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Disclaimer: Please tell me any mistake you noticed.

Some of the materials are copied from the survey written by Santosh Vempala and me.

4.1 Marginal of Convex Set

After discussed the applications of cutting plane methods, we go back to study a particular cutting plane
method, the center of gravity method. This is currently the best cutting plane method in terms of the
convergence rate. (I suspect this is the best in the worst case for the general setting.) Recall that in the
cutting plane framework, we maintain a convex set E(k) that contains the minimizer x∗ of f . Each iteration
of this algorithm, we compute the gradient of f at the center of gravity of E(k). The convexity of f shows
that x∗ ∈ H(k) ∩ E(k) for some half-space H(k) containing the center of gravity. The algorithm continues
by setting E(k+1) = H(k) ∩E(k). To analyze the performance, we simply need to bound how much volume
we cut each iteration. More precisely, given a convex set K with Ex∼Kx = 0, what is

Px∼K(x>θ ≥ 0).

In general, we call pθ(t) = d
dtPx∼K(x>θ ≤ t) is the marginal of the convex set. In this lecture, we focus to

study the properties of pθ.

4.1.1 Log-concave distribution

The marginal of convex set satisfies a similar “convexity” as the convex set itself.

Definition 4.1.1. We call a distribution p(x) on Rn is logconcave if p(x) = e−f(x) for some convex function.
Equivalently, p(λx+ (1− λ)y) ≥ p(x)λp(y)1−λ for all x, y ∈ Rn and 0 ≤ λ ≤ 1.

Note that the uniform measure of any convex set K, p(x) =

{
1

volK if x ∈ K
0 else

, is logconcave. Many common

probability distributions are also logconcave e.g., Gaussian, exponential, logistic and gamma distributions.
An alternative definition of logconcave involves the measures of all sets.

Lemma 4.1.2. A distribution p is logconcave if and only if p(λA + (1 − λ)B) ≥ p(A)λp(B)1−λ for all
compact subsets A and B where p(S) =

∫
S
p(x) dx.

The following lemma shows that the marginal of convex set is logconcave.

Lemma 4.1.3 (Dinghas; Prékopa; Leindler). The product, minimum, and convolution of two logconcave
functions is also logconcave; in particular, any linear transformation or marginal of a logconcave density is
logconcave.

Conversely, all log-concave distributions can be approximated by some (one or higher dimensional) marginal
of convex sets. To study log-concave distributions, it is often convenience to renormalize the distribution
as follows:
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Definition 4.1.4. We call a distribution p is isotropic if Ex∼p = 0 and Ex∼pxx> = I.

For any distribution with mean µ and covariance A, both are well-defined, we can apply the transformation
A−

1
2 (x− µ) to get an isotropic distribution.

Lemma 4.1.5. For any isotropic log-concave distribution on R, p(x) = e−O(|x|) and p(0) = Θ(1).

Remark. The proof is just an illustration of the log-concavity. There are more elegant proofs.

Proof. If p(x) < 1
8 for all |x| ≤ 2, then we would have more than half of the mass outside |x| ≤ 2. This

contradicts to Ex2 ≤ 1. Therefore, we have some |x| ≤ 2 such that p(x) ≥ 1
8 .

Next, we note that if p(18) ≥ 1
16 , then all t between x and 18 has density larger than 1

16 and this gives too
much mass. Therefore, we have p(18) ≤ 1

16 and p(−18) ≤ 1
16 (for the same reason).

Since p drops from at least 1
8 to at most 1

16 between x and 18, the log-concavity shows that it continues to

drop at the same or larger rate afterward. Hence, we have that p(x) = e−O(|x|) for all |x| ≥ 18.

Next, to prove that p(0) = Ω(1), we note that p(x) ≤ p(0)e
p′(0)
p(0)

x. If p(0) is tiny, then one side has too little
mass. Combining it with the fact Ex2 ≥ 1, this contradicts to the fact Ex = 0.

Finally, to prove that p(x) = O(1) for all x, we note that if not, the density must drop really fast to make
sure the total mass is 1. But the logconcavity shows that it must continue to drop and hence contradicts
to the condition Ex2 ≥ 1.

4.1.2 Center of Gravity Method

The following theorem shows that the volume of the set decreases by 1− 1
e factor. For computation purpose,

it is important to establish a stable version of the Theorem that does not require an exact center of gravity
as follows:

Theorem 4.1.6 (Grunbaum Theorem). Let p be an isotropic logconcave distribution. For any θ and t, we
have

Px∼p(x>θ ≥ t) ≥
1

e
−O(t).

Proof. By taking the marginal with respect to the direction θ, we can assume the distribution is one
dimensional. Let P (t) = Px∼p(x>θ ≥ t). Note that P (t) is the convolution of p and 1(−∞,0]. Hence, it is
logconcave (Lemma 4.1.3). Without loss of generality, we can assume P (−M) = 0 and P (M) = 1. Since
Ex∼px = 0, we have that ∫ M

−M
tP ′(t) = 0

Integration by parts gives that
∫M
−M P (t)dt = M . Note that P (t) is increasing logconcave, if P (0) is too

small, it would make
∫M
−M P (t)dt too small. Precisely, since P is logconcave, we have that P (t) ≤ P (0)eαt

for some α. Hence,

M =

∫ M

−M
P (t)dt ≤

∫ 1
α

−∞
P (0)eαtdt+

∫ M

1/α

1dt =
eP (0)

α
+M − 1

α
.

This shows that P (0) ≥ 1
e .

Next, Lemma 4.1.5 shows that maxx p(x) = O(1). Therefore, P is O(1)-Lipschitz and

P (t) ≥ P (0)−O(t) ≥ 1

e
−O(t).
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Currently, the only known way to compute center of gravity is by taking an empirical average of random
samples. For general convex sets, it requires O(n) many samples [22]. The following lemma shows that
O(log2m) samples suffice for polytopes.

Lemma 4.1.7. Let p be a logconcave distribution with Ex∼px = 0. Let z be N random samples from p.

Then, for any vector a, the probability that “a>x ≥ a>z cuts off at least 1
3 of K” is at least 1− e−Ω(

√
N).

Proof. Without loss of generality, we assume that Ex∼pa>x = 0 and Ex∼p(a>x)2 = 1. Then, we have that

E(a>z) = 0 and E(a>z)2 = 1
N . Since z is the convolution of p, z̃

def
= a>z follows a logconcave distribution

with Ez̃2 ≤ 1
N . Lemma 4.1.5 shows that, for any constant c > 0, we have that

P(|a>z| > c) ≤ exp(−Ω(
√
N))

The result follows from Theorem 4.1.6.

4.2 Random Marginal of Convex Set

The rest of the lecture is devoted to understand the marginals of convex set on a random direction. One can
show by calculations that the marginal of a sphere is a very good approximation of Gaussian distribution. It
turns out that this is true for a random marginal of any convex set. Unfortunately, the precise understanding
of such phenomenon is very much an open problem.

4.2.1 Localization Lemma

One of the key hammer to understand logconcave distribution is the localization lemma [?].

Definition 4.2.1. A point x is an extreme point of a set K if x does not lie in any open line segment
joining two points of K. Let Ext(K) be the set of extreme points of K.

Here, we state the modern version of the localization lemma by [23].

Theorem 4.2.2 (Localization Lemma). Let K be a compact convex set in Rn and f be an upper semi-
continuous function. Let Pf be the set of logconcave distributions µ supported on K satisfying

∫
fdµ ≥ 0.

The set of extreme points of convPf is exactly:

1. the Dirac measure at points x such that f(x) ≥ 0, or

2. the distribution v satisfies

(a) density function is of the form ec
>x+b for some vector c and scalar b,

(b) support equals to a segment [a, b] ⊂ K,

(c)
∫
fdv = 0,

(d)
∫ x
a
fdv > 0 for x ∈ (a, b) or

∫ b
x
fdv > 0 for x ∈ (a, b).

Corollary 4.2.3. Under the same assumption in Theorem 4.2.2. For any upper semi-continuous convex
function Φ, we have that

sup
µ∈Pf

Φ(µ)

attained by some extreme points of convPf , which are classified by Theorem 4.2.2.
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In some sense, localization lemma gives us the power to do case analysis on many nontrivial statements
about logconcave distributions. Whenever localization lemma can be used, the result will be tight in some
sense because it is a direct reduction.

Exercise 4.2.4. Use localization lemma to show the reverse holder inequality for logconcave distributions(
Ex∼p ‖x‖k2

)1/k

= O(k) · Ex∼p ‖x‖2 .

4.2.2 Concentration

The phenomenon of concentration of measure appears everywhere. Most of a Euclidean unit ball in Rn lies
within distance O( 1

n ) of its boundary, and also within distance O( 1√
n

) of any central hyperplane. Most of

a Gaussian lies in an annulus of thickness O(1). For any subset of the sphere of measure 1
2 , the measure of

points at distance at least
√

logn
n from the set is a vanishing fraction. These concentration phenomena are

closely related to isoperimetry.

Definition 4.2.5. The boundary measure of this subset is

p(∂S) = inf
ε→0+

p(S + εB2)− p(S)

ε

where εB2 is the unit ball with radius ε. The isoperimetric constant of p is

ψp = inf
S⊆Rn

p(∂S)

min {p(S), p(Rn \ S)}
.

It is pretty easy to see that large isoperimetry implies good concentration.

Lemma 4.2.6. Given a distribution p in Rn with isoperimetric constant ψp and a 1-Lipschitz function f
on Rn. Then, we have that

Px∼p (|f(x)−medx∼pf(x)| ≥ t) ≤ 2 exp(−ψpt).

where medx∼pf(x) is the median of f for x sampled from p.

Proof. Let m
def
= medx∼p, Et

def
= {x : f(x) ≥ m+ t}, αt

def
= log 1

p(Et)
. By the definition of median, we have

α0 = log 2. Also, we have that
dαt
dt

= − 1

p(Et)

dp(Et)

dt
. (4.1)

Since f is 1-Lipschitz, for any x such that ‖x− y‖2 ≤ h and y ∈ Et, we have that

g(x) ≥ m+ t− h.

Hence, we have Et + hB2 ⊂ Et−h and hence

−dp(Et)
dt

= lim
h→0

p(Et−h)− p(Et)
h

≥ lim
h→0

p(Et + hB2)− p(Et)
h

= p(∂Et). (4.2)

Combining (4.1) and (4.2) gives that
dαt
dt
≥ p(∂Et)

p(Et)
≥ ψp

for t ≥ 0 because p(Et) ≤ p(E0) ≤ 1
2 . Therefore, we have that αt ≥ ψpt and hence p(Et) ≤ exp(−ψpt) for

t ≥ 0.

The proof for the case t ≤ 0 is same.
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For logconcave distribution, it is also true that good concentration implies large isoperimetry [28]. For many
particular distributions such as Gaussian distribution, we know precisely the isoperimetric constant. But it
is still an active area for general logconcave distributions. For a decade, the best bound was given by the
localization lemma. We first need a popular corollary of KLS lemma:

Corollary 4.2.7. Let f1, f2 be two upper semi-continuous non-negative functions on Rn and f3, f4 be
two semi-continuous non-negative functions on Rn. Let α, β > 0. Suppose that fα1 f

β
2 ≤ fα3 f

β
4 and that for

every a, b ∈ Rn, for every exponential distribution v supported on [a, b] (here exponential distribution means

v(x) = ec
>x+d1[a,b] for some vector x and scalar d),(∫

f1dv

)α(∫
f2dv

)β
≤
(∫

f3dv

)α(∫
f4dv

)β
Then, for any logconcave distribution µ on Rn,(∫

f1dµ

)α(∫
f2dµ

)β
≤
(∫

f3dµ

)α(∫
f4dµ

)β
.

Proof. Rewriting the inequality, it suffices to prove that∫
f1dµ∫
f3dµ

≤
(∫

f4dµ∫
f2dµ

)t
where t = α/β. Let µ be the given logconcave distribution. Consider P be the set of distribution v satisfying∫ (

f1 −
∫
f1dµ∫
f3dµ

f3

)
dv ≥ 0, equivalently ∫

f1dµ∫
f3dµ

≤
∫
f1dv∫
f3dv

.

Let Φ(v) =
( ∫

f1dµ∫
f3dµ

)t ∫
f2dv −

∫
f4dv. Note that µ ∈ P . Therefore, localization lemma shows that there

is a delta measure or an exponential distribution v such that v ∈ P and Φ(µ) ≤ Φ(v). Therefore, we have
that (∫

f1dµ∫
f3dµ

)t ∫
f2dµ−

∫
f4dµ ≤

(∫
f1dµ∫
f3dµ

)t ∫
f2dv −

∫
f4dv

≤
(∫

f1dv∫
f3dv

)t ∫
f2dv −

∫
f4dv

≤ 0

where the last line follows from the assumption.

Theorem 4.2.8 ([24]). For any logconcave distribution p,

ψp ?
1

Ex∼p ‖x− µ‖2

where µ = Ex∼px. In particular, for any logconcave distribution p with covariance matrix A, we have that

ψp ?
1√
trA

.

Proof of Theorem 4.2.8. The difficult case is µ = 0. Note that

ψp = inf
p

p(∂S)

min(p(S), p(Sc))
≥ inf
p,h→0+

p((S + hB2)\S)

h · p(S)p(Sc)
.
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Hence, it suffices to come up with the largest λ such that

E ‖x‖2 · p((S + hB2)\S) ≥ λ · p(S) · p(Sc).

Writing it differently, we have∫
‖x‖2 dp ·

∫
1(S+hB2)\Sdp ≥ λ ·

∫
1Sdp ·

∫
1Scdp.

By Corollary 4.2.7, it suffices to find the largest λ among delta measure and exponential distribution. The
rest is just a case analysis and one would get λ = Ω(h).

The second part follows from the calculation that trA = E ‖x− µ‖22 ≥ (E ‖x− µ‖2)
2
.

Although the isoperimetric constant lower bound is tight for some distribution, it is not a constant ap-
proximation for general logconcave distributions. In the course of the study of algorithms for computing
the volume, in 1995, Kannan, Lovász and Simonovits conjectured the following tight characterization of
isoperimetric constant for logconcave distributions.

Conjecture 4.2.9 (KLS Conjecture). For any logconcave distribution p with covariance A,

1√
λmax(A)

& ψp &
1√

λmax(A)
.

In particular, ψp = Θ(1) for isotropic logconcave distribution p.

We note that the left-hand side is known and can be derived by Lemma 4.1.5. For the right-hand side, the
current best technique is via the stochastic localization technique, a stronger technique to reduce problem
to one dimensional.

Theorem 4.2.10 ([25]). For any logconcave distribution p with covariance A, we have ψp & 1
(tr(A2))1/4

. In

particular, ψp = Ω(n−1/4) for isotropic logconcave distribution p.

Combining this theorem and Lemma 4.2.6, we have the following concentration inequality. One can think
it as a generalization of Lemma 4.1.5.

Theorem 4.2.11. For isotropic logconcave distribution p and any t > 0,

Px∼p(
∣∣‖x‖ − √n∣∣ ≥ n1/4t) ≤ e−O(t).

This shows that any isotropic logconcave distribution concentrated to a shell of radius
√
n with width n1/4.

Using this, one can easily prove that a random marginal of a convex set is close to a Gaussian distribution.

The KLS conjecture is still wide open even. See [26] for the latest development on this. The conjecture is
even open for very simple convex set like the following:

Problem 4.2.12. We call a convex setK is unconditional if (x1, x2, · · · , xn) ∈ K implies (±x1,±x2, · · · ,±xn) ∈
K for any sign patterns. Does KLS conjecture hold for this class of convex sets?

I end this lecture with a remark that there is a variant of Theorem 4.2.8 in the Riemannian setting.

Theorem 4.2.13 ([27]). If K ⊂ (M, g) is a locally convex bounded domain with smooth boundary, diameter

D and Ricg ≥ 0, then the Poincaré constant is at least π2

4D2 , i.e., for any g with
∫
g = 0, we have that∫

|∇g(x)|2 dx ≥ π2

4D2

∫
g(x)2dx.

Problem 4.2.14. How to formulate the KLS conjecture for manifolds?
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