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Disclaimer: Please tell me any mistake you noticed.

Please read the slide first. In the remaining of the lecture, we discuss how we can permute the variable to
minimize the number of non-zeros in the Cholesky decomposition. The ordering of the decomposition can
be huge difference on the number of non-zeros. In extreme cases, it can makes the number of non-zeros
decreases from n2 to O(n). In particular, for matrices rises from planar graphs, we know that the number
of non-zeros is O(n log n) under some ordering [77].

Remark. For simplicity, we assume all Cholesky decomposition A = LL⊤ does not have numerical cancel-
lation. This makes sure the non-zero locations of L satisfy a certain pattern.

Ideally, we want to solve the following problem:.

Problem. Given a sparse symmetric matrix A, find a permutation matrix P such that the Cholesky
decomposition of P⊤AP has as little non-zeros as possible.

Unfortunately, solving this problem exactly is NP-hard in general. The goal of the lecture is to give a
polylog approximation algorithm of this problem for graph with O(1) degree. Before this, we note that
MATLAB used the following two algorithms to find the permutation matrix:

11.1 Nested Dissection

Definition 11.1.1. For any graph G = (V,E), we call S is a 1
2 -balanced node separator if any connected

component of V − S has at most n
2 vertices. We call S is an optimal 1

2 -balanced separator if it has the
minimum number of vertices.

The nested algorithm is as follows:

1. Find an optimal 1
2 -balanced separator S of GA. (Õ(1) approximation also suffices.)

2. Let A1, A2, · · · , Ak are connected components of GA − S.

3. Recurse the algorithm on Ai to find the ordering Oi of the vertices in Ai.

4. Output the ordering [O1, O2, · · · , Ok, O] where O is an arbitrary ordering of S.

Note that this algorithm produces a tree where every vertex is a 1
2 -balanced node separator. We call this

tree is a nested dissection separator tree.

By inspecting up-looking algorithm (see the slide) for Cholesky decomposition, we have the following:

Theorem 11.1.2. Define GA be the graph with edges {(i, j) such that Aij 6= 0 or Aji 6= 0}. If A = LL⊤,
then (i, j) ∈ GL if and only if there is a path i, v1, v2, · · · , vk, j in GA such that vt < min(i, j) for t =
1, 2, · · · , k.

To compare the ordering nested dissection gives with the optimum, we need some handle of the structure
of the Cholesky decomposition.
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Theorem 11.1.3 ([75]). Let L be any lower triangular matrix arise in A = LL⊤. Then GL has a 1
2 -balanced

separator S which induces a clique in GL.

Before the proof, we give the key corollary of this result:

Corollary 11.1.4. Let A = LL⊤. Let Si be the separators at any level of a nested dissection separator
tree. Then,

|L| ≥ 1

2

∑

i

|Si|2 .

Proof of Corollary. Let Vi be the set of vertices Si is separating. Let Gi be GL restricted on Vi. Note that
Gi is still given by Cholesky decomposition. Theorem 11.1.3 shows that |Gi| ≥ 1

2 |Si|2. Therefore, we have
that |L| ≥ 1

2

∑
i |Si|2.

Proof of Theorem 11.1.3. The proof follows from the following algorithm:

1. S = {n}.

2. While some component U of GL+L⊤ − S has more than n
2 vertices

(a) While some i ∈ S is not adjacent to any vertex in U

i. S ← S − {i}.
(b) S ← S ∪ {maxj∈U}

Note that U is decreasing during the algorithm and that in each outer iteration maxj∈U decreased by 1.
Therefore, the algorithm must ends. Hence, it suffices to prove S forms a clique. Clearly, it starts with a
clique.

Now, we use induction to prove that S is always a clique. Let j be the maximizer of the current U and i be
any element in S.

Due to step a, there is j′ ∈ U that (j′, i) ∈ GL. Hence, Theorem 11.1.2 shows that there is a path j′, · · · , i
in GA with intermediate indices less than j′.

Since j′ is connected to j in GL, Theorem 11.1.2 shows that there is a path j′, · · · , j in GA with intermediate
indices less than j.

Combining two paths, there is a path j, · · · , i in GA with intermediate indices less than j (using j′ ≤ j
here).

Now, Theorem 11.1.2 shows that (j, i) ∈ GL.

Hence, we showed that j is adjacent to any i ∈ S. Therefore, S ∪ {j} is a clique.

Now, we are ready to prove the approximation ratio of nested dissection.

Theorem 11.1.5 ([73]). Nested dissection ordering is at most O(
√
d log2 n) times optimal where d is the

maximum degree of the graph.

Proof. Consider the nested dissection separator tree T . (One can think this as the elimination tree but
some vertices are collapsed.). For any fixed vertices v, one can prove that (u, v) ∈ GL implies u lies on the
path from some neighbors nv of v (in GA) to v in the tree T .

Let cv be the number of non-zeros in column v and let Tv be the subtree in T containing v and all neighbors
nv (in GA). Then, we have that

cv ≤
∑

S∈Tv

|S|.
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Let Tl be all separators in level l in T . Then, we have that

|L| ≤
∑

l

∑

v∈Tl

cv

≤
∑

l

∑

S∈Tl

∑

v∈S

cv.

One difficulty of bounding cv is that some of them belongs to same separator and hence their descendants
in T overlap. Hence, for each S, we pick a vS that maximize cv. Hence, we have

|L| ≤
∑

l

∑

S∈Tl

|S|cvS

≤
∑

l

∑

S∈Tl

∑

S′∈TvS

|S||S′|

≤
∑

l,l′

∑

S∈Tl

∑

S′∈TvS
∩Tl′

|S||S′|

≤
∑

l,l′

√
d
∑

S∈Tl

|S|2
√∑

S∈Tl

∑

S′∈TvS
∩Tl′

|S′|2

where we used that |TvS ∩ Tl′ | ≤ d because the leaf of TvS is the neighbors of v (in GA) and there are at
most d of them. Now, we note that S in the first sum are separated. Similarly for the second sum. Hence,
Corollary 11.1.4 shows that

|L| ≤ 2
∑

l,l′

√
dOPT

√
OPT = 2 log22 nOPT

where we used that the depth of T is at most log2 n.

In general, computing optimal 1
2 -balanced node separator is NP-hard. Any α-approximation of such would

gives a O(
√
dα2 log2 n) approximate algorithm for fill-in.

11.2 Open Problems

In practice, MATLAB uses two algorithms.

If the matrix A is very sparse, they use a greedy method. One can think it is a left-looking algorithm
and each step choose the new variable that minimize the number of fill in it added in that iteration. That
ordering is called minimum-degree. Unfortunately, that algorithm was still too expensive and hence they
find a approximate number of fill in instead. It is only known very recently (2017) that minimum-degree
ordering can be found in nearly linear time [74]. It would be an interesting to know if that works well in
practice compared to MATLAB.

Otherwise, they use nested dissection. Instead of solving SDP to find the 1
2 -balanced node separator (the

current best approximation algorithm), they use a multi-level local search to find the 1
2 -balanced separator,

called METIS [76]. It seems that the algorithm has not changed too much after these 2 decades despite our
knowledge on spectral graph theory and balanced node separator. For example, we did not know the use
of SDP on separator at that time and we thought LP relaxation and SDP relaxation is very expensive at
that time.

As a purely theory question, we may want to answer this first:

Problem 11.2.1. Can we get a Õ(1) approximation ratio on fill-in without the d dependence?
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One idea here is to avoid the degree problem by splitting vertices and edges. This is a general technique
to handle degree in general and it in fact works well in practice to handle dense rows/columns in interior
point method. Speaking of this, one may ask

Problem 11.2.2. What is the right extended formulation for this problem?

Problem 11.2.3. Another problem is to remove logn terms by looking at the problem of fill-in directly or
understanding the problem of finding hierarchy of separators directly.

Problem 11.2.4. Given our knowledge on spectral graph theory, do we have a better node separator
algorithm in practice than METIS?

These are problems with potential huge impacts. When the Cholesky decomposition is used in convex
optimization, usually we reuse the ordering that tens or hundreds of time because the ordering does not
care about numerical value of the problem. Therefore, it makes sense to design a more expensive algorithm.
Finally, we have this open-ended problem:

Problem 11.2.5. What is the non-linear version of Cholesky decomposition?
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