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Disclaimer: Please tell me any mistake you noticed.

The algorithm at the end is unpublished. Feel free to contact me for collaboration.

5.1 John Ellipsoid

In the last lecture, we discussed that any convex set is very close to an ellipsoid in probabilistic sense. More
precisely, after renormalization by covariance matrix, we have ‖x‖2 =

√
n±Θ(1) with high probability. In

this lecture, we will talk about how convex set is close to an ellipsoid in a strict sense. If the convex set is
isotropic, it is close to a sphere as follows:

Theorem 5.1.1. Let K be a convex body in Rn in isotropic position. Then,√
n+ 1

n
Bn ⊆ K ⊆

√
n(n+ 1)Bn.

Roughly speaking, this says that any convex set can be approximated by an ellipsoid by a n factor. This
result has a lot of applications. Although the bound is tight, making a body isotropic is pretty time-
consuming. In fact, making a body isotropic is the current bottleneck for obtaining faster algorithm for
sampling in convex sets. Currently, it can only be done in O∗(n4) membership oracle plus O∗(n5) total
time.

Problem 5.1.2. Find a faster algorithm to approximate the covariance matrix of a convex set.

In this lecture, we consider another popular position of a convex set called John position and its correspond-
ing ellipsoid is called John ellipsoid.

Definition 5.1.3. Given a convex set K. The John ellipsoid J(K) of K is the maximum volume ellipsoid
inside K. We call K is in John ellipsoid position if J(K) is an unit ball centered at 0.

This ellipsoid has few properties that are useful for computational purposes. The first one is that the volume
of John ellipsoid shrinks by constant factor when the body is cut through the center of John ellipsoid.

Theorem 5.1.4. For any convex set K, let x be the center of J(K) and let H be any half space containing
x. Then,

vol(J(K ∩Hc)) ≤ 0.87vol(J(K)).

The second one is its rounding property.

Theorem 5.1.5. For any convex set K, J(K) ⊂ K ⊂ nJ(K) and for any symmetric convex set K,
J(K) ⊂ K ⊂

√
nJ(K).

In particular, this shows that any normed space can be approximated by `2 space by
√
n factor.

Corollary 5.1.6. For any norm ‖·‖, we can find a matrix A such that

‖Ax‖2 ≤ ‖Ax‖ ≤
√
n ‖Ax‖2

for all x.
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5.1.1 Existence and Uniqueness of John Ellipsoid

We first show that John ellipsoid can be computed by using convex programming.

Theorem 5.1.7. Given any convex set K. Define a>i x ≤ 1 be the separating hyperplanes of K, namely
K =

⋂
i∈I{x : a>i x ≤ 1}. Then, J(K) uniquely exists and is given by J(K) = {x :

∥∥G−1(x− v)
∥∥

2
≤ 1}

where G is the maximizer of the problem

max
G�0,v∈Rn

log detG subjects to ‖Gai‖2 ≤ 1− a>i v for all i ∈ I. (5.1)

Proof. Let us represent an ellipsoid by E = {x :
∥∥G−1(x− v)

∥∥
2
≤ 1}. Note that E ⊂ K if and only if

1 ≥ max
x∈E

a>i x = max
‖G−1(x−v)‖2≤1

a>i (x− v) + a>i v

= max
‖y‖2≤1

(Giai)
>y + a>i v

= ‖Giai‖2 + a>i v.

Since the log of the volume of E is proportional to log detG, the problem of finding an John ellipsoid can
be written as

max
G�0,v∈Rn

log detG subjects to ‖Gai‖2 ≤ 1− a>i v for all i ∈ I.

Since the constraint set is convex and − log detG is strictly convex (proved in the next lemma), J(K)
uniquely exists.

Definition 5.1.8. We call a function f : Rn → R is strictly convex if ∇2f(x) � 0 for all x ∈ domf .

To compute the Hessian of f , we need some calculus notations:

Definition 5.1.9. For any continuously k-th differentiable function f : Rn → Rm, we define the directional
derivative of f on direction h is

Df(x)[h] =
d

dt
f(x+ th)

∣∣∣∣
t=0

.

Similarly, the k-th directional derivative of f on directions hi is

Dkf(x)[h1, h2, · · · , hk] =
dk

dt1dt2 · · · dtk
f(x+

k∑
i=1

tihi)

∣∣∣∣∣
ti=0

.

Now, we have some fun exercises of matrix calculus. We will continue using matrix calculus in later part of
the course and you should be comfortable with the matrix calculus in general.

Lemma 5.1.10. Let X be a symmetric matrix. We have that

� For f(X) = X−1, Df(X)[H] = X−1HX−1 and D2f(X)[H1, H2] = X−1H1X
−1H2X

−1+X−1H2X
−1H1X

−1.
� For f(X) = tr(g(X)) for any nice enough scalar function g, Df(X)[H] = tr(g′(X)H).
� For f(X) = log detX, Df(X)[H] = tr(X−1H).

Proof. For f(X) = X−1, we note that Xf(X) = I. Hence, we have

0 = Hf(X) +X ·Df(X)[H] = HX−1 +X ·Df(X)[H].

Now, we apply Df(X)[H] = X−1HX−1 repeatedly and get D2f(X)[H1, H2].

For f(X) = tr(g(X)), suppose there is a sequence of polynomial gl(x) such that gl(x) and g′l(x) converges
uniformly to g(x) and g′(X) on an open set containing the eigenvalues of X. It is easy to check that
Dtr(gl(X))[H] = tr(g′l(X)H). Taking limit, we have Df(X)[H] = tr(g′(X)H).

For f(X) = log detX, we note that log detX = tr logX. Hence, we have Df(X)[H] = tr(X−1H).
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Now, we can prove that − log detX is strictly convex.

Lemma 5.1.11. Let f(X) = − log detX. For any X � 0, we have that

D2f(X)[H,H] =
∥∥∥X− 1

2HX−
1
2

∥∥∥2

F
> 0

for any non-zero H.

Proof. By the calculus rules mentioned above, we have thatDf(X)[H] = −tr(X−1H) and thatD2f(X)[H,H] =

tr(X−1HX−1H) =
∥∥∥X− 1

2HX−
1
2

∥∥∥2

F
.

Now, let us explain why we should expect the volume of John ellipsoid decreases by a constant factor after
a cut (Theorem 5.1.4). Without loss of generality, we can assume K is in John position and hence J(K)
is the unit ball. Let H be the half space in Theorem 5.1.4 and let J(K ∩Hc) = {x : (x − v)>A(x − v)}.
Since the unit sphere is the maximizer of the problem (5.1), the Hessian of log det(X) shows that

log detA ≤ log det I −
‖A− I‖2F

(1 + ‖A− I‖F )2
.

Therefore, either the volume of J(K ∩Hc) is a constant factor smaller than J(K) (then we are done), or

we have that ‖A− I‖2F ≤ 0.001. In the later case, A is very close to a sphere. Since J(K ∩Hc) does not
contain 0, it implies that the center between J(K) and J(K ∩Hc) is constant far away. Using this, one can
construct an ellipsoid with volume larger than the unit sphere and hence it draws a contradiction.

5.1.2 Structure of John Ellipsoid for symmetric body

The classical way to compute John ellipsoids is via semidefinite programming or (5.1) [33]. This makes
people believe that computing John ellipsoid is a computational intensive task. To get a faster algorithm,
we need to have a more structural understanding of John ellipsoid. We first study the structure of John
ellipsoid for symmetric convex set (i.e K = −K). For notation simplicity, we assume the body is a polytope.

Lemma 5.1.12. Let K = {x ∈ Rn : |(Ax)i| ≤ 1} a polytope with nonempty interior where A ∈ Rm×n.
Then, J(K) is given by {x : x>A>WAx ≤ 1} with a diagonal matrix W � 0. Furthermore, the weight
satisfies

∑
i wi = n and is given by the convex problem

max
wi≥0

log det
∑
i

wiaia
>
i −

∑
i

wi.

In particular, the weight w is optimal if and only if

a>i (
∑
i

wiaia
>
i )−1ai = 1 if wi 6= 0,

a>i (
∑
i

wiaia
>
i )−1ai < 1 otherwises.

Remark. The matrix A>WA is unique, but the weight itself may not be unique. Geometrically, the first
condition for the weight requires the ellipsoid touch the boundary of K for every active constraint ai (i.e.
wi 6= 0) and the second condition (comes from wi ≥ 0) requires that the ellipsoid inside the body K.

Proof. Since K = −K, the center of J(K) is 0. The John ellipsoid problem can be simplify to

max
G�0

log detG subjects to ‖Gai‖2 ≤ 1 for all i ∈ [m]
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Figure 5.1: J(K) ⊂ K ⊂
√
n · J(K)

where the John ellipsoid is represented by {x :
∥∥G−1x

∥∥
2
≤ 1}. Let M = G2, we continue to simplify the

equation as follows:

max
a>i Mai≤1,M�0

log detM = max
M�0

min
wi≥0

log detM +
∑
i

wi(1− a>i Mai)

= min
wi≥0

max
M�0

∑
i

wi + log detM − tr(M ·
∑
i

wiaia
>
i ).

Note that the optimality condition for maxM�0 log detM − tr(M ·C) is given by M = C−1. Hence, we have

max
a>i Mai≤1,M�0

log detM = min
wi≥0

∑
i

wi − log det
∑
i

wiaia
>
i − n

= n+ max
wi≥0

log det
∑
i

wiaia
>
i −

∑
wi.

The optimality condition for the later problem is given by

a>i (
∑
i

wiaia
>
i )−1ai = 1− λi

where λiwi = 0. For the total weight, we have that

m∑
i=1

wi =

m∑
i=1

wia
>
i (
∑
i

wiaia
>
i )−1ai

= tr(WA(A>WA)−1A>)

= tr((A>WA)−1A>WA)

= n

where we used that K is full dimension and so is A>WA.

Now, we show that John ellipsoid is a
√
n rounding of symmetric convex set.

Lemma 5.1.13. Given a symmetric convex set K. We have that J(K) ⊂ K ⊂
√
n · J(K).

Proof. This lemma is easier to prove by a picture (see Figure 5.1) . Let K = {x ∈ Rn : |(Ax)i| ≤ 1}.
Lemma 5.1.12 shows that J(E) = {x : x>A>WAx ≤ 1} for some diagonal W with trW = n. For any
x ∈ K, we have that

x>A>WAx ≤
∑
i

wi = n.

Hence, we have K ⊂
√
nJ(K).
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Figure 5.2: J(K) ⊂ K ⊂ n · J(K)

5.1.3 Structure of John Ellipsoid for asymmetric body

Now, we study the property of John ellipsoid for asymmetric body.

Lemma 5.1.14. Let K = {x ∈ Rn : Ax ≥ b} a polytope with nonempty interior where A ∈ Rm×n. Let
V (x) = − log vol(K ∩ (x−K)). Then, we have that

V (x) = Cn +
1

2
max
wi≥0

log det
∑
i

wi
aia
>
i

s2
i (x)

−
∑

wi

where si(x) = a>i x − bi and Cn is some constant depending on n. Furthermore, V is convex and that x is
the minimizer of V if and only if ∑

i

wi
ai
si(x)

= 0.

Proof. Note that K ∩ (x−K) =
{
y :

∣∣a>i (y − x)
∣∣ ≤ si}. Using this and Lemma 5.1.12 gives the formula of

V (x). For the optimality condition for x, we calculate ∇V as follows:

DV (x)[h] = tr

[
(
∑
i

wi
aia
>
i

s2
i (x)

)−1(−2
∑
i

wi
aia
>
i

s3
i (x)

a>i h)

]

= −2
∑
i

wi
si(x)

(a>i h)(
a>i
si(x)

(
∑
i

wi
aia
>
i

s2
i (x)

)−1 ai
si(x)

)

= −2
∑
i

wi
si(x)

(a>i h)

where the last equation follows from the optimality condition
a>i
si(x) (

∑
i wi

aia
>
i

s2i (x)
)−1 ai

si(x) = 1 (Lemma 5.1.12).

Hence, we have that

∇V (x) = −2
∑
i

wi
si(x)

ai.

Hence, x is the minimizer of V if and only if the right-hand side is 0.

We skip the calculation that V is convex until we teach self-concordance barrier function.

Finally, we show the rounding property of John ellipsoid for asymmetric body.

Lemma 5.1.15. Given a convex set K. We have that J(K) ⊂ K ⊂ n · J(K).

Proof. Again, this lemma is easier to prove by a picture (see Figure 5.2) . But this proof sometimes is more
convenient when we deal with approximate John ellipsoids.
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Without loss of generality, the center of J(K) = 0 and that si = 1 for all i. Hence, K = {y : Ay ≥ −1}.
Fix y ∈ K. The optimality condition of the center shows that

∑
wiai = 0 and in particular,∑

wi(Ay)i = 0.

Next, we note that |Ay|i ≤
√∑

wi(Ay)2
i because that J(K) ⊂ {|Ay| ≤ 1}. Combining all these, we have

that

y>A>WAy =
∑
i

wi(Ay)2
i

=
∑
i

wi(Ay + 1)2
i −

∑
wi

≤

(∑
i

wi(Ay + 1)i

)
max |Ay + 1|i −

∑
wi

=
∑
i

wi max
i
|Ay|i

≤
∑

wi ·
√
y>A>WAy.

This shows that
√
y>A>WAy ≤

∑
wi = n.

5.1.4 Algorithms

The current fastest algorithm to compute John ellipsoid exactly is via semi-definite programming, and the
faster SDP algorithm is based on the cutting plane methods and the dual reduction we mentioned before.
This is hilarious if we plan to use John ellipsoid as a cutting plane method. (In the next lecture, we will see
that this may not be a problem in real word.)

However, if we only need to have an ellipsoid with similar rounding property, then it is easier. If the convex
set is a polytope, the running time to compute such ellipsoid is roughly the same as solving a linear program
[31]. This is the best possible because finding John ellipsoid involves finding a point in the convex set and
that is equivalent to solving a linear program if the convex set is a polytope.

For symmetric convex set, the problem becomes very easy. The current fastest algorithm is an unpublished
result by Micheal Cohen and me. Recall that the weight of John ellipsoid satisfies the equation

a>i (
∑
i

wiaia
>
i )−1ai = 1.

The algorithm in simply the following:

1. Start with w
(1)
i = n

m for all i.

2. For k = 1, · · · , T , compute w
(k+1)
i = w

(k)
i a>i (

∑
i w

(k)
i aia

>
i )−1ai.

3. Output: 1
T

∑T
k=1 w

(k)
i .

The key observation is the following:

Exercise 5.1.16. For any matrix A ∈ Rm×n, the function φi(w) = log(a>i (A>WA)−1ai) is convex.

Theorem 5.1.17. We have that
∑m
i=1 wi = n and that a>i (

∑
i wiaia

>
i )−1ai ≤ (mn )

1
T for all i. In particular,

we have
a>i (

∑
i

wiaia
>
i )−1ai ≤ 1 +O(ε)

when T ≥ log(mn )

ε .
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Proof. Let v = 1
T

∑T
k=1 w

(k)
i . The fact

∑m
i=1 wi = n follows from

∑m
i=1 w

(k)
i a>i (

∑
i w

(k)
i aia

>
i )−1ai = n.

Note that

log(a>i (A>V A)−1ai) ≤
1

T

T∑
k=1

log(a>i (A>V (k)A)−1ai)

=
1

T
log(w

(T+1)
i /w

(1)
i )

≤ 1

T
log(

m

n
).

Exercise 5.1.18. Prove that the ellipsoid in this algorithm gives a
√
n(mn )

1
T -rounding.

To implement this algorithm, one still need some dimension reduction techniques we will cover later. But
for completeness, we include the algorithm here. Compare some existing solvers I can find online [34], this
solver seems easier and faster especially for large scale problems.

Exercise 5.1.19. Make the program faster and compare it against other existing solvers [29, 34, 30, 32].

Listing 1: Approximate John ellipsoid for symmetric polytope

1 % Find the maximum volume e l l i p s o i d f o r the symmetric body −1 < Ax < 1
2 % the output e l l i p s o i d i s {x : x' E x <= 1}
3 func t i on [w,E] = mve sym (A, i t e r )
4 m = s i z e (A, 1 ) ; n = s i z e (A, 2 ) ; JL dim = 5 ;
5 w = ones (m, 1 ) * (n/m) ;
6 w sum = w;
7 f o r i = 1 : i t e r
8 B = spd iags ( s q r t (w) ,0 ,m,m) * A;
9 w = sum ( (B * ( (B'*B) \(B' * randn (m, JL dim ) ) ) ) . ˆ 2 , 2 ) / JL dim ;

10 w sum = w sum + w;
11 end
12 w = w sum/( i t e r +1) ;
13 E = A' * spd iags (w, 0 ,m,m) * A;

Although this algorithm is only defined for symmetric body, there is an explicit reduction for computing
John ellipsoid from asymmetric convex set to symmetric convex set [29] and it is natural to ask how good
does the algorithm perform even for asymmetric body.

We end the lecture with this open problem.

Problem 5.1.20. Can you define a notation of approximate John ellipsoid that is easy to compute while
satisfies a property similar to Theorem 5.1.4?
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