1𝐸(𝐼 + 𝑡𝐸)−1𝐸)

⃒⃒
≤

⃒⃒⃒
Tr(𝐸𝑇

(︀
(𝐼 + 𝑡𝐸)−1

)︀𝑇
(𝐼 + 𝑡𝐸)−1𝐸)

⃒⃒⃒
.

Since ‖𝐸‖𝐹 ≤ 1
4 , we have ‖𝐸‖2 ≤ 1

4 and hence ‖(𝐼 + 𝑡𝐸)−1‖2 ≤ 4
3 for all 0 ≤ 𝑡 ≤ 1. Therefore, we

have ⃒⃒
𝑓 ′′(𝑠)

⃒⃒
≤ 2

⃒⃒
Tr(𝐸𝑇𝐸)

⃒⃒
= 2‖𝐸‖2𝐹 .

Therefore, we have
|𝑓(1)− Tr𝐸| ≤ ‖𝐸‖2𝐹 .

Using lemma 14.4.13 and lemma 14.4.21, we have the following:

Lemma 14.4.14. Given a geodesic walk 𝛾(𝑡) = exp𝑥(
𝑡
ℓ𝑣𝑥) ∈ Π with step size ℎ satisfying 0 < ℎ ≤ 1

𝑛𝑅1
.

We have that 𝑑 exp𝑥(𝑣𝑥) is invertible and⃒⃒⃒⃒
log det (𝑑 exp𝑥(𝑣𝑥))−

ˆ ℓ

0

𝑠(ℓ− 𝑠)
ℓ

Ric(𝛾′(𝑠))𝑑𝑠

⃒⃒⃒⃒
≤ (𝑛ℎ𝑅1)

2

6
. (14.12)

Therefore, we have that

⃒⃒
log det (𝑑 exp𝑥(𝑣𝑥))− log det

(︀
𝑑 exp𝑦(𝑣𝑦)

)︀⃒⃒
≤ (𝑛ℎ𝑅1)

2

3
.

Proof. Let Ψ be the solution of the ODE Ψ′′(𝑡) +𝑅(𝑡)Ψ(𝑡) = 0, Ψ′(0) = 𝐼/ℓ and Ψ(0) = 0. We know
that ‖𝑅(𝑡)‖2 ≤ ‖𝑅(𝑡)‖𝐹 ≤ 𝑅1 for all 0 ≤ 𝑡 ≤ ℓ. Hence, Lemma 14.4.21 shows that

‖Ψ(𝑡)− 𝑡

ℓ
𝐼‖𝐹 ≤ max

0≤𝑠≤ℓ
‖𝑅(𝑠)‖𝐹

(︂
𝑡3

5
‖𝐼/ℓ‖2

)︂
≤ 1

5
𝑅1𝑛ℎ ≤

1

4
(14.13)

By the Lemma 14.4.13, we have that

|log det(Ψ(ℓ))− Tr (Ψ(ℓ)− 𝐼)| ≤
(︂
1

5
𝑅1𝑛ℎ

)︂2

.
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Now, we need to estimate Tr(Ψ(ℓ)− 𝐼). Note that

Ψ(ℓ) = Ψ(0) + Ψ′(0)ℓ+

ˆ ℓ

0
(ℓ− 𝑠)𝑅(𝑠)Ψ(𝑠)𝑑𝑠

= 𝐼 +

ˆ ℓ

0
(ℓ− 𝑠)𝑅(𝑠)Ψ(𝑠)𝑑𝑠.

Hence, we have

Ψ(ℓ)− 𝐼 −
ˆ ℓ

0

𝑠(ℓ− 𝑠)
ℓ

𝑅(𝑠)𝑑𝑠 =

ˆ ℓ

0
(ℓ− 𝑠)𝑅(𝑠)

(︁
Ψ(𝑠)− 𝑠

ℓ
𝐼
)︁
𝑑𝑠.

Using Lemma (14.13), we have⃒⃒⃒⃒
Tr

(︂
Ψ(ℓ)− 𝐼 −

ˆ ℓ

0

𝑠(ℓ− 𝑠)
ℓ

𝑅(𝑠)𝑑𝑠

)︂⃒⃒⃒⃒
≤
ˆ ℓ

0
(ℓ− 𝑠)

⃒⃒⃒
Tr𝑅(𝑠)

(︁
Ψ(𝑠)− 𝑠

ℓ
𝐼
)︁⃒⃒⃒
𝑑𝑠

≤
ˆ ℓ

0
(ℓ− 𝑠)‖𝑅(𝑠)‖𝐹 ‖Ψ(𝑠)− 𝑠

ℓ
𝐼‖𝑑𝑠

≤ ℓ2

2
·𝑅1 ·

1

5
𝑅1𝑛ℎ ≤

(𝑛ℎ𝑅1)
2

10
.

Lemma 14.4.12 shows that 𝑑 exp𝑥(𝑣𝑥) (
∑︀
𝑤𝑖𝑋𝑖(0)) =

∑︀
𝑖 𝜓𝑤(ℓ)𝑖𝑋(ℓ) =

∑︀
𝑖(Ψ(ℓ)𝑤)𝑖𝑋𝑖(ℓ). Since

{𝑋𝑖(𝑡)}𝑛𝑖=1 are orthonormal, this shows that

𝑑 exp𝑥(𝑣𝑥) = 𝑋(ℓ)Ψ(ℓ)𝑋(0)𝑇

where 𝑋 is the matrix [𝑋1, 𝑋2, · · · , 𝑋𝑛]. Since ‖Ψ(ℓ)−𝐼‖𝐹 ≤ 1
5 (14.13), we have that Ψ(ℓ) is invertible

and so is 𝑑 exp𝑥(𝑣𝑥).
Since 𝑋(ℓ) and 𝑋(0) are orthonormal, we have that

log det (𝑑 exp𝑥(𝑣𝑥)) = log detΨ(ℓ).

Therefore, this gives ⃒⃒⃒⃒
log det (𝑑 exp𝑥(𝑣𝑥))−

ˆ ℓ

0

𝑠(ℓ− 𝑠)
ℓ

Tr𝑅(𝑠)𝑑𝑠

⃒⃒⃒⃒
≤ (𝑛ℎ𝑅1)

2

6
.

By the definition of Ricci curvature and Fact 14.2.3, we have that

Tr𝑅(𝑠) =
∑︁
𝑖

⟨︀
𝑅(𝑋𝑖(𝑠), 𝛾

′(𝑠))𝛾′(𝑠), 𝑋𝑗(𝑠)
⟩︀

= Ric(𝛾′(𝑠)).

This gives the result (14.12).
Since the geodesic exp𝑥(𝑡𝑣𝑥) is the same as exp𝑦(𝑡𝑣𝑦) except for swapping the parameterization,

and since
´ ℓ
0
𝑠(ℓ−𝑠)
ℓ Tr𝑅(𝑠)𝑑𝑠 is invariant under this swap, (14.12) implies that log det (𝑑 exp𝑥(𝑣𝑥)) is

close to log det
(︀
𝑑 exp𝑦(𝑣𝑦)

)︀
.

14.4.6 Implementation

Here, we explain in high level how to implement the geodesic walk in general via an efficient algorithm
for approximately solving ODEs. Note that to implement the step, we need to compute the geodesic

and compute the probability 𝑝(𝑥 𝑤→ 𝑦) and 𝑝(𝑦
𝑤′
→ 𝑥). From the formula (14.10), we see that they
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involves the term 𝑑 exp𝑥(𝑤). Lemma 14.4.12 shows that 𝑑 exp𝑥(𝑤) can be computed by Jacobi field.
Also, Lemma 14.4.12 shows that Jacobi field can be computed by a ODE if it is written in the
orthonormal frame systems. Therefore, to implement the geodesic walk, we need to compute geodesic,
parallel transport and Jacobi field (See Algo 49). All of these are ODEs and can be solved using the
collocation method. In the later sections, we will see how to collocation method can indeed solves
these ODEs in matrix multiplication time.

Algorithm 49: Geodesic Walk (Detailed)

Pick a Gaussian random vector 𝑤 ∼ 𝑁𝑥(0, 1), i.e. E𝑤‖𝑤‖2𝑥 = 1.
/* Compute 𝑦 = exp𝑥(

√
ℎ𝑤 + ℎ

2𝜇(𝑥)) where 𝜇(𝑥) is given by (14.2). */

/* Compute a corresponding 𝑤′ s.t. 𝑥 = 𝑒𝑥𝑝𝑦(
√
ℎ𝑤′ + ℎ

2𝜇(𝑦)). */

Generate a random direction 𝑑 =
√
ℎ𝑤 + ℎ

2𝜇(𝑥) where 𝜇(𝑥) is given by (14.2).
Solve the geodesic equation 𝐷𝛾′𝛾

′ = 0 with 𝛾(0) = 𝑥 and 𝛾′(0) = 𝑑 using collocation method
(Sec 14.6).
Set 𝑦 = 𝛾(1) and 𝑤′ = −𝛾′(1).

/* Compute the probability 𝑝(𝑥
𝑤→ 𝑦) of going from 𝑥 to 𝑦 using the step 𝑤. */

Pick an orthonormal frame {𝑋𝑖}𝑛𝑖=1 at 𝑥.
Compute the parallel transport of {𝑋𝑖}𝑛𝑖=1 along 𝛾(𝑡) using collocation method.
Compute 𝑑 exp𝑥(𝑤) via solve the Jacobi field equation (14.11) (in the coordinate systems
{𝑋𝑖(𝑡)}).

Set 𝑝(𝑥 𝑤→ 𝑦) = det(𝑑 exp𝑥(𝑤))
−1
√︁

det(𝑔(𝑦))
(2𝜋ℎ)𝑛

exp

(︂
−1

2‖
𝑤−ℎ

2
𝜇(𝑥)√
ℎ
‖2𝑥
)︂
.

Compute 𝑝(𝑦 𝑤′
→ 𝑥) similarly.

With probability min

(︂
1, 𝑝(𝑦

𝑤′
→𝑥)

𝑝(𝑥
𝑤→𝑦)

)︂
, go to 𝑦; otherwise, stay at 𝑥.

14.4.7 Smoothness of 𝑝𝑥

Here we prove Lemma 14.4.6. Recall that the probability density of going from 𝑥 to 𝑦 is given by the
following formula:

𝑝𝑥(𝑦) =
∑︁

𝑣𝑥:𝑒𝑥𝑝𝑥(𝑣𝑥)=𝑦

det (𝑑 exp𝑥(𝑣𝑥))
−1

√︃
det (𝑔(𝑦))

(2𝜋ℎ)𝑛
exp

(︃
−1

2
‖
𝑣𝑥 − ℎ

2𝜇(𝑥)√
ℎ

‖2𝑥

)︃
To simplify the calculation, we apply Lemma 14.4.14 and consider the following estimate of 𝑝𝑥(𝑦)
instead

𝑝𝑥(𝑦) =
∑︁

𝑣𝑥:𝑒𝑥𝑝𝑥(𝑣𝑥)=𝑦

√︃
det (𝑔(𝑦))

(2𝜋ℎ)𝑛
exp

(︃
−
ˆ ℓ

0

𝑡(ℓ− 𝑡)
ℓ

Ric(𝛾′(𝑡))𝑑𝑡− 1

2
‖
𝑣𝑥 − ℎ

2𝜇(𝑥)√
ℎ

‖2𝑥

)︃
where 𝛾(𝑡) be the geodesic from 𝛾(0) = 𝑥 to 𝛾(ℓ) = 𝑦. Lemma 14.4.14 shows that |log (𝑝𝑥(𝑦)/𝑝𝑥(𝑦))| ≤
(𝑛ℎ𝑅1)2

6 and hence it suffices to prove the smoothness of 𝑝𝑥(𝑦).
Let 𝑐(𝑠) be an unit speed geodesic going from 𝑥 to some point 𝑧 infinitesimally close to 𝑥. For

(almost) any 𝑣𝑥 such that exp𝑥(𝑣𝑥) = 𝑦, Lemma 14.4.24 shows that there is an unique vector field 𝑣(𝑠)
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on 𝑐(𝑠) such that exp𝑐(𝑠)(𝑣(𝑠)) = 𝑦 and 𝑣(0) = 𝑣𝑥. Now, we define

𝜁(𝑠) =

√︃
det (𝑔(𝑦))

(2𝜋ℎ)𝑛
exp

(︃
−
ˆ ℓ

0

𝑡(ℓ− 𝑡)
ℓ

Ric(𝛾′𝑠(𝑡))𝑑𝑡−
1

2
‖
𝑣(𝑠)− ℎ

2𝜇(𝑐(𝑠))√
ℎ

‖2𝑐(𝑠)

)︃
where exp𝑐(𝑠)(𝑣(𝑠)) = 𝑦 and 𝛾𝑠(𝑡) = exp𝑐(𝑠)(

𝑡
ℓ𝑣(𝑠)). Then, we have that

𝑝𝑐(𝑠)(𝑦) =
∑︁

𝑣(𝑠):exp𝑐(𝑠)(𝑣(𝑠))=𝑦

𝜁(𝑠)

and hence

𝑑

𝑑𝑠
𝑝𝑐(𝑠)(𝑦) =

∑︁
𝑣(𝑠):exp𝑐(𝑠)(𝑣(𝑠))=𝑦

(︃
−
ˆ ℓ

0

𝑡(ℓ− 𝑡)
ℓ

𝑑

𝑑𝑠
Ric(𝛾′𝑠(𝑡))𝑑𝑡−

1

2

𝑑

𝑑𝑠
‖
𝑣(𝑠)− ℎ

2𝜇(𝑐(𝑠))√
ℎ

‖2𝑐(𝑠)

)︃
𝜁(𝑠).

Hence, it suffices to bound the terms in the bracket.
In Section 14.4.7.1, we analyze 𝑑

𝑑𝑠Ric(𝛾
′
𝑠(𝑡)) and prove that⃒⃒⃒⃒ˆ ℓ

0

𝑡(ℓ− 𝑡)
ℓ

𝑑

𝑑𝑠
Ric(𝛾′𝑠(𝑡))𝑑𝑡

⃒⃒⃒⃒
≤ 2𝑛ℎ𝑅2.

In Section 14.4.7.2, we analyze 𝑑
𝑑𝑠‖

𝑣(𝑠)−ℎ
2
𝜇(𝑐(𝑠))√
ℎ

‖2𝑐(𝑠) and prove that

E𝛾

⃒⃒⃒⃒
⃒ 𝑑𝑑𝑠‖𝑣(𝑠)− ℎ

2𝜇(𝑐(𝑠))√
ℎ

‖2𝑐(𝑠)

⃒⃒⃒⃒
⃒
𝑠=0

⃒⃒⃒⃒
⃒ = 𝑂

(︂
𝐷2

√
ℎ+

1√
ℎ
+𝐷0

)︂
.

Therefore, we have that⃒⃒⃒⃒
𝑑

𝑑𝑠
𝑝𝑐(𝑦)

⃒⃒⃒⃒
= 𝑂

(︂
𝑛ℎ𝑅2 +

√
ℎ𝐷2 +

1√
ℎ
+ 𝑛ℎ𝑅1𝐷0

)︂
𝑝𝑐(𝑦).

Using |log (𝑝𝑥(𝑦)/𝑝𝑥(𝑦))| ≤ (𝑛ℎ𝑅1)2

6 , we have our result.

Theorem 14.4.15. We have that

𝑑𝑇𝑉 (𝑝𝑥, 𝑝𝑦) = 𝑂

(︂
𝑛ℎ𝑅2 +

√
ℎ𝐷2 +

1√
ℎ
+ 𝑛ℎ𝑅1𝐷0

)︂
𝑑(𝑥, 𝑦) +𝑂 (𝑛ℎ𝑅1)

2 .

14.4.7.1 Smoothness of exponential map

Definition 14.4.16. Given a manifold𝑀 and a geodesic walk 𝛾(𝑡) on𝑀𝐿 with step size ℎ. Let 𝑅2 be
a constant depending on the manifold 𝑀 and the step size ℎ such that for any 𝑡 such that 0 ≤ 𝑡 ≤ ℓ,
any curve 𝛼(𝑠) starting from 𝛾(𝑡) and any vector field 𝑢(𝑠) on 𝛼(𝑠), we have that⃒⃒⃒⃒

𝑑

𝑑𝑠
𝑅𝑖𝑐(𝑢(𝑠))|𝑠=0

⃒⃒⃒⃒
≤
(︀
‖𝛼′(0)‖+ ‖𝐷𝑠𝑢(0)‖

)︀
𝑅2.

Lemma 14.4.17. For 1
𝑛 < ℎ ≤ 1

2𝑛𝑅1
, we have⃒⃒⃒⃒ˆ ℓ

0

𝑡(ℓ− 𝑡)
ℓ

𝑑

𝑑𝑠
Ric(𝛾′𝑠(𝑡))𝑑𝑡

⃒⃒⃒⃒
≤ 2𝑛ℎ𝑅2
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where 𝛾𝑠 is as defined in the beginning of Section 14.4.7.

Proof. Fix any 𝑡 such that 0 ≤ 𝑡 ≤ ℓ and let 𝛼(𝑠) = 𝛾𝑠(𝑡) and 𝑢(𝑠) = 𝛾′𝑠(𝑡) be a vector field on 𝛼. By
Definition 14.4.16, we have that⃒⃒⃒⃒

𝑑

𝑑𝑠
𝑅𝑖𝑐(𝑢(𝑠))|𝑠=0

⃒⃒⃒⃒
≤
(︀
‖𝛼′(0)‖+ ‖𝐷𝑠𝑢(0)‖

)︀
𝑅2.

Recall that 𝛾𝑠 = exp𝑐(𝑠)(
𝑡
ℓ𝑣(𝑠)) and hence

𝑑𝛼

𝑑𝑠
(0) =

𝜕

𝜕𝑠
exp𝑐(𝑠)(

𝑡

ℓ
𝑣(𝑠))|𝑠=0,

𝐷𝑠𝑢(0) = 𝐷𝑠
𝜕

𝜕𝑡
exp𝑐(𝑠)(

𝑡

ℓ
𝑣(𝑠))|𝑠=0

= 𝐷𝑡
𝜕

𝜕𝑠
exp𝑐(𝑠)(

𝑡

ℓ
𝑣(𝑠))|𝑠=0.

Let 𝜓(𝑡) = 𝜕
𝜕𝑠 exp𝑐(𝑠)(

𝑡
ℓ𝑣(𝑠))|𝑠=0. Since exp𝑐(𝑠)(

𝑡
ℓ𝑣(𝑠)) is a geodesic for each 𝑠, 𝜓(𝑡) satisfies the Jacobi

field equation. It is easier to calculate using orthogonal frame. So, we pick an arbitrary orthogonal
frame along the curve 𝛾(𝑡) and let 𝜑(𝑡) be 𝜓(𝑡) represented in that orthogonal frame. Then, we know
that

𝑑2

𝑑𝑡2
𝜑(𝑡) +𝑅(𝜑(𝑡), 𝛾′(𝑡))𝛾′(𝑡) = 0,

𝜑(0) = 𝛼,

𝜑′(0) =
𝛽

ℓ

for some 𝛼 and 𝛽. Since 𝑐 is a unit speed geodesic, we have that 𝛼 = 𝜑(0) = 𝜕𝑐
𝜕𝑠(0) has ℓ2 norm 1.

Next, we note that 𝛽 = ℓ𝜑′(0) = 𝐷𝑠𝑣(𝑠). By lemma 14.4.22, we have that ‖𝛽‖2 ≤ 3
2 .

Therefore, Lemma 14.4.20 shows that

‖𝜑(𝑡)− 𝛼− 𝛽

ℓ
𝑡‖2 ≤ 2𝑅1ℓ

2

for all 0 ≤ 𝑡 ≤ 1√
𝑅1
. Hence, we have ‖𝜑(𝑡)‖2 ≤ 4 for all 0 ≤ 𝑡 ≤ 1√

𝑅1
. By Lemma 14.4.20 again, we

have
‖𝜑′(𝑡)− 𝛽‖2 ≤ 3𝑅1ℓ

for all 0 ≤ 𝑡 ≤ 1√
𝑅1
. Hence, we have ‖𝜑′(𝑡)‖2 ≤ 4 for all 0 ≤ 𝑡 ≤ 1√

𝑅1
.

Therefore, we have ⃒⃒⃒⃒
𝑑

𝑑𝑠
𝑅𝑖𝑐(𝑢(𝑠))|𝑠=0

⃒⃒⃒⃒
≤

(︀
‖𝛼′(0)‖+ ‖𝐷𝑠𝑢(0)‖

)︀
𝑅2

=
(︀
‖𝜑(𝑡)‖2 + ‖𝜑′(𝑡)‖2

)︀
𝑅2

≤ 8𝑅2.

This gives the result.

14.4.7.2 One-step overlap

We parametrize the geodesic from 𝑥 to 𝑦 as 𝛾(𝑠). For a fixed 𝑧, we have 𝑧 = exp𝑥(𝑑𝑥) = exp𝛾(𝑠)(𝑑𝛾(𝑠)) =
exp𝛾(𝑠)(𝑑(𝑠)).
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Lemma 14.4.18. We have that

E𝛾

⃒⃒⃒⃒
⃒ 𝑑𝑑𝑠‖𝑣(𝑠)− ℎ

2𝜇(𝑐(𝑠))√
ℎ

‖2𝑐(𝑠)

⃒⃒⃒⃒
⃒
𝑠=0

⃒⃒⃒⃒
⃒ = 𝑂

(︂
𝐷2

√
ℎ+

1√
ℎ
+𝐷0

)︂
.

where 𝑐(𝑠) is as defined in the beginning of Section 14.4.7.

Proof. Note that

𝑑

𝑑𝑠
‖
𝑣(𝑠)− ℎ

2𝜇(𝑐(𝑠))√
ℎ

‖2𝑐(𝑠)

⃒⃒⃒⃒
⃒
𝑠=0

=
2

ℎ

⟨
𝐷𝑠𝑣|𝑠=0 −

ℎ

2
𝐷𝑠𝜇|𝑠=0 , 𝑣 −

ℎ

2
𝜇

⟩
. (14.14)

Since 𝑣 − ℎ
2𝜇 is a random Gaussian vector 𝑁(0, 𝑛ℎ𝐼) in 𝑇𝑐𝑀 independent of 𝐷𝑠𝜇, we have that

E

⃒⃒⃒⃒⟨
ℎ

2
𝐷𝑠𝜇|𝑠=0 , 𝑣 −

ℎ

2
𝜇

⟩⃒⃒⃒⃒
≤ 𝑂

(︃
‖ℎ2 𝐷𝑠𝜇|𝑠=0 ‖

√
𝑛ℎ

√
𝑛

)︃
≤ 𝑂

(︃
ℎ𝐷2

√
𝑛ℎ

2
√
𝑛

)︃
. (14.15)

By Lemma 14.4.22, we know that 𝐷𝑠𝑣|𝑠=0 = −𝑐′ + 𝜁 where 𝜁 ⊥ 𝑣(0) and ‖𝜁‖ ≤ 3
2𝑛ℎ𝑅1‖𝑐′‖. Since

𝑣 − ℎ
2𝜇 is a random Gaussian vector independent of 𝑐′, we have that

E

⃒⃒⃒⃒⟨
𝐷𝑠𝑣, 𝑣 −

ℎ

2
𝜇

⟩⃒⃒⃒⃒
≤ E

⃒⃒⃒⃒⟨
𝑐′, 𝑣 − ℎ

2
𝜇

⟩⃒⃒⃒⃒
+E

ℎ

2
|⟨𝜁, 𝜇⟩|

≤ 𝑂

(︃
‖𝑐′‖
√
𝑛ℎ√
𝑛

)︃
+ 𝑛ℎ2𝑅1‖𝑐′‖‖𝜇‖

≤ 𝑂
(︁√

ℎ+ 𝑛ℎ2𝑅1𝐷0

)︁
. (14.16)

Combining the bounds (14.14), (14.15) and (14.16), we have that

E

⃒⃒⃒⃒
⃒ 𝑑𝑑𝑠‖𝑣(𝑠)− ℎ

2𝜇(𝑐(𝑠))√
ℎ

‖2𝑐(𝑠)

⃒⃒⃒⃒
⃒
𝑠=0

⃒⃒⃒⃒
⃒ ≤ 𝑂

(︂
𝐷2

√
ℎ+

1√
ℎ
+ 𝑛ℎ𝑅1𝐷0

)︂
.

14.4.8 Approximate Solution of Jacobi Field

Let 𝛾(𝑡) be a geodesic and {𝑋𝑖(𝑡)}𝑛𝑖=1 be the parallel transport of some orthonormal frame along 𝛾(𝑡).
As we demonstrated in the proof of Lemma 14.4.12, Jacobi fields are solutions the following matrix
ODE:

𝑑2

𝑑𝑡2
𝜓(𝑡) +𝑅(𝑡)𝜓(𝑡) = 0,

𝑑

𝑑𝑡
𝜓(0) = 𝛽, (14.17)

𝜓(0) = 𝛼

where 𝜓(𝑡), 𝛼, 𝛽 ∈ R𝑛 and 𝑅(𝑡) is a matrix given by 𝑅𝑗𝑖(𝑡) = ⟨𝑅(𝑋𝑖(𝑡), 𝛾
′(𝑡))𝛾′(𝑡), 𝑋𝑗(𝑡)⟩. Recall that

𝑅(𝑡) is a symmetric matrix (Fact 14.2.3).
In this section, we show give an approximate solution of the the Jacobi equation (14.17). First, we

give a basic bound on the solution in terms of hyperbolic sine and cosine functions.
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Lemma 14.4.19. Let 𝜓 be the solution of (14.17). Suppose that ‖𝑅(𝑡)‖2 ≤ 𝜆. Then, we have that

‖𝜓(𝑡)‖2 ≤ ‖𝛼‖2 cosh(
√
𝜆𝑡) +

‖𝛽‖2√
𝜆

sinh(
√
𝜆𝑡)

for all 𝑡 ≥ 0.

Proof. Let 𝑎(𝑡) = ‖𝜓(𝑡)‖2. Using ‖𝑅(𝑡)‖2 ≤ 𝜆 and 𝑑2

𝑑𝑡2
𝜓(𝑡) +𝑅(𝑡)𝜓(𝑡) = 0, we have that

𝑎′′(𝑡) ≤ 𝜆𝑎(𝑡).
Since 𝑎(0) = ‖𝛼‖2 and 𝑎′(0) ≤ ‖𝛽‖2, for all 𝑡 ≥ 0, we have that 𝑎(𝑡) ≤ 𝑏(𝑡) where 𝑏(𝑡) is the solution
of the 𝑏′′(𝑡) = 𝜆𝑏(𝑡), 𝑏(0) = ‖𝛼‖2, 𝑏′(0) = ‖𝛽‖2. Solving these equations, we have

𝑎(𝑡) ≤ 𝑏(𝑡) = ‖𝛼‖2 cosh(
√
𝜆𝑡) +

‖𝛽‖2√
𝜆

sinh(
√
𝜆𝑡)

for all 𝑡 ≥ 0.

Next, we give an approximate solution of (14.17).

Lemma 14.4.20. Let 𝜓 be the solution of (14.17). Suppose that ‖𝑅(𝑡)‖2 ≤ 𝜆. For any 0 ≤ 𝑡 ≤ 1√
𝜆
,

we have that

‖𝜓(𝑡)− 𝛼− 𝛽𝑡‖2 ≤ 𝜆𝑡2‖𝛼‖2 +
𝜆𝑡3

5
‖𝛽‖2 and ‖𝜓′(𝑡)− 𝛽‖2 ≤ 2𝜆𝑡‖𝛼‖2 +

3𝜆𝑡2

5
‖𝛽‖2.

Proof. Note that

𝜓(𝑡) = 𝜓(0) + 𝜓′(0)𝑡+

ˆ 𝑡

0
(𝑡− 𝑠)𝜓′′(𝑠)𝑑𝑠

= 𝛼+ 𝛽𝑡−
ˆ 𝑡

0
(𝑡− 𝑠)𝑅(𝑠)𝜓(𝑠)𝑑𝑠.

Using Lemma 14.4.19 and ‖𝑅(𝑡)‖2 ≤ 𝜆, we have that

‖𝜓(𝑡)− 𝛼− 𝛽𝑡‖2 ≤ 𝜆

ˆ 𝑡

0
(𝑡− 𝑠)‖𝜓(𝑠)‖2𝑑𝑠

≤ 𝜆

ˆ 𝑡

0
(𝑡− 𝑠)

(︂
‖𝛼‖2 cosh(

√
𝜆𝑠) +

‖𝛽‖2√
𝜆

sinh(
√
𝜆𝑠)

)︂
𝑑𝑠

= ‖𝛼‖2
(︁
cosh(

√
𝜆𝑡)− 1

)︁
+
‖𝛽‖2√
𝜆

(︁
sinh(

√
𝜆𝑡)−

√
𝜆𝑡
)︁
.

Since 0 ≤ 𝑡 ≤ 1√
𝜆
, we have that

⃒⃒⃒
cosh(

√
𝜆𝑡)− 1

⃒⃒⃒
≤ 𝜆𝑡2 and

⃒⃒⃒
sinh(

√
𝜆𝑡)−

√
𝜆𝑡
⃒⃒⃒
≤ 𝜆3/2𝑡3

5 . This gives the
result.

Similarly, we have that 𝜓′(𝑡) = 𝜓′(0) +
´ 𝑡
0 𝜓

′′(𝑠)𝑑𝑠 = 𝜓′(0) +
´ 𝑡
0 𝑅(𝑠)𝜓(𝑠)𝑑𝑠 and hence

‖𝜓′(𝑡)− 𝛽‖2 ≤ 𝜆

ˆ 𝑡

0

(︂
‖𝛼‖2 cosh(

√
𝜆𝑠) +

‖𝛽‖2√
𝜆

sinh(
√
𝜆𝑠)

)︂
𝑑𝑠

≤
√
𝜆‖𝛼‖2 sinh(

√
𝜆𝑡) + ‖𝛽‖2

(︁
cos(
√
𝜆𝑡)− 1

)︁
≤ 2𝜆𝑡‖𝛼‖2 +

3

5
𝜆𝑡2‖𝛽‖2



404 CHAPTER 14. SAMPLING IN SUB-QUADRATIC STEPS

The following is a matrix version of the above result.

Lemma 14.4.21. Let 𝜓 be the solution of

𝑑2

𝑑𝑡2
Ψ(𝑡) +𝑅(𝑡)Ψ(𝑡) = 0,

𝑑

𝑑𝑡
Ψ(0) = 𝐵,

Ψ(0) = 𝐴

where Ψ, 𝐴 and 𝐵 are matrices with a compatible size. Suppose that ‖𝑅(𝑡)‖2 ≤ 𝜆. For any 0 ≤ 𝑡 ≤ 1√
𝜆
,

we have that

‖Ψ(𝑡)−𝐴−𝐵𝑡‖𝐹 ≤ max
0≤𝑠≤𝑡

‖𝑅(𝑠)‖𝐹
(︂
𝑡2‖𝐴‖2 +

𝑡3

5
‖𝐵‖2

)︂
.

Proof. Note that Ψ(𝑡)𝑥 is the solution of (14.17) with 𝛽 = 𝐵𝑥 and 𝛼 = 𝐴𝑥. Therefore, Lemma 14.4.19
shows that

‖Ψ(𝑡)𝑥‖2 ≤
(︂
‖𝐴‖2 cosh(

√
𝜆𝑡) +

‖𝐵‖2√
𝜆

sinh(
√
𝜆𝑡)

)︂
‖𝑥‖2

for all 𝑥. Therefore, we have that

Ψ(𝑡)𝑇Ψ(𝑡) ⪯
(︂
‖𝐴‖2 cosh(

√
𝜆𝑡) +

‖𝐵‖2√
𝜆

sinh(
√
𝜆𝑡)

)︂2

𝐼.

Hence, we have that

Ψ(𝑡)Ψ(𝑡)𝑇 ⪯
(︂
‖𝐴‖2 cosh(

√
𝜆𝑡) +

‖𝐵‖2√
𝜆

sinh(
√
𝜆𝑡)

)︂2

𝐼.

Using this, we have that

‖Ψ(𝑡)−𝐴−𝐵𝑡‖𝐹 = ‖
ˆ 𝑡

0
(𝑡− 𝑠)𝑅(𝑠)Ψ(𝑠)𝑑𝑠‖𝐹

≤
ˆ 𝑡

0
(𝑡− 𝑠)

√︁
TrΨ𝑇 (𝑠)𝑅𝑇 (𝑠)𝑅(𝑠)Ψ(𝑠)𝑑𝑠

=

ˆ 𝑡

0
(𝑡− 𝑠)

√︁
Tr𝑅(𝑠)Ψ(𝑠)Ψ𝑇 (𝑠)𝑅𝑇 (𝑠)𝑑𝑠

≤
ˆ 𝑡

0
(𝑡− 𝑠)

(︂
‖𝐴‖2 cosh(

√
𝜆𝑠) +

‖𝐵‖2√
𝜆

sinh(
√
𝜆𝑠)

)︂
‖𝑅(𝑠)‖𝐹𝑑𝑠.

≤ max
0≤𝑠≤𝑡

‖𝑅(𝑠)‖𝐹
ˆ 𝑡

0
(𝑡− 𝑠)

(︂
‖𝐴‖2 cosh(

√
𝜆𝑠) +

‖𝐵‖2√
𝜆

sinh(
√
𝜆𝑠)

)︂
𝑑𝑠

= max
0≤𝑠≤𝑡

‖𝑅(𝑠)‖𝐹
(︂
‖𝐴‖2

(︁
cosh(

√
𝜆𝑡)− 1

)︁
+
‖𝐵‖2√
𝜆

(︁
sinh(

√
𝜆𝑡)−

√
𝜆𝑡
)︁)︂

.

Since 0 ≤ 𝑡 ≤ 1√
𝜆
, we have that

⃒⃒⃒
cosh(

√
𝜆𝑡)− 1

⃒⃒⃒
≤ 𝜆𝑡2 and

⃒⃒⃒
sinh(

√
𝜆𝑡)−

√
𝜆𝑡
⃒⃒⃒
≤ 𝜆3/2𝑡3

5 . This gives the

result.

14.4.9 Almost One-to-One Correspondence of Geodesics

We do not know if every pair 𝑥, 𝑦 ∈ 𝑀 has a unique geodesic connecting 𝑥 and 𝑦. Due to this, the
probability density 𝑝𝑥 at 𝑦 onℳ can be the sum over all possible geodesics connect 𝑥 and 𝑦. The goal
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of this section is to show there is a 1-1 map between geodesics paths connecting 𝑥 to 𝑦 as we move 𝑥.

Lemma 14.4.22. Given a geodesic walk 𝛾(𝑡) = exp𝑥(
𝑡
ℓ𝑣𝑥) ∈ Π with step size ℎ satisfying 1

𝑛 ≤ ℎ ≤
1

𝑛𝑅1
. Let the end points 𝑥 = 𝛾(0) and 𝑦 = 𝛾(ℓ). There is an unique smooth invertible function

𝑣 : 𝑈 ⊂𝑀 → 𝑉 ⊂ 𝑇𝑥𝑀 such that
𝑦 = exp𝑧(𝑣(𝑧))

for any 𝑧 ∈ 𝑈 where 𝑈 is a neighborhood of 𝑥 and 𝑉 is a neighborhood of 𝑣𝑥 = 𝑣(𝑥). Furthermore,
for any 𝜂 = 𝜂1 + 𝛼𝑣𝑥 with 𝜂1 ⊥ 𝑣𝑥 and scale 𝛼, we have that

∇𝜂𝑣(𝑥) = −𝜂 + 𝜁

where ‖𝜁‖ ≤ 3
2𝑛ℎ𝑅1‖𝜂1‖ ≤ 3

2‖𝜂1‖ and 𝜁 ⊥ 𝑣(𝑥). In particular, we have that ‖∇𝜂𝑣(𝑥)‖ ≤ 5
2‖𝜂‖.

Proof. Consider the function 𝑓(𝑧, 𝑤) = exp𝑧(𝑤). It is continuously differentiable. From Lemma
14.4.14, the differential of 𝑤 at (𝑥, 𝑣𝑥) on the 𝑤 variables, i.e. 𝑑 exp𝑥(𝑣𝑥), is invertible. Hence, the
implicit function theorem shows that there is a open neighborhood 𝑈 of 𝑥 and a unique function 𝑣 on
𝑈 such that 𝑓(𝑧, 𝑣(𝑧)) = 𝑓(𝑧, 𝑣𝑧), i.e. 𝑦 = exp𝑥(𝑣𝑥) = exp𝑧(𝑣(𝑧)).

To compute ∇𝜂𝑣, let 𝑐(𝑡, 𝑠) = exp𝛾(𝑠)(
𝑡
ℓ𝑣(𝛾(𝑠))) be a family of geodesics with the end points

𝑐(ℓ, 𝑠) = exp𝛾(𝑠)(𝑣(𝛾(𝑠))) = 𝑦. Note that 𝜓(𝑡) def
= 𝜕𝑐(𝑡,𝑠)

𝜕𝑠 |𝑠=0 satisfies the Jacobi field equation

𝐷2
𝑡𝜓(𝑡) +𝑅(𝜓,

𝜕𝑐

𝜕𝑡
)
𝜕𝑐

𝜕𝑡
= 0.

Moreover, we know that

𝜓(0) =
𝜕𝑐(0, 𝑠)

𝜕𝑠
|𝑠=0 = 𝛾′(0) = 𝜂,

𝐷𝑡𝜓(0) = 𝐷𝑡
𝜕𝑐(𝑡, 𝑠)

𝜕𝑠
|𝑡,𝑠=0 = 𝐷𝑠

𝜕𝑐(𝑡, 𝑠)

𝜕𝑡
|𝑡,𝑠=0 =

1

ℓ
∇𝜂𝑣(𝑥)

def
=
𝜒

ℓ
,

𝜓(ℓ) =
𝜕𝑐(ℓ, 𝑠)

𝜕𝑠
|𝑠=0 = 0

where we used 𝐷𝑡
𝜕
𝜕𝑠 = 𝐷𝑠

𝜕
𝜕𝑡 (torsion free-ness, Fact 14.2.1).

From Fact 14.2.4, we know that 𝜓 can be split into the tangential part 𝜓1 and the normal part 𝜓2.
For the tangential part, we know that

𝜓1(𝑡) =

(︃⟨
𝜓(0),

𝑑𝑐

𝑑𝑡
(0, 0)

⟩
𝑐(0)

+

⟨
𝐷𝑡𝜓(0),

𝑑𝑐

𝑑𝑡
(0, 0)

⟩
𝑐(0)

𝑡

)︃
𝑑𝑐

𝑑𝑡
(𝑡)

=
(︁
⟨𝜂, 𝑣𝑥⟩𝑥 +

⟨𝜒
ℓ
, 𝑣𝑥

⟩
𝑥
𝑡
)︁ 𝑑𝑐
𝑑𝑡

(𝑡)

=
(︁
𝛼‖𝑣𝑥‖2 +

⟨𝜒
ℓ
, 𝑣𝑥

⟩
𝑥
𝑡
)︁ 𝑑𝑐
𝑑𝑡

(𝑡).

Since 𝜓1(ℓ) = 0, we have that
⟨𝜒, 𝑣𝑥⟩ = −𝛼‖𝑣𝑥‖2. (14.18)

For the normal part 𝜓2, it is easier to calculate using orthogonal frames. So, we pick an arbitrary
orthogonal frame parallel transported along the curve 𝑐(𝑡, 0) and let 𝜓(𝑡) be 𝜓2(𝑡) represented in that
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orthogonal frame. Hence, we have that

𝑑2

𝑑𝑡2
𝜓(𝑡) +𝑅(𝜓(𝑡),

𝜕𝑐

𝜕𝑡
)
𝜕𝑐

𝜕𝑡
= 0,

𝜓(0) = 𝜂1,

𝜓′(0) =
𝜒1

ℓ
,

𝜓(ℓ) = 0

where 𝜒1 = 𝜒−
⟨
𝜒, 𝑣𝑥

‖𝑣𝑥‖

⟩
𝑣𝑥

‖𝑣𝑥‖ = 𝜒+ 𝛼𝑣𝑥 (14.18). Using ℎ ≤ 1
𝑛𝑅1

, Lemma 14.4.20 shows that

‖𝜂1 + 𝜒1‖2 = ‖𝜓(ℓ)− 𝜂1 − 𝜒1‖2 ≤ 𝑅1ℓ
2‖𝜂1‖2 +

𝑅1ℓ
2

5
‖𝜒1‖2

≤ 6

5
𝑅1ℓ

2‖𝜂1‖2 +
1

5
‖𝜒1‖2.

Hence, we have that ‖𝜂1 + 𝜒1‖2 ≤ 3
2𝑅1ℓ

2‖𝜂1‖2. Therefore, we have that

∇𝜂𝑣(𝑥) = 𝜒

= −𝛼𝑣𝑥 + 𝜒1

= −𝜂 + (𝜂1 + 𝜒1)

where ‖𝜒1 + 𝜂1‖2 ≤ 3
2‖𝜂1‖2. Furthermore, we have that both 𝜂1 and 𝜒1 are orthogonal to 𝜂.

Remark. If the above lemma holds without the assumption 𝛾 ∈ Π, this would imply uniqueness of
geodesics.

The following lemma shows there is a 1-1 map between geodesics paths connecting 𝑥 to 𝑦 as we
move 𝑥.When we move 𝑥, the geodesic 𝛾 from 𝑥 to 𝑦 no longer insides Ξ. To avoid this issue, we need
to assume ⟨𝑅(𝑋𝑖, 𝛾

′)𝛾′, 𝑋𝑗⟩ is mildly smooth in the following sense.

Assumption 14.4.23. Given a manifold 𝑀 . There is some constant 𝐶 such that for any a curve
𝛼(𝑠) ∈ 𝑀 and a vector field 𝑢(𝑠) on 𝛼(𝑠), let 𝐴(𝑠)𝑖𝑗 = ⟨𝑅(𝑋𝑖, 𝑢(𝑠))𝑢(𝑠), 𝑋𝑗⟩ where {𝑋𝑖} is any
orthonormal frame at 𝛼(𝑠), we have⃒⃒⃒⃒

𝑑

𝑑𝑠
‖𝐴(𝑠)‖𝐹

⃒⃒⃒⃒
≤
(︀
‖𝛼′(0)‖+ ‖𝐷𝑠𝑢(0)‖

)︀
𝑛𝐶 .

Note that this assumption implies 𝑅1 = 𝑛Θ(1) by picking the curve is a singleton and the vector
field 𝑢(𝑠) = 𝑠 · 𝑢.

Lemma 14.4.24. Given a geodesic 𝛾(𝑡) = exp𝑥(
𝑡
ℓ𝑣𝑥) on 𝑀 with step size ℎ satisfying 1

𝑛 ≤ ℎ ≤
1

2𝑛𝑅1
,

let 𝑐(𝑠) be any geodesic starting at 𝛾(0). Let 𝑥 = 𝑐(0) = 𝛾(0) and 𝑧 = 𝑐(1). Suppose that the length of
the geodesic is less than 𝑛−Θ(1). Then, there is a unique vector field 𝑣 on 𝑐 such that

𝑦 = exp𝑐(𝑠)(𝑣(𝑠)).

This vector field is uniquely determined by the geodesic and any 𝑣(𝑠) on this vector field.

Proof. Let 𝑠max be the supremum of 𝑠 such that 𝑣(𝑠) can be defined continuously and 𝑦 = exp𝑐(𝑠)(𝑣(𝑠)).
Note that 𝑠max > 0 as Lemma 14.4.22 shows that there is a neighborhood 𝑁 at 𝑥 and a vector field 𝑢
on 𝑁 such that for any 𝑧 ∈ 𝑁 , we have that

𝑦 = exp𝑧(𝑢(𝑧)).
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Note that the the vector field 𝑢 is unique and hence the extension we found for 𝑣 is unique. Also, we
know that ‖𝐷𝑡𝑣(𝑡)‖ = ‖∇𝑐′𝑢(𝑥)‖ ≤ 5

2𝐿 where 𝐿 is the length of 𝑐. Therefore, by continuity, 𝑣(𝑠max)
is well-defined.

If 𝑠max > 1, then we are done. Otherwise, we want to apply Lemma 14.4.22 at 𝑠max. However,
the curve exp𝑐(𝑠max)(

𝑡
ℓ𝑣(𝑠max)) may not lie in Π. Note that the only place Lemma 14.4.22 uses the

assumption 𝛾 = exp𝑥(
𝑡
ℓ𝑣𝑥) ∈ Π is to apply the bound 𝑅1 = sup𝛾∈Π,0≤𝑡≤ℓ ‖𝑅(𝑡)‖𝐹 .

To bound ‖𝑅(𝑡)‖𝐹 , we note that ‖𝐷𝑡𝑣(𝑡)‖ = ‖∇𝑐′𝑢(𝑥)‖ ≤ Θ(𝐿) where 𝐿 is the length of 𝑐. Hence,
both the starting point and the direction of the geodesic move by Θ(𝐿). Now, we can apply Lemma
14.4.19 to prove that along the geodesic, all the points move by Θ(𝐿) for 0 ≤ 𝑡 ≤ ℓ. Then, we can
apply Assumption 14.4.23 to conclude that ‖𝑅(𝑡)‖𝐹 only changes by at most Θ(𝑛𝐶𝐿). Therefore,
if 𝐿 ≤ 𝑅1

𝑛𝐶 = 𝑛−𝐶 , then ‖𝑅(𝑡)‖𝐹 is still bounded by Θ(𝑅1) and Lemma 14.4.22 can be applied at
𝑠max < 1. This is a contradiction. Hence, 𝑠max ≥ 1. Its uniqueness follows from Lemma 14.4.22.

14.5 Logarithmic Barrier

For any polytope 𝑀 = {𝐴𝑥 > 𝑏}, the logarithmic barrier function 𝜑(𝑥) is defined as

𝜑(𝑥) = −
𝑚∑︁
𝑖=1

log(𝑎𝑇𝑖 𝑥− 𝑏𝑖).

We denote the Hessian manifold induced by the logarithmic barrier on 𝑀 by 𝑀𝐿. The goal of this
section is to analyze the geodisic walk on 𝑀𝐿.

In section 14.5.1, we give explicit formulas of various Riemannian geometry concepts on 𝑀𝐿. In
Section 14.5.2, we explain the geodesic walk on 𝑀𝐿. In Sections 14.5.3 to 14.5.7, we bound the
necessary constant required by Theorem 14.4.2. This shows that

Theorem 14.5.1. The geodesic walk on 𝑀𝐿 with step size ℎ ≤ 𝑐
𝑛3/4 has mixing time is 𝑂(𝑚/ℎ) for

some universal constant 𝑐.

In the sections afterward, we show how to implement geodesic walk and calculate the rejection
probability. To implement these, we apply the techniques developed in Section 14.6 to solve the
corresponding ODEs. In this section, we first show that geodesic, parallel transport and Jacobi Field
are complex analytic (Section 14.5.9), then we bound their radius of convergence (Section 14.5.9.1).
This will help us bound the approximation error of the collocation method developed in Section 14.6.

Theorem 14.5.2. We can implement one step of geodesic walk with step size ℎ ≤ 𝑐√
𝑛

in time

𝑂(𝑚𝑛𝜔−1 log2(𝑛)) for a universal constant 𝑐.

14.5.1 Riemannian geometry on 𝑀𝐿

We use the following definitions throughout this section:

∙ 𝑠𝑥 = 𝐴𝑥− 𝑏, 𝑆𝑥 = Diag(𝑠𝑥).

∙ 𝐴𝑥 = 𝑆−1
𝑥 𝐴.

∙ 𝑠𝑥,𝑣 = 𝐴𝑥𝑣, 𝑆𝑥,𝑣 = Diag(𝐴𝑥𝑣).

∙ 𝑃𝑥 = 𝐴𝑥(𝐴
𝑇
𝑥𝐴𝑥)

−1𝐴𝑇𝑥 , 𝜎𝑥 = Diag(𝑃𝑥).

∙
(︁
𝑃

(2)
𝑥

)︁
𝑖𝑗
= (𝑃𝑥)

2
𝑖𝑗 .
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∙ For brevity (overloading notation), we define 𝑠𝛾′ = 𝑠𝛾,𝛾′ , 𝑠𝛾′′ = 𝑠𝛾,𝛾′′ , 𝑆𝛾′ = 𝑆𝛾,𝛾′ and 𝑆𝛾′′ = 𝑆𝛾,𝛾′′

for a curve 𝛾(𝑡).

Since the Hessian manifold 𝑀𝐿 is naturally embedded in R𝑛, we identify 𝑇𝑥𝑀𝐿 by Euclidean coordi-
nates unless otherwise stated. Therefore, we have that

⟨𝑢, 𝑣⟩𝑥 = 𝑢𝑇∇2𝜑(𝑥)𝑣

= 𝑢𝑇𝐴𝑇𝑥𝐴𝑥𝑣.

Lemma 14.5.3. Let 𝑢(𝑡) be a vector field defined on a curve 𝛾(𝑡) in 𝑀𝐿. Then, we have that

∇𝛾′𝑢 =
𝑑𝑢

𝑑𝑡
−
(︀
𝐴𝑇𝛾𝐴𝛾

)︀−1
𝐴𝑇𝛾 𝑆𝛾′𝑠𝛾,𝑢.

In particular, the geodesic equation on 𝑀𝐿 is given by

𝛾′′ =
(︀
𝐴𝑇𝛾𝐴𝛾

)︀−1
𝐴𝑇𝛾 𝑠

2
𝛾′ (14.19)

and the equation for parallel transport on a curve 𝛾(𝑡) is given by

𝑑

𝑑𝑡
𝑣(𝑡) =

(︀
𝐴𝑇𝛾𝐴𝛾

)︀−1
𝐴𝑇𝛾 𝑆𝛾′𝐴𝛾𝑣. (14.20)

Proof. By Lemma 14.2.5, the Christoffel symbols respect to the Euclidean coordinates is given by

Γ𝑘𝑖𝑗 =
1

2

∑︁
𝑙

𝑔𝑘𝑙𝜑𝑖𝑗𝑙

= −
∑︁
𝑧

∑︁
𝑙

𝑒𝑇𝑘
(︀
𝐴𝑇𝑥𝐴𝑥

)︀−1
𝑒𝑙 (𝐴𝑥𝑒𝑖)𝑧 (𝐴𝑥𝑒𝑗)𝑧 (𝐴𝑥𝑒𝑙)𝑧

= −𝑒𝑇𝑘
(︀
𝐴𝑇𝑥𝐴𝑥

)︀−1
𝐴𝑇𝑥 ((𝐴𝑥𝑒𝑖) (𝐴𝑥𝑒𝑗)) .

Recall that the Levi-Civita connection is given by

∇𝑣𝑢 =
∑︁
𝑖𝑘

𝑣𝑖
𝜕𝑢𝑘
𝜕𝑥𝑖

𝑒𝑘 +
∑︁
𝑖𝑗𝑘

𝑣𝑖𝑢𝑗Γ
𝑘
𝑖𝑗𝑒𝑘.

Therefore, we have

∇𝑣𝑢 =
∑︁
𝑖𝑘

𝑣𝑖
𝜕𝑢𝑘

𝜕𝑥𝑖
𝑒𝑘 −

(︀
𝐴𝑇𝑥𝐴𝑥

)︀−1
𝐴𝑇𝑥𝑆𝑥,𝑣𝑠𝑥,𝑢.

Since 𝑈 is a vector field defined on a curve 𝛾(𝑡), we have that
∑︀

𝑖𝑘 𝛾
′
𝑖
𝜕𝑢𝑘
𝜕𝑥𝑖

𝑒𝑘 =
𝑑𝑢
𝑑𝑡 .

The geodesic equation follows from ∇𝛾′𝛾′ = 0 and the parallel transport equation follows from
∇𝛾′𝑣 = 0.

Lemma 14.5.4. Given 𝑢, 𝑣, 𝑤, 𝑧 ∈ 𝑇𝑥𝑀𝐿, the Riemann Curvature Tensor is given by

⟨𝑅(𝑢, 𝑣)𝑤, 𝑧⟩ = (𝑠𝑥,𝑢𝑠𝑥,𝑤)
𝑇 𝐴𝑥

(︀
𝐴𝑇𝑥𝐴𝑥

)︀−1
𝐴𝑇𝑥 (𝑠𝑥,𝑣𝑠𝑥,𝑧)− (𝑠𝑥,𝑢𝑠𝑥,𝑧)

𝑇 𝐴𝑥
(︀
𝐴𝑇𝑥𝐴𝑥

)︀−1
𝐴𝑇𝑥 (𝑠𝑥,𝑣𝑠𝑥,𝑤)

and the Ricci curvature is given by

𝑅𝑖𝑐(𝑢) = 𝑠𝑇𝑥,𝑢𝑃
(2)
𝑥 𝑠𝑥,𝑢 − 𝜎𝑇𝑥 𝑃𝑥𝑠2𝑥,𝑢.
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Proof. By Lemma 14.2.5, we have that

⟨𝑅(𝑢, 𝑣)𝑤, 𝑧⟩ =
1

4

∑︁
𝑝𝑞𝑖𝑗𝑙𝑘

𝑔𝑝𝑞 (𝜑𝑗𝑘𝑝𝜑𝑖𝑙𝑞 − 𝜑𝑖𝑘𝑝𝜑𝑗𝑙𝑞)𝑢𝑖𝑣𝑗𝑤𝑙𝑧𝑘

=
∑︁
𝑝𝑞

𝑔𝑝𝑞
(︀
𝑒𝑇𝑝𝐴

𝑇
𝑥 (𝑠𝑥,𝑣𝑠𝑥,𝑧) 𝑒

𝑇
𝑞 𝐴

𝑇
𝑥 (𝑠𝑥,𝑢𝑠𝑥,𝑤)− 𝑒𝑇𝑝𝐴𝑇𝑥 (𝑠𝑥,𝑢𝑠𝑥,𝑧) 𝑒

𝑇
𝑞 𝐴

𝑇
𝑥 (𝑠𝑥,𝑣𝑠𝑥,𝑤)

)︀
= (𝑠𝑥,𝑢𝑠𝑥,𝑤)

𝑇 𝐴𝑥
(︀
𝐴𝑇𝑥𝐴𝑥

)︀−1
𝐴𝑇𝑥 (𝑠𝑥,𝑣𝑠𝑥,𝑧)− (𝑠𝑥,𝑢𝑠𝑥,𝑧)

𝑇 𝐴𝑥
(︀
𝐴𝑇𝑥𝐴𝑥

)︀−1
𝐴𝑇𝑥 (𝑠𝑥,𝑣𝑠𝑥,𝑤)

and

𝑅𝑖𝑐(𝑢) =
∑︁
𝑗𝑙

𝑔𝑗𝑙
⟨
𝑅(𝑢,

𝜕

𝜕𝑥𝑗
),

𝜕

𝜕𝑥𝑙
, 𝑢

⟩
=

∑︁
𝑗𝑙

𝑔𝑗𝑙 (𝑠𝑥,𝑢𝑠𝑥,𝑒𝑙)
𝑇 𝐴𝑥

(︀
𝐴𝑇𝑥𝐴𝑥

)︀−1
𝐴𝑇𝑥
(︀
𝑠𝑥,𝑒𝑗𝑠𝑥,𝑢

)︀
−
(︀
𝑠2𝑥,𝑢

)︀𝑇
𝐴𝑥
(︀
𝐴𝑇𝑥𝐴𝑥

)︀−1
𝐴𝑇𝑥
(︀
𝑠𝑥,𝑒𝑗𝑠𝑥,𝑒𝑙

)︀
= Tr𝑆𝑥,𝑢𝐴𝑥

(︀
𝐴𝑇𝑥𝐴𝑥

)︀−1
𝐴𝑇𝑥𝑆𝑥,𝑢𝐴𝑥

(︀
𝐴𝑇𝑥𝐴𝑥

)︀−1
𝐴𝑥 − Tr

(︁
𝐴𝑇𝑥Diag(𝑃𝑥𝑠

2
𝑥,𝑢)𝐴𝑥

(︀
𝐴𝑇𝑥𝐴𝑥

)︀−1
)︁

= 𝑠𝑇𝑥,𝑢𝑃
(2)
𝑥 𝑠𝑥,𝑢 − 𝜎𝑇𝑥 𝑃𝑥𝑠2𝑥,𝑢.

Lemma 14.5.5. Given a geodesic 𝛾(𝑡) on 𝑀𝐿 and an orthogonal frame {𝑥𝑖}𝑛𝑖=1 on 𝛾(𝑡). The Jacobi
field equation (in the orthogonal frame coordinate) is given by

𝑑2𝑢

𝑑𝑡2
+𝑋−1(𝐴𝑇𝛾𝐴𝛾)

−1
(︀
𝐴𝑇𝛾 𝑆𝛾′𝑃𝛾𝑆𝛾′𝐴𝛾 −𝐴𝑇𝛾Diag(𝑃𝛾𝑠

2
𝛾′)𝐴𝛾

)︀
𝑋𝑢 = 0

where 𝑋(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), · · · , 𝑥𝑛(𝑡)].

Proof. The equation for Jacobi field along is

𝐷2
𝑡 𝑣 +𝑅(𝑣, 𝛾′)𝛾′ = 0.

By Lemma 14.5.4, under Euclidean coordinates, we have

𝐷2
𝑡 𝑣 + (𝐴𝑇𝛾𝐴𝛾)

−1
(︀
𝐴𝑇𝛾 𝑆𝛾′𝑃𝛾𝑆𝛾′𝐴𝛾 −𝐴𝑇𝛾 𝑑𝑖𝑎𝑔(𝑃𝛾𝑠2𝛾′)𝐴𝛾

)︀
𝑣 = 0

We write 𝑣 in terms of the orthogonal frame, namely, 𝑣(𝑡) = 𝑋(𝑡)𝑢(𝑡) where 𝑢(𝑡) ∈ R𝑛. Then, we

have that 𝐷2
𝑡 𝑣 = 𝑋(𝑡)𝑑

2𝑢(𝑡)
𝑑𝑡2

. Hence, under the orthogonal frame coordinate, we have that

𝑑2𝑢

𝑑𝑡2
+𝑋−1(𝐴𝑇𝛾𝐴𝛾)

−1
(︀
𝐴𝑇𝛾 𝑆𝛾′𝑃𝛾𝑆𝛾′𝐴𝛾 −𝐴𝑇𝛾Diag(𝑃𝛾𝑠

2
𝛾′)𝐴𝛾

)︀
𝑋𝑢 = 0.

Now, we show the relation between the distance induced by the metric and the Hilbert metric.

Lemma 14.5.6. For any 𝑥, 𝑦 ∈𝑀𝐿, we have that

𝑑(𝑥, 𝑦)

𝑑𝐻(𝑥, 𝑦)
≤
√
𝑚.

Hence, we have that 𝐺2 ≤
√
𝑚.

Proof. First, we note that it suffices to prove that 𝑑(𝑥,𝑦)
𝑑𝐻(𝑥,𝑦) ≤ (1 + 𝑂(𝜀))

√
𝑚 for any 𝑥, 𝑦 ∈ 𝑀𝐿 with

𝑑(𝑥, 𝑦) ≤ 𝜀. Then, one can run a limiting argument as follows. Let 𝑥𝑡 = 𝑡 ·𝑥+(1− 𝑡) · 𝑦, then we have
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that

𝑑𝐻(𝑥, 𝑦) = lim
𝑛→∞

𝑛−1∑︁
𝑖=0

𝑑𝐻(𝑥𝑘/𝑛, 𝑥(𝑘+1)/𝑛).

Since 𝑑𝐻(𝑥𝑘/𝑛, 𝑥(𝑘+1)/𝑛) = 𝑂𝑥,𝑦(
1
𝑛) , we have that

𝑑𝐻(𝑥, 𝑦) = lim
𝑛→∞

𝑛−1∑︁
𝑖=0

𝑑𝐻(𝑥𝑘/𝑛, 𝑥(𝑘+1)/𝑛)

≥ lim
𝑛→∞

(1−𝑂𝑥,𝑦( 1𝑛))√
𝑚

𝑛−1∑︁
𝑖=0

𝑑(𝑥𝑘/𝑛, 𝑥(𝑘+1)/𝑛)

=
1√
𝑚

lim
𝑛→∞

𝑛−1∑︁
𝑖=0

𝑑(𝑥𝑘/𝑛, 𝑥(𝑘+1)/𝑛)

≥ 1√
𝑚

lim
𝑛→∞

𝑑(𝑥, 𝑦) =
𝑑(𝑥, 𝑦)√

𝑚
.

Now, we can assume 𝑑(𝑥, 𝑦) ≤ 𝜀.Let 𝑝 and 𝑞 are on the boundary of 𝑀𝐿 such that 𝑝, 𝑥, 𝑦, 𝑞 are on
the straight line 𝑥𝑦 and are in order. Without loss of generality, we assume 𝑝 is closer to 𝑥. Then, we
have that 𝑝 ∈ 𝑀𝐿 ∩ (𝑥 −𝑀𝐿), equivalently, we have that

⃒⃒
𝑎𝑇𝑖 𝑝− 𝑎𝑇𝑖 𝑥

⃒⃒
≤ 𝑎𝑇𝑖 𝑥 − 𝑏𝑖 for all 𝑖 and hence

‖𝐴𝑥(𝑝− 𝑥)‖∞ ≤ 1. Therefore, we have that

‖𝐴𝑥(𝑝− 𝑥)‖2 ≤
√
𝑚‖𝐴𝑥(𝑝− 𝑥)‖∞ ≤

√
𝑚.

Since 𝑝, 𝑥, 𝑦 are on the same line, we have that

‖𝑥− 𝑦‖2‖𝑝− 𝑞‖2
‖𝑝− 𝑥‖2‖𝑦 − 𝑞‖2

≥ ‖𝑥− 𝑦‖2
‖𝑝− 𝑥‖2

=
‖𝐴𝑥(𝑥− 𝑦)‖2
‖𝐴𝑥(𝑝− 𝑥)‖2

≥ ‖𝐴𝑥(𝑥− 𝑦)‖2√
𝑚

.

Since 𝑑(𝑥, 𝑦) < 𝜀, Lemma 3.1 in [214] shows that

𝑑(𝑥, 𝑦) ≤ − log (1− ‖𝐴𝑥(𝑥− 𝑦)‖2) .
Hence, we have that ‖𝐴𝑥(𝑥− 𝑦)‖2 ≥ (1−𝑂(𝜀))𝑑(𝑥, 𝑦) and hence

𝑑𝐻(𝑥, 𝑦) =
‖𝑥− 𝑦‖2‖𝑝− 𝑞‖2
‖𝑝− 𝑥‖2‖𝑦 − 𝑞‖2

≥ (1−𝑂(𝜀))
𝑑(𝑥, 𝑦)√

𝑚
.

14.5.2 Geodesic Walk on 𝑀𝐿

Recall that the geodesic walk is given by

𝑥(𝑗+1) = exp𝑥(𝑗)(
√
ℎ𝑤 +

ℎ

2
𝜇(𝑥(𝑗)))

where 𝑤 ∼ 𝑁(0, 𝐼) (in the local coordinates at 𝑥(𝑗)). In many proofs in this section, we consider the
geodesic 𝛾 from 𝑥(𝑗) to 𝑥(𝑗+1) with the initial velocity

𝛾′(0) =
𝑤√
𝑛
+

1

2

√︂
ℎ

𝑛
𝜇(𝑥).
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The scaling is to make the speed of geodesic 𝛾 close to one. Since 𝑤 is a Gaussian vector, we have
that 0.9 ≤ ‖𝛾′(0)‖𝛾(0) ≤ 1.1 with high probability. Due to this rescaling, the geodesic is defined from
0 to ℓ =

√
𝑛ℎ.

We often work on the Euclidean coordinates. In this case, the geodesic walk is given by the
following formula:

Lemma 14.5.7. Given 𝑥 ∈ 𝑀𝐿 and step size ℎ > 0, one step of the geodesic walk starting at 𝑥 is
given by the solution 𝛾(ℓ) of the following geodesic equation

𝛾′′(𝑡) =
(︀
𝐴𝑇𝛾𝐴𝛾

)︀−1
𝐴𝑇𝛾 𝑠

2
𝛾′ for 0 ≤ 𝑡 ≤ ℓ

𝛾′(0) =
𝑤√
𝑛
+

1

2

√︂
ℎ

𝑛
𝜇(𝑥)

𝛾(0) = 𝑥

where ℓ =
√
𝑛ℎ, 𝑤 ∼ 𝑁(0, (𝐴𝑇𝑥𝐴𝑥)

−1) and 𝜇(𝑥) =
(︀
𝐴𝑇𝑥𝐴𝑥

)︀−1
𝐴𝑇𝑥𝜎𝑥.

Proof. The geodesic equation is given by Lemma 14.5.3. From (14.2), the drift term is given by

𝜇𝑖(𝑥) =
1

2

𝑛∑︁
𝑗=1

𝜕

𝜕𝑥𝑗

(︁(︀
∇2𝜑(𝑋𝑡)

)︀−1
)︁
𝑖𝑗
=

1

2

𝑛∑︁
𝑗=1

𝜕

𝜕𝑥𝑗

(︁(︀
𝐴𝑇𝑥𝐴𝑥

)︀−1
)︁
𝑖𝑗

=
∑︁
𝑗

𝑒𝑇𝑖 (𝐴
𝑇
𝑥𝐴𝑥)

−1𝐴𝑇𝑥𝑆𝑥,𝑒𝑗𝐴𝑥(𝐴
𝑇
𝑥𝐴𝑥)

−1𝑒𝑗

=
∑︁
𝑗

∑︁
𝑘

𝑉𝑖𝑘𝑒
𝑇
𝑘𝐴𝑥𝑒𝑗𝑉𝑗𝑘 where 𝑉 = (𝐴𝑇𝑥𝐴𝑥)

−1𝐴𝑇𝑥

=
∑︁
𝑘

𝑉𝑖𝑘𝑒
𝑇
𝑘𝐴𝑥

∑︁
𝑗

𝑒𝑗(𝑒
𝑇
𝑘𝐴𝑥(𝐴

𝑇
𝑥𝐴𝑥)

−1𝑒𝑗)

=
∑︁
𝑘

𝑉𝑖𝑘𝑒
𝑇
𝑘𝐴𝑥

∑︁
𝑗

𝑒𝑗𝑒
𝑇
𝑗 (𝐴

𝑇
𝑥𝐴𝑥)

−1𝐴𝑇𝑥 𝑒𝑘

=
∑︁
𝑘

𝑉𝑖𝑘𝑒
𝑇
𝑘𝐴𝑥(𝐴

𝑇
𝑥𝐴𝑥)

−1𝐴𝑇𝑥 𝑒𝑘

= 𝑉𝑖𝜎𝑥 = 𝑒𝑇𝑖 (𝐴
𝑇
𝑥𝐴𝑥)

−1𝐴𝑇𝑥𝜎𝑥.

14.5.3 Randomness and Stability of the Geodesic

In this and subsequent sections, we will frequently use the following elementary calculus facts (using
only the chain/product rules and formula for derivative of inverse of a matrix):

𝑑𝐴𝑥
𝑑𝑡

= −𝑆𝛾′𝐴𝑥
𝑑𝑃𝑥
𝑑𝑡

= −𝑆𝛾′𝑃𝑥 − 𝑃𝑥𝑆𝛾′ + 2𝑃𝑥𝑆𝛾′𝑃𝑥

𝑑𝑆𝛾′

𝑑𝑡
= Diag(−𝑆𝛾′𝐴𝑥𝛾′ +𝐴𝑥𝛾

′′) = −𝑆2
𝛾′ +Diag(𝑃𝑥)𝑆

2
𝛾′

𝑑𝜎𝑥
𝑑𝑡

= Diag(
𝑑𝑃𝑥
𝑑𝑡

)
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We also use these matrix inequalities: Tr(𝐴𝐵) = Tr(𝐵𝐴), Tr(𝑃𝐴𝑃 ) ≤ Tr(𝐴) for any psd matrix 𝐴;
Tr(𝐴𝐵𝐴𝑇 ) ≤ Tr(𝐴𝑍𝐴𝑇 ) for any𝐵 ⪯ 𝑍; the Cauchy-Schwartz, namely, Tr(𝐴𝐵) ≤ Tr(𝐴𝐴𝑇 )

1
2Tr(𝐵𝑇𝐵)

1
2 .

We also use 𝑃 2 = 𝑃 since 𝑃 is a projection matrix.
We note that ‖𝛾′(0)‖4 is small because it is the sum of a random vector plus a small drift term.

Here, we would like to prove that the geodesic is stable in ℓ4 norm. This fact is very important in the
proof and hence we first establish this here.

Lemma 14.5.8. Let 𝛾 be a geodesic in 𝑀𝐿 starting at 𝑥. Let 𝑣4 = ‖𝑠𝛾′(0)‖4. Then, for 0 ≤ 𝑡 ≤ 1
10𝑣4

,
we have that

1. ‖𝑠𝛾′(𝑡)‖4 ≤ 1.25𝑣4.

2. ‖𝛾′′‖2𝛾 ≤ 3𝑣44.

Proof. Let 𝑢(𝑡) = ‖𝑠𝛾′(𝑡)‖4. Then, we have

𝑑𝑢

𝑑𝑡
≤ ‖ 𝑑

𝑑𝑡

(︀
𝐴𝛾𝛾

′)︀ ‖4
= ‖𝐴𝛾𝛾′′ −

(︀
𝐴𝛾𝛾

′)︀2 ‖4
≤ ‖𝐴𝛾𝛾′′‖4 + 𝑢2(𝑡). (14.21)

Under the Euclidean coordinates, the geodesic equation is given by

𝛾′′ =
(︀
𝐴𝑇𝛾𝐴𝛾

)︀−1
𝐴𝑇𝛾 𝑠

2
𝛾′ .

Hence, we have that

‖𝛾′′‖2𝛾 =
(︀
𝑠2𝛾′
)︀𝑇
𝐴𝛾
(︀
𝐴𝑇𝛾𝐴𝛾

)︀−1 (︀
𝐴𝑇𝛾𝐴𝛾

)︀ (︀
𝐴𝑇𝛾𝐴𝛾

)︀−1
𝐴𝑇𝛾 𝑠

2
𝛾′

≤
∑︁
𝑖

(𝑠4𝛾′)𝑖 = 𝑢4(𝑡). (14.22)

Therefore, we have
‖𝐴𝛾𝛾′′‖4 ≤ ‖𝐴𝛾𝛾′′‖2 ≤ 𝑢2(𝑡).

Plugging it into (14.21), we have that

𝑑𝑢

𝑑𝑡
≤ 𝑢2(𝑡) + 𝑢2(𝑡) ≤ 2𝑢2(𝑡).

Since 𝑢(0) = 𝑣4, for all 𝑡 ≥ 0, we have

𝑢(𝑡) ≤ 𝑣4
1− 2𝑣4𝑡

. (14.23)

For 0 ≤ 𝑡 ≤ 1
10𝑣4

, we have 𝑢(𝑡) ≤ 1.25𝑣4 and this gives the first inequality. Using (14.22), we get the
second inequality.

Lemma 14.5.9. For 𝑝 ≥ 1, we have

𝑃𝑥∼𝑁(0,𝐼)

⎛⎝‖𝐴𝑥‖𝑝𝑝 ≤
⎛⎝(︃2𝑝/2Γ(𝑝+1

2 )
√
𝜋

∑︁
𝑖

‖𝑎𝑖‖𝑝2

)︃1/𝑝

+ ‖𝐴‖2→𝑝𝑡

⎞⎠𝑝⎞⎠ ≤ 1− exp

(︂
− 𝑡

2

2

)︂
.

In particular, we have

𝑃𝑥∼𝑁(0,𝐼)

(︁
‖𝐴𝑥‖22 ≤ (‖𝐴‖𝐹 + ‖𝐴‖2𝑡)2

)︁
≤ 1− exp

(︂
− 𝑡

2

2

)︂
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and

𝑃𝑥∼𝑁(0,𝐼)

⎛⎝‖𝐴𝑥‖44 ≤
⎛⎝(︃3∑︁

𝑖

‖𝑎𝑖‖42

)︃1/4

+ ‖𝐴‖2→4𝑡

⎞⎠4⎞⎠ ≤ 1− exp

(︂
− 𝑡

2

2

)︂
.

Proof. Let 𝐹 (𝑥) = ‖𝐴𝑥‖𝑝. Since |𝐹 (𝑥)− 𝐹 (𝑦)| ≤ ‖𝐴‖2→𝑝‖𝑥−𝑦‖2, Gaussian concentration shows that

𝑃 (𝐹 (𝑥) ≤ E𝐹 (𝑥) + ‖𝐴‖2→𝑝𝑡) ≤ 1− exp

(︂
− 𝑡

2

2

)︂
.

Since 𝑥𝑝 is convex, we have that

E‖𝐴𝑥‖𝑝 ≤
(︀
E‖𝐴𝑥‖𝑝𝑝

)︀1/𝑝
=

(︃∑︁
𝑖

E
⃒⃒
𝑎𝑇𝑖 𝑥

⃒⃒𝑝)︃1/𝑝

=

(︃
E𝑡∼𝑁(0,1)|𝑡|𝑝

∑︁
𝑖

‖𝑎𝑖‖𝑝2

)︃1/𝑝

=

(︃
2𝑝/2Γ(𝑝+1

2 )
√
𝜋

∑︁
𝑖

‖𝑎𝑖‖𝑝2

)︃1/𝑝

.

Hence, we have that

𝑃

⎛⎝‖𝐴𝑥‖𝑝𝑝 ≤
⎛⎝(︃2𝑝/2Γ(𝑝+1

2 )
√
𝜋

∑︁
𝑖

‖𝑎𝑖‖𝑝2

)︃1/𝑝

+ ‖𝐴‖2→𝑝𝑡

⎞⎠𝑝⎞⎠ ≤ 1− exp

(︂
− 𝑡

2

2

)︂
.

Using the lemma above, we prove that within small time, the direction of geodesic is a random
vector plus a small vector.

Lemma 14.5.10. Let 𝛾 given by a geodesic walk on 𝑀𝐿 with step size ℎ satisfying ℎ ≤ 1
256

√
𝑛
. Let 𝑢

be the Gaussian part of the initial velocity 𝛾′(0). If ‖𝐴𝛾(0)𝑢‖2 ≤ 3
2 and ‖𝐴𝛾𝑢‖4 ≤ 1.55

𝑛1/4 , then for any
0 ≤ 𝑡 ≤ ℓ,

1. ‖𝐴𝛾𝛾′‖2 ≤ 2.

2. ‖𝐴𝛾𝛾′‖4 ≤ 2𝑛−1/4.

3. ‖𝛾′′‖2𝛾 ≤ 15𝑛−1.

4. ‖𝐴𝛾𝛾′‖∞ ≤ 6
√
ℎ.

Furthermore, ‖𝐴𝛾(0)𝑢‖2 ≤ 3
2 and ‖𝐴𝛾𝑢‖4 ≤ 1.55

𝑛1/4 holds with probability at least 1−exp(−
√
𝑛/100).

Proof. From the definition of the geodesic walk (Lemma 14.5.7), we have that

𝛾′(0) = 𝑢+ 𝑣
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where 𝑢 ∼ 𝑁
(︁
0, 1𝑛

(︀
𝐴𝑇𝛾𝐴𝛾

)︀−1
)︁
and 𝑣 = 1

2

√︁
ℎ
𝑛

(︀
𝐴𝑇𝛾𝐴𝛾

)︀−1
𝐴𝑇𝛾 𝜎𝛾 . Note that

‖𝐴𝛾𝛾′(0)‖2 ≤ ‖𝐴𝛾𝑢‖2 + ‖
1

2

√︂
ℎ

𝑛
𝐴𝛾
(︀
𝐴𝑇𝛾𝐴𝛾

)︀−1
𝐴𝑇𝛾 𝜎𝛾‖2

= ‖𝐴𝛾𝑢‖2 +
1

2

√︂
ℎ

𝑛

√︁
𝜎𝑇𝛾 𝐴𝛾

(︀
𝐴𝑇𝛾𝐴𝛾

)︀−1
𝐴𝑇𝛾 𝜎𝛾 .

Note that 𝐴𝛾𝑢 = 𝐵𝑥 where 𝐵 = 1√
𝑛
𝐴𝛾
(︀
𝐴𝑇𝛾𝐴𝛾

)︀−1/2
and 𝑥 ∼ 𝑁(0, 𝐼). Note that ‖𝐵𝑥‖22 = 1

𝑛‖𝑥‖
2
2 for

all 𝑥 and hence ‖𝐵‖2𝐹 = 1 and ‖𝐵‖2→2 =
1√
𝑛
. Hence, Lemma 14.5.9 shows that

𝑃

(︃
‖𝐴𝛾𝑢‖22 ≤

(︂
1 +

𝑡√
𝑛

)︂2
)︃
≤ 1− exp

(︂
− 𝑡

2

2

)︂
Hence, we have

‖𝐴𝛾𝛾′‖2 ≤
3

2
+

1

2

√
ℎ ≤ 2

with probability 1− exp(−𝑛/8). Since geodesic preserves the speed, this gives the first inequality.
Next, we note that

∑︀
𝑖 ‖𝑒𝑇𝑖 𝐵‖42 = 1

𝑛2

∑︀
𝑖(𝜎𝛾)

2
𝑖 ≤ 1

𝑛 and ‖𝐵‖2→4 ≤ ‖𝐵‖2→2 = 1√
𝑛
. Hence, Lemma

14.5.9 shows that

𝑃

⎛⎝‖𝐴𝛾𝑢‖44 ≤
(︃(︂

3

𝑛

)︂1/4

+
𝑡√
𝑛

)︃4
⎞⎠ ≤ 1− exp

(︂
− 𝑡

2

2

)︂
.

Hence, we have that

𝑣4
def
= ‖𝐴𝛾𝛾′(0)‖4 ≤

1.55

𝑛1/4
+

1

2

√
ℎ ≤ 1.6

𝑛1/4

with probability at least 1 − exp(−
√
𝑛/100). Since ℓ =

√
𝑛ℎ ≤ 𝑛1/4

16 = 1
10𝑣4

, Lemma 14.5.8 shows the
middle two inequalities.

Lemma 14.5.8 shows that ‖𝐴𝛾𝛾′′‖∞ ≤ ‖𝛾′′‖𝛾(𝑡) ≤
√
3𝑣24 ≤ 5𝑛−1/2 and hence

‖𝐴𝛾(𝑡)𝛾′(𝑡)‖∞ ≤ ‖𝐴𝛾𝛾′(0)‖∞ +

ˆ ℓ

0
‖𝐴𝛾(𝑡)𝛾′′(𝑡)‖∞𝑑𝑡

≤
√
ℎ+ 5ℓ𝑛−1/2

= 6
√
ℎ.

14.5.4 Stability of Drift

We begin with 𝐷0 and 𝐷1.

Lemma 14.5.11. For any 𝑥 ∈𝑀𝐿, we have that ‖𝜇(𝑥)‖2𝑥 ≤ 𝑛. Hence, 𝐷0 ≤
√
𝑛.

Proof. We have

‖𝜇(𝑥)‖2𝑥 = 𝜎𝑇𝑥𝐴𝑥
(︀
𝐴𝑇𝑥𝐴𝑥

)︀−1
𝐴𝑥𝜎𝑥 ≤

∑︁
𝑖

(𝜎𝑥)
2
𝑖 ≤ 𝑛.
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Lemma 14.5.12. Let 𝛾(𝑡) be a geodesic walk on 𝑀𝐿 with step size ℎ satisfying 1
𝑛 ≤ ℎ ≤

1
256

√
𝑛
. Then,

we have that

𝐷1 = sup
0≤𝑡≤ℓ

⃒⃒⃒⃒
𝑑

𝑑𝑡
‖𝜇(𝛾(𝑡))‖2

⃒⃒⃒⃒
≤ 32𝑛

√
ℎ.

with probability at least 1− exp(−
√
𝑛/100) over the choice of the next step 𝛾 ∈ ̃︀Ξ𝑥 for any 𝑥 ∈𝑀𝐿.

Proof. We want to bound
⃒⃒
‖𝜇(𝑥)‖2𝑥 − ‖𝜇(𝑦)‖2𝑦

⃒⃒
. Note that

‖𝜇(𝛾(𝑡))‖2𝛾 = 𝜎𝑇𝛾 𝐴𝛾
(︀
𝐴𝑇𝛾𝐴𝛾

)︀−1
𝐴𝛾𝜎𝛾

= 1𝑇Diag(𝑃𝛾)𝑃𝛾Diag(𝑃𝛾)1.

Using 𝑑
𝑑𝑡𝑃𝛾 = −𝑆𝛾′𝑃𝛾 − 𝑃𝛾𝑆𝛾′ + 2𝑃𝛾𝑆𝛾′𝑃𝛾 , we have

𝑑

𝑑𝑡
‖𝜇(𝛾(𝑡))‖2𝛾 = −2 · 1𝑇Diag(𝑆𝛾′𝑃𝛾)𝑃𝛾Diag(𝑃𝛾)1

−2 · 1𝑇Diag(𝑃𝛾𝑆𝛾′)𝑃𝛾Diag(𝑃𝛾)1

+4 · 1𝑇Diag(𝑃𝛾𝑆𝛾′𝑃𝛾)𝑃𝛾Diag(𝑃𝛾)1

−1𝑇Diag(𝑃𝛾)𝑆𝛾′𝑃𝛾Diag(𝑃𝛾)1

−1𝑇Diag(𝑃𝛾)𝑃𝛾𝑆𝛾′Diag(𝑃𝛾)1

+2 · 1𝑇Diag(𝑃𝛾)𝑃𝛾𝑆𝛾′𝑃𝛾Diag(𝑃𝛾)1

= −2 · 1𝑇Diag(𝑆𝛾′𝑃𝛾)𝑃𝛾Diag(𝑃𝛾)1

−4 · 1𝑇Diag(𝑃𝛾)𝑆𝛾′𝑃𝛾Diag(𝑃𝛾)1

+4 · 1𝑇Diag(𝑃𝛾𝑆𝛾′𝑃𝛾)𝑃𝛾Diag(𝑃𝛾)1

+2 · 1𝑇Diag(𝑃𝛾)𝑃𝛾𝑆𝛾′𝑃𝛾Diag(𝑃𝛾)1.

Now, we note that ⃒⃒
1𝑇Diag(𝑆𝛾′𝑃𝛾)𝑃𝛾Diag(𝑃𝛾)1

⃒⃒
≤ ‖𝛾′‖𝛾

√
𝑛,⃒⃒

1𝑇Diag(𝑃𝛾)𝑆𝛾′𝑃𝛾Diag(𝑃𝛾)1
⃒⃒
≤ ‖𝛾′‖𝛾

√
𝑛,⃒⃒

1𝑇Diag(𝑃𝛾𝑆𝛾′𝑃𝛾)𝑃𝛾Diag(𝑃𝛾)1
⃒⃒
≤ ‖𝛾′‖𝛾

√
𝑛,⃒⃒

1𝑇Diag(𝑃𝛾)𝑃𝛾𝑆𝛾′𝑃𝛾Diag(𝑃𝛾)1
⃒⃒
≤ ‖𝑆𝛾′‖∞𝑛.

Since ‖𝛾′‖𝛾 ≤ 2 and ‖𝐴𝛾𝛾′‖∞ ≤ 6
√
ℎ (Lemma 14.5.10), we have

𝐷1 = sup

⃒⃒⃒⃒
𝑑

𝑑𝑡
‖𝜇(𝛾(𝑡))‖2

⃒⃒⃒⃒
≤ 20

√
𝑛+ 12𝑛

√
ℎ ≤ 32𝑛

√
ℎ.

14.5.5 Smoothness of the metric

Lemma 14.5.13. Let 𝛾 given by a geodesic walk on 𝑀𝐿 with step size ℎ satisfying 1
𝑛 ≤ ℎ ≤ 1

256
√
𝑛
.

Let 𝑓(𝑡) = log det(𝐴𝑇𝛾(𝑡)𝐴𝛾(𝑡)). Then, we have

𝐺1 = sup
0≤𝑡≤ℓ

⃒⃒
𝑓 ′′′(𝑡)

⃒⃒
≤ 1000

√
ℎ

with probability at least 1− exp(−
√
𝑛/100).
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Proof. Note that
𝑓 ′(𝑡) = −2Tr(𝐴𝑇𝛾𝐴𝛾)−1𝐴𝑇𝛾 𝑆𝛾′𝐴𝛾 .

Hence, we have

𝑓 ′′(𝑡) = −4Tr(𝐴𝑇𝛾𝐴𝛾)−1𝐴𝑇𝛾 𝑆𝛾′𝐴𝛾(𝐴
𝑇
𝛾𝐴𝛾)

−1𝐴𝑇𝛾 𝑆𝛾′𝐴𝛾

+6Tr(𝐴𝑇𝛾𝐴𝛾)
−1𝐴𝑇𝛾 𝑆

2
𝛾′𝐴𝛾

−2Tr(𝐴𝑇𝛾𝐴𝛾)−1𝐴𝑇𝛾 𝑆𝛾′′𝐴𝛾 .

So, we have

𝑓 ′′′(𝑡) = −16Tr(𝐴𝑇𝛾𝐴𝛾)−1𝐴𝑇𝛾 𝑆𝛾′𝐴𝛾(𝐴
𝑇
𝛾𝐴𝛾)

−1𝐴𝑇𝛾 𝑆𝛾′𝐴𝛾(𝐴
𝑇
𝛾𝐴𝛾)

−1𝐴𝑇𝛾 𝑆𝛾′𝐴𝛾

+24Tr(𝐴𝑇𝛾𝐴𝛾)
−1𝐴𝑇𝛾 𝑆

2
𝛾′𝐴𝛾(𝐴

𝑇
𝛾𝐴𝛾)

−1𝐴𝑇𝛾 𝑆𝛾′𝐴𝛾

−8Tr(𝐴𝑇𝛾𝐴𝛾)−1𝐴𝑇𝛾 𝑆𝛾′′𝐴𝛾(𝐴
𝑇
𝛾𝐴𝛾)

−1𝐴𝑇𝛾 𝑆𝛾′𝐴𝛾

+12Tr(𝐴𝑇𝛾𝐴𝛾)
−1𝐴𝑇𝛾 𝑆𝛾′𝐴𝛾(𝐴

𝑇
𝛾𝐴𝛾)

−1𝐴𝑇𝛾 𝑆
2
𝛾′𝐴𝛾

−24Tr(𝐴𝑇𝛾𝐴𝛾)−1𝐴𝑇𝛾 𝑆
3
𝛾′𝐴𝛾

+12Tr(𝐴𝑇𝛾𝐴𝛾)
−1𝐴𝑇𝛾 𝑆𝛾′𝑆𝛾′′𝐴𝛾

−4Tr(𝐴𝑇𝛾𝐴𝛾)−1𝐴𝑇𝛾 𝑆𝛾′𝐴𝛾(𝐴
𝑇
𝛾𝐴𝛾)

−1𝐴𝑇𝛾 𝑆𝛾′′𝐴𝛾

+4Tr(𝐴𝑇𝛾𝐴𝛾)
−1𝐴𝑇𝛾 𝑆𝛾′′𝑆𝛾′𝐴𝛾

−2Tr(𝐴𝑇𝛾𝐴𝛾)−1𝐴𝑇𝛾
𝑑

𝑑𝑡
𝑆𝛾′′𝐴𝛾

= −16Tr𝑃𝛾𝑆𝛾′𝑃𝛾𝑆𝛾′𝑃𝛾𝑆𝛾′ + 36Tr𝑃𝛾𝑆
2
𝛾′𝑃𝛾𝑆𝛾′

−12Tr𝑃𝛾𝑆𝛾′′𝑃𝛾𝑆𝛾′ − 24Tr𝑃𝛾𝑆
3
𝛾′

+16Tr𝑃𝛾𝑆𝛾′𝑆𝛾′′ − 2Tr𝑃𝛾
𝑑

𝑑𝑡
𝑆𝛾′′ .

Hence, we have

⃒⃒
𝑓 ′′′(𝑡)

⃒⃒
≤ (16 + 36 + 24)

√︁
Tr𝑆4

𝛾′Tr𝑆
2
𝛾′ + (12 + 16)

√︁
Tr𝑆2

𝛾′′Tr𝑆
2
𝛾′ + 2

⃒⃒⃒⃒
Tr𝑃𝛾

𝑑

𝑑𝑡
𝑆𝛾′′

⃒⃒⃒⃒
.

Since Tr𝑆2
𝛾′ ≤ 2, Tr𝑆4

𝛾′ ≤ 16𝑛−1, Tr𝑆2
𝛾′′ ≤ 15𝑛−1 (Lemma 14.5.10), we have

⃒⃒
𝑓 ′′′(𝑡)

⃒⃒
≤ 76

√
2 · 16𝑛−1 + 28

√
2 · 15𝑛−1 + 2

⃒⃒⃒⃒
Tr𝑃𝛾

𝑑

𝑑𝑡
𝑆𝛾′′

⃒⃒⃒⃒
≤ 600𝑛−1/2 + 2

⃒⃒⃒⃒
Tr𝑃𝛾

𝑑

𝑑𝑡
𝑆𝛾′′

⃒⃒⃒⃒
.

To bound the last term, we start with the geodesic equation: 𝑠𝛾′′ = 𝑃𝛾𝑠
2
𝛾′ . Since

𝑑
𝑑𝑡𝑃𝛾 = −𝑆𝛾′𝑃𝛾 −

𝑃𝛾𝑆𝛾′ + 2𝑃𝛾𝑆𝛾′𝑃𝛾 , we have that

𝑑

𝑑𝑡
𝑠𝛾′′ = −𝑆𝛾′𝑃𝛾𝑠2𝛾′ − 𝑃𝛾𝑆𝛾′𝑠2𝛾′ + 2𝑃𝛾𝑆𝛾′𝑃𝛾𝑠

2
𝛾′

+2𝑃𝛾𝑠𝛾′𝑠𝛾′′ − 2𝑃𝛾𝑠
3
𝛾′

= −𝑆𝛾′𝑃𝛾𝑠2𝛾′ − 3𝑃𝛾𝑠
3
𝛾′ + 2𝑃𝛾𝑆𝛾′𝑃𝛾𝑠

2
𝛾′ + 2𝑃𝛾𝑠𝛾′𝑠𝛾′′

= −𝑆𝛾′𝑃𝛾𝑠2𝛾′ − 3𝑃𝛾𝑠
3
𝛾′ + 4𝑃𝛾𝑆𝛾′𝑃𝛾𝑠

2
𝛾′
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Hence, we have that⃒⃒⃒⃒
Tr𝑃𝛾

𝑑

𝑑𝑡
𝑆𝛾′′

⃒⃒⃒⃒
≤

⃒⃒
𝜎𝑇𝛾 𝑆𝛾′𝑃𝛾𝑠

2
𝛾′
⃒⃒
+ 3

⃒⃒
𝜎𝑇𝛾 𝑃𝛾𝑠

3
𝛾′
⃒⃒
+ 4

⃒⃒
𝜎𝑇𝛾 𝑃𝛾𝑆𝛾′𝑃𝛾𝑠

2
𝛾′
⃒⃒

≤
⃒⃒
(𝑆𝛾′𝜎𝛾)

𝑇𝑃𝛾𝑠
2
𝛾′
⃒⃒
+ 3

⃒⃒
(𝑆𝛾′𝑃𝛾𝜎𝛾)

𝑇 𝑠2𝛾′
⃒⃒
+ 4(𝑆𝛾′𝑃𝛾𝜎𝛾)

𝑇 (𝑃𝛾𝑠
2
𝛾′)

≤
√︁∑︁

𝑠2𝛾′
∑︁

𝑠4𝛾′ + 28𝑛−1/2
√︁
𝜎𝑇𝛾 𝑃𝛾𝑆

2
𝛾′𝑃𝛾𝜎𝛾

≤ 8𝑛−1/2 + 168
√
ℎ ≤ 180

√
ℎ.

Hence, we have that |𝑓 ′′′(𝑡)| ≤ 600𝑛−1/2 + 360
√
ℎ ≤ 1000

√
ℎ.

14.5.6 Stability of Jacobi Field

Now, we give a bound on 𝑅1.

Lemma 14.5.14. Let 𝛾 given by a geodesic walk on 𝑀𝐿 with step size ℎ satisfying 1
𝑛 ≤ ℎ ≤ 1

256
√
𝑛
.

With probability at least 1− exp(−
√
𝑛/100) over the choice of the next step 𝛾 ∈ ̃︀Ξ𝑥, we have that
𝑅1 = sup

0≤𝑡≤ℓ
‖𝑅(𝑡)‖𝐹 ≤

8√
𝑛

where 𝑅(𝑡)𝑖𝑗 = ⟨𝑅(𝑋𝑖(𝑡), 𝛾
′(𝑡))𝛾′(𝑡), 𝑋𝑗(𝑡)⟩ and {𝑋𝑖}𝑛𝑖=1 is any orthogonal basis at 𝛾(𝑡).

Proof. Let 𝑅(𝑡) such that ⟨𝑅(𝑢, 𝛾′(𝑡))𝛾′(𝑡), 𝑣⟩ = 𝑢𝑇𝑅(𝑡)𝑣. Lemma 14.5.4 shows that

𝑢𝑇𝑅(𝑡)𝑣 = 𝑠𝑇𝑢𝑆𝛾′𝐴𝛾(𝐴
𝑇
𝛾𝐴𝛾)

−1𝐴𝑇𝛾 𝑆𝛾′𝑠𝑣 − (𝑠𝑣𝑠𝑢)
𝑇𝐴𝛾(𝐴

𝑇
𝛾𝐴𝛾)

−1𝐴𝑇𝛾 𝑠
2
𝛾′ .

Hence, we have

𝑅(𝑡) = 𝐴𝑇𝛾 𝑆𝛾′𝑃𝛾𝑆𝛾′𝐴𝛾 −𝐴𝑇𝛾Diag(𝑃𝛾𝑠
2
𝛾′)𝐴𝛾 .

Pick 𝑋𝑖 = (𝐴𝑇𝐴𝛾)
−1/2𝑒𝑖. Then, we have

𝑅(𝑡) = (𝐴𝑇𝛾𝐴𝛾)
−1/2

(︀
𝐴𝑇𝛾 𝑆𝛾′𝑃𝛾𝑆𝛾′𝐴𝛾 −𝐴𝑇𝛾Diag(𝑃𝛾𝑠

2
𝛾′)𝐴𝛾

)︀
(𝐴𝑇𝛾𝐴𝛾)

−1/2.

The claim follows from Lemma 14.5.10 and the calculation

‖𝑅(𝑡)‖2𝐹
≤ 2‖(𝐴𝑇𝛾𝐴𝛾)−1/2𝐴𝑇𝛾 𝑆𝛾′𝑃𝛾𝑆𝛾′𝐴𝛾(𝐴

𝑇
𝛾𝐴𝛾)

−1/2‖2𝐹 + 2‖(𝐴𝑇𝛾𝐴𝛾)−1/2𝐴𝑇𝛾Diag(𝑃𝛾𝑠
2
𝛾′)𝐴𝛾(𝐴

𝑇
𝛾𝐴𝛾)

−1/2‖2𝐹
= 2Tr𝑃𝛾𝑆𝛾′𝑃𝛾𝑆𝛾′𝑃𝛾𝑆𝛾′𝑃𝛾𝑆𝛾′ + 2Tr𝑃𝛾Diag(𝑃𝛾𝑠

2
𝛾′)𝑃𝛾Diag(𝑃𝛾𝑠

2
𝛾′) ≤ 4‖𝑠𝛾′‖44.

14.5.7 Smoothness of One-Step Distribution

We begin with 𝑅2.

Lemma 14.5.15. Given a geodesic 𝛾(𝑡) on 𝑀𝐿 with step size ℎ satisfying 1
𝑛 ≤ ℎ ≤ 1

256
√
𝑛
, with

probability at least 1 − exp(−
√
𝑛/100) over the choice of the next step 𝛾 ∈ ̃︀Ξ𝑥, for any 𝑡 such that

0 ≤ 𝑡 ≤ ℓ, any curve 𝑐(𝑠) starting from 𝛾(𝑡) and any vector field 𝑣(𝑠) on 𝑐(𝑠), we have that⃒⃒⃒⃒
𝑑

𝑑𝑠
𝑅𝑖𝑐(𝑣(𝑠))|𝑠=0

⃒⃒⃒⃒
≤ 64

√
𝑛ℎ‖𝑐′(0)‖+ 6

√
𝑛ℎ‖𝐷𝑠𝑣(0)‖.
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Therefore, 𝑅2 = 𝑂(
√
𝑛ℎ).

Proof. By Lemma 14.5.4, we know that

𝑅𝑖𝑐(𝑣(𝑠)) = 𝑠𝑇𝑐(𝑠),𝑣(𝑠)𝑃
(2)
𝑐(𝑠)𝑠𝑐(𝑠),𝑣(𝑠) − 𝜎

𝑇
𝑐(𝑠)𝑃𝑐(𝑠)𝑠

2
𝑐(𝑠),𝑣(𝑠)

= Tr(𝑆𝑐(𝑠),𝑣(𝑠)𝑃𝑐(𝑠)𝑆𝑐(𝑠),𝑣(𝑠)𝑃𝑐(𝑠))− Tr(Diag(𝑃𝑐(𝑠)𝑠
2
𝑐(𝑠),𝑣(𝑠))𝑃𝑐(𝑠)).

For simplicity, we suppress the parameter 𝑠 and hence, we have

𝑅𝑖𝑐(𝑣) = Tr(𝑆𝑐,𝑣𝑃𝑐𝑆𝑐,𝑣𝑃𝑐)− Tr(Diag(𝑃𝑐𝑆
2
𝑐,𝑣)𝑃𝑐)

Now, we use that

𝑑

𝑑𝑠
𝑃𝑐 = −𝑆𝑐′𝑃𝑐 − 𝑃𝑐𝑆𝑐′ + 2𝑃𝑐𝑆𝑐′𝑃𝑐,

𝑑

𝑑𝑠
𝑆𝑐,𝑣 = −𝑆𝑐′𝑆𝑐,𝑣 + 𝑆𝑐,𝑣′

and get

𝑑

𝑑𝑠
𝑅𝑖𝑐(𝑣)

= −2Tr(𝑆𝑐,𝑣𝑆𝑐′𝑃𝑐𝑆𝑐,𝑣𝑃𝑐)− 2Tr(𝑆𝑐,𝑣𝑃𝑐𝑆𝑐′𝑆𝑐,𝑣𝑃𝑐) + 2Tr(𝑆𝑐,𝑣𝑃𝑐𝑆𝑐′𝑃𝑐𝑆𝑐,𝑣𝑃𝑐)

−2Tr(𝑆𝑐′𝑆𝑐,𝑣𝑃𝑐𝑆𝑐,𝑣𝑃𝑐) + 2Tr(𝑆𝑐,𝑣′𝑃𝑐𝑆𝑐,𝑣𝑃𝑐)

+Tr(Diag(𝑃𝑐𝑠
2
𝑐,𝑣)𝑆𝑐′𝑃𝑐) + Tr(Diag(𝑃𝑐𝑠

2
𝑐,𝑣)𝑃𝑐𝑆𝑐′)− 2Tr(Diag(𝑃𝑐𝑠

2
𝑐,𝑣)𝑃𝑐𝑆𝑐′𝑃𝑐)

+Tr(Diag(𝑃𝑐𝑆𝑐′𝑠
2
𝑐,𝑣)𝑃𝑐) + Tr(Diag(𝑆𝑐′𝑃𝑐𝑠

2
𝑐,𝑣)𝑃𝑐)− 2Tr(Diag(𝑃𝑐𝑆𝑐′𝑃𝑐𝑠

2
𝑐,𝑣)𝑃𝑐)

+2Tr(Diag(𝑃𝑐𝑆𝑐,𝑣𝑆𝑐′𝑠𝑐,𝑣)𝑃𝑐)− 2Tr(Diag(𝑃𝑐𝑆𝑐,𝑣𝑠𝑐,𝑣′)𝑃𝑐)

= −6Tr(𝑆𝑐,𝑣𝑆𝑐′𝑃𝑐𝑆𝑐,𝑣𝑃𝑐) + 2Tr(𝑆𝑐,𝑣𝑃𝑐𝑆𝑐′𝑃𝑐𝑆𝑐,𝑣𝑃𝑐) + 2Tr(𝑆𝑐,𝑣′𝑃𝑐𝑆𝑐,𝑣𝑃𝑐)

+2Tr(Diag(𝑃𝑐𝑠
2
𝑐,𝑣)𝑆𝑐′𝑃𝑐)− 2Tr(Diag(𝑃𝑐𝑠

2
𝑐,𝑣)𝑃𝑐𝑆𝑐′𝑃𝑐)

+3Tr(Diag(𝑃𝑐𝑆𝑐′𝑠
2
𝑐,𝑣)𝑃𝑐) + Tr(Diag(𝑆𝑐′𝑃𝑐𝑠

2
𝑐,𝑣)𝑃𝑐)− 2Tr(Diag(𝑃𝑐𝑆𝑐′𝑃𝑐𝑠

2
𝑐,𝑣)𝑃𝑐)

−2Tr(Diag(𝑃𝑐𝑆𝑐,𝑣𝑠𝑐,𝑣′)𝑃𝑐).

Let 𝑑
𝑑𝑠𝑅𝑖𝑐(𝑣) = (1)+ (2) where (1) is the sum of all terms not involving 𝑣′ and (2) is the sum of other

terms.
For the first term (1), let 𝐿 = ‖𝑠𝑐′(𝑠)‖2. Then, we have that

|(1)| ≤ 6 |Tr(𝑆𝑐,𝑣𝑆𝑐′𝑃𝑐𝑆𝑐,𝑣𝑃𝑐)|+ 2 |Tr(𝑆𝑐,𝑣𝑃𝑐𝑆𝑐′𝑃𝑐𝑆𝑐,𝑣𝑃𝑐)|
+2
⃒⃒
Tr(Diag(𝑃𝑐𝑠

2
𝑐,𝑣)𝑆𝑐′𝑃𝑐)

⃒⃒
+ 2

⃒⃒
Tr(Diag(𝑃𝑐𝑠

2
𝑐,𝑣)𝑃𝑐𝑆𝑐′𝑃𝑐)

⃒⃒
+3
⃒⃒
Tr(Diag(𝑃𝑐𝑆𝑐′𝑠

2
𝑐,𝑣)𝑃𝑐)

⃒⃒
+
⃒⃒
Tr(Diag(𝑆𝑐′𝑃𝑐𝑠

2
𝑐,𝑣)𝑃𝑐)

⃒⃒
+ 2

⃒⃒
Tr(Diag(𝑃𝑐𝑆𝑐′𝑃𝑐𝑠

2
𝑐,𝑣)𝑃𝑐)

⃒⃒
≤ 6𝐿

√︃∑︁
𝑖

(𝑠𝑐,𝑣)2𝑖

√︃∑︁
𝑖

(𝑠𝑐,𝑣)2𝑖 + 2𝐿 |Tr(𝑆𝑐,𝑣𝑃𝑐𝑆𝑐,𝑣𝑃𝑐)|

+2𝐿

√︃∑︁
𝑖

(𝑠𝑐,𝑣)4𝑖

√︃∑︁
𝑖

(𝑃𝑐)2𝑖𝑖 + 2𝐿

√︃∑︁
𝑖

(𝑠𝑐,𝑣)4𝑖

√︃∑︁
𝑖

(𝑃𝑐𝑆𝑐′𝑃𝑐)
2
𝑖𝑖

+3𝐿

√︃∑︁
𝑖

(𝑠𝑐,𝑣)4𝑖

√︃∑︁
𝑖

(𝑃𝑐)2𝑖𝑖 + 𝐿

√︃∑︁
𝑖

(𝑠𝑐,𝑣)4𝑖

√︃∑︁
𝑖

(𝑃𝑐)2𝑖𝑖 + 2𝐿

√︃∑︁
𝑖

(𝑠𝑐,𝑣)4𝑖

√︃∑︁
𝑖

(𝑃𝑐)2𝑖𝑖

≤ 8𝐿

√︃∑︁
𝑖

(𝑠𝑐,𝑣)2𝑖

√︃∑︁
𝑖

(𝑠𝑐,𝑣)2𝑖 + 10
√
𝑛𝐿

√︃∑︁
𝑖

(𝑠𝑐,𝑣)4𝑖 .
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Since 𝑣(0) = 𝛾′(𝑡), Lemma 14.5.10 shows that ‖𝑠𝑐,𝑣‖2 ≤ 2 and ‖𝑠𝑐,𝑣‖4 ≤ 2𝑛−1/4. Hence, we have

|(1)| ≤ 52𝐿.

For the second term (2), we note that

𝐷𝑠𝑣 =
𝑑𝑣

𝑑𝑠
−
(︀
𝐴𝑇𝑐 𝐴𝑐

)︀−1
𝐴𝑇𝑐 𝑆𝑐′𝑠𝑐,𝑣.

Therefore, we have
𝑠𝑐,𝑣′ = 𝐴𝑐 (𝐷𝑠𝑣)−𝐴𝑐

(︀
𝐴𝑇𝑐 𝐴𝑐

)︀−1
𝐴𝑇𝑐 𝑆𝑐′𝑠𝑐,𝑣

and hence

‖𝑠𝑐,𝑣′‖2 ≤ ‖𝐷𝑠𝑣‖+ ‖𝐴𝑐
(︀
𝐴𝑇𝑐 𝐴𝑐

)︀−1
𝐴𝑇𝑐 𝑆𝑐′𝑠𝑐,𝑣‖2

≤ ‖𝐷𝑠𝑣‖+ 𝐿‖𝑠𝑐,𝑣‖2
≤ 2𝐿+ ‖𝐷𝑠𝑣‖.

Also, note that Lemma 14.5.10 shows that ‖𝑠𝑐,𝑣‖∞ ≤ 6
√
ℎ. Hence, we have that

|(2)| ≤ 2
⃒⃒
Tr(𝑆𝑐,𝑣′𝑃𝑐𝑆𝑐,𝑣𝑃𝑐)

⃒⃒
+ 2

⃒⃒
Tr(Diag(𝑃𝑐𝑆𝑐,𝑣𝑠𝑐,𝑣′)𝑃𝑐)

⃒⃒
≤ 2‖𝑠𝑐,𝑣′‖2‖𝑠𝑐,𝑣‖2 + 2

√
𝑛

√︃∑︁
𝑖

(𝑠𝑐,𝑣′𝑠𝑐,𝑣)
2
𝑖

≤ 4 (2 + ‖𝐷𝑠𝑣‖) + 2
√
𝑛ℎ (2 + ‖𝐷𝑠𝑣‖)

≤ 8 + 4‖𝐷𝑠𝑣‖+ 4
√
𝑛ℎ+ 2

√
𝑛ℎ‖𝐷𝑠𝑣‖

≤ 12
√
𝑛ℎ+ 6

√
𝑛ℎ‖𝐷𝑠𝑣‖.

Therefore, we have ⃒⃒⃒⃒
𝑑

𝑑𝑠
𝑅𝑖𝑐(𝑣)

⃒⃒⃒⃒
≤ 52𝐿+ 12

√
𝑛ℎ𝐿+ 6

√
𝑛ℎ‖𝐷𝑠𝑣‖

≤ 64
√
𝑛ℎ𝐿+ 6

√
𝑛ℎ‖𝐷𝑠𝑣‖.

Finally, we bound 𝐷2.

Lemma 14.5.16. Given 𝑥 ∈𝑀𝐿 and any curve 𝑐(𝑡) starting at 𝑥 with unit speed. We have that

‖𝐷
𝑑𝑡
𝜇(𝑐(𝑡))‖ ≤ 9

√
𝑛.

Hence, 𝐷2 ≤ 9
√
𝑛.

Proof. Recall that 𝐷
𝑑𝑡𝜇(𝑐(𝑡)) = 𝑑𝜇(𝑐)

𝑑𝑡 − (𝐴𝑇𝑐 𝐴𝑐)
−1𝐴𝑇𝑐 𝑆𝑐,𝜇𝑠𝑐′ . We bound the terms separately. For the

second term, since 𝑐 is an unit speed curve, we have that ‖𝑠𝑐′‖2 = 1 and

‖(𝐴𝑇𝑐 𝐴𝑐)−1𝐴𝑇𝑐 𝑆𝑐′𝐴𝑐𝜇(𝑐)‖𝑐 ≤ ‖𝑆𝑐,𝜇𝑠𝑐′‖2 ≤ ‖𝑆𝑐,𝜇‖∞
= ‖𝐴𝑐(𝐴𝑇𝑐 𝐴𝑐)−1𝐴𝑇𝑐 𝜎𝑐‖∞ ≤

√
𝑛.
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For the first term,

𝑑

𝑑𝑡
(𝐴𝑐𝜇(𝑐)) =

𝑑

𝑑𝑡
(𝑃𝑐𝑑𝑖𝑎𝑔(𝑃𝑐))

= −𝑆𝑐′𝑃𝑐𝑑𝑖𝑎𝑔(𝑃𝑐)− 𝑃𝑐𝑆𝑐′𝑑𝑖𝑎𝑔(𝑃𝑐) + 2𝑃𝑐𝑆𝑐′𝑃𝑐𝑑𝑖𝑎𝑔(𝑃𝑐)

−𝑃𝑐𝑑𝑖𝑎𝑔(𝑆𝑐′𝑃𝑐)− 𝑃𝑐𝑑𝑖𝑎𝑔(𝑃𝑐𝑆𝑐′) + 2𝑃𝑐𝑑𝑖𝑎𝑔(𝑃𝑐𝑆𝑐′𝑃𝑐)

= −𝑆𝑐′𝑃𝑐𝑑𝑖𝑎𝑔(𝑃𝑐)− 2𝑃𝑐𝑆𝑐′𝑑𝑖𝑎𝑔(𝑃𝑐) + 2𝑃𝑐𝑆𝑐′𝑃𝑐𝑑𝑖𝑎𝑔(𝑃𝑐)

−𝑃𝑐𝑑𝑖𝑎𝑔(𝑃𝑐𝑆𝑐′) + 2𝑃𝑐𝑑𝑖𝑎𝑔(𝑃𝑐𝑆𝑐′𝑃𝑐).

Using ‖𝑠𝑐′‖2 = 1, we have

‖ 𝑑
𝑑𝑡
𝜇(𝑐)‖𝑐 ≤ ‖𝑆𝑐′𝐴𝑐𝜇(𝑐)‖2

+‖𝑆𝑐′𝑃𝑐𝑑𝑖𝑎𝑔(𝑃𝑐)‖2 + 2‖𝑃𝑐𝑆𝑐′𝑑𝑖𝑎𝑔(𝑃𝑐)‖2 + 2‖𝑃𝑐𝑆𝑐′𝑃𝑐𝑑𝑖𝑎𝑔(𝑃𝑐)‖2
+‖𝑃𝑐𝑑𝑖𝑎𝑔(𝑃𝑐𝑆𝑐′)‖2 + ‖𝑃𝑐𝑑𝑖𝑎𝑔(𝑃𝑐𝑆𝑐′𝑃𝑐)‖2

≤ 8
√
𝑛.

Combining both terms, we have the result.

14.5.8 Mixing time

Proof of Theorem 14.5.1. In the last previous sections, we proved that if 1
𝑛 ≤ ℎ ≤

1
256

√
𝑛

1. 𝐷0 ≤ 𝑂(
√
𝑛) (Lemma 14.5.11)

2. 𝐷1 = 𝑂(𝑛
√
ℎ) (Lemma 14.5.12)

3. 𝐷2 = 𝑂(
√
𝑛) (Lemma 14.5.16)

4. 𝐺1 = 𝑂(
√
ℎ) (Lemma 14.5.13)

5. 𝐺2 = 𝑂(
√
𝑚) (Lemma 14.5.6)

6. 𝑅1 = 𝑂(1/
√
𝑛) (Lemma 14.5.14)

7. 𝑅2 = 𝑂(
√
𝑛ℎ) (Lemma 14.5.15)

It is easy to see that all these parameters decrease if ℎ decreases. So, the condition 1
𝑛 ≤ ℎ can be

ignored. We only use randomness to prove that ‖𝐴𝛾(0)𝑢‖2 ≤ 3
2 and ‖𝐴𝛾𝑢‖4 ≤ 1.55

𝑛1/4 (Lemma 14.5.10)
and they can be checked. These bounds hold with exponentially small failure probability. Hence, the
measure of Ξ is large as claimed and the result follows. Theorem 14.4.2 implies that the walk has
mixing time 𝑂(𝐺2

2/ℎ) as long as

ℎ ≤ min

{︃
1

(𝑛𝐷0𝑅1)2/3
,
1

𝐷2
,

1

𝑛𝑅1
,

1

𝑛1/3𝐷
2/3
1

,
1

𝑛𝐺
2/3
1

,
1

(𝑛𝑅2)
2/3

}︃
≤ 1

Θ(𝑛3/4)
.

14.5.9 Complex Analyticity of geodesics, parallel transport and Jacobi fields

To show geodesics, parallel transport and Jacobi fields on 𝑀𝐿 are complex analytic, we note that
the Cauchy–Kowalevski theorem shows that if a differential equation is complex analytic, then the
equation has a unique complex analytic solution.
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Theorem 14.5.17 (Simplified Version of Cauchy–Kowalevski theorem). If 𝑓 is a complex analytic
function defined on a neighborhood of (𝑧0, 𝛼) ∈ C𝑛+1, then the problem

𝑑𝑤

𝑑𝑧
= 𝑓(𝑧, 𝑤), 𝑤(𝑧0) = 𝛼,

has a unique complex analytic solution 𝑤 defined on a neighborhood around 𝑧0.
Similarly, for a complex analytic function 𝑓 defined in a neighborhood of (𝑧0, 𝛼, 𝛽) ∈ C2𝑛+1, the

ODE
𝑑2𝑤

𝑑𝑧2
= 𝑓(𝑧, 𝑤,

𝑑𝑤

𝑑𝑧
), 𝑤(𝑧0) = 𝛼,

𝑑𝑤

𝑑𝑧
(𝑧0) = 𝛽

has a unique complex analytic solution 𝑤 defined in a neighborhood around 𝑧0.

As we see in section 14.5.1, the equations for geodesic, parallel transport and Jacobi field involve
only rational functions. Since rational functions are complex analytic, the Cauchy-Kowalevski theorem
shows that geodesic, orthogonal frame and Jacobi field are complex analytic.

Lemma 14.5.18. Geodesics, parallel transport and Jacobi fields are complex analytic for the Hessian
manifold induced by the logarithmic barrier.

14.5.9.1 Radius of Convergence

Next we bound the higher-order derivatives of geodesic, parallel transport and Jacobi field, using
techniques developed in Section 14.7 to. Since these are complex analytic, we get a bound for their
radius of convergence.

The purpose of these derivative bounds is to show that the solutions of the corresponding ODEs
are well-approximated by low-degree polynomials, where the degree of the polynomial grows as log

(︀
1
𝜀

)︀
for desired accuracy 𝜀. The bound on the degree also implies that the Collocation method for solving
ODEs is efficient (roughly matrix multiplication time).

14.5.9.2 Geodesic

Motivated from the geodesic equation under Euclidean coordinate (14.19), we define the following
auxiliary function

𝐹 𝜂(𝑦, 𝑥, 𝑡) =
(︀
𝐴𝑇𝑥+𝑡𝜂𝐴𝑥+𝑡𝜂

)︀−1
𝐴𝑇𝑥+𝑡𝜂𝑠

2
𝑥+𝑡𝜂,𝑦+𝜂. (14.24)

The derivative bounds on geodesic rely on the smoothness of this auxiliary function.

Lemma 14.5.19. Under the normalization 𝐴𝑇𝐴 = 𝐼, 𝑆𝑥 = 𝐼, we have that

𝐹 𝜂(𝑦, 𝑥, 𝑡) ≤(0,𝑥,0)
4 (‖𝐴𝜂‖4 + 1)2

1−max (8 + 8‖𝐴𝜂‖∞, 1) 𝑡
where 𝐹 𝜂 is defined in (14.24).

Proof. By the assumption that 𝑆𝑥 = 𝐼, we have that ‖𝑆𝑥‖2 = 1. Using 𝐴𝑇𝐴 = 𝐼, we have that

‖𝐷𝑆𝑥+𝑡𝜂(𝑥, 𝑡)[(𝑑𝑥, 𝑑𝑡)]‖2 = ‖Diag(𝐴𝑑𝑥 + 𝑑𝑡𝐴𝜂)‖2
≤ ‖𝐴𝑑𝑥‖∞ + ‖𝑑𝑡𝐴𝜂‖∞
≤ ‖𝑑𝑥‖2 + |𝑑𝑡| ‖𝐴𝜂‖∞
≤ (1 + ‖𝐴𝜂‖∞)‖(𝑑𝑥, 𝑑𝑡)‖2.

Let 𝛽 = 1 + ‖𝐴𝜂‖∞. Then, we have that 𝑆𝑥+𝑡𝜂 ≤(𝑥,𝑡=0) 1 + 𝛽𝑡.
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By using the inverse formula (Lemma 14.7.3),

𝑆−1
𝑥+𝑡𝜂 ≤(𝑥,0)

1

1− 𝛽𝑡
.

Using 𝐴𝑇𝐴 = 𝐼, we have that 𝐴 ≤(𝑥,0) 1 and hence product formula (Lemma 14.7.3) shows that

𝐴𝑥+𝑡𝜂 = 𝑆−1
𝑥+𝑡𝜂𝐴 ≤(𝑥,0)

1

1− 𝛽𝑡
.

Since 𝐴𝑇𝐴 = 𝐼, we have that 𝐴𝐴𝑇 ⪯ 𝐼 and hence 𝐴𝑇𝑥+𝑡𝜂 ≤(𝑥,0)
1

1−𝛽𝑡 . Therefore, we have that

𝐴𝑇𝑥+𝑡𝜂𝐴𝑥+𝑡𝜂 ≤(𝑥,0)
1

(1− 𝛽𝑡)2
.

By using the inverse formula again,

(︀
𝐴𝑇𝑥+𝑡𝜂𝐴𝑥+𝑡𝜂

)︀−1 ≤(𝑥,0)
1

2− 1
(1−𝛽𝑡)2

=
(1− 𝛽𝑡)2

2(1− 𝛽𝑡)2 − 1
.

Hence, we have that

(︀
𝐴𝑇𝑥+𝑡𝜂𝐴𝑥+𝑡𝜂

)︀−1
𝐴𝑇𝑥+𝑡𝜂 ≤(𝑥,0)

(1− 𝛽𝑡)2

2(1− 𝛽𝑡)2 − 1

1

1− 𝛽𝑡
=

1− 𝛽𝑡
2(1− 𝛽𝑡)2 − 1

.

Now, we consider the function 𝐻(𝑦) = (𝐴(𝑦 + 𝜂))2. Note that

‖𝐻(𝑦)‖2 ≤ ‖𝐴(𝑦 + 𝜂)‖24,
‖𝐷𝐻(𝑦)[𝑑]‖2 = 2‖(𝐴(𝑦 + 𝜂))𝐴𝑑‖2 ≤ 2‖𝐴(𝑦 + 𝜂)‖4‖𝑑‖2,

‖𝐷2𝐻(𝑦)[𝑑, 𝑑]‖2 ≤ 2‖(𝐴𝑑)2‖2 ≤ 2‖𝑑‖22.
Therefore, we have that

𝐻 ≤𝑦=0 ‖𝐴𝜂‖24 + 2‖𝐴𝜂‖4𝑡+ 𝑡2 = (‖𝐴𝜂‖4 + 𝑡)2.

Hence, we have that

𝐹 𝜂(𝑦, 𝑥, 𝑡) =
(︀
𝐴𝑇𝑥+𝑡𝜂𝐴𝑥+𝑡𝜂

)︀−1
𝐴𝑇𝑥+𝑡𝜂𝑠

2
𝑥+𝑡𝜂,𝑦+𝜂 ≤(0,𝑥,0)

(1− 𝛽𝑡) (‖𝐴𝜂‖4 + 𝑡)2

2(1− 𝛽𝑡)2 − 1

1

(1− 𝛽𝑡)2
.

Let 𝜑(𝑡) = (‖𝐴𝜂‖4+𝑡)2
(2(1−𝛽𝑡)2−1)(1−𝛽𝑡) and we write 𝜑(𝑡) =

∑︀∞
𝑘=0 𝑎𝑘𝑡

𝑘. For any |𝑧| = 1
8 min

(︁
1
𝛽 , ‖𝐴𝜂‖4 + 8

)︁
,

we have that

|𝜑(𝑧)| ≤ 3

(︂
‖𝐴𝜂‖4 +

‖𝐴𝜂‖4
8

+ 1

)︂2

≤ 4 (‖𝐴𝜂‖4 + 1)2 .

Theorem 14.2.11 shows that

|𝑎𝑘| ≤ 4 (‖𝐴𝜂‖4 + 1)2
(︁
8max

(︁
𝛽, (‖𝐴𝜂‖4 + 8)−1

)︁)︁𝑘
≤ 4 (‖𝐴𝜂‖4 + 1)2 (max (8𝛽, 1))𝑘
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Hence, we can instead bound 𝐹 𝜂 by

𝐹 𝜂 ≤(0,𝑥,0)
4 (‖𝐴𝜂‖4 + 1)2

1−max (8 + 8‖𝐴𝜂‖∞, 1) 𝑡
.

Now, we prove the geodesic has large radius of convergence.

Lemma 14.5.20. Under the normalization 𝐴𝑇𝐴 = 𝐼, 𝑆𝑥 = 𝐼 and Euclidean coordinate, any geodesic
starting at 𝑥 satisfies the bound

‖𝛾(𝑘)(0)‖2 ≤ 𝑘!𝑐𝑘

for all 𝑘 ≥ 2 where 𝑐 = 512‖𝐴𝛾′(0)‖4.

Proof. Recall that under Euclidean coordinate, the geodesic equation is given by

𝛾′′ =
(︀
𝐴𝑇𝛾𝐴𝛾

)︀−1
𝐴𝑇𝛾 𝑠

2
𝛾′

def
= 𝐹 (𝛾′, 𝛾).

So, we have that 𝐹 𝜂(𝑦, 𝑥, 𝑡) = 𝛼2𝐹 (𝛼−1𝑦(𝑡) + 𝛾′(0), 𝑥(𝑡) + 𝛼𝑡𝛾′(0)) with 𝜂 = 𝛼𝛾′(0).
Now, we estimate 𝐹 𝜂. Lemma 14.5.19 shows that

𝐹 𝜂 ≤(0,𝑥,0)
4 (‖𝐴𝜂‖4 + 1)2

1−max (8 + 8‖𝐴𝜂‖∞, 1) 𝑡
=

4 (𝛼‖𝐴𝛾′(0)‖4 + 1)2

1−max (8 + 8𝛼‖𝐴𝛾′(0)‖∞, 1) 𝑡
.

Setting 𝛼 = ‖𝐴𝛾′(0)‖−1
4 and using ‖𝐴𝛾′(0)‖∞ ≤ ‖𝐴𝛾′(0)‖4, we have that

𝐹 𝜂 ≤(0,𝑥,0)
16

1− 16𝑡
.

Lemma 14.7.5 shows that

‖𝛾(𝑘)(0)‖2 ≤
𝜓(𝑘)(0)

𝛼𝑘

for all 𝑘 ≥ 2 where 𝜓(𝑡) is the solution of

𝜓′(𝑡) =
16

1− 16𝜓(𝑡)
with 𝜓(0) = 0.

Solving it, we get that

𝜓(𝑡) =
1

16
(1−

√
1− 512𝑡).

By Theorem 14.2.11, we have that ⃒⃒⃒
𝜓(𝑘)(0)

⃒⃒⃒
≤ 𝑘!(512)𝑘.

Hence, we have that

‖𝛾(𝑘)(0)‖2 ≤
𝑘!(512)𝑘

𝛼𝑘
= 𝑘!(512)𝑘‖𝐴𝛾′(0)‖𝑘4

for all 𝑘 ≥ 2.

14.5.9.3 Parallel Transport

Motivated from the equation for parallel transport under Euclidean coordinate 14.20, we define the
following auxiliary function

𝐹 (𝑡) = (𝐴𝑇𝛾(𝑡)𝐴𝛾(𝑡))
−1𝐴𝑇𝛾(𝑡)𝑆𝛾′(𝑡)𝐴𝛾(𝑡). (14.25)

The derivative bounds on parallel transport rely on the smoothness of this auxiliary function.



424 CHAPTER 14. SAMPLING IN SUB-QUADRATIC STEPS

Lemma 14.5.21. Given a geodesic 𝛾(𝑡). Under the normalization that 𝐴𝑇𝐴 = 𝐼, 𝑆𝛾(0) = 𝐼, we have
that

𝐹 (𝑡) ≤0
𝑐

2(1− 2𝑐𝑡)2 − (1− 𝑐𝑡)2
1− 𝑐𝑡
1− 2𝑐𝑡

where 𝐹 is defined in (14.25) and 𝑐 = 512‖𝐴𝛾′(0)‖4.

Proof. Lemma 14.5.20 shows that ‖𝛾(𝑘)(0)‖2 ≤ 𝑘!𝑐𝑘 for all 𝑘 ≥ 2. Therefore, we have that

𝑆𝛾(𝑡) ≤0 1 + 𝑡‖𝐴𝛾′(0)‖∞ +
∑︁
𝑘≥2

(𝑐𝑡)𝑘 ≤0
1

1− 𝑐𝑡
.

Using Lemma 14.7.3, we have that

𝐴𝛾(𝑡) ≤0
1

2− 1
1−𝑐𝑡

=
1− 𝑐𝑡
1− 2𝑐𝑡

and hence

(𝐴𝑇𝛾(𝑡)𝐴𝛾(𝑡))
−1𝐴𝑇𝛾(𝑡) ≤0

(1− 2𝑐𝑡) (1− 𝑐𝑡)
2(1− 2𝑐𝑡)2 − (1− 𝑐𝑡)2

.

Now, we note that

Diag(𝐴𝛾′(𝑡)) ≤0 ‖𝐴𝛾′(0)‖∞ +
∑︁
𝑘≥1

(𝑘 + 1)!𝑐𝑘+1𝑡𝑘

𝑘!
≤0

𝑐

(1− 𝑐𝑡)2
(14.26)

and hence
𝑆𝛾′ = 𝑆−1

𝛾 Diag(𝐴𝛾′(𝑡)) ≤0
1− 𝑐𝑡
1− 2𝑐𝑡

𝑐

(1− 𝑐𝑡)2
=

𝑐

(1− 2𝑐𝑡)(1− 𝑐𝑡)
.

This gives the result.

Now, we prove parallel transport has large radius of convergence.

Lemma 14.5.22. Given a geodesic with 𝛾(0) = 𝑥. Let 𝑣(𝑡) be the parallel transport of a unit vector
along 𝛾(𝑡). Under the normalization that 𝐴𝑇𝐴 = 𝐼, 𝑆𝛾(0) = 𝐼, we have that

‖𝑣(𝑘)(0)‖2 ≤ 𝑘! (16𝑐)𝑘

for all 𝑘 ≥ 1 where 𝑐 = 512‖𝐴𝛾′(0)‖4.

Proof. From 14.20, we have that

𝑑

𝑑𝑡
𝑣(𝑡) = (𝐴𝑇𝛾(𝑡)𝐴𝛾(𝑡))

−1𝐴𝑇𝛾(𝑡)𝑆𝛾′(𝑡)𝐴𝛾(𝑡)𝑣(𝑡).

Let 𝑢(𝑡) = 𝑣(𝛼𝑡), then we have that

𝑢′(𝑡) = 𝛼𝑣′(𝛼𝑡)

= 𝛼(𝐴𝑇𝛾(𝛼𝑡)𝐴𝛾(𝛼𝑡))
−1𝐴𝑇𝛾(𝛼𝑡)𝑆𝛾′(𝛼𝑡)𝐴𝛾(𝛼𝑡)𝑢(𝑡).

Let 𝐹 (𝑥, 𝑡) = 𝛼(𝐴𝑇𝛾(𝛼𝑡)𝐴𝛾(𝛼𝑡))
−1𝐴𝑇𝛾(𝛼𝑡)𝑆𝛾′(𝛼𝑡)𝐴𝛾(𝛼𝑡)𝑥. Then, Lemma 14.5.21 shows that

𝐹 (𝑥, 𝑡) ≤(𝑋(0),0)
𝛼𝑐

2(1− 2𝛼𝑐𝑡)2 − (1− 𝛼𝑐𝑡)2
1− 𝛼𝑐𝑡
1− 2𝛼𝑐𝑡

(1 + 𝑡).



14.5. Logarithmic Barrier 425

Setting 𝛼 = 1
8𝑐 , we have that

𝐹 (𝑥, 𝑡) ≤(𝑋(0),0)

1
8

2(1− 𝑡
4)

2 −
(︀
1− 𝑡

8

)︀2 1− 𝑡
8

1− 𝑡
4

(1 + 𝑡) ≤0
1

1− 𝑡
.

Lemma 14.7.4 shows that
‖𝑢(𝑘)(0)‖2 ≤ 𝜓(𝑘)(0)

for all 𝑘 ≥ 1 where 𝜓(𝑡) is the solution of

𝜓′(𝑡) =
1

1− 𝜓(𝑡)
with 𝜓(0) = 0.

Solving it, we get that
𝜓(𝑡) = 1−

√
1− 2𝑡.

By Theorem 14.2.11, we have that for any 0 ≤ 𝑡 ≤ 1
2 , we have that

‖𝑢(𝑘)(0)‖2 ≤
⃒⃒⃒
𝜓(𝑘)(0)

⃒⃒⃒
≤ 𝑘!2𝑘

for all 𝑘 ≥ 1. For 𝑘 ≥ 1, we have that

‖𝑣(𝑘)(0)‖2 ≤ 𝑘! (16𝑐)𝑘 .

14.5.9.4 Jacobi field

Motivated from the equation for Jacobi field under orthogonal frame basis (Lemma 14.5.5), we define
the following auxiliary function

𝐹 (𝑡) = 𝑋−1(𝐴𝑇𝛾𝐴𝛾)
−1
(︀
𝐴𝑇𝛾 𝑆𝛾′𝑃𝛾𝑆𝛾′𝐴𝛾 −𝐴𝑇𝛾 𝑑𝑖𝑎𝑔(𝑃𝛾𝑠2𝛾′)𝐴𝛾

)︀
𝑋. (14.27)

The derivative bounds on Jacobi field rely on the smoothness of this auxiliary function.

Lemma 14.5.23. Given a geodesic 𝛾(𝑡) and an orthogonal frame {𝑋𝑖}𝑛𝑖=1. Under the normalization
that 𝐴𝑇𝐴 = 𝐼, 𝑆𝛾(0) = 𝐼, we have that

𝐹 (𝑡) ≤0
12𝑐2

1− 64𝑐𝑡

where 𝐹 is defined in (14.27) and 𝑐 = 512‖𝐴𝛾′(0)‖4.

Proof. We first bound the derivatives of 𝑠2𝛾′ . Using ‖𝛾(𝑘)(0)‖2 ≤ 𝑘!𝑐𝑘 for all 𝑘 ≥ 2 (Lemma 14.5.20),
we have that

𝛾′(𝑡)− 𝛾′(0) ≤0
𝑑

𝑑𝑡

1

1− 𝑐𝑡
=

𝑐

(1− 𝑐𝑡)2
.

Using 𝐴𝑇𝐴 = 𝐼 and Diag(𝐴𝛾′(𝑡)) ≤0
𝑐

(1−𝑐𝑡)2 (14.26), we have that

Diag(𝐴𝛾′(𝑡))𝐴(𝛾′(𝑡)− 𝛾′(0)) ≤0

(︂
𝑐

(1− 𝑐𝑡)2

)︂2

. (14.28)

Next, we note that

Diag(𝐴𝛾′(𝑡))𝐴𝛾′(0) = Diag(𝐴𝛾′(0))𝐴(𝛾′(𝑡)− 𝛾′(0)) + Diag(𝐴𝛾′(0))2.
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and hence

Diag(𝐴𝛾′(𝑡))𝐴𝛾′(0) ≤0
𝑐2

(1− 𝑐𝑡)2
+ 𝑐2. (14.29)

Combining (14.28) and (14.28), we get

Diag(𝐴𝛾′(𝑡))𝐴(𝛾′(𝑡)) ≤0

(︂
𝑐

(1− 𝑐𝑡)2

)︂2

+
𝑐2

(1− 𝑐𝑡)2
+ 𝑐2 ≤0

3𝑐2

(1− 𝑐𝑡)4

In the proof of Lemma 14.5.21, we showed that 𝑆𝛾 ≤0
1

1−𝑐𝑡 and hence

𝑠2𝛾′ = 𝑆−2
𝛾 Diag(𝐴𝛾′(𝑡))𝐴(𝛾′(𝑡)).

≤0

(︃
1

2− 1
1−𝑐𝑡

)︃2
3𝑐2

(1− 𝑐𝑡)4

=
3𝑐2

(1− 𝑐𝑡)2(2(1− 𝑐𝑡)− 1)2
.

In the proof of Lemma 14.5.21, we showed that 𝐴𝛾 ≤0
1−𝑐𝑡
1−2𝑐𝑡 and (𝐴𝑇𝛾𝐴𝛾)

−1 ≤0
(1−2𝑐𝑡)2

2(1−2𝑐𝑡)2−(1−𝑐𝑡)2 .

Therefore, we have that

𝑃𝛾 = 𝐴𝛾(𝐴
𝑇
𝛾𝐴𝛾)

−1𝐴𝑇𝛾 ≤0
(1− 𝑐𝑡)2

2(1− 2𝑐𝑡)2 − (1− 𝑐𝑡)2
.

Hence, we have

𝑃𝛾𝑠
2
𝛾′ ≤0

(1− 𝑐𝑡)2

2(1− 2𝑐𝑡)2 − (1− 𝑐𝑡)2
3𝑐2

(1− 𝑐𝑡)2(1− 2𝑐𝑡)2

=
3𝑐2

(1− 2𝑐𝑡)2(2(1− 2𝑐𝑡)2 − (1− 𝑐𝑡)2)
.

Let 𝑌 = (𝐴𝑇𝛾𝐴𝛾)
−1
(︁
𝐴𝑇𝛾 𝑆𝛾′𝑃𝛾𝑆𝛾′𝐴𝛾 −𝐴𝑇𝛾 𝑑𝑖𝑎𝑔(𝑃𝛾𝑠2𝛾′)𝐴𝛾

)︁
. By a similar proof, we have that

𝑌0 ≤0
(1− 2𝑐𝑡)2

2(1− 2𝑐𝑡)2 − (1− 𝑐𝑡)2

(︂
1− 𝑐𝑡
1− 2𝑐𝑡

)︂2

(︃(︂
𝑐

(1− 2𝑐𝑡)(1− 𝑐𝑡)

)︂2 (1− 𝑐𝑡)2

2(1− 2𝑐𝑡)2 − (1− 𝑐𝑡)2
+

3𝑐2

(1− 2𝑐𝑡)2(2(1− 2𝑐𝑡)2 − (1− 𝑐𝑡)2)

)︃

=
4𝑐2

(2(1− 2𝑐𝑡)2 − (1− 𝑐𝑡)2)2

(︂
1− 𝑐𝑡
1− 2𝑐𝑡

)︂2

Next, we let 𝑍(𝑡) = 𝑋(𝑡)𝑣 for some unit vector 𝑣. Since 𝑋(𝑡) is a parallel transport of 𝑋(0), 𝑍(𝑡)
is a parallel transport of 𝑋(0)𝑣 and hence Lemma 14.5.22 shows that ‖𝑍(𝑘)(𝑡)‖2 ≤ (16𝑐)𝑘 for all 𝑖. For
any 𝑘, there is unit vector 𝑣𝑘 such that ‖ 𝑑

𝑑𝑡𝑘
𝑋(0)‖2 = ‖ 𝑑

𝑑𝑡𝑘
𝑋(0)𝑣𝑘‖2. Hence, we have that

‖ 𝑑
𝑑𝑡𝑘

𝑋(0)‖2 ≤ (16𝑐)𝑘 .

Therefore, we have that 𝑋 ≤0
1

1−16𝑐𝑡 . Since 𝑋(0) = 𝐼, we have that 𝑋−1 ≤0
1

2− 1
1−16𝑐𝑡

= 1−16𝑐𝑡
1−32𝑐𝑡 . Thus,
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we have that

𝐹 (𝑡) ≤0
4𝑐2

(2(1− 2𝑐𝑡)2 − (1− 𝑐𝑡)2)2

(︂
1− 𝑐𝑡
1− 2𝑐𝑡

)︂2 1

1− 32𝑐𝑡

≤0
12𝑐2

1− 64𝑐𝑡
.

Now, we prove Jacobi field has large radius of convergence.

Lemma 14.5.24. Given a geodesic 𝛾(𝑡) and an orthogonal frame {𝑋𝑖}𝑛𝑖=1 along 𝛾. Let 𝑉 (𝑡) be a
Jacobi field along 𝛾(𝑡) with 𝑉 (0) = 0 and let 𝑈(𝑡) be the Jacobi field under the 𝑋𝑖 coordinates, namely,
𝑉 (𝑡) = 𝑋(𝑡)𝑈(𝑡). Under the normalization that 𝐴𝑇𝐴 = 𝐼, 𝑆𝛾(0) = 𝐼, we have that

‖𝑈 (𝑘)(0)‖2 ≤ 𝑘! (256𝑐)𝑘

for all 𝑘 ≥ 2 where 𝑐 = 512‖𝐴𝛾′(0)‖4.

Proof. Note that 𝑑2𝑈(𝑡)
𝑑𝑡2

+𝐹 (𝑡)𝑈(𝑡) = 0 where 𝐹 (𝑡) defined in (14.27). Since the equation is linear, we
can rescale 𝑈 and assume that ‖𝑈 ′(0)‖2 = 1

𝛼 .

Let 𝐹 (𝑈(𝑡), 𝑡) = 𝛼2𝐹 (𝛼𝑡) (𝑈(𝑡) + 𝛼𝑡𝑈 ′(0)) with 𝛼 = 1
64𝑐 . Using 𝛼2𝐹 (𝛼𝑡) ≤0

12𝑐2𝛼2

1−64𝑐𝛼𝑡 (Lemma
14.5.23), 𝑈 ≤𝑈=0 𝑡 and 𝛼𝑡𝑈 ′(0) ≤𝑡=0 ‖𝛼𝑈 ′(0)‖2𝑡 = 𝑡, we have that

𝐹 ≤(0,0)
24𝑐2𝛼2𝑡

1− 64𝑐𝛼𝑡

≤0
𝑡

1− 𝑡
.

Lemma 14.7.5 shows that that

‖𝑈 (𝑘)(𝑡)‖2 ≤
𝜓(𝑘)(𝛼−1𝑡)

𝛼𝑘

for all 𝑘 ≥ 2 where 𝜓(𝑡) is the solution of

𝜓′(𝑡) =
2

1− 𝜓(𝑡)
with 𝜓(0) = 0.

Solving it, we get that
𝜓(𝑡) = 1−

√
1− 4𝑡.

By Theorem 14.2.11, we have that for any 0 ≤ 𝑡 ≤ 1
4 , we have that⃒⃒⃒

𝜓(𝑘)(0)
⃒⃒⃒
≤ 𝑘!(4)𝑘.

Hence, we have that

‖𝑈 (𝑘)(0)‖2 ≤
𝑘!4𝑘

𝛼𝑘
≤ 𝑘! (256𝑐)𝑘

for all 𝑘 ≥ 2.
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14.5.10 Implementation

14.5.10.1 Computing Geodesic Equation

To apply Theorem 14.6.4, we define

𝐹 (𝑢, 𝑠) = 𝐴(𝐴𝑇𝑆−2𝐴)−1𝐴𝑇𝑆−1𝑢2 (14.30)

The following lemma bounds the Lipschitz constant of 𝐹 .

Lemma 14.5.25. Assuming 1
2 ≤ 𝑠𝑖 ≤ 2 for all 𝑖. Then, we have

‖𝐷𝐹 (𝑢, 𝑠)[𝑑𝑢, 𝑑𝑠]‖22 ≤ 48‖𝑢‖24‖𝑑𝑢‖24 + 240‖𝑢‖44‖𝑑𝑠‖2∞.

Proof. Let 𝐴𝑠 = 𝑆−1𝐴 and 𝑆𝑑 = 𝑆−1Diag(𝑑𝑠). Then, we have 𝐹 (𝑢, 𝑠) = 𝐴(𝐴𝑇𝑠 𝐴𝑠)
−1𝐴𝑇𝑠 𝑢

2. Hence, we
have that

𝐷𝐹 (𝑢, 𝑠)[𝑑𝑢, 𝑑𝑠] = 2𝐴(𝐴𝑇𝑠 𝐴𝑠)
−1𝐴𝑇𝑠 𝑆𝑑𝐴𝑠(𝐴

𝑇
𝑠 𝐴𝑠)

−1𝐴𝑇𝑠 𝑢
2

−𝐴(𝐴𝑇𝑠 𝐴𝑠)−1𝐴𝑇𝑠 𝑆𝑑𝑢
2

+2𝐴(𝐴𝑇𝑠 𝐴𝑠)
−1𝐴𝑇𝑠 𝑈𝑑𝑢

Let 𝑃 = 𝐴𝑠
(︀
𝐴𝑇𝑠 𝐴𝑠

)︀−1
𝐴𝑇𝑠 , then, we have that

‖𝐷𝐹 (𝑢, 𝑠)[𝑑𝑢, 𝑑𝑠]‖22 ≤ 12
(︀
𝑢2
)︀𝑇
𝑃𝑆𝑑𝑃𝑆

2𝑃𝑆𝑑𝑃𝑢
2

+3
(︀
𝑢2
)︀𝑇
𝑆𝑑𝑃𝑆

2𝑃𝑆𝑑𝑢
2

+12𝑑𝑇𝑢𝑈𝑃𝑆
2𝑃𝑈𝑑𝑢.

Using that 𝑃 ⪯ 𝐼, we have that

‖𝐷𝐹 (𝑢, 𝑠)[𝑑𝑢, 𝑑𝑠]‖22
≤ 12‖𝑆‖2∞

(︀
𝑢2
)︀𝑇
𝑃𝑆2

𝑑𝑃𝑢
2 + 3‖𝑆‖2∞

(︀
𝑢2
)︀𝑇
𝑆2
𝑑𝑢

2 + 12‖𝑆‖2∞
∑︁
𝑖

(𝑑𝑢)
2
𝑖𝑢

2
𝑖

≤ 15‖𝑆‖2∞‖𝑆𝑑‖2∞‖𝑢‖44 + 12‖𝑆‖2∞‖𝑢‖24‖𝑑𝑢‖24
≤ 15‖𝑆‖2∞‖𝑆−1‖2∞‖𝑑𝑠‖2∞‖𝑢‖44 + 12‖𝑆‖2∞‖𝑢‖24‖𝑑𝑢‖24.

Now, we use that 1
2 ≤ 𝑠𝑖 ≤ 2 and get

‖𝐷𝐹 (𝑢, 𝑠)[𝑑𝑢, 𝑑𝑠]‖22 ≤ 48‖𝑢‖24‖𝑑𝑢‖24 + 240‖𝑑𝑠‖2∞‖𝑢‖44.

Now, we can apply the collocation method to obtain a good approximation of the solution 𝑢*.

Lemma 14.5.26. Let 𝛾 be a random geodesic generated by the geodesic walk with step size ℎ ≤
1

107
√
𝑛
. In time 𝑂(𝑚𝑛𝜔−1 log2(1/𝜀)), we can find 𝛾 such that max0≤𝑡≤ℓ ‖𝛾(𝑡) − 𝛾(𝑡)‖∞ ≤ 𝜀 and

max0≤𝑡≤ℓ ‖𝛾′(𝑡) − 𝛾′‖∞ ≤ 𝜀 with probability at least 1 − 𝑂(exp(−
√
𝑛/100)). Furthermore, 𝛾 is a

𝑂(log(1/𝜀)) degree polynomial.

Proof. Let 𝑠(𝑡) = 𝐴𝛾(𝑡) − 𝑏. By rotating the space and rescaling the rows of 𝐴, we assume that
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𝑠(0)𝑖 = 1 for all 𝑖 and 𝐴𝑇𝐴 = 𝐼. We define 𝐹 as (14.30). Then, we have that

𝑠′′(𝑡) = 𝐹 (𝑠′, 𝑠),

𝑠′(0) = 𝐴𝛾′(0),

𝑠(0) = 1.

We let 𝛼 = 40ℓ and

𝐾
def
= 𝛼‖𝐹 (𝐴𝛾′(0), 1)‖4 + ‖𝐴𝛾′(0)‖4
≤ 𝛼‖𝐴(𝐴𝑇𝐴)−1𝐴𝑇

(︀
𝐴𝛾′(0)

)︀2 ‖2 + ‖𝐴𝛾′(0)‖4
≤ 𝛼‖𝐴𝛾′(0)‖24 + ‖𝐴𝛾′(0)‖4.

Using ‖𝐴𝑥𝛾′‖4 ≤ 2𝑛−1/4 (Lemma 14.5.10), we have that

𝐾 ≤ 2‖𝐴𝛾′(0)‖4 ≤ 4𝑛−1/4,

𝛼𝐾 ≤ 160ℓ𝑛−1/4 ≤ 1

2
.

For any ‖𝑢− 𝑠′(0)‖4 ≤ 𝐾 ≤ 4𝑛−1/4, ‖𝑠− 1‖4 ≤ 𝛼𝐾 ≤ 1
2 , Lemma 14.5.25 shows that

‖𝐷𝐹 (𝑢, 𝑠)[𝑑𝑢, 𝑑𝑠]‖4 ≤ ‖𝐷𝐹 (𝑢, 𝑠)[𝑑𝑢, 𝑑𝑠]‖2
≤ 8‖𝑢‖4‖𝑑𝑢‖4 + 16‖𝑢‖24‖𝑑𝑠‖∞
≤ 48𝑛−1/4‖𝑑𝑢‖4 + 576𝑛−1/2‖𝑑𝑠‖4.

Therefore, for any ‖𝑢1 − 𝑠′(0)‖4 ≤ 𝐾, ‖𝑠1 − 1‖4 ≤ 𝛼𝐾, ‖𝑢2 − 𝑠′(0)‖4 ≤ 𝐾, ‖𝑠2 − 1‖4 ≤ 𝛼𝐾, we have
that

‖𝐹 (𝑢1, 𝑠1)− 𝐹 (𝑢2, 𝑠2)‖4 ≤ 48𝑛−1/4‖𝑢1 − 𝑢2‖4 + 576𝑛−1/2‖𝑠1 − 𝑠2‖4

≤ 1

𝛼
‖𝑢1 − 𝑢2‖4 +

1

𝛼2
‖𝑠1 − 𝑠2‖4.

Since 𝛾 is analytic and ‖𝛾(𝑘)(0)‖2 = 𝑂(𝑘!𝑛−𝑘/4) (Lemma 14.5.22), 𝛾(𝑡) is 𝜀 close to a polynomial
with degree 𝑂(log(1/𝜀)) for 0 ≤ 𝑡 ≤ 𝑜(𝑛1/4). Hence, we can apply Theorem 14.6.6 and find 𝛾 such
that ‖𝛾−𝛾‖4 ≤ 𝜀 and ‖𝛾′−𝛾′‖4 ≤ 𝜀 in 𝑂(𝑛 log3(𝐾/𝜀)) time plus 𝑂(log2(𝐾/𝜀)) evaluations of 𝐹 . Note
that each evaluation of 𝐹 involves solving a linear system and hence it takes 𝑂(𝑚𝑛𝜔−1). Therefore,
the total running time is 𝑂(𝑚𝑛𝜔−1 log2(1/𝜀)).

14.5.10.2 Computing Parallel Transport

Lemma 14.5.27. Given 𝛾 be a random geodesic generated by the geodesic walk with step size ℎ ≤
1

107
√
𝑛
and an unit vector 𝑣. Let 𝑣(𝑡) be the parallel transport of a unit vector along 𝛾(𝑡). In time

𝑂(𝑚𝑛𝜔−1 log2(1/𝜀)), we can find 𝑣 such that max0≤𝑡≤ℓ ‖𝑣(𝑡) − 𝑣(𝑡)‖∞ ≤ 𝜀 with probability at least
1−𝑂(exp(−

√
𝑛/100)). Furthermore, 𝑣 is a 𝑂(log(1/𝜀)) degree polynomial.

Similarly, given a basis {𝑣𝑖}𝑛𝑖=1, in time 𝑂(𝑚𝑛𝜔−1 log2(1/𝜀)), we can find an approximate parallel
transport 𝑣𝑖(𝑡) of {𝑣𝑖}𝑛𝑖=1 along 𝛾(𝑡) with probability at least 1−𝑂(exp(−

√
𝑛/100)).

Proof. Recall that the equation for parallel transport (14.20) is given by

𝑑

𝑑𝑡
𝑣(𝑡) =

(︁
𝐴𝑇𝛾(𝑡)𝐴𝛾(𝑡)

)︁−1
𝐴𝑇𝛾(𝑡)𝑆𝛾′(𝑡)𝐴𝛾(𝑡)𝑣.

By rotating the space and rescaling the rows of 𝐴, we assume that 𝑠(𝛾(0))𝑖 = 1 for all 𝑖 and 𝐴𝑇𝐴 = 𝐼.
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In the proof of Lemma 14.5.26, we know that 1
2 ≤ 𝑠(𝛾(𝑡))𝑖 ≤ 2 for all 0 ≤ 𝑡 ≤ ℓ. For any unit vector

𝑢, we have

‖
(︀
𝐴𝑇𝛾𝐴𝛾

)︀−1
𝐴𝑇𝛾 𝑆𝛾′𝐴𝛾𝑢‖2 ≤ 2‖

(︀
𝐴𝑇𝛾𝐴𝛾

)︀−1/2
𝐴𝑇𝛾 𝑆𝛾′𝐴𝛾𝑢‖2

≤ 2‖𝑆𝛾′‖∞‖𝐴𝛾𝑢‖2
≤ 4‖𝑆𝛾′‖∞ ≤ 24

√
ℎ

where we used Lemma 14.5.10 in the last line. Using ℎ ≤ 1
107

√
𝑛
, we have that

‖
(︀
𝐴𝑇𝛾𝐴𝛾

)︀−1
𝐴𝑇𝛾 𝑆𝛾′𝐴𝛾‖2 ≤

1

20ℓ
.

Since 𝑣 is analytic and ‖𝑣(𝑘)(0)‖2 = 𝑂(𝑘!𝑛−𝑘/4) (Lemma 14.5.22), 𝑣(𝑡) is 𝜀 close to a polynomial
with degree 𝑂(log(1/𝜀)) for 0 ≤ 𝑡 ≤ 𝑜(𝑛1/4). Hence, we can apply Theorem 14.6.4 and find 𝑣 such that
‖𝑣 − 𝑣‖2 ≤ 𝜀 in 𝑂(𝑛 log3(1/𝜀)) time plus 𝑂(log2(1/𝜀)) evaluations of 𝐹 . Note that each evaluation of
𝐹 involves solving a linear system and hence it takes 𝑂(𝑚𝑛𝜔−1). Therefore, the total running time is
𝑂(𝑚𝑛𝜔−1 log2(1/𝜀)).

For the last result, we note that each evaluation of 𝐹 becomes computing matrix inverse and
performing matrix multiplication and they can be done in again 𝑂(𝑚𝑛𝜔−1) time.

14.5.10.3 Computing Jacobi field

Lemma 14.5.28. Given 𝛾 be a random geodesic generated by the geodesic walk with step size ℎ ≤
1

107
√
𝑛
. Let {𝑋𝑖}𝑛𝑖=1 be an orthogonal frame along 𝛾. Let 𝑣(𝑡) be a Jacobi field along 𝛾(𝑡) with

𝑣(0) = 0 and let 𝑢(𝑡) be the Jacobi field under the 𝑋𝑖 coordinates, namely, 𝑣(𝑡) = 𝑋(𝑡)𝑢(𝑡). In
time 𝑂(𝑚𝑛𝜔−1 log2(1/𝜀)), we can find 𝑢 such that max0≤𝑡≤ℓ ‖𝑢(𝑡) − 𝑢(𝑡)‖∞ ≤ 𝜀 with probability at
least 1−𝑂(exp(−

√
𝑛/100)). Furthermore, 𝑢 is a 𝑂(log(1/𝜀)) degree polynomial.

Proof. Recall that the equation for Jacobi field 14.5.5 is given by

𝑑2𝑢

𝑑𝑡2
+𝑋−1(𝐴𝑇𝛾𝐴𝛾)

−1
(︀
𝐴𝑇𝛾 𝑆𝛾′𝑃𝛾𝑆𝛾′𝐴𝛾 −𝐴𝑇𝛾Diag(𝑃𝛾𝑠

2
𝛾′)𝐴𝛾

)︀
𝑋𝑢 = 0.

By rotating the space and rescaling the rows of 𝐴, we assume that 𝑠(𝛾(0))𝑖 = 1 for all 𝑖 and 𝐴𝑇𝐴 = 𝐼.
In the proof of Lemma 14.5.26, we know that 1

2 ≤ 𝑠(𝛾(𝑡))𝑖 ≤ 2 for all 0 ≤ 𝑡 ≤ ℓ. Since 𝑋 is an
orthogonal frame, we have 𝑋𝑋𝑇 = 𝑋𝑋𝑇 = 𝐼. Hence, for any unit vector 𝑣, we have

‖𝑋−1(𝐴𝑇𝛾𝐴𝛾)
−1
(︀
𝐴𝑇𝛾 𝑆𝛾′𝑃𝛾𝑆𝛾′𝐴𝛾 −𝐴𝑇𝛾Diag(𝑃𝛾𝑠

2
𝛾′)𝐴𝛾

)︀
𝑋𝑣‖2

≤2‖(𝐴𝑇𝛾𝐴𝛾)−1/2
(︀
𝐴𝑇𝛾 𝑆𝛾′𝑃𝛾𝑆𝛾′𝐴𝛾 −𝐴𝑇𝛾Diag(𝑃𝛾𝑠

2
𝛾′)𝐴𝛾

)︀
𝑋𝑣‖2

≤2‖𝑆𝛾′𝑃𝛾𝑆𝛾′𝐴𝛾𝑣‖2 + 2‖Diag(𝑃𝛾𝑠
2
𝛾′)𝐴𝛾𝑋𝑣‖2.

Using ‖𝑆𝛾′‖2 ≤ 6
√
ℎ and ‖Diag(𝑃𝛾𝑠

2
𝛾′)‖2 ≤ ‖𝑃𝛾𝑠2𝛾′‖2 ≤ ‖𝑠𝛾′‖24 ≤ 4𝑛−1/2 (Lemma 14.5.10), we have

that

‖𝑋−1(𝐴𝑇𝛾𝐴𝛾)
−1
(︀
𝐴𝑇𝛾 𝑆𝛾′𝑃𝛾𝑆𝛾′𝐴𝛾 −𝐴𝑇𝛾Diag(𝑃𝛾𝑠

2
𝛾′)𝐴𝛾

)︀
𝑋𝑣‖2

≤12
√
ℎ‖𝑃𝛾𝑆𝛾′𝐴𝛾𝑣‖2 + 8𝑛−1/2‖𝐴𝛾𝑋𝑣‖2

≤72ℎ‖𝐴𝛾𝑣‖2 + 16𝑛−1/2‖𝑋𝑣‖2

≤144ℎ+ 16𝑛−1/2 ≤ 1

(40ℓ)2
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where we used ℎ ≤ 1
107

√
𝑛
in the last line.

Since 𝑢 is analytic and ‖𝑢(𝑘)(0)‖2 = 𝑂(𝑘!𝑛−𝑘/4) (Lemma 14.5.24), 𝑢(𝑡) is 𝜀 close to a polynomial
with degree 𝑂(log(1/𝜀)) for 0 ≤ 𝑡 ≤ 𝑜(𝑛1/4). Hence, we can apply Theorem 14.6.4 and find 𝑢 such that
‖𝑢 − 𝑢‖2 ≤ 𝜀 in 𝑂(𝑛 log3(1/𝜀)) time plus 𝑂(log2(1/𝜀)) evaluations of 𝐹 . Note that each evaluation
of 𝐹 involves computing matrix inversions and matrix multiplications and hence it takes 𝑂(𝑚𝑛𝜔−1).
Therefore, the total running time is 𝑂(𝑚𝑛𝜔−1 log2(1/𝜀)).

14.5.10.4 Computing Geodesic Walk

Proof of Theorem 14.5.2. To implement the geodesic walk, we use Lemma 14.5.26 to compute the
geodesic, Lemma 14.5.27 to compute an orthogonal frame along the geodesic and Lemma 14.5.28 to
compute the Jacobi field along. Using the Jacobi field, we can use (14.9) and Lemma 14.4.12 to
compute the probability from 𝑥 to 𝑦 and the probability from 𝑦 to 𝑥. Using these probabilities, we
can implement the rejection sampling. It suffices to compute the geodesic and the probability up to
1/𝑛𝑂(1) accuracy and hence these operations can be done in time 𝑂(𝑚𝑛𝜔−1 log2(𝑛)).

Note that we only use randomness to prove that ‖𝐴𝛾(0)𝑢‖2 ≤ 3
2 and ‖𝐴𝛾𝑢‖4 ≤

1.55
𝑛1/4 (Lemma 14.5.10)

and they can be checked. When we condition our walk to that, we only change the distribution by
exponential small amount. Hence, this result is stated without mentioning the success probability.

14.6 Collocation Method for ODE

In this section, we study a collocation method for solving ordinary differential equation (ODE) and
show how to solve a nice enough ODE in nearly constant number of iterations without explicitly
computing higher derivatives.

14.6.1 First Order ODE

We first consider the following first order ODE

𝑑

𝑑𝑡
𝑢(𝑡) = 𝐹 (𝑢(𝑡), 𝑡), for 0 ≤ 𝑡 ≤ ℓ (14.31)

𝑢(0) = 𝑣

where 𝐹 : R𝑛+1 → R𝑛 and 𝑢(𝑡) ∈ R𝑛. The idea of collocation methods is to find a degree 𝑑 polynomial
𝑝 such that

𝑑

𝑑𝑡
𝑝(𝑡) = 𝐹 (𝑝(𝑡), 𝑡), for 𝑡 = 𝑐1, 𝑐2, · · · , 𝑐𝑑 (14.32)

𝑝(0) = 𝑣

where 𝑐1, 𝑐2, · · · , 𝑐𝑑 are carefully chosen distinct points on [0, ℓ]. Here, we call 𝑝 : R→ R𝑛 is a degree
𝑑 polynomial if 𝑝(𝑡) = [𝑝1(𝑡); 𝑝2(𝑡); · · · ; 𝑝𝑛(𝑡)] and each 𝑝𝑖(𝑡) is an univariate polynomial with degree
at most 𝑑. The first part of the proof shows the existence of a solution for the systems (14.32). To
describe the algorithm, it is easier to consider an equivalent integral equation.

Lemma 14.6.1. Given distinct points 𝑐1, 𝑐2, · · · , 𝑐𝑑 ∈ R and 𝐹 : R𝑛+1 → R𝑛, consider the nonlinear
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map 𝑇 : R𝑑×𝑛 → R𝑑×𝑛 defined by

𝑇 (𝜁)(𝑖,𝑘) =

ˆ 𝑐𝑖

0

𝑑∑︁
𝑗=1

𝐹 (𝜁𝑗 , 𝑐𝑗)𝑘𝜑𝑗(𝑠)𝑑𝑠 for 𝑖 ∈ [𝑑], 𝑘 ∈ [𝑛]

where 𝜑𝑖(𝑠) =
∏︀
𝑗 ̸=𝑖

𝑠−𝑐𝑗
𝑐𝑖−𝑐𝑗 are the Lagrange basis polynomials. Given any 𝜁 ∈ R𝑑×𝑛 such that

𝜁𝑖 = 𝑣 + 𝑇 (𝜁)𝑖, for 𝑖 ∈ [𝑑] (14.33)

the polynomial

𝑝(𝑡) = 𝑣 +

ˆ 𝑡

0

𝑑∑︁
𝑗=1

𝐹 (𝜁𝑗 , 𝑐𝑗)𝜑𝑗(𝑠)𝑑𝑠

is a solution of the system (14.32).

Proof. Define the polynomials 𝜑𝑖(𝑠) =
∏︀
𝑗 ̸=𝑖

𝑠−𝑐𝑗
𝑐𝑖−𝑐𝑗 . Note that 𝜑𝑖(𝑐𝑗) = 𝛿𝑖𝑗 . Therefore, we have

𝑑∑︁
𝑗=1

𝛼𝑗𝜑𝑗(𝑐𝑖) = 𝛼𝑖.

Therefore, 𝑝(0) = 𝑣 and

𝑑

𝑑𝑡
𝑝(𝑐𝑖) =

𝑑∑︁
𝑗=1

𝐹 (𝜁𝑗 , 𝑐𝑗)𝜑𝑗(𝑐𝑖) = 𝐹 (𝜁𝑗 , 𝑐𝑗).

Since 𝜁𝑖 = 𝑣 + 𝑇 (𝜁)𝑖, we have that

𝜁𝑖 = 𝑣 +

ˆ 𝑐𝑖

0

𝑑∑︁
𝑗=1

𝐹 (𝜁𝑗 , 𝑐𝑗)𝜑𝑗(𝑠)𝑑𝑠 = 𝑝(𝑐𝑖).

Hence, we have 𝑑
𝑑𝑡𝑝(𝑐𝑖) = 𝐹 (𝑝(𝑐𝑖), 𝑐𝑖). Therefore, 𝑝 is a solution to the system (14.32).

From Lemma 14.6.1, we see that it suffices to solve the system (14.33). We solve it by a simple fix
point iteration shown in Algorithm 50.

Algorithm 50: CollocationMethod

Input: An ordinary differential equation 𝑑
𝑑𝑡𝑢(𝑡) = 𝐹 (𝑢(𝑡), 𝑡) for 0 ≤ 𝑡 ≤ ℓ with initial condition

𝑢(0) = 𝑣.
Define 𝑇 (𝜁)(𝑖,𝑘) =

´ 𝑐𝑖
0

∑︀𝑑
𝑗=1 𝐹 (𝜁𝑗 , 𝑐𝑗)𝑘𝜑𝑗(𝑠)𝑑𝑠 for 𝑖 ∈ [𝑑], 𝑘 ∈ [𝑛] as defined in Lemma 14.6.1.

𝑐𝑖 =
ℓ
2 + ℓ

2 cos(
2𝑖−1
2𝑑 𝜋) for all 𝑖 ∈ [𝑑], 𝐾 = 40ℓmax𝑡∈[0,ℓ] ‖𝐹 (𝑣, 𝑡)‖𝑝, 𝑍 = log2(𝐾/𝜀)

𝜁
(0)
𝑖 = 𝑣 + 𝑇 (𝑣)𝑖 for all 𝑖 ∈ [𝑑] where 𝑣 = (𝑣, 𝑣, · · · , 𝑣) ∈ R𝑑×𝑛.
for 𝑧 = 0, · · · , 𝑍 do

𝜁
(𝑧+1)
𝑖 = 𝑣 + 𝑇 (𝜁(𝑧))𝑖 for 𝑖 ∈ [𝑑].

end

Output: 𝑝(𝑡) = 𝑣 +
´ ℓ
0

∑︀𝑑
𝑗=1 𝐹 (𝜁

(𝑍+1)
𝑗 , 𝑐𝑗)𝜑𝑗(𝑠)𝑑𝑠.

In the following lemma, we show that 𝑇 is a contraction mapping if 𝐹 is smooth enough and hence

this algorithm converges linearly. We will use the following norm: ‖𝑥‖∞;𝑝 = max𝑖∈[𝑑]

(︁∑︀
𝑘∈[𝑛]

⃒⃒
𝑥(𝑖,𝑘)

⃒⃒𝑝)︁1/𝑝.
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Lemma 14.6.2. Given 𝑥, 𝑦 ∈ R𝑑×𝑛 with 𝑑 ≥ 2, suppose that ‖𝐹 (𝑥𝑖, 𝑡)− 𝐹 (𝑦𝑖, 𝑡)‖𝑝 ≤ 𝐿‖𝑥𝑖 − 𝑦𝑖‖𝑝 for
all 0 ≤ 𝑡 ≤ ℓ and all 𝑖 ∈ [𝑑]. For 𝑐𝑘 =

ℓ
2 + ℓ

2 cos(
2𝑘−1
2𝑑 𝜋) and 𝑇 defined Lemma 14.6.1, we have that

‖𝑇 (𝑥)− 𝑇 (𝑦)‖∞;𝑝 ≤ 10ℓ𝐿‖𝑥− 𝑦‖∞;𝑝.

Also, we have that
‖𝑇 (𝑥)‖∞;𝑝 ≤ 10ℓmax

𝑖
‖𝐹 (𝑥𝑖, 𝑐𝑖)‖∞;𝑝

Proof. Using the definition of 𝑇 and ‖ · ‖∞;𝑝, we have

‖𝑇 (𝑥)− 𝑇 (𝑦)‖∞;𝑝 = max
𝑖
‖
ˆ 𝑐𝑖

0

𝑑∑︁
𝑗=1

𝐹 (𝑥𝑗 , 𝑐𝑗)𝜑𝑗(𝑠)𝑑𝑠−
ˆ 𝑐𝑖

0

𝑑∑︁
𝑗=1

𝐹 (𝑦𝑗 , 𝑐𝑗)𝜑𝑗(𝑠)𝑑𝑠‖𝑝

≤

⎛⎝max
𝑖

𝑑∑︁
𝑗=1

⃒⃒⃒⃒ˆ 𝑐𝑖

0
𝜑𝑗(𝑠)𝑑𝑠

⃒⃒⃒⃒⎞⎠(︂max
𝑖
‖𝐹 (𝑥𝑖, 𝑐𝑖)− 𝐹 (𝑦𝑖, 𝑐𝑖)‖𝑝

)︂

≤ 𝐿‖𝑥− 𝑦‖∞;𝑝

⎛⎝max
𝑖

𝑑∑︁
𝑗=1

⃒⃒⃒⃒ˆ 𝑐𝑖

0
𝜑𝑗(𝑠)𝑑𝑠

⃒⃒⃒⃒⎞⎠ .

To bound max𝑖
∑︀𝑑

𝑗=1

⃒⃒´ 𝑐𝑖
0 𝜑𝑗(𝑠)𝑑𝑠

⃒⃒
, it is easier to work with the function 𝜓𝑗(𝑥)

def
= 𝜑𝑗(

2
ℓ𝑥−1). Note

that 𝜓𝑘 is the Lagrange basis polynomials on the nodes {cos(2𝑘−1
2𝑑 𝜋)}𝑑𝑘=1 and hence we have

𝜓𝑘(𝑥) =
(−1)𝑘−1

√︁
1− 𝑥2𝑘 cos

(︀
𝑑 cos−1 𝑥

)︀
𝑑(𝑥− 𝑥𝑘)

where 𝑥𝑘 = cos(2𝑘−1
2𝑑 𝜋). Lemma 14.6.5 at the end of this section shows that

⃒⃒⃒´ 𝑡
−1 𝜓𝑘(𝑥)𝑑𝑥

⃒⃒⃒
≤ 20

𝑑 for all

𝑡. Therefore, we have that max𝑖
∑︀𝑑

𝑗=1

⃒⃒´ 𝑐𝑖
0 𝜑𝑗(𝑠)𝑑𝑠

⃒⃒
≤ 10ℓ. This gives the first inequality. The second

inequality is similar.

In each iteration of the collation method, we need to compute
´ 𝑐𝑖
0

∑︀
𝛼𝑗𝜑𝑗(𝑠)𝑑𝑠 for some 𝛼𝑗 . The

following theorem shows that this can be done in 𝑂(𝑑 log(𝑑/𝜀)) time using the multipole method.

Theorem 14.6.3 ([77, Sec 5]). Let 𝜑𝑖(𝑠) be the Lagrange basis polynomials on the Chebyshev nodes on
[0, ℓ], namely, 𝜑𝑖(𝑠) =

∏︀
𝑗 ̸=𝑖

𝑠−𝑐𝑗
𝑐𝑖−𝑐𝑗 with 𝑐𝑖 =

ℓ
2 + ℓ

2 cos(
2𝑖−1
2𝑑 𝜋). Given a polynomial 𝑝(𝑠) =

∑︀
𝑗 𝛼𝑗𝜑𝑗(𝑠)

and a point set {𝑥1, 𝑥2, · · · , 𝑥𝑑}, one can compute 𝑡𝑖 such that⃒⃒⃒⃒
𝑡𝑖 −
ˆ 𝑥𝑖

0
𝑝(𝑠)𝑑𝑠

⃒⃒⃒⃒
≤ 𝜀ℓ

√︃∑︁
𝑖 ̸=𝑗

(𝛼𝑖 − 𝛼𝑗)2 for 𝑖 ∈ [𝑑]

in time 𝑂(𝑑 log(𝑑/𝜀)).

Now we have everything to state our main result in this subsection.

Theorem 14.6.4. Let 𝑢(𝑡) ∈ R𝑛 be the solution of the ODE (14.31). Suppose we are given 𝜀, ℓ > 0,
𝑑 ≥ 2 and 1 ≤ 𝑝 ≤ ∞ such that

1. There is a degree 𝑑 polynomial 𝑞 from R to R𝑛 such that 𝑞(0) = 𝑣 and ‖ 𝑑𝑑𝑡𝑢(𝑡)−
𝑑
𝑑𝑡𝑞(𝑡)‖𝑝 ≤

𝜀
ℓ for

all 0 ≤ 𝑡 ≤ ℓ.

2. We have that ‖𝐹 (𝑥, 𝑡) − 𝐹 (𝑦, 𝑡)‖𝑝 ≤ 1
20ℓ‖𝑥 − 𝑦‖𝑝 for all ‖𝑥 − 𝑣‖𝑝 ≤ 𝐾 and ‖𝑦 − 𝑣‖𝑝 ≤ 𝐾 with

𝐾 = 40ℓmax𝑡∈[0,ℓ] ‖𝐹 (𝑣, 𝑡)‖𝑝.
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Then, for any 𝑡 such that 0 ≤ 𝑡 ≤ ℓ, Algorithm CollocationMethod outputs a degree 𝑑 polynomial
𝑝(𝑡) such that ‖𝑢(𝑡)− 𝑝(𝑡)‖𝑝 ≤ 43𝜀 in 𝑂(𝑛𝑑 log2(𝑑𝐾/𝜀)) time and 𝑂(𝑑 log(𝐾/𝜀)) evaluations of 𝐹 .

Proof. First, we estimate the initial error. Let 𝜁(∞) be the solution to (14.33), 𝜁(0) = 𝑣+ 𝑇 (𝑣)𝑖 be the
initial vector and 𝑣 = (𝑣, 𝑣, · · · , 𝑣) ∈ R𝑑×𝑛. Then, we have that

‖𝜁(∞) − 𝜁(0)‖∞;𝑝 = max
𝑖
‖(𝑣 + 𝑇 (𝜁(∞))𝑖)− (𝑣 + 𝑇 (𝑣)𝑖)‖𝑝

= ‖𝑇 (𝜁(∞))− 𝑇 (𝑣)‖∞;𝑝

≤ 1

2
‖𝜁(∞) − 𝑣‖∞;𝑝

≤ 1

2

(︁
‖𝜁(∞) − 𝜁(0)‖∞;𝑝 + ‖𝜁(0) − 𝑣‖∞;𝑝

)︁
.

Therefore, we have that

‖𝜁(∞) − 𝜁(0)‖∞;𝑝 ≤ ‖𝜁(0) − 𝑣‖∞;𝑝

= ‖𝑇 ((𝑣, 𝑣, · · · , 𝑣))‖∞;𝑝

≤ 10ℓmax
𝑖
‖𝐹 (𝑣, 𝑐𝑖)‖𝑝

≤ 𝐾

4
.

Hence, we have that ‖𝜁(∞) − 𝑣‖∞;𝑝 ≤ 𝐾
2 .

Using the assumption on 𝐹 , Lemma 14.6.2 shows that ‖𝑇 (𝑥)−𝑇 (𝑦)‖∞;𝑝 ≤ 1
2‖𝑥− 𝑦‖∞;𝑝 and hence

‖𝜁(∞) − 𝜁(𝑘)‖∞;𝑝 ≤
𝐾

2𝑘+1
.

Thus, it takes log2(𝐾/𝜀) iteration to get a point 𝜁(𝑘) with

‖𝜁(∞) − 𝜁(𝑘)‖∞;𝑝 ≤ 𝜀. (14.34)

Also, this shows that ‖𝜁(∞) − 𝑣‖∞;𝑝 ≤ 𝐾. Hence, we only requires the assumption (2) to be satisfied
in this region.

Now, we show that 𝜁(𝑘) is close to the solution by using the existence of 𝑞. By the assumption on
𝑞, we have that ‖ 𝑑𝑑𝑡𝑢(𝑡)−

𝑑
𝑑𝑡𝑞(𝑡)‖𝑝 ≤

𝜀
ℓ and hence ‖𝑢(𝑡)− 𝑞(𝑡)‖𝑝 ≤ 𝜀. Using the smoothness of 𝐹 , we

have that ‖𝐹 (𝑢(𝑡), 𝑡)− 𝐹 (𝑞(𝑡), 𝑡)‖𝑝 ≤ 𝜀
ℓ for all 0 ≤ 𝑡 ≤ ℓ. Therefore, we have that

‖ 𝑑
𝑑𝑡
𝑞(𝑡)− 𝐹 (𝑞(𝑡), 𝑡)‖𝑝 ≤ ‖ 𝑑

𝑑𝑡
𝑞(𝑡)− 𝑑

𝑑𝑡
𝑢(𝑡)‖𝑝 + ‖𝐹 (𝑞(𝑡), 𝑡)− 𝐹 (𝑢(𝑡), 𝑡)‖𝑝

≤ 2
𝜀

ℓ
for all 0 ≤ 𝑡 ≤ 1. Therefore, we have

𝑞(𝑡) = 𝑣 +

ˆ 𝑡

0

𝑑∑︁
𝑗=1

𝑑

𝑑𝑡
𝑞(𝑐𝑗)𝜑𝑗(𝑠)𝑑𝑠

= 𝑣 +

ˆ 𝑡

0

𝑑∑︁
𝑗=1

(𝐹 (𝑞(𝑐𝑗), 𝑐𝑗) + 𝛿𝑗)𝜑𝑗(𝑠)𝑑𝑠
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where ‖𝛿𝑖‖𝑝 ≤ 2 𝜀ℓ for all 𝑖 ∈ [𝑑]. By Lemma 14.6.2, we have that

‖𝑞(𝑡)− 𝑣 −
ˆ 𝑡

0

𝑑∑︁
𝑗=1

𝐹 (𝑞(𝑐𝑗), 𝑐𝑗)𝜑𝑗(𝑠)𝑑𝑠‖𝑝 ≤ 20𝜀.

Now, we compare 𝑞𝑗
def
= 𝑞(𝑐𝑗) with the approximate solution constructed by the fixpoint algorithm

𝑞(𝑘)(𝑡) = 𝑣 +

ˆ 𝑡

0

𝑑∑︁
𝑗=1

𝐹 (𝜁
(𝑘)
𝑗 , 𝑐𝑗)𝜑𝑗(𝑠)𝑑𝑠.

For 0 ≤ 𝑡 ≤ ℓ, we have

‖𝑞(𝑡)− 𝑞(𝑘)(𝑡)‖𝑝 ≤ ‖𝑇 (𝑞)− 𝑇 (𝜁(𝑘))‖∞;𝑝 + 20𝜀

≤ 1

2
‖𝑞 − 𝜁(𝑘)‖∞;𝑝 + 20𝜀. (14.35)

Setting 𝑡 = 𝑐𝑖, we have

‖𝑞 − 𝜁(𝑘+1)‖∞;𝑝 = max
𝑖
‖𝑞(𝑐𝑖)− 𝑞(𝑘)(𝑐𝑖)‖𝑝

≤ 1

2
‖𝑞 − 𝜁(𝑘)‖∞;𝑝 + 20𝜀.

Since ‖𝜁(𝑘+1) − 𝜁(𝑘)‖∞;𝑝 ≤ ‖𝜁(𝑘+1) − 𝜁(∞)‖∞;𝑝 + ‖𝜁(𝑘) − 𝜁(∞)‖∞;𝑝 ≤ 2𝜀, we have

‖𝑞 − 𝜁(𝑘)‖∞;𝑝 ≤
1

2
‖𝑞 − 𝜁(𝑘)‖∞;𝑝 + 2𝜀+ 20𝜀

Therefore, we have
‖𝑞 − 𝜁(𝑘)‖∞;𝑝 ≤ 44𝜀.

Putting it into (14.35), we have
‖𝑞(𝑡)− 𝑞(𝑘)(𝑡)‖𝑝 ≤ 42𝜀

for all 0 ≤ 𝑡 ≤ ℓ. Using that ‖𝑢(𝑡)− 𝑞(𝑡)‖𝑝 ≤ 𝜀, we have

‖𝑢(𝑡)− 𝑞(𝑘)(𝑡)‖𝑝 ≤ 43𝜀.

Hence, it proves the guarantee.
Each iteration involves computing 𝑣𝑘 +

´ 𝑐𝑖
0

∑︀𝑑
𝑗=1 𝐹 (𝜁

(𝑧)
𝑗 , 𝑐𝑗)𝑘𝜑𝑗(𝑠)𝑑𝑠 for all 𝑖 ∈ [𝑑], 𝑘 ∈ [𝑛]. Note

that
∑︀𝑑

𝑗=1 𝐹 (𝜁
(𝑧)
𝑗 , 𝑐𝑗)𝑘𝜑𝑗(𝑠) is a polynomial expressed by Lagrange polynomials. Theorem 14.6.3 shows

they can be computed in 𝑂(𝑑 log(𝑑𝐾/𝜀))) with 𝜀
𝐾𝑑𝑂(1) accuracy. Since there are 𝑛 coordinates, it takes

𝑂(𝑛𝑑 log(𝑑𝐾/𝜀))) time plus 𝑑 evaluation per iteration.

The theorem above essentially says that if the solution is well approximated by a polynomial and if
the 𝐹 has small enough Lipschitz constant, then we can reconstruct the solution efficiently. Note that
this method is not useful for stochastic differential equation because Taylor expansion of the solution
involves the high moments of probability distributions which is very expensive to store.

We conclude this subsection with a lemma used in the proof of Lemma 14.6.2.

Lemma 14.6.5. Given 𝑑 ≥ 2. Let 𝜓(𝑥) =

√
1−𝑦2 cos(𝑑 cos−1 𝑥)

𝑑(𝑥−𝑦) where 𝑦 = cos(2𝑘−1
2𝑑 𝜋) for some integer

𝑘 ∈ [𝑑]. Then, we have that ⃒⃒⃒⃒ˆ 𝑡

−1
𝜓(𝑥)𝑑𝑥

⃒⃒⃒⃒
≤ 20

𝑑
.
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for any −1 ≤ 𝑡 ≤ 1.

Proof. Let 𝑧𝑗 = cos (𝑗𝜋/𝑑). For 𝑗 < 𝑘, we have that⃒⃒⃒⃒
⃒
ˆ 𝑧𝑗

𝑧𝑗−1

𝜓(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒ ≤

√︀
1− 𝑦2
𝑑

⃒⃒⃒⃒
⃒
ˆ 𝑧𝑗

𝑧𝑗−1

cos
(︀
𝑑 cos−1 𝑥

)︀
𝑧𝑗 − 𝑦

𝑑𝑥

⃒⃒⃒⃒
⃒+

√︀
1− 𝑦2
𝑑

ˆ 𝑧𝑗

𝑧𝑗−1

⃒⃒⃒⃒
⃒cos

(︀
𝑑 cos−1 𝑥

)︀
(𝑧𝑗 − 𝑥)

(𝑧𝑗 − 𝑦)(𝑥− 𝑦)

⃒⃒⃒⃒
⃒ 𝑑𝑥

≤
√︀

1− 𝑦2
𝑑

⃒⃒⃒⃒
⃒
ˆ 𝑧𝑗

𝑧𝑗−1

cos
(︀
𝑑 cos−1 𝑥

)︀
𝑧𝑗 − 𝑦

𝑑𝑥

⃒⃒⃒⃒
⃒+

√︀
1− 𝑦2
𝑑

(𝑧𝑗 − 𝑧𝑗−1)
2

(𝑧𝑗 − 𝑦)2

=

√︀
1− 𝑦2
𝑑

𝑧𝑗 − 𝑧𝑗−1

𝑑2 − 1
+

√︀
1− 𝑦2
𝑑

(𝑧𝑗 − 𝑧𝑗−1)
2

(𝑧𝑗 − 𝑦)2

≤ 𝜋

𝑑2(𝑑2 − 1)
+

4

𝑑

1

(𝑘 − 1
2 − 𝑗)2

.

Hence, we have that ⃒⃒⃒⃒ˆ 𝑡

−1
𝜓(𝑥)𝑑𝑥

⃒⃒⃒⃒
≤

∑︁
𝑘 ̸=𝑗

⃒⃒⃒⃒
⃒
ˆ 𝑧𝑗

𝑧𝑗−1

𝜓(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒+
ˆ 𝑧𝑘

𝑧𝑘−1

|𝜓(𝑥)| 𝑑𝑥

≤ 6

𝑑
+

ˆ 𝑧𝑘

𝑧𝑘−1

|𝜓(𝑥)| 𝑑𝑥.

By simple calculation, one can check that |𝜓(𝑥)| ≤ 2 and hence⃒⃒⃒⃒ˆ 𝑡

−1
𝜓(𝑥)𝑑𝑥

⃒⃒⃒⃒
≤ 20

𝑑
.

14.6.2 Second Order ODE

Now, we consider the following second order ODE

𝑑2

𝑑𝑡2
𝑢(𝑡) = 𝐹 (

𝑑

𝑑𝑡
𝑢(𝑡), 𝑢(𝑡), 𝑡), for 0 ≤ 𝑡 ≤ ℓ (14.36)

𝑑

𝑑𝑡
𝑢(0) = 𝑤,

𝑢(0) = 𝑣

where 𝐹 : R2𝑛+1 → R𝑛 and 𝑢(𝑡) ∈ R𝑛. Using a standard reduction from second order ODE to first
order ODE, we show how to apply our first order ODE method to second order ODE.

Theorem 14.6.6. Let 𝑥(𝑡) ∈ R𝑛 be the solution of the ODE (14.36). Given some 𝜀, ℓ > 0, 𝑑 ≥ 2 and
1 ≤ 𝑝 ≤ ∞, let 𝛼 = 40ℓ and suppose that

1. There is a degree 𝑑 polynomial 𝑞 from R to R𝑛 such that 𝑞(0) = 𝑣, 𝑞′(0) = 𝑤, ‖ 𝑑
𝑑𝑡2
𝑥(𝑡) −

𝑑
𝑑𝑡2
𝑞(𝑡)‖𝑝 ≤ 𝜀

ℓ2
for all 0 ≤ 𝑡 ≤ ℓ.

2. We have that ‖𝐹 (𝑥, 𝛾, 𝑡)−𝐹 (𝑦, 𝜂, 𝑡)‖𝑝 ≤ 1
𝛼‖𝑥−𝑦‖𝑝+

1
𝛼2 ‖𝛾−𝜂‖𝑝 for all ‖𝑥−𝑤‖𝑝 ≤ 𝐾, ‖𝑦−𝑤‖𝑝 ≤

𝐾, ‖𝛾 − 𝑣‖𝑝 ≤ 𝛼𝐾, ‖𝜂 − 𝑣‖𝑝 ≤ 𝛼𝐾 where 𝐾 = 𝛼max𝑡∈[0,ℓ] ‖𝐹 (𝑤, 𝑣, 𝑡)‖𝑝 + ‖𝑤‖𝑝.

Then, for any 𝑡 such that 0 ≤ 𝑡 ≤ ℓ, in 𝑂(𝑛𝑑 log2(𝑑𝐾/𝜀)) time plus 𝑂(𝑑 log(𝐾/𝜀)) evaluations of 𝐹 ,
we can find 𝑝(𝑡), 𝑝′(𝑡) such that ‖𝑢(𝑡)− 𝑝(𝑡)‖𝑝 = 𝑂(𝜀) and ‖𝑢′(𝑡)− 𝑝′(𝑡)‖𝑝 ≤ 𝑂(𝜀/ℓ).
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Proof. Let 𝛼 = 40ℓ. Let 𝑥(𝑡) = (𝛼𝑢′(𝛼𝑡), 𝑢(𝛼𝑡)) ∈ R2𝑛. Note that 𝑥(𝑡) satisfies the following ODE

𝑑

𝑑𝑡
𝑥(𝑡) = 𝐹 (𝑥(𝑡), 𝑡) for 0 ≤ 𝑡 ≤ ℓ (14.37)

𝑥(0) = (𝛼𝑤, 𝑣).

where 𝐹 (𝑥(𝑡), 𝑡) = (𝛼2𝐹 (𝛼−1𝑥(1)(𝑡), 𝑥(2)(𝑡), 𝛼𝑡), 𝑥(1)(𝑡)), 𝑥(1)(𝑡) is the first 𝑛 variables of 𝑥(𝑡) and
𝑥(2)(𝑡) is the last 𝑛 variables of 𝑥(𝑡). Next, we verify the conditions of Theorem 14.6.4 for this ODE.
Let ℓ = 1

60 and 𝐾 = 40ℓmax𝑡∈[0,ℓ] ‖𝐹 (𝑥(0), 𝑡)‖𝑝. Note that

𝐾 ≤ 𝛼2 max
𝑡∈[0,ℓ]

‖𝐹 (𝑤, 𝑣, 𝑡)‖𝑝 + 𝛼‖𝑤‖𝑝.

For any 𝑦, 𝑧 such that ‖𝑦 − 𝑥(0)‖𝑝 ≤ 𝐾 and ‖𝑧 − 𝑥(0)‖𝑝 ≤ 𝐾, we apply the assumption on 𝐹 and get
that

‖𝐹 (𝑦, 𝑡)− 𝐹 (𝑧, 𝑡)‖𝑝
≤ 𝛼2‖𝐹 (𝛼−1𝑦(1), 𝑦(2), 𝑡)− 𝐹 (𝛼−1𝑧(1), 𝑧(2), 𝑡)‖𝑝 + ‖𝑦(1) − 𝑧(1)‖𝑝

≤ 𝛼2

(︂
1

𝛼
‖𝛼−1𝑦(1) − 𝛼−1𝑧(1)‖𝑝 +

1

𝛼2
‖𝑦(2) − 𝑧(2)‖𝑝

)︂
+ ‖𝑦(1) − 𝑧(1)‖𝑝

≤ 3‖𝑦 − 𝑧‖𝑝.

Also, by our assumption on 𝑥, we have a polynomial 𝑞 = (𝛼𝑞′(𝛼𝑡), 𝑞(𝛼𝑡)) such that

‖ 𝑑
𝑑𝑡
𝑥(𝑡)− 𝑑

𝑑𝑡
𝑞(𝑡)‖𝑝 ≤

28𝜀

ℓ

where 𝑥 is the solution of the ODE (14.37). Therefore, Theorem 14.6.4 shows that we can compute
𝑥
(︀
ℓ
)︀
with 𝑂(𝜀) error in 𝑂(𝑛𝑑 log2(𝑑𝐾/𝜀)) time plus 𝑂(𝑑 log(𝐾/𝜀)) evaluations of 𝐹 . Now, we can

read off 𝑢(ℓ) from 𝑥(2) because
𝑥(2)

(︀
ℓ
)︀
= 𝑢

(︀
𝛼ℓ
)︀
= 𝑢(ℓ).

The result for 𝑢′(ℓ) is similar.

14.7 Derivative Estimations

For any smooth one dimension function 𝑓 , we know by Tayloer’s theorem that

𝑓(𝑥) =

𝑁∑︁
𝑘=0

𝑓 (𝑘)(𝑎)

𝑘!
(𝑥− 𝑎)𝑘 + 1

𝑁 !

ˆ 𝑥

𝑎
(𝑥− 𝑡)𝑁𝑓 (𝑁+1)(𝑡)𝑑𝑡.

This formula provides a polynomial estimate of 𝑓 around 𝑎. To analyze the accuracy of this estimate,
we need to bound

⃒⃒
𝑓 (𝑁+1)(𝑡)

⃒⃒
. In one dimension, we could simply give explicit formulas for the

derivatives of 𝑓 and use it to estimate the remainder term. However, for functions in high dimension,
it is usually too tedious. In this section, we describe some techniques for bounding the derivatives of
higher dimensional functions.

The derivatives of one-variable functions can be bounded via Cauchy’s estimate (Theorem (14.2.11)).
In Subsection 14.7.1, we give calculus rules that reduces the problem of estimating derivatives of high-
dimensional functions to derivatives of one-dimensional functions. In Subsection 14.7.2, we show how
to reduce bounding the derivative for an arbitrary ODE to an ODE in one dimension.
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14.7.1 Explicit Function

In this subsection, we show how to bound the derivatives of a complicated explicit function using the
following object, generating upper bound. We reduce estimates of the derivatives of functions in high
dimension to one variable rational functions. Since rational functions are holomorphic, one can apply
Cauchy’s estimates (Theorem (14.2.11)) to bound their derivatives.

Definition 14.7.1. Given a function 𝐹 . We call that 𝐹 ≤𝑥 𝑓 for some one variable function 𝑓 : R→ R
if

‖𝐷(𝑘)𝐹 (𝑥)[Δ1,Δ2, · · · ,Δ𝑘]‖ ≤ 𝑓 (𝑘)(0)
𝑘∏︁
𝑖=1

‖Δ𝑖‖𝑘 (14.38)

for any 𝑘 ≥ 0 and any Δ𝑖.

Remark. In general, 𝐹 ≤𝑥 𝑓 and 𝑓(𝑡) ≤ 𝑔(𝑡) point-wise does NOT imply 𝐹 ≤𝑥 𝑔. However, 𝐹 ≤𝑥 𝑓
and 𝑓 ≤0 𝑔 does imply 𝐹 ≤𝑥 𝑔.

This concept is useful for us to reduce bounding derivatives of a high dimension function to bound-
ing derivatives of 1 dimension function. First of all, we note that upper bounds are composable.

Lemma 14.7.2. Given 𝐹 ≤𝑥 𝑓 and 𝐺 ≤𝐹 (𝑥) 𝑔, we have that

𝐺 ∘ 𝐹 ≤𝑥 𝑔 ∘ 𝑓
where 𝑓(𝑠) = 𝑓(𝑠)− 𝑓(0).

Proof. Fix any Δ1,Δ2, · · · be unit vectors in the domain of 𝐹 . Let 𝐻(𝑥) = 𝐺 ∘ 𝐹 (𝑥). By chain rule,
we have that

𝐷𝐻(𝑥)[Δ1] = 𝐷𝐺(𝐹 (𝑥))[𝐷𝐹 (𝑥)[Δ1]],

𝐷𝐻(𝑥)[Δ1,Δ2] = 𝐷𝐺(𝐹 (𝑥))[𝐷2𝐹 (𝑥)[Δ1,Δ2]]

+𝐷2𝐺(𝐹 (𝑥))[𝐷𝐹 (𝑥)[Δ1], 𝐷𝐹 (𝑥)[Δ2]],

𝐷𝐻(𝑥)[Δ1,Δ2,Δ3] = 𝐷𝐺(𝐹 (𝑥))[𝐷2𝐹 (𝑥)[Δ1,Δ2,Δ3]]

+𝐷2𝐺(𝐹 (𝑥))[𝐷2𝐹 (𝑥)[Δ1,Δ2], 𝐷𝐹 (𝑥)[Δ3]]

+𝐷2𝐺(𝐹 (𝑥))[𝐷2𝐹 (𝑥)[Δ1,Δ3], 𝐷𝐹 (𝑥)[Δ2]]

+𝐷2𝐺(𝐹 (𝑥))[𝐷2𝐹 (𝑥)[Δ2,Δ3], 𝐷𝐹 (𝑥)[Δ1]]

+𝐷3𝐺(𝐹 (𝑥))[𝐷𝐹 (𝑥)[Δ1], 𝐷𝐹 (𝑥)[Δ2], 𝐷𝐹 (𝑥)[Δ3]],

...

Since 𝐺 ≤𝐹 (𝑥) 𝑔, equation (14.38) shows that

‖𝐷𝐻(𝑥)[Δ1]‖ ≤ 𝑔(1)(0)‖𝐷𝐹 (𝑥)[Δ1]‖,
‖𝐷2𝐻(𝑥)[Δ1,Δ2]‖ ≤ 𝑔(1)(0)‖𝐷2𝐹 (𝑥)[Δ1,Δ2]‖

+𝑔(2)(0)‖𝐷𝐹 (𝑥)[Δ1]‖2‖𝐷𝐹 (𝑥)[Δ2]‖,
‖𝐷3𝐻(𝑥)[Δ1,Δ2,Δ3]‖ ≤ 𝑔(1)(0)‖𝐷2𝐹 (𝑥)[Δ1,Δ2,Δ3]‖

+𝑔(2)(0)‖𝐷2𝐹 (𝑥)[Δ1,Δ2]‖‖𝐷𝐹 (𝑥)[Δ3]‖
+𝑔(2)(0)‖𝐷2𝐹 (𝑥)[Δ1,Δ3]‖‖𝐷𝐹 (𝑥)[Δ2]‖
+𝑔(2)(0)‖𝐷2𝐹 (𝑥)[Δ2,Δ3]‖‖𝐷𝐹 (𝑥)[Δ1]‖

... +𝑔(3)(0)‖𝐷𝐹 (𝑥)[Δ1]‖‖𝐷𝐹 (𝑥)[Δ2]‖‖𝐷𝐹 (𝑥)[Δ3]‖.
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Now, we use 𝐹 ≤𝑥 𝑓 to get

‖𝐷𝐻(𝑥)[Δ1]‖ ≤ 𝑔(1)(0)𝑓 (1)(0) =
(︀
𝑔 ∘ 𝑓

)︀(1)
(0)

‖𝐷2𝐻(𝑥)[Δ1,Δ2]‖ ≤ 𝑔(1)(0)𝑓 (2)(0) + 𝑔(2)(0)𝑓 (1)(0)2 =
(︀
𝑔 ∘ 𝑓

)︀(2)
(0),

‖𝐷3𝐻(𝑥)[Δ1,Δ2,Δ3]‖ ≤ 𝑔(1)(0)𝑓 (3)(0) + 2𝑔(2)(0)𝑓 (2)(0)𝑓 (1)(0)

... +𝑔(3)(0)𝑓 (1)(0)3 =
(︀
𝑔 ∘ 𝑓

)︀(3)
(0).

Therefore, we have that ‖𝐷𝑘𝐻(𝑥)[Δ𝑖]‖ ≤
(︀
𝑔 ∘ 𝑓

)︀(𝑘)
(0) for all 𝑘 ≥ 1. For 𝑘 = 0, we have that

‖𝐻(𝑥)‖ = ‖𝐺(𝐹 (𝑥))‖ ≤ 𝑔(0) = 𝑔(𝑓(0)).

Next, we give some extra calculus rule for generating upper bounds.

Lemma 14.7.3. Given that 𝐻𝑖 ≤𝑥 ℎ𝑖 for all 𝑖 = 1, · · · , 𝑘. Then, we have that

𝑘∑︁
𝑖=1

𝐻𝑖 ≤𝑥
𝑘∑︁
𝑖=1

ℎ𝑖 and
𝑘∏︁
𝑖=1

𝐻𝑖 ≤𝑥
𝑘∏︁
𝑖=1

ℎ𝑖.

Given that 𝐻 ≤𝑥 ℎ and ‖𝐻−1(𝑥)‖ ≤ 𝐶, we have that

𝐻−1 ≤𝑥
1

𝐶−1 − (ℎ(𝑠)− ℎ(0))
.

Proof. Fix Δ1,Δ2, · · · be unit vectors. For the first claim, let 𝐻 =
∑︀
𝐻𝑖, we note that

𝐷𝑗𝐻[Δ1, · · · ,Δ𝑗 ] =
𝑘∑︁
𝑖=1

𝐷𝑗𝐻𝑖[Δ1, · · · ,Δ𝑗 ].

Therefore, we have that ‖𝐷𝑗𝐻[Δ1, · · · ,Δ𝑗 ]‖ ≤
∑︀𝑘

𝑖=1 ‖𝐷𝑗𝐻𝑖[Δ1, · · · ,Δ𝑗 ]‖. Since 𝐻 ≤𝑥 ℎ𝑖, we have
that ‖𝐷𝑗𝐻[Δ1, · · · ,Δ𝑗 ]‖ ≤

∑︀𝑘
𝑖=1 ℎ

(𝑗)(0). Hence, we have 𝐻 ≤𝑥
∑︀𝑘

𝑖=1 ℎ𝑖.
For the second claim, we note that

𝐷𝑗𝐺 =
∑︁

𝑖1+𝑖2+···+𝑖𝑘=𝑗

𝑘∏︁
𝑙=1

𝐷𝑖𝑙𝐻𝑙.

Let 𝑔 =
∏︀𝑘
𝑖=1 ℎ𝑖. Then, we have that

‖𝐷𝑗𝐺‖ ≤
∑︁

𝑖1+𝑖2+···+𝑖𝑘=𝑗

𝑘∏︁
𝑙=1

‖𝐷𝑖𝑙𝐻𝑙‖ ≤
∑︁

𝑖1+𝑖2+···+𝑖𝑘=𝑗

𝑘∏︁
𝑙=1

ℎ
(𝑖𝑙)
𝑖 (0) = 𝐷𝑗𝑔(0).

Hence, 𝐺 ≤𝑥 𝑔.
For the last claim, we first consider the function Φ(𝑀) =𝑀−1. Note that𝐷Φ[Δ1] = −𝑀−1Δ1𝑀

−1,
𝐷2Φ[Δ] =𝑀−1Δ1𝑀

−1Δ2𝑀
−1 +𝑀−1Δ2𝑀

−1Δ1𝑀
−1 and hence

‖𝐷𝑗Φ‖ ≤ 𝑗!‖𝑀−1‖𝑗+1 = 𝑗!𝐶𝑗+1

Hence, we have Φ ≤𝑀
∑︀∞

𝑗=0
𝑗!𝐶𝑗+1

𝑗! 𝑠𝑗 = 1
𝐶−1−𝑠 . By Lemma 14.7.2, we see that 𝐻−1 ≤𝑥 1

𝐶−1−(ℎ(𝑠)−ℎ(0)) .
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14.7.2 Explicit ODE

In this section, we study the Taylor expansion of the solution of ODE (14.31).

Lemma 14.7.4. Let 𝑢(𝑡) be the solution of the ODE 𝑢′(𝑡) = 𝐹 (𝑢(𝑡)). Suppose that 𝐹 ≤𝑢(0) 𝑓 and let
𝜓(𝑡) be the solution of the ODE 𝜓′(𝑡) = 𝑓(𝜓(𝑡)) and 𝜓(0) = 0. Then, we have

‖𝑢(𝑘)(0)‖2 ≤ 𝜓(𝑘)(0)

for all 𝑘 ≥ 1.

Proof. Since 𝑢′(𝑡) = 𝐹 (𝑢(𝑡)), we have that

𝑢(2)(𝑡) = 𝐷𝐹 (𝑢(𝑡))[𝑢(1)(𝑡)],

𝑢(3)(𝑡) = 𝐷𝐹 (𝑢(𝑡))[𝑢(2)(𝑡)] +𝐷2𝐹 (𝑢(𝑡))[𝑢(1)(𝑡), 𝑢(1)(𝑡)],

𝑢(4)(𝑡) = 𝐷𝐹 (𝑢(𝑡))[𝑢(3)(𝑡)] + 2𝐷2𝐹 (𝑢(𝑡))[𝑢(2)(𝑡), 𝑢(1)(𝑡)]

+𝐷3𝐹 (𝑢(𝑡))[𝑢(1)(𝑡), 𝑢(1)(𝑡), 𝑢(1)(𝑡)]

...

Therefore, we have

‖𝑢(2)(0)‖2 ≤ 𝑓 (1)(0)‖𝑢(1)(0)‖2,
‖𝑢(3)(0)‖2 ≤ 𝑓 (1)(0)‖𝑢(2)(0)‖2 + 𝑓 (2)(0)‖𝑢(1)(0)‖22,
‖𝑢(4)(0)‖2 ≤ 𝑓 (1)(0)‖𝑢(3)(0)‖2 + 2𝑓 (2)(0)‖𝑢(2)(0)‖2‖𝑢(1)(0)‖2 + 𝑓 (3)(0)‖𝑢(1)(0)‖32,

...

By expanding 𝜓′(𝑡) = 𝑓(𝜓(𝑡)) at 𝑡 = 0, we see that

𝜓(2)(0) = 𝑓 (1)(0)𝜓(1)(0),

𝜓(3)(0) = 𝑓 (1)(0)𝜓(2)(0) + 𝑓 (2)(0)
(︁
𝜓(1)(0)

)︁2
,

𝜓(4)(0) = 𝑓 (1)(0)𝜓(3)(0) + 2𝑓 (2)(0)𝜓(2)(0)𝜓(1)(0) + 𝑓 (2)(0)
(︁
𝜓(1)(0)

)︁3
,

...

Since ‖𝑢(1)(0)‖2 = ‖𝐹 (𝑢(0))‖2 ≤ 𝑓(0) = 𝜓(1)(0), we have that ‖𝑢(𝑘)(0)‖2 ≤ 𝜓(𝑘)(0) for all 𝑘 ≥ 1.

Now, we apply Lemma 14.7.4 to second order ODE.

Lemma 14.7.5. Let 𝑢(𝑡) be the solution of the ODE 𝑢′′(𝑡) = 𝐹 (𝑢′(𝑡), 𝑢(𝑡), 𝑡). Given some 𝛼 > 0 and
define 𝐹 (𝑦, 𝑥, 𝑡) = 𝛼2𝐹 (𝛼−1𝑦(𝑡) + 𝑢′(0), 𝑥(𝑡) + 𝛼𝑡𝑢′(0), 𝛼𝑡). Suppose that 𝐹 ≤(0,𝑢(0),0) 𝑓 and let 𝜓(𝑡)
be the solution of the ODE 𝜓′(𝑡) = 1 + 𝜓(𝑡) + 𝑓(𝜓(𝑡)) and 𝜓(0) = 0. Then, we have

‖𝑢(𝑘)(0)‖2 ≤
𝜓(𝑘)(0)

𝛼𝑘

for all 𝑘 ≥ 2.

Proof. Let 𝑥(𝑡) = 𝑢(𝛼𝑡)− 𝛼𝑡𝑢′(0) and 𝑦(𝑡) = 𝛼𝑢′(𝛼𝑡)− 𝛼𝑢′(0). Then, we can write the problem into



first order ODE

𝑦′(𝑡) = 𝛼2𝐹 (𝛼−1𝑦(𝑡) + 𝑢′(0), 𝑥(𝑡) + 𝛼𝑡𝑢′(0), 𝛼𝑡) = 𝐹 (𝑦(𝑡), 𝑥(𝑡), 𝑡),

𝑥′(𝑡) = 𝑦(𝑡),

𝑡′ = 1.

Let F(𝑦, 𝑥, 𝑡) = (𝐹 (𝑦, 𝑥, 𝑡), 𝑦, 1). Then, we have that ‖𝐷𝑘F‖ ≤ ‖𝐷𝑘1‖ + ‖𝐷𝑘𝑦‖ + ‖𝐷𝑘𝐹‖. Using
𝐹 ≤(0,𝑢(0),0) 𝑓 , we have that

F ≤(0,𝑥(0),0) 1 + 𝑡+ 𝑓.

By Lemma 14.7.4, we know that

‖𝑢(𝑘)(0)‖2 =
‖𝑥(𝑘)(0)‖2

𝛼𝑘
≤ 𝜓(𝑘)(0)

𝛼𝑘
.
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