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Lecture 10: Overview and Leverage Score
Lecturer: Yin Tat Lee

Disclaimer: Please tell me any mistake you noticed.

In these two weeks, we discuss how to solve linear systems. Solving linear systems is the backbone of convex
optimization. In principal, we can use interior point methods to solve any convex optimization and it often
involves only solving dozens of linear systems. Therefore, if we can solve any linear systems in linear time,
then we can probably solves most of the convex optimization problem in nearly linear time in practice.

10.1 How MATLAB solve Ax = b?

Instead of start with theory results, let me go over some basic on how MATLAB solves linear systems.
Basically, MATLAB check if the matrix A is one of the following special matrices first. (For simplicity, I
only write down the running time for dense matrices of that subclass.)

1. Diagonal matrix: O(n) time

2. Tridiagonal matrix: O(n) time

3. Banded matrix with bandwidth ` (xij = 0 for |i− j| > `): O(n`2) time

4. (Permuted) Triangular matrix: O(n2) time

5. Hessenberg matrix (xij = 0 for all i ≥ j − 1): O(n2) time.

If the matrix is not one of the special matrices above, then:

1. If A is not square, use QR decomposition.

2. If A is Hermitian and the diagonal is all positive or all negative, try to use Cholesky decomposition.

3. Otherwise, use LDL decomposition.

For certain sparse matrix, the running time of QR, Cholesky and LDL can be linear time. In general, it
depends on the sparsity pattern of the matrix and how many non-zero the algorithm creates during the
process. These depends heavily on the ordering of the variables we used to run these algorithms. We will
discuss this topic later.

Even though many of these algorithms have simple descriptions, it is an art to correctly implement these
algorithms:

1. Make sure the algorithm is numerically stable.

2. Carefully decide the order to process/store the matrix to avoid cache misses. Memory bandwidth can
be one limiting factor of these algorithms.

3. Group the calculation together to take advantage of special instruction sets. Modern computer (in
2018) can do up to 32 single-precision floating point operations per core per cycle.

10-1



10-2 Lecture 10: Overview and Leverage Score

4. Take advantage of all cores and GPU.

Take my desktop CPU as an example (6 cores). If programmed correctly, every cycle can run up to 1923

single-precision floating point operations (using two 8-wide FMA instructions). In comparison, a naive
implementation can easily take 3-5 cycle to finish one floating point operations. This gap will become even
larger in the future.

10.2 What do we know about Ax = b in general?

Besides banded matrix, here is a list of easy matrices that I can think of. If you know other important class
of matrices that can be solved in nearly linear time, please tell me.

Theorem 10.2.1. We can solve following matrices A ∈ Rn×n in nearly linear time:

� Toeplitz matrix [59]: Aij = ai−j.

� Well-conditioned matrix [58]: Except for Õ(1) many eigenvalues, the eigenvalues of A>A is contained
in [`, u] where u

` = Õ(1).

� Well-conditioned matrix [57]:
∑
j

√∑
i |aij |2√

λmin(A>A)
= O(n)4 and each rows has similar number of non-zeros.

� Laplacian matrix [66]: A = A> and Aii ≥
∑
i 6=j |Aij |.

� M matrix [63]: A = B>B where each row of B contains two non-zeros.
� Connection Laplacian [80]:A = A> and Aii �

∑
j 6=i ‖Aij‖2 · I where Aij are Hermitian block matrix.

� Directed Laplacian [60]: Aij ≤ 0 for all i 6= j and 1>A = 0.

� Hierarchical matrix: Off diagonal block of A can be approximated by Õ(1) rank matrix. (Rough
intuition only.)

Remark. Toeplitz matrix usually comes from signal processing and integral equations. Well-conditioned
matrix often comes from machine learning problems. Laplacian matrix, M matrix comes from graph prob-
lems. Connection Laplacian comes from signal processing. Directed Laplacian comes from Markov chain.
Hierarchical matrix comes from the inverse of partial differential equations.

Proof. For Toeplitz matrix, it can be solved by conjugate gradient with a circulant matrix (Aij = ai−j mod n)
as a preconditioner. Note that circulant matrices can be solved by fast Fourier transform.

For the well-conditioned matrix (1), it can be solved by conjugate gradient.

For the well-conditioned matrix (2), it can be solved by accelerated coordinate descent.

For Laplacian and directed Laplacian, it can be solved by repeated squaring (I −M)−1 =
∑∞
k=0M

k =∏∞
k=1(I +M2k) and sparsification on M2k .

For M matrix, one can find a diagonal matrix D such that DAD is a Laplacian matrix.

For hierarchical matrix, note that matrix matrix multiplication of two hierarchical matrix is hierarchical.
Hence, one can inverse hierarchical matrix by schur complement and matrix matrix multiplication.

Problem. How to generalize these results to non-linear settings?

Unfortunately, we also know that a lot of matrices are pretty difficult [65].

32 flop/operation x 8 operations/instruction x 2 instructions/cycle x 6 core. Instruction set AVX512 is coming and hence
it will become 16 operations/instruction soon.

4To understand the formula, note that

∑
j

√∑
i |aij |2√

λmin(A
>A)

≤
√
n

√∑
k λk(A

>A)

λmin(A
>A)

.
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10.3 Overdetermined systems

After some high level discussions, we move to the main theory result of today:

Theorem 10.3.1 ([61]). Let T (m,n, S, ε) be the cost of solving A>Ax = b with accuracy ε where S is the
number of non-zeros in A, i.e. ∥∥x− (A>A)−1b

∥∥2

A>A
≤ ε

∥∥(A>A)−1b
∥∥2

A>A
.

For m ≥ n, we have

T (m,n, S, ε) = O(S · logO(1)(
m

ε
)) +O(T (O(n log n), n, S,

1

mO(1)
) logO(1)(

m

ε
)).

Alternatively, it says we can solved overdetermined systems by solving few squares systems and reading the
input few times. Here I am sloppy on the dependence on ε and the polylogarithmic terms.

10.3.1 Leverage scores

The key concept in this reduction is leverage scores.

Definition 10.3.2. Given a matrix A ∈ Rm×n. Let a>i be the ith rows of A and the leverage score of the
ith row of A is

σi(A)
def
= a>i (A>A)+ai.

Note that σ(A) is the diagonal of the projection matrix A(A>A)+A>. Since 0 � A(A>A)+A> � I, we
have that 0 ≤ σi(A) ≤ 1. Furthermore, since A(A>A)+A> is a projection matrix, the sum of A’s leverage
scores is equal to the matrix’s rank:

m∑
i=1

σi(A) = tr(A(A>A)+A>) = rank(A(A>A)+A>) = rank(A) ≤ n. (10.1)

A row’s leverage score measures how important it is in composing the row space of A. If a row has a
component orthogonal to all other rows, its leverage score is 1. Removing it would decrease the rank of A,
completely changing its row space. The coherence of A is ‖σ(A)‖∞. If A has low coherence, no particular
row is especially important. If A has high coherence, it contains at least one row whose removal would
significantly affect the composition of A’s row space. Two characterizations that helps with this intuition
follows:

Lemma 10.3.3. For all A ∈ Rm×n and i ∈ [m] we have that

σi(A) = min
A>x=ai

‖x‖22 .

where ai is the ith row of A.

Lemma 10.3.4. For all A ∈ Rm×n and i ∈ [m], we have that σi(A) is the smallest t such that

aia
>
i � t ·A>A. (10.2)

Sampling rows from A according to their exact leverage scores gives a spectral approximation for A with
high probability. Sampling by leverage score overestimates also suffices. To prove this, we need the following
matrix concentration result:
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Theorem 10.3.5 (Matrix Chernoff). Given a sequence of independent random self-adjoint matrices Mk ∈
Rn×n such that EMk = I and 0 �Mk � R · I. Then, for T = Ω( Rε2 log n), we have that

(1− ε)I � 1

T

T∑
k=1

Mk � (1 + ε)I

with probability 1− 1
nO(1) .

One can see why R
ε2 log n is necessary by understanding the case for diagonal matrices.

Lemma 10.3.6. Given a vector u of leverage score overestimates, i.e., σi(A) ≤ ui for all i. Let X be the

random matrix that is 1
pi
aia
>
i with probability pi = ui

‖u‖1
. For T = Ω(

‖u‖1 logn

ε2 ), with probability 1 − 1
nO(1) ,

we have that

(1− ε)A>A � 1

T

T∑
i=1

Xi � (1 + ε)A>A

where Xi are independent copies of X.

Proof. Note that EX = A>A and that

0 � X =
1

pi
aia
>
i �

‖u‖1
σi

aia
>
i � ‖u‖1 ·A

>A.

Now, the statement simply follows from matrix Chernoff bound with Mk = (A>A)−
1
2Xk(A>A)−

1
2 and

R = ‖u‖1.

To see why spectral approximation is useful, we note that

Exercise 10.3.7. Given symmetric matrices B and C such that 1
2B � C � 2B. Consider the algorithm

x′ = x− 1
8B
−1(Cx− b). Then, we have that

∥∥x′ − C−1b
∥∥2

C
≤ 3

4

∥∥x−A−1b
∥∥2

C
.

Remark. You can show it either by applying gradient descent or a direct calculation.

Combining this exercise and Lemma 10.3.6, we have that

T (m,n, S) = cost of compute σi +O∗(T (Õ(n), n, S)) (10.3)

where we used that ‖σ‖1 = O(n). (I ignored the parameter on ε here.) However, computing σ exactly is too
expensive for many purposes. In [?], they showed that we can compute leverage scores, σ, approximately
by solving only polylogarithmically many regression problems. This result uses the fact that

σi(A) =
∥∥A(A>A)+A>ei

∥∥2

2

and that by the Johnson-Lindenstrauss Lemma these lengths are persevered up to a multiplicative error if
we project these vectors onto certain random low dimensional subspaces.

Theorem 10.3.8 (Johnson-Lindenstrauss Lemma). Given vectors vi ∈ Rn. Let N = Θ( logn
ε2 ) and S ∈

RN×n is a random matrix with each entries is an independent standard Gaussian with variance 1
N . Then,

we have that

(1− ε) ‖vi‖22 ≤ ‖Svi‖
2
2 ≤ (1 + ε) ‖vi‖22 .
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In particular, this lemma shows that we can approximate σi(A) via
∥∥SA(A>A)+A>ei

∥∥2

2
. The benefit of

this is that we can compute SA(A>A)+ by solving logn
ε2 many linear systems. In other words, we have that

cost of approximate σi = O∗(S) +O∗(T (m,n, S)).

Putting it into (10.3), we have this useless formula

T (m,n, S) = O∗(S) +O∗(T (m,n, S)) +O∗(T (Õ(n), n, S)).

This is a chicken and egg problem. To solve an overdetermined system faster, we want to use leverage score
to sample the rows. And to approximate the leverage score, we need to solve the original overdetermined
system. (Even worse, we need to solve it few times.)

10.3.2 Uniform Sampling

The key idea to break this chicken and egg problem is to use uniform sampling. We define

σi,S = a>i (A>SAS)−1ai

where AS is A restricted to rows in S. Note that A>SAS is an overestimate of σi. Hence, it suffices to bound
‖σi,S‖1. The key lemma is the following:

Lemma 10.3.9. We have that

E|S|=k
m∑
i=1

σi,S∪{i} ≤
mn

k
.

Proof. Note that

E|S|=k
m∑
i=1

σi,S∪{i} = E|S|=k
∑
i/∈S

σi,S∪{i} + E|S|=k
∑
i∈S

σi,S∪{i}.

Note that
∑
i∈S σi,S∪{i} =

∑
i∈S σi,S ≤ n. Hence, the second term is bounded by n.

For the first term, we note that “sample a set S of size k, then sample i /∈ S” is same as “sample a set T of
size k + 1, then sample i ∈ T”. Hence, we have

E|S|=kEi/∈Sσi,S∪{i} = E|T |=k+1Ei∈Tσi,T

≤ E|T |=k+1
n

k + 1
=

n

k + 1

Hence, we have that

E|S|=k
m∑
i=1

σi,S∪{i} ≤
n

k + 1
(m− k) + n = n · m+ 1

k + 1
.

Next, using Sherman Morrison formula, we have that

σi,S∪{i} =

σi,S if i ∈ S
1

1+ 1
σi,S

else
.

Namely, we can compute σi,S∪{i} using σi,S . Therefore, we have that

cost of approximate σi,S∪{i} = O∗(S) +O∗(T (k, n, S)).
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Using Lemma 10.3.9, we have now

T (m,n, S) = O∗(S) +O∗(T (k, n, S)) +O∗(T (Õ(
mn

k
), n, S)).

Picking k =
√
mn, we have that

T (m,n, S) = O∗(S) +O∗(T (Õ(
√
mn), n, S)).

Repeating this process Õ(1) times, we have

T (m,n, S) = O∗(S) +O∗(T (Õ(n), n, S)).

10.3.3 Low-rank approximation

Here is another application of leverage score. Suppose we are given a matrix A that is close to rank k. Our
goal is to find a subset S of rows of A and some diagonal D such that

(1− ε)AA> − ε

k
‖A−Ak‖2F · I � A

>
SDAS � (1 + ε)AA> +

ε

k
‖A−Ak‖2F · I (10.4)

where Ak is the best rank k approximation to A, namely Ak = argminrankB=k ‖A−B‖
2
F .

To understand the guarantee, we note that the additive error of A>SDAS and AA> on any rank k has

nuclear norm 2ε · ‖A−Ak‖2F .

To find a rank k matrix B such that ‖A−B‖2F ≤ (1 + ε) ‖A−Ak‖2F requires more calculations [62], so we
focus on proving the guarantee (10.4).

The idea of finding (10.4) is this: given ‖A−Ak‖2F , we can roughly think

AA> = rank k matrix±
‖A−Ak‖2F

k
· I.

If AA> is exactly rank k, we would have
∑
i σi(A) = k and hence sampling from σi(A) would gives us a

rank Õ(k) matrix that approximate AA> really well. To avoid the effect of noise term, we consider the
ridge leverage scores

σλi (A) = a>i (A>A+ λI)+ai.

Again, to show how many samples we need, we need to compute
∥∥σλ∥∥

1
.

Lemma 10.3.10. We have that ∑
i

σλi (A) ≤ k +
1

λ
‖A−Ak‖2F .

In particular, putting λ = 1
k ‖A−Ak‖

2
F gives

∥∥σλ(A)
∥∥

1
≤ 2k.

Proof. Let µi be the eigenvalues of A>A. Note that∑
i

σλi (A) = tr((A>A+ λI)+A>A)

=
∑
i

µi
µi + λ

= k +
1

λ

∑
i>k

µi

= k +
1

λ
‖A−Ak‖2F .
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Next, using this λ, we have

1

σλi (A)
aia
>
i � A>A+ λI � A>A+

1

k
‖A−Ak‖2F · I.

Using this and following the proof of Lemma 10.3.6, we get (10.4).
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