
A survey of direct methods for sparse
linear systems

Timothy A. Davis, Sivasankaran Rajamanickam, and Wissam M. Sid-Lakhdar

Technical Report, Department of Computer Science and Engineering,
Texas A&M Univ, April 2016,

http://faculty.cse.tamu.edu/davis/publications.html
To appear in Acta Numerica

Wilkinson defined a sparse matrix as one with enough zeros that it pays to
take advantage of them.1 This informal yet practical definition captures the
essence of the goal of direct methods for solving sparse matrix problems. They
exploit the sparsity of a matrix to solve problems economically: much faster
and using far less memory than if all the entries of a matrix were stored and
took part in explicit computations. These methods form the backbone of a
wide range of problems in computational science. A glimpse of the breadth of
applications relying on sparse solvers can be seen in the origins of matrices in
published matrix benchmark collections (Duff and Reid 1979a) (Duff, Grimes
and Lewis 1989a) (Davis and Hu 2011). The goal of this survey article is to
impart a working knowledge of the underlying theory and practice of sparse
direct methods for solving linear systems and least-squares problems, and to
provide an overview of the algorithms, data structures, and software available
to solve these problems, so that the reader can both understand the methods
and know how best to use them.

1 Wilkinson actually defined it in the negation: “The matrix may be sparse, either with
the non-zero elements concentrated ... or distributed in a less systematic manner. We
shall refer to a matrix as dense if the percentage of zero elements or its distribution is
such as to make it uneconomic to take advantage of their presence.” (Wilkinson and
Reinsch 1971), page 191, emphasis in the original.

2 Davis, Rajamanickam, Sid-Lakhdar

CONTENTS

1 Introduction 2
2 Basic algorithms 5
3 Solving triangular systems 10
4 Symbolic analysis 11
5 Cholesky factorization 26
6 LU factorization 37
7 QR factorization and least-squares problems 52
8 Fill-reducing orderings 65
9 Supernodal methods 90
10 Frontal methods 100
11 Multifrontal methods 106
12 Other topics 134
13 Available Software 147
References 152

1. Introduction

This survey article presents an overview of the fundamentals of direct meth-
ods for sparse matrix problems, from theory to algorithms and data struc-
tures to working pseudocode. It gives an in-depth presentation of the many
algorithms and software available for solving sparse matrix problems, both
sequential and parallel. The focus is on direct methods for solving systems of
linear equations, including LU, QR, Cholesky, and other factorizations, for-
ward/backsolve, and related matrix operations. Iterative methods, solvers
for eigenvalue and singular-value problems, and sparse optimization prob-
lems are beyond the scope of this article.

1.1. Outline

• In Section 1.2, below, we first provide a list of books and prior survey
articles that the reader may consult to further explore this topic.
• Section 2 presents a few basic data structures and some basic algo-

rithms that operate on them: transpose, matrix-vector and matrix-
matrix multiply, and permutations. These are often necessary for the
reader to understand and perhaps implement, to provide matrices as
input to a package for solving sparse linear systems.
• Section 3 describes the sparse triangular solve, with both sparse and

dense right-hand-sides. This kernel provides a useful background in
understanding the nonzero pattern of a sparse matrix factorization,
which is discussed in Section 4, and also forms the basis of the basic
Cholesky and LU factorizations presented in Sections 5 and 6.

Sparse Direct Methods 3

• Section 4 covers the symbolic analysis phase that occurs prior to nu-
meric factorization: finding the elimination tree, the number of nonze-
ros in each row and column of the factors, and the nonzero patterns
of the factors themselves (or their upper bounds in case numerical piv-
oting changes things later on). The focus is on Cholesky factorization
but this discussion has implications for the other kinds of factorizations
as well (LDLT , LU, and QR).
• Section 5 presents the many variants of sparse Cholesky factorization

for symmetric positive definite matrices, including early methods of
historical interest (envelope and skyline methods), and up-looking, left-
looking, and right-looking methods. Multifrontal and supernodal meth-
ods (for Cholesky, LU, LDLT and QR) are presented later on.
• Section 6 considers the LU factorization, where numerical pivoting

becomes a concern. After describing how the symbolic analysis dif-
fers from the Cholesky case, this section covers left-looking and right-
looking methods, and how numerical pivoting impacts these algorithms.
• Section 7 presents QR factorization and its symbolic analysis, for both

row-oriented (Givens) and column-oriented (Householder) variants. Also
considered are alternative methods for solving sparse least-squares prob-
lems, based on augmented systems or on LU factorization.
• Section 8 is on the ordering problem, which is to find a good permu-

tation for reducing fill-in, work, or memory usage. This is a difficult
problem (it is NP-hard, to be precise). This section presents the many
heuristics that have been created that attempt to find a decent solution
to the problem. These heuristics are typically applied first, prior to the
symbolic analysis and numeric factorization, but it appears out of or-
der in this article, since understanding matrix factorizations (Sections 4
through 7) is a prerequisite in understanding how to best permute the
matrix.
• Section 9 presents the supernodal method for Cholesky and LU factor-

ization, in which adjacent columns in the factors with identical nonzero
pattern (or nearly identical) are “glued” together to form supernodes.
Exploiting this common substructure greatly improves memory traf-
fic and allows for computations to be done in dense submatrices, each
representing a supernodal column.
• Section 10 discusses the frontal method, which is another way of orga-

nizing the factorization in a right-looking method, where a single dense
submatrix holds the part of the sparse matrix actively being factorized,
and rows and columns come and go during factorization. Historically,
this method precedes both supernodal and multifrontal methods.
• Section 11 covers the many variants of the multifrontal method for

Cholesky, LDLT , LU, and QR factorizations. In this method, the ma-
trix is represented not by one frontal matrix, but by many of them,

4 Davis, Rajamanickam, Sid-Lakhdar

all related to one another via the assembly tree (a variant of the elim-
ination tree). As in the supernodal and frontal methods, dense matrix
operations can be exploited within each dense frontal matrix.
• Section 12 considers several topics that do not neatly fit into the above

outline, yet which are critical to the domain of direct methods for
sparse linear systems. Many of these topics are also active areas of
research: update/downdate methods, parallel triangular solve, GPU
acceleration, and low-rank approximations.
• Reliable peer-reviewed software has long been a hallmark of research

in computational science, and in sparse direct methods in particular.
Thus, no survey on sparse direct methods would thus be complete
without a discussion of software, which we present in Section 13.

1.2. Resources

Sparse direct methods are a tightly-coupled combination of techniques from
numerical linear algebra, graph theory, graph algorithms, permutations, and
other topics in discrete mathematics. We assume that the reader is familiar
with the basics of this background. For further reading, Golub and Van
Loan (2012) provide an in-depth coverage of numerical linear algebra and
matrix computations for dense and structured matrices. Cormen, Leiserson
and Rivest (1990) discuss algorithms and data structures and their analysis,
including graph algorithms. MATLAB notation is used in this article (see
Davis (2011b) for a tutorial).

Books dedicated to the topic of direct methods for sparse linear systems in-
clude those by Tewarson (1973), George and Liu (1981), Pissanetsky (1984),
Duff, Erisman and Reid (1986), Zlatev (1991), Björck (1996), and Davis
(2006). Portions of Sections 2 through 8 of this article are condensed from
Davis’ (2006) book. Demmel (1997) interleaves a discussion of numerical
linear algebra with a description of related software for sparse and dense
problems. Chapter 6 of Dongarra, Duff, Sorensen and Van der Vorst (1998)
provides an overview of direct methods for sparse linear systems. Several of
the early conference proceedings in the 1970s and 1980s on sparse matrix
problems and algorithms have been published in book form, including Reid
(1971), Rose and Willoughby (1972), Duff (1981e), and Evans (1985).

Survey and overview papers such as this one have appeared in the lit-
erature and provide a useful birds-eye view of the topic and its historical
development. The first was a survey by Tewarson (1970), which even early in
the formation of the field covers many of the same topics as this survey arti-
cle: LU factorization, Householder and Givens transformations, Markowitz
ordering, minimum degree ordering, and bandwidth/profile reduction and
other special forms. It also presents both the Product Form of the Inverse
and the Elimination Form. The former arises in a Gauss-Jordan elimina-
tion that is no longer used in sparse direct solvers. Reid’s survey (1974)

Sparse Direct Methods 5

focuses on right-looking Gaussian elimination, and in two related papers
(1977a, 1977b), also considers graphs, the block triangular form, Cholesky
factorization, and least-squares problems. Duff (1977b) gave an extensive
survey of sparse matrix methods and their applications with over 600 ref-
erences. This paper does not attempt to cite the many papers that rely on
sparse direct methods, since the count is now surely into the thousands. A
Google Scholar search in September 2015 for the term “sparse matrix” lists
1.4 million results, although many of those are unrelated to sparse direct
methods.

The 1980s saw an explosion of work in this area (over 160 of the papers
and books in the list of references are from that decade). With 35 years of
retrospect, Duff’s paper A Sparse Future, (1981d), was aptly named. George
(1981) provides a tutorial survey of sparse Cholesky factorization, while
Heath (1984) focuses on least-squares problems. Zlatev (1987) compares and
contrasts methods according to either static or dynamic data structures, for
Cholesky, LU, and QR. The first survey that included multifrontal methods
was by Duff (1989a).

While parallel methods appeared as early as Calahan’s work (1973), the
first survey to focus on parallel methods was that of Heath, Ng and Peyton
(1991), which focuses solely on Cholesky factorization, but considers order-
ing, symbolic analysis, and basic factorizations as well as supernodal and
multifrontal methods. The overview by Duff (1991) the same year focuses
on parallel LU and LDLT factorization via multifrontal methods. Duff and
Van der Vorst (1999) provide a broad survey of parallel algorithms. Two
recent book chapters, Duff and Uçar (2012) and Ng (2013) provide tutorial
overviews. The first considers just the combinatorial problems that arise in
sparse direct and iterative methods.

Modern sparse direct solvers obtain their performance through a variety of
means: (1) asymptotically efficient symbolic and graph algorithms that allow
the floating-point work to dominate the computation (this is in contrast to
early methods such as Markowitz-style right-looking LU factorization), (2)
parallelism, and (3) operations on dense submatrices, via the supernodal,
frontal, and multifrontal methods. Duff (2000) surveys the impact of the
second two topics. A full discussion of dense matrix operations (the BLAS)
is beyond the scope of this article (Dongarra et al. (1990), Anderson et
al. (1999), Goto and van de Geijn (2008), Gunnels et al. (2001), Igual et
al. (2012)).

2. Basic algorithms

There are many ways of storing a sparse matrix, and each software package
typically uses a data structure that is tuned for the methods it provides.
There are, however, a few basic data structures common to many packages.

6 Davis, Rajamanickam, Sid-Lakhdar

Typically, software packages that use a unique internal data structure rely
on a simpler one for importing a sparse matrix from the application in which
it is incorporated. A user of such a package should thus be familiar with
some of the more common data structures and their related algorithms.

A sparse matrix is held in some form of compact data structure that
avoids storing the numerically zero entries in the matrix. The two most
common formats for sparse direct methods are the triplet matrix and the
compressed-column matrix (and its transpose, the compressed-row matrix).
Matrix operations that operate on these data structures are presented below:
matrix-vector and matrix-matrix multiplication, addition, and transpose.

2.1. Sparse matrix data structures

The simplest sparse matrix data structure is a list of the nonzero entries in
arbitrary order, also called the triplet form. This is easy to generate but
hard to use in most sparse direct methods, so the format is often used in
an interface to a package but not in its internal representation. This data
structure can be easily converted into compressed-column form in linear time
via a bucket sort. In this format, each column is represented as a list of values
and their corresponding row indices. To create this structure, the first pass
counts the number of entries in each column of the matrix, and the column
pointer array is constructed as the cumulative sum of the column counts.
The entries are placed in their appropriate columns in a second pass. In the
compressed-column form, an m-by-n sparse matrix that can contain up to
nzmax entries is represented with an integer array p of length n+1, an integer
array i of length nzmax, and a real array a of length nzmax. Row indices
of entries in column j are stored in i[p[j]] through i[p[j+1]-1], and the
numerical values are stored in the same locations in a. In zero-based form
(where rows and columns start at zero) the first entry p[0] is always zero,
and p[n] is the number of entries in the matrix. An example matrix and
its zero-based compressed-column form is given below.

A =

4.5 0 3.2 0
3.1 2.9 0 0.9
0 1.7 3.0 0

3.5 0.4 0 1.0

 (2.1)

int p [] = { 0, 3, 6, 8, 10 } ;

int i [] = { 0, 1, 3, 1, 2, 3, 0, 2, 1, 3 } ;

double a [] = { 4.5, 3.1, 3.5, 2.9, 1.7, 0.4, 3.2, 3.0, 0.9, 1.0 } ;

Exact numerical cancellation is rare, and most algorithms ignore it. An
entry in the data structure that is computed but found to be numerically
zero is still called a “nonzero,” by convention. Leaving these entries in the
matrix leads to much simpler algorithms and more elegant graph theoretical
statements about the algorithms.

Sparse Direct Methods 7

Accessing a column of this data structure is very fast, but extracting a
given row is very costly. Algorithms that operate on such a data structure
must be designed accordingly. Likewise, modifying the nonzero pattern of
a compressed-column matrix is not trivial. Deleting or adding single entry
takesO(|A|) time, if gaps are not tolerated between columns. MATLAB uses
the compressed-column data structure for its sparse matrices with the extra
constraint that no numerically zero entries are stored (Gilbert, Moler and
Schreiber 1992). McNamee (1971, 1983a, 1983b) provided the first published
software for basic sparse matrix data structures and operations (multiply,
add, and transpose). Gustavson (1972) summarizes a range of methods and
data structures, including how this data structure can be modified dynami-
cally to handle fill-in during factorization.

Finite-element methods generate a matrix as a collection of elements, or
dense submatrices. A solver dedicated to solving finite-element problems will
often accept its input in this form. Each element requires a nonzero pattern
of the rows and columns it affects. The complete matrix is a summation
of the elements, and two or more elements may contribute to the same
matrix entry. Thus, it is a common practice for any data structure that any
duplicate entries be summed, which can be done in linear time.

2.2. Matrix-vector multiplication

One of the simplest sparse matrix algorithms is matrix-vector multiplication,
z = Ax + y, where y and x are dense vectors and A is sparse. If A is split
into n column vectors, the result z = Ax+ y is

z =
[
A∗1 . . . A∗n

] x1
...
xn

+ y

Allowing the result to overwrite the input vector y, the jth iteration com-
putes y = y +A∗jxj . The 1-based pseudocode for computing y = Ax+ y is
given below.

Algorithm 2.1: sparse matrix times dense vector
for j = 1 to n do

for each i for which aij 6= 0 do
yi = yi + aijxj

Algorithm 2.1 illustrates the use of gather/scatter operations, which are
very common in sparse direct methods. The inner-most loop has the form
y[i[k]] = y[i[k]] + a[k]*x[j], which requires both a gather and a scat-
ter. A gather operation is a subscripted subscript appearing on the right-
hand-side of an assignment statement, of the form s = y[i[k]] where y

is a dense vector and s is a scalar. A scatter operation occurs when an

8 Davis, Rajamanickam, Sid-Lakhdar

expression y[i[k]] appears as the target of an assignment. Gather/scatter
operations result in a very irregular access to memory, and are thus very
costly. Memory transfers are fastest when access has spatial and/or tem-
poral locality, although the computations themselves can be pipelined on
modern architectures (Lewis and Simon 1988). One of the goals of supern-
odal, frontal, and multifrontal methods (Sections 9 to 11) is to replace most
of the irregular gather/scatter operations with regular operations on dense
submatrices.

Sparse matrix-vector multiplication is a common kernel in iterative meth-
ods, although they typically use a compressed-row format (or one of many
other specialized data structures), since it results in a faster method because
of memory traffic. It requires only a gather operation, not the gather/scatter
of Algorithm 2.1.

2.3. Transpose

The algorithm for transposing a sparse matrix (C = AT) is very similar to
the method for converting a triplet form to a compressed-column form. The
algorithm computes the row counts of A and the cumulative sum to obtain
the row pointers. It then iterates over each nonzero entry in A, placing
the entry in its appropriate row vector. Transposing a matrix twice results
in sorted row indices. Gustavson (1978) describes algorithms for matrix
multiply (C = AB) and permuted transpose (C = (PAQ)T where P and Q
are permutation matrices). The latter takes linear time (O(n+ |A|) where
n is the matrix dimension and |A| is the number of nonzeros).

2.4. Matrix multiplication and addition

Algorithms are tuned to their data structures. For example, if two sparse
matrices A and B are stored in compressed-column form, then a matrix
multiplication C = AB where C is m-by-n, A is m-by-k, and B is k-by-n,
should access A and B by column, and create C one column at a time. If
C∗j and B∗j denote column j of C and B, then C∗j = AB∗j . Splitting A
into its k columns and B∗j into its k individual entries results in

C∗j =
[
A∗1 · · · A∗k

] b1j
...
bkj

 =
k∑

t=1

A∗tbtj . (2.2)

The nonzero pattern of C is given by the following theorem.

Theorem 2.1. (Gilbert (1994)) The nonzero pattern of C∗j is the set
union of the nonzero pattern of A∗t for all t for which btj is nonzero. If
Cj , Ai, and Bj denote the set of row indices of nonzero entries in C∗j , A∗t,

Sparse Direct Methods 9

and B∗j , then (ignoring numerical cancellation),

Cj =
⋃
t∈Bj

At. (2.3)

A matrix multiplication algorithm must compute both the numerical val-
ues C∗j and the pattern Cj , for each column j. A variant of Gustavson’s
algorithm below uses a temporary dense vector x to construct each column,
and a flag vector w, both of size n and both initially zero (Gustavson 1978).
The matrix C grows one entry at a time, column by column. The three “for
each...” loops access a single column of a sparse matrix in a compressed-
column data structure.

Algorithm 2.2: sparse matrix times sparse matrix
for j = 1 to n do

for each t in Bj do
for each i in At do

if wi < j then
append row index i to Cj
wi = j

xi = xi + aitbtj
for each i in Cj do

cij = xi
xi = 0

As stated, this algorithm requires a dynamic allocation of C since it starts
out as empty and grows one entry at a time to a size that is not known a
priori. Computing the pattern C or even just its size is actually much harder
than computing the pattern or size of a sparse factorization. The latter is
discussed in Section 4. Another approach computes the size of the pattern C
in an initial symbolic pass, followed by the second numeric pass above, which
allows for C to be statically allocated. The first pass and second passes take
the same time, in a big-O sense. For sparse factorization, by contrast, the
symbolic analysis is asymptotically faster than the numeric factorization.
The time taken by Algorithm 2.2 is O(n+ f + |B|) where f is the number
of floating-point operations performed, which is typically dominated by f .

Matrix addition C = A+B is very similar to matrix multiplication. The
only difference is that two nested “for each” loops above are replaced by two
non-nested loops, one that accesses the jth column of B and the other the
jth column of A.

2.5. Permutations

A sparse matrix must typically be permuted either before or during its
numeric factorization, either for reducing fill-in or for numerical stability, or

10 Davis, Rajamanickam, Sid-Lakhdar

often for both. Fill-in is the introduction of new nonzeros in the factors that
do not appear in the corresponding positions in the matrix being factorized.
Finding a suitable fill-reducing permutation is discussed in Section 8.

Permutations are typically represented as integer vectors. If C = PA
is to be computed, then the row permutation P can be represented as a
permutation vector p of size n. If row i of A becomes the kth row of C, then
i=p[k]. The inverse permutation is k=invp[i]. Permuting A to obtain C
requires the latter, since a traversal of A gives a set of row indices i of A
that must be translated to rows k of C, via the computation k=invp[i].
Column permutations C = AQ are most simply done with a permutation
vector q where j=q[k] if column j of A corresponds to column k of C. This
allows C to be constructed one column at a time, from left to right.

3. Solving triangular systems

Solving a triangular system, Lx = b, where L is sparse, square, and lower
triangular, is a key mathematical kernel for sparse direct methods. It will be
used in Section 5 as part of a sparse Cholesky factorization algorithm, and
in Section 6 as part of a sparse LU factorization algorithm. Solving Lx = b
is also essential for solving Ax = b after factorizing A.

3.1. A dense right-hand side

There are many ways of solving Lx = b but if L is stored as a compressed-
column sparse matrix, accessing L by columns is the most natural. As-
suming L has unit diagonal, we obtain a simple Algorithm 3.1, below, that
is very similar to matrix-vector multiplication. The vector x is accessed
via gather/scatter. Solving related systems, such as LTx = b, Ux = b, and
UTx = b (where U is upper triangular) is similar, except that the transposed
solves are best done by accessing the transpose of the matrix row-by-row, if
the matrix is stored in column form.

Algorithm 3.1: lower triangular solve of Lx = b with dense b
x = b
for j = 1 to n do

for each i > j for which lij 6= 0 do
xi = xi − lijxj

3.2. A sparse right-hand side

When the right-hand side is sparse, the solution x is also sparse, and not all
columns of L take part in the computation since the jth loop of Algorithm
3.1 can be skipped if xj = 0. Scanning all of x for this condition adds O(n)
to the time complexity, which is not optimal. However, if set of indices j for
which xj will be nonzero is known, X = {j |xj 6= 0}, algorithm becomes:

Sparse Direct Methods 11

Figure 3.1. Sparse triangular solve (Davis 2006)

Algorithm 3.2: lower triangular solve of Lx = b with sparse b
x = b
for each j ∈ X do

for each i > j for which lij 6= 0 do
xi = xi − lijxj

The run time is now optimal, but X must be determined first, as Gilbert
and Peierls (1988) describe. Finding X requires that we follow a set of
implications. Entries in x become nonzero in two places, the first and last
lines of Algorithm 3.2. Neglecting numerical cancellation, rule one states
that bi 6= 0⇒ xi 6= 0, and rule two is: xj 6= 0 ∧ ∃i(lij 6= 0)⇒ xi 6= 0. These
two rules lead to a graph traversal problem. Consider a directed acyclic
graph GL = (V,E) where V = {1 . . . n} and E = {(j, i) | lij 6= 0}. Rule one
marks all nodes in B, the nonzero pattern of b. Rule two states that if a
node is marked, all its neighbors become marked. These rules are illustrated
in Figure 3.1. In graph terminology,

X = ReachL(B). (3.1)

Computing X requires a depth-first search of the directed graph GL, start-
ing at nodes in B. The time taken is proportional to the number of edges
traversed, which is exactly equal to the floating-point operation count. A
depth-first search computes X in topological order, and performing the nu-
merical solve in that order preserves the numerical dependencies. An ex-
ample triangular solve is shown in Figure 3.2. If B = {4, 6}, then in this
example X = {6, 10, 11, 4, 9, 12, 13, 14}, listed in topological order as pro-
duced by the depth-first search. The sparse triangular solve forms the basis
of the left-looking sparse LU method presented in Section 6.2. For the par-
allel triangular solve, see Section 12.2.

4. Symbolic analysis

Solving a sparse system of equations, Ax = b, using a direct method starts
with a factorization of A, followed by a solve phase that uses the factorization

12 Davis, Rajamanickam, Sid-Lakhdar

Figure 3.2. Solving Lx = b where L, x, and b are sparse (Davis 2006)

to solve the system. In all but a few methods, the factorization splits into
two phases: a symbolic phase that typically depends only on the nonzero
pattern of A, and a numerical phase that produces the factorization itself.
The solve phase uses the triangular solvers as discussed in Section 3.

The symbolic phase is asymptotically faster than the numeric factorization
phase, and it allows the numerical phase to be more efficient in terms of time
and memory. It also allows the numeric factorization to be repeated for a
sequence of matrices with identical nonzero pattern, a situation that often
arises when solving non-linear and/or differential equations.

The first step in the symbolic analysis is to find a good fill-reducing per-
mutation. Sparse direct methods for solving Ax = b do not need to factorize
A, but can instead factorize a permuted matrix: PAQ if A is unsymmetric,
or PAP T if it is symmetric. Finding the optimal P and Q that minimizes
memory usage or flop count to compute the factorization is an NP-hard
problem (Yannakakis 1981), and thus heuristics are used. Fill-reducing or-
derings are a substantial topic in their own right. Understanding how they
work and what they are trying to optimize requires an understanding of
the symbolic and numeric factorizations. Thus, a discussion of the ordering
topic is postponed until Section 8.

Once the ordering is found, the symbolic analysis finds the elimination
tree, and the nonzero pattern of the factorization or its key properties such
as the number of nonzeros in each row and column of the factors.

Although the symbolic phase is a precursor for all kinds of factorizations,
it is the Cholesky factorization of a sparse symmetric positive definite matrix
A = LLT that is considered first. Much of this analysis applies to the other
factorizations as well (QR can be understood via the Cholesky factorization
of ATA, for example). Connections to the other factorization methods are
discussed in Sections 6 and 7.

Sparse Direct Methods 13

The nonzero pattern of the Cholesky factor L is represented by an undi-
rected graph GL+LT , with an edge (i, j) if lij 6= 0. There are many ways to
compute the Cholesky factorization A = LLT and the graph GL+LT , and
the algorithms and software discussed in Section 13 reflect these variants.
One of the simplest Cholesky factorization algorithms is the up-looking vari-
ant, which relies on the sparse sparse triangular solve, Lx = b. This form of
the Cholesky factorization will be used here to derive the elimination tree
and the method for finding the row/column counts. Consider a 2-by-2 block
decomposition LLT = A,[

L11

lT12 l22

] [
LT
11 l12

l22

]
=

[
A11 a12
aT12 a22

]
, (4.1)

where L11 and A11 are (n−1)-by-(n−1). These terms can be computed with
(1) L11L

T
11 = A11 (a recursive factorization of the leading submatrix of A),

(2) L11l12 = a12 (a sparse triangular solve for l12), and (3) lT12l12 + l222 = a22
(a dot product to compute l22). When the recursion is unrolled, a simple
algorithm results that computes each row of L, one row at a time, starting
at row 1 and proceeding to row n.

Rose (1972) provided the first detailed graph-theoretic analysis of the
sparse Cholesky factorization, based on an outer-product formulation. Con-
sider the following decomposition,[

l11
l21 L22

] [
l11 lT21

LT
22

]
=

[
a11 aT21
a21 A22

]
, (4.2)

where the (22)-blocks have dimension n − 1. This leads to a factorization
computed with (1) l11 =

√
a11, a scalar square-root, (2) l12 = a21/l22, which

divides a sparse column vector by scalar, and (3) the Cholesky factorization
L22L

T
22 = A22 − l21l

T
21. The undirected graph of the Schur complement,

A22− l21lT21, has a special structure. Node 1 is gone, and removing it causes
extra edges to appear (fill-in), resulting in a clique of its neighbors. That
is, the graph of l21l

T
21 is a clique of the neighbors of node 1. As a result, the

graph of L + LT is chordal, in which every cycle of length greater than 3
contains a chord. George and Liu (1975) consider the special case when all
the entries in the envelope of the factorization become all nonzero (defined
in Section 8.2). If a matrix can be permuted so that no fill-in occurs in its
factorization, it is said to have a perfect elimination ordering; the graph of
L + LT is one such matrix (Rose 1972, Bunch 1973, Duff and Reid 1983b).
Tarjan (1976) surveys the use of graph theory in symbolic factorization and
fill-reducing ordering methods, including the unsymmetric case.

Fill-in can be catastrophic, causing the sparse factorization to require
O
(
n2
)

memory and O
(
n3
)

time. This occurs for nearly all random matrices
(Duff 1974a) but almost never for matrices arising from real applications.
The moral of this observation is that performance results of sparse direct

14 Davis, Rajamanickam, Sid-Lakhdar

Figure 4.3. Pruning the directed graph GL yields the elimination tree

methods with random sparse matrices should always be suspect. Trustwor-
thy results require matrices arising from real applications, or from matrix
generators such as 2D or 3D meshes that mimic real applications. As a
result, collecting matrices that arise in real applications is crucial for the
development of all sparse direct methods (Duff and Reid 1979a) (Duff et
al. 1989a) (Davis and Hu 2011). Inverting an entire sparse matrix does re-
sult in catastrophic fill-in, which is why it is never computed to solve Ax = b
(Duff, Erisman, Gear and Reid 1988).

4.1. Elimination tree

The elimination tree (or etree) appears in many sparse factorization algo-
rithms and in many related theorems. It guides the symbolic analysis and
provides a framework for numeric factorization, both parallel and sequential.

Consider Equation (4.1), applied to the leading k-by-k submatrix of A.
The vector l12 is computed with a sparse triangular solve, L11l12 = a12,
and its transpose becomes the kth row of L. Its nonzero pattern is thus
Lk = ReachGk−1

(Ak), where Gk−1 is the directed graph of L11, Lk is the
nonzero pattern of the kth row of L, and Ak is the nonzero pattern of the
upper triangular part of the kth column of A.

The depth-first search of Gk−1 is sufficient for computing Lk, but a simpler
method exists, taking only O(|Lk|) time. It is based on a pruning of the
graph Gk−1 (Figure 4.3). Computing the kth row of L requires a triangular
solve of L1:k−1,1:1−kx = b, where the right-hand b is the k row of A. Thus,
if aik is nonzero, so is bi and xi. This entry xi becomes lki and thus aik 6= 0
implies xi = lki 6= 0.

If there is another nonzero lji with j < k, then there is an edge from i
to j in the graph, and so when doing the graph traversal from node i, node
j will be reached. As a result, xj 6= 0. This becomes the entry lkj , and
thus the existence of a pair of nonzeros lji and lki implies that lkj is nonzero
(Parter 1961). Outer-product Gaussian elimination is another way to look

Sparse Direct Methods 15

at this (A = LU): for a symmetric matrix A, two nonzero entries uij and
lki cause lkj to become nonzero when the ith pivot entry is eliminated.

For the sparse triangular solve, if the graph traversal starts at node i, it
will see both nodes j and k. The reach of node i is not changed if the edge
(i, k) is ignored; it can still reach k from a path of length two: i to j to k.
As a result, any edge (i, k) corresponding to the nonzero lki can be ignored
in the graph search, just so long as there is another nonzero lji above it in
the same column. Only the first off-diagonal entry is needed, that is, the
smallest j > i for which lji is nonzero. Pruning all but this edge results in
the same reach (3.1) for the triangular solve, L11l12 = a12, but the resulting
structure is faster to traverse. A directed acyclic graph with at most one
outgoing edge per node is a tree (or forest). This is the elimination tree.
It may actually be a forest, but by convention is still called the elimination
tree.

In terms of the graph of A, if there is a path of length two between the
two nodes k and j, where the intermediate node is i < min(k, j), then this
causes the edge (k, j) to appear in the filled graph. Rose, Tarjan and Lueker
(1976) generalized Parter’s result in their path lemma: lij is nonzero if and
only if there is a path path i ; j in A where all intermediate nodes are
numbered less than min(i, j).

The elimination tree is based on the pattern of L, but it can be computed
much more efficiently without finding the pattern of L, in time essentially
linear in |A| (Liu 1986a, Schreiber 1982). The algorithm relies on the quick
traversal of paths in the tree as it is being constructed. A key theorem by
Liu states that if aki 6= 0 (where k > i), then i is a descendant of k in
the elimination tree (Liu 1990). The tree is constructed by ensuring this
property holds for each entry in A.

Let T denote the elimination tree of L, and let Tk denote the elimination
tree of submatrix L1...k,1...k, the first k rows and columns of L.

The tree is constructed incrementally, for each leading submatrix of A.
That is, the tree Tk for the matrix A1..k,1..k is constructed from Tk−1. For
each entry aki 6= 0, it suffices to ensure that i is a descendant of k in the
next tree Tk. Walking the path from i to a root t in Tk−1 means that t must
be a child of k in Tk. This path could be traversed one node at a time,
but it is much more efficient to compress the paths as they are found, to
speed up subsequent traversals. Future traversals from i must arrive at k,
so as the path is traversed, each node along the path is given a shortcut to
its ancestor k. This method is an application of the disjoint-set-union-find
algorithm of Tarjan (1975) (see also (Cormen et al. 1990)). Thus, its run
time is essentially linear in the number of entries in A (this is called nearly
O(|A|)). This is much faster than O(|L|), and it means that the tree can be
computed prior to computing the nonzero pattern of L, and then used to
construct the pattern of L or to explore its properties.

16 Davis, Rajamanickam, Sid-Lakhdar

Figure 4.4. Example matrix A, factor L, and elimination tree. Fill-in entries in L
are shown as circled x’s. (Davis 2006)

The column elimination tree is the elimination tree of ATA, and is used
in the QR and LU factorization algorithms. It can be computed without
forming ATA, also in nearly O(|A|) time. Row i of A creates a dense sub-
matrix, or clique, in the graph of ATA. To speed up the construction of
the tree without forming the graph of ATA explicitly, a sparser graph is
used, in which each clique is replaced with a path amongst the nodes in the
clique. The resulting graph/matrix has the same Cholesky factor and the
same elimination tree as ATA.

Once the tree is found, some algorithms and many theorems require it to
be postordered. In a postordered tree, the d proper descendants of any node
k are numbered k − d through k − 1. If the resulting node renumbering is
written as a permutation matrix P , then the filled graph of A and PAP T

are isomorphic (Liu 1990). In other words, the two Cholesky factorizations
have the same number of nonzeros and require the same amount of work.
Their elimination trees are also isomorphic. Even if the symbolic or numeric
factorization does not require a postordering of the etree, doing so makes
the computations more regular by placing similar submatrices close to each
other, thus improving memory traffic and speeding up the work (Liu 1987c).

An example matrix A, its Cholesky factor L, and its elimination tree
T are shown in Figure 4.4. Figure 4.5 illustrates the matrix PAP T , its
Cholesky factor, and its elimination tree, where P is the postordering of the
elimination tree in Figure 4.4.

The elimination tree is fundamental to sparse matrix computations; Liu
(1990) describes its many uses. Jess and Kees (1982) applied a restricted
definition of the tree for matrices A that had perfect elimination orderings,
and Duff and Reid (1982) defined a related tree for the multifrontal method
(Section 11). The elimination tree was first formally defined by Schreiber

Sparse Direct Methods 17

Figure 4.5. After elimination tree postordering (Davis 2006)

(1982). Kumar, Kumar and Basu (1992) present a parallel algorithm for
computing the tree, and for symbolic factorization (Section 4.3).

4.2. Row and column counts

The row/column counts for a Cholesky factorization are the number of
nonzeros in each row/column of L. These can be found without actually
computing the pattern of L, and in time that is nearly O(|A|), by using just
the elimination tree and pattern of A. The column count is useful for laying
out a good data structure for L, and row counts are helpful in determining
data dependencies for parallel numeric factorization.

Row counts and row subtrees

The kth row subtree, T k, consists of a subtree of T and defines the nonzero
pattern of the kth row of L. Each node j in T k corresponds to a nonzero
lkj . Its leaves are a subset of the kth row of the lower triangular part of A.
The root of the tree is k. It is actually a tree, not a forest, and its nodes are
the same as those traversed in the sparse lower triangular solve for the kth
step of the up-looking Cholesky factorization. Since the tree can be found
without finding the pattern of L, and since the pattern of A is also known,
the kth row subtree precisely defines the nonzero pattern of the kth row of
L, without the need for storing each entry explicitly.

One simple but non-optimal method for computing the row and column
counts is to just traverse each subtree and determine its size using the sparse
triangular solve. The size of the tree T k is number of nonzeros in row k of
L (the row count). Visiting a node j in T k adds one to the column count
of j. This method is simple to understand, but it takes O(|L|) time.

The time can be reduced to nearly linear in |A| (Gilbert, Li, Ng and
Peyton 2001, Gilbert, Ng and Peyton 1994). The basic idea is to decompose
each row subtree into a set of disjoint paths, each starting with a leaf node

18 Davis, Rajamanickam, Sid-Lakhdar

and terminating at the least common ancestor of the current leaf and the
prior leaf node. The paths are not traversed one node at a time. Instead,
the lengths of these paths are found via the difference in the levels of their
starting and ending nodes, where the level of a node is its distance from the
root. The row count algorithm exploits the fact that all subtrees are related
to each other; they are all subtrees of the elimination tree. Summing up the
sizes of these disjoint paths gives the row counts.

The row count algorithm postorders the elimination tree, and then finds
the level and first descendant of each node, which is the lowest numbered
descendant of each node. This phase takes O(n) time.

The next step traverses all row subtrees, considering column (node) j in
each row subtree in which it appears (that is, all nonzeros aij in column j,
starting at column j = 1 and proceeding to j = n). If j is a leaf in the ith
row subtree, then the least common ancestor c of this node and the prior leaf
seen in the ith row subtree define a unique disjoint path, starting at j and
preceding up to but not including c. Finding c relies on another application
of the disjoint-set-union-find algorithm. Once c is found, the length of the
path from j to the child of c can be quickly found by taking the difference
of the levels j and c.

However, not all entries aij are leaves j in T i. The subset of A that
contains just leaves of row subtrees is called the skeleton matrix. The fac-
torization of skeleton matrix of A has the same nonzero pattern as A itself.
The skeleton is found by looking at the first descendants of the nodes in
the tree. When the entry aij is considered, node j is a leaf of the ith row
subtree, T i, if (and only if) the first descendant of j is is larger than any
first descendant yet seen in that subtree.

Figure 4.6 shows the postordered skeleton matrix of A, denoted Â, its fac-
tor L, its elimination tree T , and the row subtrees T 1 through T 11 (compare
with Figure 4.5). Entries in the skeleton matrix are shown as dark circles.

A white circle denotes an entry in A that is not in the skeleton matrix Â.

The first disjoint path found in the ith row subtree goes from j up to i.
Subsequent disjoint paths are defined by the pair of nodes p and j, where p
is the prior entry aip in the skeleton matrix, and also the prior leaf seen in
this subtree. These two nodes define the unique disjoint path from j to the
common ancestor c of p and j. Summing up the lengths of these disjoint
paths gives the number of nodes in the ith row subtree, which is the number
of entries in row i of L.

Liu (1986a) defined the row subtree and the skeleton matrix and used
these concepts to create a compact data structure that represents the pattern
of the Cholesky factor L row-by-row using only O(A) space, holding just the
skeleton matrix and the elimination tree. Bank and Smith (1987) present a
symbolic analysis algorithm in which the ith iteration traverses the ith row

Sparse Direct Methods 19

Figure 4.6. Skeleton matrix, factor L, elimination tree, and the row subtrees
(Davis 2006)

subtree, one disjoint path at a time, in the same manner as the symbolic
up-looking Algorithm 4.1, except that it computes the elimination tree on
the fly. They do not use the phrase “row subtree” nor do they use the term
elimination tree. However, their function m(i) is a representation of the
elimination tree since m(i) is identical to the parent of i. Their algorithm
computes the row counts and the elimination tree in O(|L|) time.

Column counts

We now consider how to determine the number of nonzeros in each column
of L. Let Lj denote the nonzero pattern of the jth column of L, and let Aj

denote the pattern of the jth column of the strictly lower triangular part of
A. Let Âj denote entries in the same part of the skeleton matrix Â. George
and Liu (1981) show that Lj is the union of its children in the elimination
tree, plus the original entries in A:

Lj = Aj ∪ {j} ∪

 ⋃
j=parent(c)

Lc \ {c}

 . (4.3)

A key corollary by Schreiber (1982) states that the nonzero pattern of the jth
column of L is a subset of the path j ; r from j to the root of the elimination
tree T . The column counts are the sizes of each of these sets, |Lj |. If j is

a leaf in T , then the column count is simple: |Lj | = |Aj | + 1 = |Âj | + 1.

20 Davis, Rajamanickam, Sid-Lakhdar

Let ej denote the number of children of j in T . When j is not a leaf, the
skeleton entries are leaves of their row subtrees, and do not appear in any
child, and thus:

|Lj | = |Âj | − ej +

∣∣∣∣∣∣
⋃

j=parent(c)

Lc

∣∣∣∣∣∣ . (4.4)

Suppose there were an efficient way to find the overlap oj between the
children c in (4.4), replacing the set union with a summation:

|Lj | = |Âj | − ej − oj +

 ∑
j=parent(c)

|Lc|.

 (4.5)

As an example, consider column j = 4 of Figure 4.6. Its two children are
L2 = {2, 4, 10, 11} and L3 = {3, 4, 11}. In the skeleton matrix, Âj is empty,

so L4 = Â4 ∪ L2 \ {2} ∪ L3 \ {3} = ∅ ∪ {4, 10, 11} ∪ {4, 11} = {4, 10, 11}.
The overlap o4 = 2, because rows 4 and 11 each appear twice in the children.
The number of children is e4 = 2. Thus, |L4| = 0− 2− 2 + (4 + 3) = 3.

The key observation is see that if j has d children in a row subtree, then it
will be the least common ancestor of exactly d− 1 successive pairs of leaves
in that row subtree. For example, node 4 is the least common ancestor of
leaves 1 and 3 in T 4, and the least common ancestor of leaves 2 and 3 in
T 11. Thus, each time column j becomes a least common ancestor of any
successive pair of leaves in the row count algorithm, the overlap oj can be
incremented. When the row count algorithm completes, the overlaps are
used to recursively compute the column counts of L using (4.5). As a result,
the time taken to compute the row and column counts is nearly O(|A|).

The column counts give a precise definition of the optimal amount of
floating-point work required for any sparse Cholesky factorization (Rose
1972, Bunch 1973):

n∑
j=1

|Lj |2. (4.6)

Hogg and Scott (2013a) extend the row/column count algorithm of Gilbert
et al. (1994) to obtain an efficient analysis phase for finite-element problems,
where the matrix A can be viewed as a collection of cliques, each clique being
a single finite-element. The extension of the row/column count algorithm
to LU and QR factorization is discussed in Section 7.1.

4.3. Symbolic factorization

The final step in the symbolic analysis is the symbolic factorization, which
is to find the nonzero pattern L of the Cholesky factor L, for equation (4.3).

Sparse Direct Methods 21

The time taken for this step is O(|L|) if each entry in L is explicitly repre-
sented. George and Liu (1980c) reduce this to time proportional to the size
of a compressed representation related to the supernodal and multifrontal
factorizations. We will first consider the O(|L|)-time methods.

Both the up-looking (4.1) and left-looking factorizations provide a frame-
work for constructing L in compressed-column form. Recall that Lj denotes
the nonzero pattern of the jth column of L. Since the row and column
counts are known, the data structure for L can be statically allocated with
enough space (|Lj |) in each column j to hold all its entries.

The left-looking method simply computes (4.3), one column at a time,
from left to right (for j = 1 to n). Since each child takes part in only a
single computation of (4.3), and since the work required for the set unions
is the sum of the set sizes, the total time is O(|L|). This method does
not produce Lj in sorted order, however. If this is needed by the numeric
factorization, another O(|L|)-time bucket sort is required.

The up-looking symbolic factorization is based on the up-looking numeric
factorization (4.1), in which the kth row is computed from a triangular solve.
The symbolic method constructs L one row k at a time by traversing each
row subtree (Davis 2006). Selecting an entry akj in the lower triangular
part of A, Algorithm 4.1 walks up the elimination tree until it sees a marked
node, and marks all nodes along the way. It will stop at the root k since
this starts out as marked. Each node seen in this traversal is one node of
the kth row subtree. As a by-product, each Lj is in sorted order.

Algorithm 4.1: up-looking symbolic factorization
Let w be a work space of size n, initially zero
for k = 1 to n do
Lk = {k}, adding the diagonal entry to column k
w(k) = k, marking the root of the kth row subtree
for each akj 6= 0 and where k < j do

while w(j) 6= k do
append row k to Lj
w(j) = k, marking node j as seen in the kth row subtree
j = parent(j), traversing up the tree

Rose et al. (1976) present the first algorithm for computing L, using what
could be seen as an abbreviated right-looking method. The downside of their
method is that it requires a more complex dynamic data structure for L that
takes more than O(|L|) space. In their method, the sets Lj are initialized
to the nonzero pattern of the lower triangular part of the matrix A (that is,
Aj ∪ {j} from (4.3)). At each step j, duplicates in Lj are pruned, and then
the set Lj is added to its parent in the elimination tree,

Lparent(j) = Lparent(j) ∪ (Lj \ {j}).

22 Davis, Rajamanickam, Sid-Lakhdar

As a result, by the time the jth step starts, (4.3) has been computed for
column j since all the children of j have been considered. Normally, com-
puting the union of two sets takes time proportional to the size of the two
sets, but the algorithm avoids this by allowing duplicates to temporarily
reside in Lparent(j). Note that Rose et al. did not use the term “elimination
tree,” since the term had not yet been introduced, but we use the term here
since it provides a concise description of their method.

George and Liu (1980c) present the first linear-time symbolic factorization
method usingO(|L|) space, based on the path lemma and the quotient graph.
To describe this method, we first need to consider two sub-optimal methods:
one using only the graph of A, and the second using the elimination graph.

Recall that the path lemma states that lij 6= 0 if and only there is a path
in the graph of A from i to j whose intermediate vertices are all numbered
less than min(i, j) (that is, excluding i and j themselves). One method for
constructing Lj is to apply the path lemma directly on A, and determine
all nodes i reachable from j by traversing only nodes 1 through j − 1 in the
graph of A. This first alternative method based on the graph of A would
result in a compact data representation but would require a lot of work.

The second alternative is to mimic the outer-product factorization (4.2),
by constructing a sequence of elimination graphs as in Algorithm 4.2 below.
Let G0 be the graph of A (with an edge (i, j) if and only if aij 6= 0). Let
Gj be the graph of A22 in (4.2) after the first k nodes have been eliminated.
Eliminating a node j adds a clique to the graph between all neighbors of j.

Algorithm 4.2: symbolic factorization using the elimination graph
G = A
for j = 1 to n do
Lj is the set of all nodes adjacent to j in G
add edges in G between all pairs of nodes in Lj
remove node j and its incident edges from G

Algorithm 4.2 is not practical since it takes far too much time (the same
time as the numeric factorization). However, Eisenstat, Schultz and Sher-
man (1976a) show how to represent the sequence of graphs in a more com-
pact way, which George and Liu (1980c) refer to as the quotient graph. The
quotient graph G is a graph that contains two kinds of nodes: those corre-
sponding to uneliminated nodes in G, and those corresponding to a subset
of eliminated nodes in G. Each eliminated node e results in a clique in G.
If the eliminated node e has t neighbors, this requires O

(
t2
)

new edges in
G. Instead, we can create a new kind of node which George and Liu call a
supernode. This not quite the same as the term supernode used elsewhere in
this article, so we will use Eisenstat et al. (1976a)’s term element to avoid
confusion. The element e represents the clique implicitly, with only O(t)
edges.

Sparse Direct Methods 23

Algorithm 4.3 below uses the notation of Amestoy, Davis and Duff (1996a).
Let Aj denote the (regular) nodes adjacent to j in G, and let Ej represent the
elements adjacent to j. Finally, let Le represent the regular nodes adjacent
to element e; we use this notation because it is the same as the pattern of
column e of L. If one clique is contained within another, it can be deleted
without changing the graph. As a result, no elements are adjacent to any
other elements in the quotient graph.

Algorithm 4.3: symbolic factorization using the quotient graph
G = A
for j = 1 to n do
Lj = Aj ∪ (

⋃
e∈Ej Le)

delete all elements e ∈ Ej , including Le if desired
delete Aj

create new element j with adjacency Lj
for each i ∈ Lj

Ai = Ai \ Lj , pruning the graph

Edges are pruned from A as Algorithm 4.3 progresses. Suppose there is
an original edge (i, k) between two nodes i and k, but an element j is formed
that includes both of them. The two nodes are still adjacent in G but this is
represented by element j. The explicit edge (i, k) is no longer needed. The
quotient graph elimination process takes O(|L|) time, and because edges are
pruned and assuming Le is deleted after it is used, Algorithm 4.3 only needs
O(|A|) memory. Keeping the pattern of L requires O(|L|) space.

Figures 4.7 and 4.8 from Amestoy et al. (1996a) present the sequence of
elimination graphs, quotient graphs, and the pattern of the factors after
three steps of elimination. All three represent the same thing in different
forms. In the graph G2, element 2 represents a clique of nodes 5, 6, and
9, and thus the original edge (5,9) is redundant and has been pruned. In
G5, element 5 is adjacent to prior elements 2 and 3, and thus the latter two
elements are deleted.

Algorithm 4.3 takes O(|L|) time and memory to construct the nonzero
pattern of L. Eisenstat, Schultz and Sherman (1976b) describe how the
nonzero pattern of L and U can be represented in less space than one integer
per nonzero entry. Suppose the matrix L is stored by columns. If the nonzero
pattern of a column j of U is identical to a subsequence of a prior row, then
the explicit storage of the pattern of the jth column can be deleted, and
replaced with a reference to the subsequence in the prior column. George and
Liu (1980c) exploit this property to reduce the time and memory required
for symbolic factorization, and extend it by relying on the elimination tree
to determine when this property occurs. Suppose a node j in the etree has a
single child c, and that Lj = Lc \ {c}. This is a frequently occurring special
case of (4.3). If the etree is postordered, c = j−1 as well, further simplifying

24 Davis, Rajamanickam, Sid-Lakhdar

Figure 4.7. Elimination graph, quotient graph, and matrix (Amestoy et al. 1996)

the representation. There is no need to store the pattern of Lj explicitly.
If the row indices in Lj−1 appear in sorted order, then Lj is the same list,
excluding the first entry.

This observation can also be used to speed up the up-looking, left-looking,
and right-looking symbolic factorization algorithms just described above.
Each of them can be implemented in time and memory proportional to the
size of the representation of the pattern of L. The savings can be significant;
for an s-by-s 2D mesh using a nested dissection ordering, the matrix A is
n-by-n with n = s2. The numeric factorization takes O

(
s3
)

time and |L| is

O
(
s2 log s

)
, but the compact representation of L takes only O

(
s2
)
, or O(n)

space, and takes the same time to compute.
George, Poole and Voigt (1978) and George and Rashwan (1980) extend

the quotient graph model to combine nodes in the graph of A for the sym-
bolic and numeric Cholesky factorization of a block partitioned matrix, mo-
tivated by the finite-element method.

Gilbert (1994) surveys the use of graph algorithms for the symbolic anal-
ysis for Cholesky, QR, LU factorization, eigenvalue problems, and matrix
multiplication. Most of his paper focuses on the use of directed graphs for
nonsymmetric problems, but many of the results he covers are closely related

Sparse Direct Methods 25

Figure 4.8. Elimination graph, quotient graph, and matrix (continued) (Amestoy
et al. 1996)

to the Cholesky factorization. For example, the Cholesky factorization of
ATA provides an upper bound for the nonzero pattern of QR and LU factor-
ization of A. Pothen and Toledo (2004) give a more recent tutorial survey of
algorithms and data structures for the symbolic analysis of both symmetric
and unsymmetric factorizations. They discuss the elimination tree, skeleton
graph, row/column counts, symbolic factorization (topics discussed above),
and they also consider unsymmetric structures for LU and QR factorization.

Symbolic factorization algorithms take time proportional to the size of
their output, which is often a condensed form of the pattern of L not much
bigger than O(|A|) itself. As a result, parallel speedup is very difficult to
achieve. The practical goal of a parallel symbolic factorization algorithm is
to exploit distributed memory to solve problems too large to fit on any one
processor, which all of the following parallel algorithms achieve.

The first parallel algorithm to accomplish this goal was that of George,
Heath, Ng and Liu (1987), (1989a), which computes L column-by-column
in a distributed memory environment. Their method assumes the elimina-
tion tree is already known, and obtains a very modest speedup. Ng (1993)

26 Davis, Rajamanickam, Sid-Lakhdar

extends this method by exploiting supernodes, which improves both sequen-
tial and parallel performance. Zmijewski and Gilbert (1988) show how to
compute the tree in parallel. The entries A can be partitioned, and each
processor computes its own elimination tree (forest, to be precise) on the en-
tries it owns. These forests are then merged to construct the elimination tree
of A. Once the elimination tree is known, their parallel symbolic factoriza-
tion constructs the row subtrees of L, each one as an independent problem.
They do not obtain any parallel speedup when computing the elimination
tree, however. Likewise, Kumar et al. (1992) construct both the etree and L
in parallel, and they obtain a modest parallel speedup in both constructing
the tree and in the symbolic factorization. Gilbert and Hafsteinsson (1990)
present a highly-parallel shared-memory (CRCW) algorithm for finding the
elimination tree and the pattern L using one processor for each entry in L,
in O

(
log2 n

)
time. They do not present an implementation, however.

Parallel symbolic factorization methods for LU factorization (Grigori,
Demmel and Li 2007b), supernodal Cholesky (Ng 1993), and multifrontal
methods (Gupta, Karypis and Kumar 1997) are discussed in Sections 6.1,
9.1, and 11, respectively.

5. Cholesky factorization

This section presents some of the many variants of sparse Cholesky factor-
ization. Sparse factorization methods come in two primary variants: (1)
those that rely on dense matrix operations applied to the dense subma-
trices that arise during factorization, and (2) those that do not. Both of
these variants exist in sequential and parallel forms, although most paral-
lel algorithms also rely on dense matrix operations as well. The methods
presented in this section do not rely on dense matrix operations: envelope
and skyline methods (Section 5.1, which are now of only historical interest),
the up-looking method (Section 5.2), the left-looking method (Section 5.3),
and the right-looking method (Section 5.4). Supernodal, frontal, and mul-
tifrontal methods are discussed in Sections 9 through 11.

5.1. Envelope, skyline, and profile methods

Current algorithms exploit every zero entry in the factor, or nearly all of
them, using the graph theory and algorithms discussed in Section 4. How-
ever, the earliest methods did not have access to these developments. In-
stead, they were only able to exploit the envelope. Using current terminol-
ogy, the kth row subtree T k describes the nonzero pattern of the kth row
of L (refer to Figure 4.6). The leaves of this tree are entries in the skeleton

matrix Â, and the nonzero akj with the smallest column index j will always
be the leftmost leaf. The kth row subtree will be a subset of nodes j through
k. That is, any nonzeros in the kth row of L can only appear in columns j

Sparse Direct Methods 27

through k. An algorithm that stores all of the entries j through k is called
an envelope method. These methods are also referred to as profile or skyline
methods (the latter is a reference to LT).

Jennings (1966) created the first envelope method for sparse Cholesky.
Felippa (1975) adapted the method for finite-element problems by parti-
tioning the matrix into two sets, according to internal degrees of freedom
(those appearing only with a single finite element) and external degrees of
freedom. Neither considered permutations to reduce the profile. While en-
velope/profile/skyline factorization methods are no longer commonly used,
profile reduction orderings (Section 8.2) are still an active area of research
since they are very well-suited for frontal methods (Section 10).

George and Liu (1978a, 1978b, 1979a) went beyond just two partitions in
their recursive block partitioning method for irregular finite-element prob-
lems. The diagonal block of each partition is factorized via an envelope
method. They also consider ordering methods to find the partitions and
to reduce the profiles of the diagonal blocks. The factorizations of the
off-diagonal blocks are not stored, but computed column-by-column when
needed in the forward/backsolves (George 1974).

Bjorstad (1987) uses a similar partitioned strategy, also exploiting paral-
lelism by factorizing multiple partitions in parallel (each with a sequential
profile method). Updates from each partition are applied in a right-looking
manner and held on disk, similar to the strategy of George and Rashwan
(1985), discussed in Section 5.3.

5.2. Up-looking Cholesky

Unlike the envelope method described in the previous section, the up-looking
Cholesky factorization method presented here can exploit every zero entry
in L, and is asymptotically optimal in the work it performs. It computes
each row of L, one at a time, starting with row 1 and proceeding to row
n. The kth step requires a sparse triangular solve, with a sparse right-hand
side, using the rows of L already computed (L1:k−1,1:k−1). It is also called
the bordering method and row-Cholesky. It is not the first asymptotically
optimal sparse Cholesky factorization algorithm, but it is presented first
since it is closely related to presentation of the sparse triangular solve and
symbolic analysis in Sections 3.2 and 4. It appears below in MATLAB.

function L = chol_up (A)

n = size (A) ;

L = zeros (n) ;

for k = 1:n

L (k,1:k-1) = (L (1:k-1,1:k-1) \ A (1:k-1,k))’ ;

L (k,k) = sqrt (A (k,k) - L (k,1:k-1) * L (k,1:k-1)’) ;

end

Consider the up-looking factorization Algorithm 4.1 presented in Section 4.3.

28 Davis, Rajamanickam, Sid-Lakhdar

The algorithm traverses each disjoint sub-path of the kth row subtree, T k,
but it does not traverse them in the topological order required for the nu-
meric factorization, since this is not required for the symbolic factorization.

A simple change to the method results in a proper topological order that
satisfies the numerical dependencies for the sparse triangular solve. Consider
the computation of row 11 of L, from Figure 4.6. Suppose the nonzeros of
A in columns 2, 3, 4, 8, and 10 are visited in that order (they can actually
be visited in any order). The first disjoint path seen is (2, 4, 10, 11), from
the first nonzero a11,2 to the root of T 11. These nodes are all marked. Next,
the single node 3 is in a disjoint path by itself, since the path starts from
the nonzero a11,3 and halts when the marked node 4 is seen. Node 4 is
considered because a11,4 is nonzero, but node 4 is already marked so no
path is formed. Node 8 gives the path (8, 9). Finally, node 10 is skipped
because it is already marked.

The resulting disjoint paths are (2, 4, 10, 11), (3), and (8, 9), and are found
in that order. These three paths cannot be traversed in that order for the
triangular solve since (for example) the nonzero l4,3 requires node 3 to appear
before node 4. However, if these three paths are reversed, as (8, 9), then (3),
and finally (2, 4, 10, 11), we obtain a nonzero pattern for the sparse triangular
solve as X = (8, 9, 3, 2, 4, 10, 11). This ordering of X is topological. If you
consider any pair of nodes j and i in the list X , then any edge in the graph
GL (with an edge (j, i) for each lij 6= 0) will go from left to right in that
list. Performing the triangular solve from Section 3.2 in this order satisfies
all numerical dependencies.

Sparse Cholesky factorization via the up-looking method was first con-
sidered by Rose et al. (1980), but they did not provide an algorithm. Liu
(1986a) introduces the row subtrees and the skeleton matrix as a method
for a compact row-by-row storage scheme for L. Each row subtree can be
represented by only its leaves (each of which is an entry in the skeleton ma-
trix). Liu did not describe a corresponding up-looking factorization method,
however.

Bank and Smith (1987) describe an up-looking numeric factorization al-
gorithm that is a companion to their up-looking symbolic factorization al-
gorithm. They suggest two methods to handle the numerical dependencies
in the triangular solve: (1) explicit sort, and (2) a traversal of the entries
in each row of A in reverse order, which produces a topological order. This
second method is optimal, and it appears to be the first instance of a topo-
logical ordering for a sparse triangular solve. However, to save space, they
do not store the nonzero pattern of L. Instead, they construct each row or
column as needed by traversing each row subtree. This reduces space but it
leads to a non-optimal amount of work for their numeric factorization since
it must rely on dot products of pairs of sparse vectors for the triangular

Sparse Direct Methods 29

solve. The computational cost of their method is analyzed by Bank and
Rose (1990).

Liu (1991) implemented the first asymptotically optimal up-looking method,
via a generalization of the envelope method. The method partitions the ma-
trix L into blocks. Each diagonal block corresponds to a chain of consecutive
nodes in the elimination tree. That is, each chain consists of a sequence of
t columns j, j + 1, ... j + t, where the parent of each column is the very
next column in the sequence. The key observation is that the diagonal block
Lj:j+t,j:j+t has a full envelope, and the submatrix below this diagonal block,
namely, Lj+t+1:n,j:j+t, also has a full envelope structure. In any given row i
of the subdiagonal block, if lik is nonzero for some k in the sequence j, j+1,
... j + t, then all entries in Li,k:j+t must also be nonzero. This is because
each row subtree is composed of a set of disjoint paths, and the postorder-
ing of the elimination tree ensures that the subpaths consist of contiguous
subsequences of the diagonal blocks.

Davis’ up-looking method (2005, 2006) relies on a vanilla compressed-
column data structure for L, which also results in an asymptotically optimal
amount of work.

Although the left-looking, supernodal, and multifrontal Cholesky factor-
izations are widely used and appear more frequently in the literature, the up-
looking method is also widely used in practice. In particular, MATLAB re-
lies on CHOLMOD for x=A\b and chol(A) when A is a sparse symmetric def-
inite matrix (Chen, Davis, Hager and Rajamanickam 2008). CHOLMOD’s
symbolic analysis computes the row and column counts (Section 4.2), which
also gives the floating-point work. If the ratio of the work over the number of
nonzeros in L is less than 40, CHOLMOD uses the up-looking method pre-
sented here, and a left-looking supernodal method otherwise (Section 9.1).
This is because the up-looking method is fast in practice for very sparse
matrices, as compared to supernodal and multifrontal methods.

5.3. Left-looking Cholesky

The left-looking Cholesky factorization algorithm is widely used and has
been the focus of more research articles than the up-looking method. It is
also called the fan-in or backward-looking method. It forms the foundation
of the left-looking supernodal Cholesky factorization (Section 9.1). The
method computes L one column at a time, and thus it is also called column-
Cholesky. The method can be derived from the expression L11

lT12 l22
L31 l32 L33

 LT
11 l12 LT

31

l22 lT32
LT
33

 =

 A11 a12 AT
31

aT12 a22 aT32
A31 a32 A33

 , (5.1)

30 Davis, Rajamanickam, Sid-Lakhdar

where the middle row and column of each matrix are the kth row and column
of L, LT , and A, respectively. If the first k − 1 columns of L are known,
then the kth column of L can be computed as follows:

l22 =
√
a22 − lT12l12

l32 = (a32 − L31l12)/l22
(5.2)

These two expressions can be folded together into a single operation, a sparse
matrix times sparse vector, that computes a vector c of length n− k + 1,

c =

[
c1
c2

]
=

[
a22
a32

]
−
[
lT12
L31

]
l12 (5.3)

where c1 and a22 are scalars, and c2 and a32 are vectors of size n − k.
Computing c is the bulk of the work for step k of the algorithm; this is
followed by

l22 =
√
c1

l32 = c2/l22.
(5.4)

The MATLAB equivalent is given below:

function L = chol_left (A)

n = size (A,1) ;

L = zeros (n) ;

c = zeros (n,1) ;

for k = 1:n

c (k:n) = A (k:n,k) - L (k:n,1:k-1) * L (k,1:k-1)’ ;

L (k,k) = sqrt (c (k)) ;

L (k+1:n,k) = c (k+1:n) / L (k,k) ;

end

The key observation is that this sparse matrix times sparse vector multiply
(5.3) needs to be done only for columns for which lT12 is nonzero, which
corresponds to a traversal of each node in the kth row subtree, T k. In
MATLAB notation the computation of c(k:n) becomes:

c (k:n) = A (k:n,k) ; % scatter kth column of A into workspace c

for j = find (L (k,:)) % for each j in the kth row subtree

c (k:n) = c (k:n) - L (k:n,j) * L (k,j) ;

end

In Algorithm 5.1 below, L is stored in compressed-column form. It re-
quires access to the kth row of L, or lT12 in (5.3) at the k step. Accessing
an arbitrary row in this data structure would take too much time, but for-
tunately the access to the rows of L is not arbitrary. Rather, the algorithm
requires access to each row in a strictly ascending order. To accomplish
this, the left-looking algorithm keeps track of a pointer into each column
that advances to the next row as each row is accessed (the workspace p).

Sparse Direct Methods 31

Algorithm 5.1: left-looking sparse Cholesky factorization
Let p be an integer work space of size n, uninitialized
Let c be a real vector of size n, initially zero
for k = 1 to n do

compute c from equation (5.3):
for each aik 6= 0 where i ≤ k do

ci = aik, a scatter operation
for each j ∈ T k, excluding k itself do

modification of column k by column j (cmod(k,j)):
extract the scalar lkj , located at position pj in column j of L
pj = pj + 1
for each i ∈ Lj , starting at position pj do

ci = ci − lijlkj , a gather/scatter operation
pj = location of first off-diagonal nonzero in column j of L
compute the kth column of L from equation (5.4) (cdiv(k)):
lkk =

√
ck

for each i ∈ Lk, excluding k itself do
lik = ci/lkk, a gather operation
ci = 0, to prepare c for the next iteration of k

The algorithm traverses T k the same way as the kth iteration of Algorithm
4.1, so the details are not given here. The cmod and cdiv operations defined
in Algorithm 5.1 are discussed below.

Rose, Whitten, Sherman and Tarjan (1980) give an overview of three
sparse Cholesky methods (right-looking, up-looking, and left-looking), and
ordering methods. The left-looking method they consider is YSMP, by
Eisenstat et al. (1975, 1982, 1981). YSMP is actually described as com-
puting LT one row at a time, which is equivalent to the left-looking column-
by-column method in Algorithm 5.1 above. SPARSPAK is also based on
the left-looking sparse Cholesky algorithm (Chu, George, Liu and Ng 1984),
(George and Liu 1981), (George and Ng 1985a, George and Ng 1984b).

YSMP and SPARSPAK both rely on a set of n dynamic linked lists to
traverse the row subtrees, one for each row. Each column j is in only a
single linked list at a time. In Algorithm 5.1, pj refers to the location in
column j of the next entry that will be accessed. If the entry has row index
t, then column j will reside in list t. When pj advances, column j is moved
to the linked list for the next row. As a result, when step k commences, the
kth linked list contains all nodes in the kth row subtree, T k.

The left-looking sparse Cholesky algorithm has been the basis of many
parallel algorithms for both shared memory and distributed memory parallel
computers. It is easier to exploit parallelism in this method as compared to
the up-looking method.

The elimination tree plays a vital role in all parallel sparse direct methods.

32 Davis, Rajamanickam, Sid-Lakhdar

Different methods (left-looking, right-looking, supernodal, multifrontal, etc)
define their tasks in many different ways, but in all the methods the tree
governs the parallelism. In some methods, each node of the tree is a single
task, but more often, the work at a given node is split into multiple tasks.
Tasks on independent branches of the tree can be computed in parallel.

George, Heath, Liu and Ng (1986a) present the first parallel left-looking
sparse Cholesky method, using a shared-memory computer. Algorithm 5.1
contains two basic tasks, each of which operate on the granularity of one
or two columns: (1) cmod(k,j), the modification of column k by column
j, and (2) cdiv(k), the division of column k by the diagonal, lkk. Their
parallel version of Algorithm 5.1 uses the same linked list structure as their
sequential method, and one independent task per column k. Task k waits
until a column j appears in the kth link list, and then performs the cmod(k,j)
and moves the column j to the next linked list (incrementing pj). When
all nodes in row k have been processed, task k finishes by performing the
cdiv(k) task. Only task k needs write-access to column k. Each node of the
elimination tree defines a single task. In their method, a task can overlap
with other tasks below it and above it in the tree, but a column j can
only modify one ancestor column k at a time. As an example, consider
the matrix and tree in Figure 4.5. Suppose columns 2 and 4 have been
computed (tasks 2 and 4 are done), and cmod(10,2) has been completed by
task 10, which then places column 2 in the list for task 11. Then task 10 can
do cmod(10,4) at the same time task 11 does cmod(11,2). However, tasks
10 and 11 cannot do cmod(10,2) and cmod(11,2), respectively, at the same
time; task 11 must wait until task 10 finishes cmod(10,2) before it can use
column 2 for cmod(11,2).

Liu (1986b) considers three models for sparse Cholesky: fine, medium, and
coarse-grain, placing them in a common framework. The fine-grain model
considers each floating-point operation as its own task; see for example the
LU factorization method by Wing and Huang (1980). The coarse-grain
model is exemplified by Jess and Kees (1982), who propose a parallel right-
looking LU factorization for matrices with symmetric structure (the methods
of Wing and Huang (1980) and Jess and Kees (1982) are discussed in Sec-
tion 6.3, on the right-looking LU factorization). The medium-grain model
introduced by Liu (1986b) considers each cmod and cdiv as its own task.
Each node of the n nodes in Liu’s graph is a cdiv, and each edge corresponds
to a cmod, and thus the graph has same structure as L, with |L| tasks. Task
cmod(k,j) for any nonzero lkj in row k must precede cdiv(k), which in turn
must precede cmod(i,k) for any nonzero lik in column k. Using the same ex-
ample of Figure 4.5, in this model cmod(10,2) and cmod(11,2) can be done
in parallel. Coalescing the tasks cdiv(k) with all tasks cmod(i,k) for each
nonzero lik in column k results in the coarse-grain right-looking Cholesky,

Sparse Direct Methods 33

whereas combining all cmod(k,j) for each lkj in row k, with cdiv(k), results
in a parallel left-looking Cholesky method.

Once the left-looking factorization progresses to step k, it no longer needs
the first k−1 rows of L (the L11) matrix. George and Rashwan (1985) exploit
this property in their out-of-core method. They partition the matrix with
incomplete nested dissection. Submatrices are factorized with a left-looking
method, and then the remainder of the unfactorized matrix is updated (a
right-looking phase) and written to disk. It is read back in when subsequent
submatrices are factorized. Liu (1987a) also exploits this property in his out-
of-core method. Unlike George and Rashwan’s (1985) method, Liu’s method
is purely left-looking. The columns of L are computed one at a time, and the
memory space required grows as a result. If memory is exhausted, the L11

matrix is written to disk, and the factorization continues. The L21 matrix
(rows k to n) remains in core. To improve memory usage, the matrix is
permuted via a generalization of the pebble game, applied to the elimination
tree (Liu 1987b).

George, Heath, Liu and Ng (1988a) extend their parallel left-looking
method to the distributed-memory realm, where no processors share any
memory and all data must be explicitly communicated by sending and re-
ceiving messages. Using the nomenclature of Ashcraft, Eisenstat, Liu and
Sherman (1990b), the method becomes right-looking, and so it is considered
in Section 5.4.

If lij is nonzero, then at some point column j must update column i,
via cmod(i,j). In a left-looking method, the update from column j to col-
umn i (cmod(i,j)) is done at step i, according to the target column. In a
right-looking method, cmod(i,j) is done at step j, according to the source
column. The difference between left/right-looking in a parallel context is
subtle, because it depends on where you are standing and which processor
is being considered: the one sending an update or the one receiving it. Mul-
tiple steps can execute in parallel, although numerical dependencies must
be followed. That is, if lij is nonzero, then column i must be finalized before
cmod(i,j) can be computed.

Ashcraft, Eisenstat and Liu (1990a) observe that the method of George,
Heath, Liu and Ng (1989a) sends more messages than necessary. Suppose
that one processor A owns both columns k1 and k2, and both columns need
to update a target column i owned by a second processor B. In George
et al. (1989a)’s method processor A sends two messages to processor B:
column k1 and column k2, so that processor B can compute cmod(i,k1) and
cmod(i,k2). In the left-looking (fan-in) method of Ashcraft et al. (1990a),
the update (5.3) for these two columns of L is combined by processor A,
which then sends only a single column to processor B, as an aggregated
update. Constructing aggregate updates takes extra memory, and if this is
not available, Eswar, Huang and Sadayappan (1994) describe a left-looking

34 Davis, Rajamanickam, Sid-Lakhdar

method that delays the construction of the update until other aggregate
updates have been computed, sent, and freed.

All of the parallel methods described so far assign one or more entire
columns of L to a single processor, resulting in a one-dimensional assignment
of tasks to processors (columns only). Schreiber (1993) shows that any
1D mapping is inherently non-scalable because of communication overhead,
and that a 2D mapping of computations to processors is required instead
(Gilbert and Schreiber 1992). These mappings are possible in supernodal
and multifrontal methods, discussed in Sections 9 and 11, and in a 2D right-
looking method considered in the next section.

5.4. Right-looking Cholesky

Right-looking Cholesky, also known as fan-out or submatrix-Cholesky, is
based on equation (4.2). It is described in MATLAB notation as chol right,
below.

function L = chol_right (A)

n = size (A) ; L = zeros (n) ;

for k = 1:n

L (k,k) = sqrt (A (k,k)) ;

L (k+1:n,k) = A (k+1:n,k) / L (k,k) ;

A (k+1:n,k+1:n) = A (k+1:n,k+1:n) - L (k+1:n,k) * L (k+1:n,k)’ ;

end

At step k, the outer-product L(k+1:n,k)*L(k+1:n,k)’ is subtracted from
the lower right (n− k)-by-(n− k) submatrix. This is difficult to implement
since it can take extra work to find the entries in A to modify. There are
many target columns, and any given target column may have many nonzeros
that are not modified by the kth update. This is not a concern in the left-
or up-looking methods, since in those methods the single target column is
temporarily held in a work vector of size n, accessed via gather/scatter.

George et al. (1988a) present a parallel right-looking method for a dis-
tributed memory computer. Each processor owns a set of columns. Any
column k with no nonzeros in row k of L can be processed immediately
via cdiv(k); this node k is a leaf of the elimination tree. After a processor
owning column k does its cdiv(k), it sends column k of L to any processor
owning any column i for which lik is nonzero. If a receiving processor owns
more than one such column i, the message is sent only once. When a pro-
cessor receives a column j, it computes cmod(k,j) for any column k it owns.
This is also a right-looking view since a single column j is applied to the
submatrix of all columns owned by this processor. If given a single proces-
sor, the method is identical to the right-looking method, since one processor
owns the entire matrix. When all cmod’s have been applied to a column k
that it owns, it does cdiv(k) and sends it out, as just described. Column

Sparse Direct Methods 35

tasks correspond to each node of the elimination tree, and are assigned to
processors in a simple wrap-around manner. That is, the leaves are all doled
out to processors in a round-robin manner, followed by all nodes one level
up from the levels, and so on to the root.

George et al. (1989a) extend their method to the hypercube. They change
the task assignment so that whole subtrees of the elimination tree are given
to individual processors. In this case, the subtree is a node k and all its
descendants, not to be confused with the kth row subtree, T k. They also
show that performance can be improved via pipelining. When a processor
receives a column j, it does all cmod(k,j) for all columns k that it owns.
However, rather than waiting until all such cmod(k,j)’s are finished, it final-
izes any column k that is now ready for its cdiv(k) and sends it out, before
continuing with the rest of the cmod’s for this incoming column j. George,
Liu and Ng (1989b) analyze the communication between processors in this
method and show that it is asymptotically optimal for a 2D mesh with the
nested dissection ordering. Gao and Parlett (1990) augment the analysis
of George et al. (1989b), showing that not only is the total communication
volume minimized, but it is also balanced across the processors.

Ordering methods such as minimum degree can generate unbalanced trees.
Geist and Ng (1989) generalize the subtree-to-subcube task assignment of
George et al.’s (1989a) method via a bin-packing to account for heavily
unbalanced trees. Eswar, Huang and Sadayappan (1995) consider task as-
signments that combine multiple strategies (wrap-based and subtree-based)
for mapping processors to columns.

Zhang and Elman (1992) explore several shared-memory variants: the
left-looking methods of George et al. (1986a) and Ashcraft et al. (1990a),
and the task-scheduling method of Geist and Ng (1989). The latter two are
distributed-memory algorithms. Zhang and Elman report that Geist and
Ng’s (1989) method works well in a shared-memory environment.

Ashcraft et al. (1990b) and Eswar, Sadayappan and Visvanathan (1993a)
both observe that the right-looking method of Geist and Ng (1989) sends
more messages than both the distributed multifrontal method and the left-
looking method with aggregated updates.

Jess and Kees (1982) describe a parallel right-looking LU factorization
method for matrices with symmetric nonzero pattern, and with no pivoting,
so their method can also be viewed as a way of computing the right-looking
Cholesky factorization. Each node k of the elimination tree corresponds to
cdiv(k) followed by cmod(i,k) for all nonzeros lik. The tree describes the
parallelism, since nodes that do not have an ancestor/descendant relation-
ship can be computed in parallel. This assumes that multiple updates to the
same column are handled correctly. The updates cmod(i,k1) and cmod(i,k2)
can be computed in any order, but a race condition could occur if two pro-
cesses attempt to update the same target column i at the same time. Jess

36 Davis, Rajamanickam, Sid-Lakhdar

and Kees (1982) use a critical-path scheduling strategy, with the simplifying
assumption that each node takes the same amount of time to compute.

Manne and Haffsteinsson (1995) describe a right-looking method for a
SIMD parallel computer with a 2D processor mesh. In a SIMD machine,
all processors perform the same operation in lock-step fashion. With the
correct mapping scheme, this strategy simplifies the synchronization between
processors, so that the problem of simultaneous updates to the same entry
is resolved. They rely on a 2D mapping scheme that assigns all entries in
a column of L to one column of processors and all entries in a row of L to
a single row of processors. The same mapping is used for both rows and
columns. Thus, aij is given to the processor in row M(i) and column M(j)
of the 2D processor mesh. Since each entry is owned by a single processor,
multiple updates to the same entry are done in successive steps. Each outer
loop of the chol right algorithm above is done sequentially. Within the kth
iteration, each processor iterates over the cmod operations it must compute.
Note that a single processor only does part of any given cmod, since it does
not own an entire column of the matrix.

Aggregating updates and sending a single message instead of one mes-
sage is a common theme for many algorithms presented here. Ashcraft et
al. (1990a) use this strategy for the left-looking method. The multifrontal
method handles the submatrix update in an entirely different manner by
delaying the updates and aggregating them. Hulbert and Zmijewski (1991)
consider a non-multifrontal right-looking method that also aggregates mes-
sages. Their method is based on the hypercube algorithm of George et al.
(1989a) and Geist and Ng (1989). After a processor computes cdiv(k) for
a column k that it owns, cmod(j,k) must be computed for each nonzero
ljk in column k. Some of these will be owned by the same processor, and
these computations can be done right away. Others columns are owned by
other processors. The method of George et al. (1989a) and Geist and Ng
(1989) would send column k to those other processors right away. Hulbert
and Zmijewski (1991) take another approach. The algorithm operates in
two distinct phases. In the first phase, the method places column k in an
outgoing message queue, waits until all local computations that can be com-
pleted have finished. The queue acquires multiple messages for any given
target processor. If there are multiple messages from this processor to the
same target column, these are summed into a single aggregate column up-
date (just as in the left-looking method of Ashcraft et al. (1990a)). As soon
as the process runs out of local work it enters the second phase, which is
identical to the original method of George et al. (1989a) and Geist and Ng
(1989). In the second phase, the outgoing message queue is no longer used,
and updates are sent as soon as they are computed. Hulbert and Zmijewski
(1991) show that this strategy results in a significant reduction in message
traffic.

Sparse Direct Methods 37

Ashcraft (1993) generalizes the notion of left/right-looking and fan-in/out.
Each nonzero lij defines a cmod(i,j). Recall that in the left-looking/fan-in
method, cmod(i,j) is done at step i and in a right-looking/fan-out method,
cmod(i,j) is done at step j. There is no reason to use all one method or the
other; each cmod(i,j) can be individually assigned to task i or task j. In
Ashcraft (1993)’s fan-both method the processors are aligned in a 2D grid.
The processor grid tiles the matrix, and if a processor owns the diagonal
entry lkk, then it owns column k. If it also owns lkj , then cmod(k,j) is
treated in a left-looking (fan-in) fashion, and if it owns lik, then cmod(j,k)
is treated in a right-looking (fan-out) fashion.

Parallel supernodal, frontal, and multifrontal Cholesky factorization meth-
ods are considered in Sections 9 through 11.

6. LU factorization

LU factorization is most often used for square unsymmetric matrices when
solving Ax = b. It factors a matrix A into the product A = LU , where L is
lower triangular and U is upper triangular. Historically, the most common
method for dense matrices is a right-looking one (Gaussian elimination);
both it and a left-looking method are presented here. Section 6.1 considers
the symbolic analysis phase for LU factorization, and its relationship with
symbolic Cholesky and QR factorization. The next three sections present
the left-looking method (Section 6.2) and two variants of the right-looking
method (Sections 6.3 and 6.4). The first variant relies on a static data
structure with some or all pivot choices made prior to numeric factorization,
and the second variant relies on a dynamic data structure and finds its pivots
during numeric factorization.

6.1. Symbolic analysis for LU factorization

If A is square and symmetric, and no numerical pivoting is required, then
the nonzero pattern of L + U is the same as the Cholesky factorization of
A. This observation provides the framework for several LU factorization
algorithms presented here. Other methods consider the symbolic analysis of
a matrix with unsymmetric structure, but with no pivoting. If arbitrary row
interchanges can occur due to partial pivoting, then LU factorization is more
closely related to QR factorization, a fact that other methods rely on. Both
strategies are discussed immediately below, in this section. Other methods
allow for arbitrary row and column pivoting during numeric factorization,
and for such methods a prior symbolic analysis is not possible at all. Many
of the results in this section for sparse LU (and also QR factorization) are
surveyed by Gilbert and Ng (1993) and Gilbert (1994). Pothen and Toledo
(2004) consider both the symmetric and unsymmetric cases in their recent
survey of graph models of sparse elimination.

38 Davis, Rajamanickam, Sid-Lakhdar

Symbolic LU factorization without pivoting

Rose and Tarjan (1978) were the first to methodically consider the symbolic
structure of Gaussian elimination for unsymmetric matrices. They model
the matrix as a directed graph where edge (i, j) corresponds to the nonzero
aij . They extend their path lemma for symmetric matrices (Rose et al. 1976)
to the unsymmetric case. In the directed graph GL+U of L+ U , (i, j) is an
edge (a nonzero in either L or U , depending on where it is), if and only if
there is a path in the directed graph of A whose intermediate vertices are
numbered less than i and j (excluding the endpoints i and j themselves).
They present a symbolic factorization that uses this theorem to construct
the pattern of L and U (a generalization of their symmetric method in Rose
et al. (1976)). The method is costly, taking the same time as the numeric
factorization. These results and algorithm are also not general since they do
not consider numerical pivoting during numeric factorization, which is often
essential.

Eisenstat and Liu (1992) show how symmetry can greatly reduce the time
complexity of symbolic factorization. For each j, let k be the first offdiagonal
entry that appears in both the jth row of U and the jth column of L
(FSNZ(j) = min{k|lkjujk 6= 0}, the first symmetric nonzero), assuming such
an entry exists. Entries beyond this first symmetric pair can be ignored in L
and U when computing fill-in for subsequent rows and columns of L and U . If
applied to a symmetric matrix, the first symmetric pair occurs immediately,
and is simply the parent of j in the elimination tree. In this case, the method
reduces to a Cholesky symbolic factorization, and the time is O(|L|+ |U |).
The algorithm was implemented in YSMP (Eisenstat, Gursky, Schultz and
Sherman 1977) but not described at that time. Eisenstat and Liu (1992)
generalize this symmetric pruning to a path-symmetric reduction, where s is
the smallest node for which a path j ; k exists in both the graph of L and
U . Entries beyond s in L and U can be ignored, and since s ≤ FSNZ(j),
this can result in further pruning.

The quotient graph was first used by George and Liu (1980c) to represent
the lower right (n−k)-by-(n−k) active submatrix in a symbolic right-looking
factorization (a Schur complement), after k steps of elimination. Eisenstat
and Liu (1993b) generalize this representation for the unsymmetric case,
and provide a catalog of many different approaches with varying degrees of
compression and levels of work to construct and maintain the representation.
The edge (i, j) in the Schur complement is present if and only if there is
a path from i to j whose intermediate vertices are in the range 1 to k.
Strongly-connected components amongst nodes 1 to k can be merged into
single nodes, and the paths are still preserved. They also characterize a
skeleton matrix for the unsymmetric case, whose filled graph is the same as
the original matrix.

Sparse Direct Methods 39

Symbolic LU with pivoting and its relationship to QR factorization
Consider both LU = PA and QR = A, where P is determined by partial
pivoting. George and Ng (1985b), (1987) have shown that R is an upper
bound on the pattern of U . More precisely, uij can be nonzero if and only if
rij 6= 0. Gilbert and Ng (1993) and Gilbert and Grigori (2003) strengthened
this result, showing that the bound is tight if A is strong Hall. A matrix is
strong Hall if it cannot be permuted into block upper triangular form with
more than one block (Section 8.7). This upper bound is tight in a one-at-a-
time sense; for any rij 6= 0, there exists an assignment of numerical values
to entries in the pattern of A that makes uij 6= 0. The outline of the proof
can be seen by comparing Gaussian elimination with Householder reflec-
tions. Additional details are given in the qr right householder function
discussed in Section 7.

Both LU and QR factorization methods eliminate entries below the diago-
nal. For a Householder reflection, George, Liu and Ng (1988b) show that the
nonzero pattern of all rows affected by the transformation take on a nonzero
pattern that is the union of all of these rows. With partial pivoting and
row interchanges, these rows are candidate pivot rows for LU factorization.
Only one of them is selected as the pivot row. Every other candidate pivot
row is modified by adding to it a scaled copy of the pivot row. Thus, an
upper bound on the pivot row pattern is the union of all candidate pivot
rows. This also establishes a bound on L, namely, the nonzero pattern of
V , which is a matrix whose column vectors correspond to the Householder
reflections used for QR factorization.

With this relationship, a symbolic QR ordering and analysis (Section 7.1)
becomes one possible symbolic ordering and analysis method for LU factor-
ization. It is also possible to statically preallocate space for L and U . The
bound can be loose, however. In particular, if the matrix is diagonally dom-
inant, then no pivoting is needed to maintain numerical accuracy. This is
called static pivoting, where all pivoting is done prior to numeric factoriza-
tion. If the matrix A also has a symmetric nonzero pattern (or if all entries
in the pattern of A+AT are considered to be “nonzero”), then the nonzero
patterns of L and U are identical to the pattern of the Cholesky factors L
and LT , respectively, of a symmetric positive definite matrix with the same
nonzero pattern as A+AT . In this case, a symmetric fill-reducing ordering
of A + AT is appropriate. Alternatively, the permutation matrix Q can be
selected to reduce the worst case fill-in for PAQ = LU for any P , and then
the permutation P can be selected solely on the basis of partial pivoting,
with no regard for sparsity.

Thus, LU factorization can rely on three basic strategies for finding a fill-
reducing ordering. Two of them are methods used prior to factorization:
(1) a symmetric pre-ordering of A + AT , and (2) a column pre-ordering
suitable for QR factorization. These options are discussed in Section 8. The

40 Davis, Rajamanickam, Sid-Lakhdar

third option is to dynamically choose pivots during numeric factorization,
as discussed in Section 6.4.

With the QR upper bound, LU factorization can proceed using a statically-
allocated memory space. This bound can be quite high, however. It is some-
times better just to make a guess at the final |L| and |U |, or to guess that
no partial pivoting will be needed and to use a symbolic Cholesky analysis
to determine a guess for |L| and |U |. Sometimes a good guess is available
from the LU factorization of a similar matrix in the same application. The
only penalty for making a wrong guess is that the memory space for |L| or
|U | must be reallocated if the guess is too low, or memory may run out if
the guess is too high.

In contrast to Rose and Tarjan (1978) and Eisenstat and Liu (1992),
George and Ng (1987) consider partial pivoting. They rely on their result
that QR forms an upper bound for LU to create a symbolic factorization
method for both QR and LU. The resulting nonzero patterns for L and U
can accommodate any partial pivoting with row interchanges. The symbolic
factorization takes O(|L|+ |U |) time, which is much faster than Rose and
Tarjan (1978)’s method. Their method (Algorithm 6.1 below) is much like
the row-merge QR factorization of George and Heath (1980), which we dis-
cuss in Section 7.2. In this algorithm, Lk is set of row indices that is the
upper bound on the pattern of the kth column of L, Uk is the upper bound
on the kth row of U , and Ai is the pattern of the ith row of A.

Algorithm 6.1: symbolic LU with arbitrary partial pivoting
Sk = ∅, Lk = ∅, Uk = ∅, for all k
for k = 1 to n do

consider original rows of A:
for each row i such that k = minAi do

Lk = Lk ∪ {i}
Uk = Uk ∪ Ai

consider modified rows of A:
for each row i ∈ Sk do
Lk = Lk ∪ (Li \ {i})
Uk = Uk ∪ (Ui \ {i})

kth pivotal row represents a set of future candidates for step p:
p = minUk \ {k}
Sp = Sp ∪ {k}

At the kth step, partial pivoting can select any row whose leftmost nonzero
falls in column k. Thus, Uk is the union of all such candidate pivot rows.
This pivot row causes fill-in in all other candidate rows, which becomes the
upper bound Lk. Since these rows now all have the same nonzero pattern,
their patterns are discarded and replaced with Uk itself. Thus, untouched
rows of A need only be considered once, and future steps need only look at

Sparse Direct Methods 41

the pattern of Uk. The next time this row (representing a set of candidate
pivot rows, Lk \ {k}) is considered is at the step p corresponding to the
next nonzero entry in Uk; namely, p = minUk \ {k}. This is the first off-
diagonal entry in the kth row of U . At that step p, the pattern Uk \ {k}
is the upper bound of one (or more) unselected candidate pivot rows. The
resulting algorithm takes time proportional to the upper bound on the LU
factors, O(|L|+ |U |).

It should be noted that a single dense row destroys sparsity, causing this
upper bound to become an entirely dense matrix. Such rows can be opti-
mistically withheld, in an ad hoc manner, and placed as the last pivot rows.
In this case, arbitrary partial pivoting is no longer possible.

Assuming the matrix A is strong Hall, the column elimination tree for
the LU factorization of A is given by the expression p = minUk \ {k} in
Algorithm 6.1 above, where p is the parent of k, the first off-diagonal entry
in the kth row of U . It is identical to the elimination tree of ATA in this case.
If A is not strong Hall, the tree is not the same, and it is referred to as the
row-merge tree instead. Grigori, Cosnard and Ng (2007a) provide a general
characterization of this row-merge tree and its properties, and describe an
efficient algorithm for computing it. Grigori, Gilbert and Cosnard (2009)
consider cases where numerical cancellation can result in sparser LU factors,
and they show that if numerical cancellation is ignored the row-merge tree
provides a tight bound on the structure of L and U .

Algorithm 6.1 provides an upper bound on the QR factorization of A, as
discussed in Section 7.1, which also gives an example matrix and its QR and
LU factorizations as computed by this algorithm.

Gilbert and Liu (1993) generalize the elimination tree for a symmetric
matrix to a pair of directed acyclic graphs (elimination dags, or edags) for
the LU factorization of an unsymmetric matrix (without pivoting). In LU
factorization, the kth row of L can be constructed via a sparse triangular
solve using the first k − 1 columns of U , and the kth column of U arises
from a triangular solve with the first k − 1 rows of L. This comes from an
unsymmetric analog of the up-looking Cholesky factorization, namely,[

L11

l21 1

] [
U11 u12

u22

]
=

[
A11 a12
a21 a22

]
, (6.1)

where all leading submatrices are (n−1)-by-(n−1). Then the LU factoriza-
tion can be computed with (1) L11U11 = A11 (a recursive LU factorization
of the leading submatrix of A), (2) L11u12 = a12 (a sparse triangular solve
for u12), (3) UT

11l
T
21 = aT21 (a sparse triangular solve for l21), and a dot prod-

uct to compute u22. As a result, the nonzero pattern of the kth row and L
and kth column of U can be found as the reach in the acyclic graphs of U
and L, respectively, using equation (3.1). Basing a symbolic factorization on
this strategy would result in a method taking the same time as the numeric

42 Davis, Rajamanickam, Sid-Lakhdar

factorization. Gilbert and Liu (1993) show how the graphs can be pruned
via transitive reduction, giving the edags (one for L and another for U). For
a symmetric matrix, the edags are the same as the elimination tree of A.
The transitive reduction of a graph preserves all paths (if i ; j is a path
in a dag, then a path still exists in the transitively reduced dag). Gilbert
and Liu (1993) characterize the row and column structures of L and U with
these edags, and present a left-looking symbolic factorization algorithm that
constructs L and U , building the edags one node at a time. The edags are
more highly pruned graphs than the symmetric reductions of Eisenstat and
Liu (1992), but they take more time to compute.

Eisenstat and Liu (2005a) provide a single tree that takes the place of
the two edags of Gilbert and Liu (1993). The symmetric elimination tree (a
forest, actually) is given by edges in the Cholesky factor L: i is the parent of
k if i is the first offdiagonal nonzero in column k of L (min{i > k|lik 6= 0}).
By contrast, Eisenstat and Liu’s single tree for LU (also technically a forest)
is defined in terms of paths in L and U instead of edges in L. In this tree, i
is the parent of k if i > k is the smallest node for which there is a path in L
form i to k, and also a path from k back to i in the graph of U . Analogous to
the kth row subtree for a symmetric matrix, they characterize the nonzero
patterns of the rows of L and columns of U in terms of sub-forests of this
path-based elimination tree. In a sequel to this paper (2008), they present
an algorithm for constructing this path-based tree/forest, and show how it
characterizes the graph of L + U in a recursive bordered block triangular
form.

Gilbert et al. (2001) describe an algorithm that computes the row and
column counts for sparse QR and LU factorization, as an extension of their
prior work (Gilbert et al. 1994). Details are given in Section 4.2.

Grigori et al. (2007b) present a parallel symbolic LU factorization method,
based on a left-looking approach of Gilbert and Liu (1993), which computes
the kth column of L and the kth row of U at the kth step. Their parallel
algorithm generates a symbolic structure for L and U that can accommodate
arbitrary partial pivoting. It starts with a vertex separator of the graph of
A+AT to determine what parts of the symbolic factorization can be done in
parallel. Vertex separators are an important tool for sparse direct methods
and form the basis of the nested dissection ordering method discussed in
Section 8.6.

6.2. Left-looking LU

The left-looking LU factorization algorithm computes L and U one column
at a time. At the kth step, it accesses columns 1 to k − 1 of L and column
k of A. If partial pivoting is ignored, it can be derived from the following
3-by-3 block matrix expression, which is very similar to (5.1) for the left-

Sparse Direct Methods 43

looking Cholesky factorization algorithm. The matrix L is assumed to have
a unit diagonal. L11

l21 1
L31 l32 L33

 U11 u12 U13

u22 u23
U33

 =

 A11 a12 A13

a21 a22 a23
A31 a32 A33

 , (6.2)

The middle row and column of each matrix is the kth row and column
of L, U , and A, respectively. If the first k − 1 columns of L and U are
known, three equations can be used to derive the kth columns of L and
U : L11u12 = a12 is a triangular system that can be solved for u12 (the kth
column of U), l21u12 + u22 = a22 can be solved for the pivot entry u22, and
L31u12 + l32u22 = a32 can then be solved for l32 (the kth column of L).
However, these three equations can be rearranged so that nearly all of them
are given by the solution to a single triangular system: L11

l21 1
L31 0 I

 x1
x2
x3

 =

 a12
a22
a32

 . (6.3)

The solution to this system gives u12 = x1, u22 = x2, and l32 = x3/u22.
Partial pivoting with row interchanges is simple with this method. Once x
is found, entries in rows k through n can be searched for the entry with the
largest magnitude. Permuting the indices of L is delayed until the end of
the factorization. The nonzero patterns of the candidate pivot rows are not
available (this would require a right-looking method) and thus the pivot row
cannot be chosen for its sparsity. Fill-reducing orderings must instead be
applied to the columns of A only, as discussed in Section 8.5.

Relying on their optimal sparse triangular solve (Section 3.2), Gilbert and
Peierls (1988) show that their left-looking method takes time proportional
to the number of floating-point operations. Other LU factorization methods
can be faster in practice, but no other method provides this guarantee. This
may seem like an obvious goal, but it can be quite difficult to achieve; it
can take more time to search for entries and modify the data structure for
L and U than the floating-point work to compute them. This method was
the first sparse LU factorization in MATLAB (Gilbert et al. 1992). Recent
versions of MATLAB no longer use it for x=A\b, but it is still relied upon
for the [L,U,P]=lu(A) syntax when A is sparse. When a column ordering
is required, [L,U,P,Q]=lu(A) relies on UMFPACK instead. (Davis and
Duff 1997), (1999), (Davis 2004a), (2004b), discussed in Section 11.4.

The earliest left-looking method by Sato and Tinney (1963) did not ac-
commodate any pivoting. Dembart and Neves (1977) show how the left-
looking method can be implemented on a vector machine with hardware
gather/scatter operations. Their method does take time proportional to
the floating-point work, but only because they rely on a precomputed spar-

44 Davis, Rajamanickam, Sid-Lakhdar

sity pattern of L and U . This restriction was lifted by Gilbert and Peierls’
(1988) method. The first method to allow for partial pivoting was NSPIV
by Sherman (1978a), (1978b). It relied on a dynamic data structure with set
unions performed as a merge operation, and as a result it could take more
time than the floating-point work required. Sadayappan and Visvanathan
(1988), (1989) consider a parallel left-looking LU factorization method for
circuit simulation matrices that does not allow for pivoting.

The majority of the methods described here (Sato and Tinney 1963,
Sherman 1978a, Sherman 1978b, Sadayappan and Visvanathan 1988, Eisen-
stat and Liu 1993a) actually store L and U by rows and compute compute
them one row at a time, but this is identical to the left-looking method
applied to AT .

Eisenstat and Liu (1993a) reduce the work that Gilbert and Peierls’ (1988)
method requires for computing the reach in the graph of L when finding the
pattern of x (the kth column of L and U) in the sparse triangular solve,
X = ReachL(B). They observe that the reach of a node in the graph is
unaffected if edges are pruned. For each k, let i be the smallest index such
that both lik and uki are nonzero. This entry forms a symmetric pair, or
FSNZ(k) (Eisenstat and Liu 1992). Any entries below this in L can be
pruned from the graph of L, and the reach is unaffected. In the best case
when the nonzero pattern of L and U is symmetric, this pruning results in
the elimination tree, and the time to find the pattern X reduced to O(|X |).

Davis (2006) provides an implementation of the left-looking method of
Gilbert and Peierls (1988) in the CSparse package. It also forms the basis
of KLU (Davis and Palamadai Natarajan 2010), a solver targeted for circuit
simulation matrices. These matrices are too sparse for methods based on
dense submatrices (supernodal, frontal, and multifrontal) to be efficient.

Gustavson, Liniger and Willoughby (1970) and Hachtel, Brayton and Gus-
tavson (1971) present an alternative method for sparse LU factorization.
Their symbolic analysis produces not only the nonzero patterns of the L
and U , but also a loop-free code, with a sequence of operations that factor-
izes the matrix and is specific to its particular nonzero pattern. Norin and
Pottle (1971) consider fill-reducing orderings for this method. The method
of generating loop-free code requires significant memory for the compiled
code (proportional to the number of floating-point operations), which Gay
(1991) shows is not required for obtaining good performance.

Chen, Wang and Yang (2013) present a multicore algorithm NICSLU
based on the left-looking sparse LU. It accommodates partial pivoting during
numerical factorization, and relies on the column elimination tree discussed
in Section 6.1 for its parallel scheduling. Each tasks consists of one node in
this tree, corresponding to the computation of a single column of L and U .
The first phase handles nodes towards the bottom of this tree, one level at
a time. In the second phase, each task updates its column with any prior

Sparse Direct Methods 45

columns that affect it and which have already completed. Prior columns not
yet finished are skipped in the first pass of this task, and then handled in a
second pass after they are complete.

6.3. Right-looking LU factorization with a static data structure

Gaussian elimination is a right-looking variant of LU factorization. At each
step, an outer product of the pivot column and the pivot row is subtracted
from the lower right submatrix of A. After the kth step, the lower right
submatrix A[k] is a Schur complement of the upper left k-by-k submatrix,
also called the active submatrix. Numerical pivoting is typically essential,
but ignoring it for the moment simplifies the derivation. The derivation of
the method starts with an equation very similar to (4.2) for the right-looking
Cholesky factorization,[

l11
l21 L22

] [
u11 u12

U22

]
=

[
a11 a12
a21 A22

]
, (6.4)

where l11 = 1 is a scalar, and all three matrices are square and partitioned
identically. Other choices for l11 are possible; this choice leads to a unit
lower triangular L and the four equations,

u11 = a11 (6.5)

u12 = a12 (6.6)

l21u11 = a21 (6.7)

l21u12 + L22U22 = A22 (6.8)

Each equation is solved in turn, and can be expressed in MATLAB notation
as the lu right function below, where after the k step, A(k+1:n,k+1:n)
holds the kth Schur complement, A[k].

function [L,U] = lu_right (A)

n = size (A,1) ; L = eye (n) ; U = zeros (n) ;

for k = 1:n

U (k,k:n) = A (k,k:n) ; % (6.5) and (6.6)

L (k+1:n,k) = A (k+1:n,k) / U (k,k) ; % (6.7)

A (k+1:n,k+1:n) = A (k+1:n,k+1:n) - L (k+1:n,k) * U (k,k+1:n) ; % (6.8)

end

One advantage of the right-looking method over left-looking sparse LU
factorization is that it can select a sparse pivot row and pivot column. The
left-looking method does not keep track of the nonzero pattern of the A[k]

submatrix, and thus cannot determine the number of nonzeros in its pivot
rows or columns. With pivoting of both rows and columns for the dual
purposes of maintaining sparsity and ensuring numerical accuracy, the re-
sulting factorization is LU = PAQ where Q is the column permutation.
The disadvantage of the right-looking method is that it is significantly more

46 Davis, Rajamanickam, Sid-Lakhdar

difficult to implement, particularly when pivoting is done during numerical
factorization. This variant is discussed in Section 6.4.

If the pivoting is determined prior to numeric factorization, however, then
a simpler static data structure can be used for L and U . Eisenstat, Schultz
and Sherman (1979) describe such a method that can be considered as a pre-
cursor to the multifrontal method (Section 11). It is a numeric form of their
symbolic method (Eisenstat et al. 1976a), which represents the symbolic
graph elimination via a set of elements, or cliques that form during factor-
ization. The method computes each update in a dense submatrix (much
like the multifrontal method). To save space, it then discards the rows and
columns of L and U inside these elements, except for the top-level separator.
The rows and columns of L and U are then recalculated when needed.

With a static data structure, the right-looking method is more amenable
to a parallel implementation, as compared to a dynamic data structure. Sev-
eral of the earliest methods rely on pre-pivoting to enhance parallelism in a
right-looking LU factorization by finding independent sets of pivots (Huang
and Wing 1979, Wing and Huang 1980, Jess and Kees 1982, Srinivas 1983);
none of these methods modify the pivot ordering during numeric factor-
ization. In (6.4), the a11 scalar becomes an s-by-s diagonal matrix. This
ordering strategy is discussed in Section 8.8, while we discuss the numeric
factorization here.

Huang and Wing (1979) and Wing and Huang (1980) analyze the data
dependencies in a fine-grain parallel method where each floating-point oper-

ation is a single task, either a division by the pivot (lik = a
[k]
ik /ukk) or an up-

date to compute one entry in the Schur complement (a
[k]
ij = a

[k−1]
ij − likukj).

Each computation is placed in a directed acyclic graph, where the edges
represent the data dependencies in these two kinds of computations, and a
scheduling method is presented based on a local greedy heuristic. Note that
several of these papers include the word “optimal” in their title. This is an
incorrect use of the term, since finding an optimal pivot ordering and an
optimal schedule are NP-hard problems. Srinivas (1983) refines Wing and
Huang’s (1980) scheduling method to reduce the number of parallel steps
required to factorize the matrix.

Jess and Kees (1982) introduced the term elimination tree for their par-
allel right-looking LU factorization algorithm, which assumes a symmetric
nonzero pattern. Their definition of the tree was limited to a filled-in graph
of L+U ; this was later generalized by Schreiber (1982) who defined the elim-
ination tree in the way it is currently used (Section 4.1). Jess and Kees used
the tree for a coarse-grain parallel algorithm, where each node is a single
step k in the lu right function above. Two nodes k1 and k2 can be executed
in parallel if they do not share an ancestor/descendant relationship in the
tree, and Jess and Kees define a method for scheduling the n tasks. They

Sparse Direct Methods 47

note that two independent tasks can still require synchronization, however,
since both can update the same set of entries in the lower right submatrix.

George and Ng (1985b) present a completely different approach for right-
looking LU factorization by defining a static data structure for L and U that
allows for arbitrary row interchanges to accommodate numerical pivoting
during factorization. This is based on a symbolic QR factorization, and they
show that the nonzero pattern of R for the QR factorization (QR = A) is
an upper bound on the pattern of U and LT . In a companion paper, George
et al. (1988b) refine this method with a more compact data structure. They
demonstrate and exploit the fact that the pattern of L is contained in the
nonzero pattern of the n Householder vectors (concatenated to form the
matrix V) for the QR factorization. Their numeric factorization is much
like the symbolic right-looking LU factorization method of Algorithm 6.1
in Section 6.1. At each step, they maintain a set of candidate pivot rows
for each step k, analogous to the sets S1..n in the symbolic LU factorization
Algorithm 6.1. In that algorithm, the set of candidate pivot rows is replaced
by a single representative row, since they all have the same nonzero pattern.
In the numeric factorization, however, each row must be included. Instead
of Sk, the numeric factorization uses Zk as the set of candidate pivot rows
for step k. Initially, Zk holds all original rows of A whose leftmost nonzero
entry resides in column k. At the kth step, one pivot row is chosen from Zk,
and the remainder are added into the parent set Zp, where p is the parent
of k in the column elimination tree.

George and Ng (1990) construct a parallel algorithm for their method,
suitable for a shared-memory system. In contrast to the other papers on
parallel algorithms discussed in this section, they describe an actual imple-
mentation. Their method relies on the fact that the sets Z1:n are always
disjoint. Step k of lu right corresponds to node k in the column elimination
tree. If two nodes a and b do not have an ancestor/descendant relationship
in the tree, and if all their descendants have been computed, then these two
steps have no candidate pivot rows in common (Za and Zb are disjoint).
Each step selects one of their candidate pivot rows and uses it to update the
remaining rows in their own set. This work for nodes a and b can be done
in parallel.

6.4. Right-looking LU with dynamic pivoting

Unlike the left-looking method, the right-looking LU factorization method
has the Schur complement available to it, in the active submatrix A[k]. It
can thus select pivots from the entire active submatrix during factorization,
using both sparsity and numerical criteria. For dense matrices, the complete
pivoting strategy selects the entry in the active submatrix with the largest

48 Davis, Rajamanickam, Sid-Lakhdar

magnitude. The search for this pivot requires O
(
(n− k)2

)
work at the kth

step, the same work as the subsequent numerical update.

Sequential right-looking methods with dynamic pivoting

For sparse matrices, the pivot search in a right-looking method with dynamic
pivoting can far outweigh the numerical work, and thus care must be taken
so that the search does not dominate the computation. Consider a sparse
algorithm that examines all possible nonzeros in the active submatrix to
search for the kth pivot. This takes time proportional to the number of
such nonzeros. In general this could be quite high, but it would at least
have a loose upper of the number of entries in L+ U . The numerical work
for this pivot, however, would tend to be much lower. If the kth pivot row
and column had just a handful of entries, the numerical update would take
far less time since not all entries in the active submatrix need to be updated
by this pivot, perhaps as few as O(1). More precisely, let A[k−1] denote the
active submatrix just prior to the kth step. If the ith row of A[k−1] contains
ri nonzeros and the jth column contains cj nonzeros, then the numerical
work for the kth step is precisely 2(ri − 1)(cj − 1) + (cj − 1). The terms ri
and cj are called the row and column degrees, respectively.

Although searching the whole matrix for a pivot is far from optimal, this
strategy forms the basis of the very first sparse direct method, by Markowitz
(1957). Details of how the pivot is found are not given, but at the kth step,

the method selects a
[k−1]
ij using two criteria: (1) the magnitude of this entry

must not be too small, and (2) among those entries satisfying criterion (1),
the pivot is selected that minimizes the Markowitz cost, (ri − 1)(cj − 1).

Once this pivot is selected, the active submatrix is updated (line (6.8)

in lu right). Since the selection of this pivot is not known until the kth
step of numeric factorization, there is no bound for the nonzero pattern of
L and U , and a dynamic data structure must be used. These methods and
data structures are very complex to implement, and various data structures
and pivot selection strategies are reviewed by Duff (1985).

Tewarson (1966) takes a different approach that reduces the search. His
method relies on the Gauss-Jordan factorization, which transforms A into
the identity matrix I rather than U for LU factorization. However, the
pivot selection problem is similar. His method selects a sparse column j,
and then the entry of largest magnitude is selected as the pivot. The sparsity
measure to select column j is the sum row degrees for all nonzeros in this
column. Since this is costly to update, it is computed just once, and then
the column ordering is fixed from the beginning. Tewarson (1967a) consid-
ers alternatives: for example, after selecting column j, the nonzero pivot
aij with the smallest row degree ri is chosen, as long as its magnitude is
large enough. Tewarson (1967c) changes focus to Gaussian elimination. He

Sparse Direct Methods 49

introduces the column intersection graph (the graph of ATA) and proposes
several pivot strategies based solely on this graph of the nonzero pattern of
ATA (Section 8.5). He also proposes choosing as pivot the entry that causes
the smallest amount of new nonzeros in A[k] (the minimal local fill-in crite-
rion). Chen and Tewarson (1972b) generalize this strategy; their criterion is
a combination of fill-in and the number of floating-point operations needed
to eliminate the kth pivot.

The Gauss-Jordan factorization is no longer used in sparse matrix compu-
tations since Brayton, Gustavson and Willoughby (1970) have proved that
it always leads to a factorization with more nonzero entries than Gaussian
elimination (that is, LU factorization).

Curtis and Reid (1971) provide the details of their implementation of
Markowitz’ pivot search strategy. Their data structure for the active sub-
matrix allows for both rows and columns to be searched for the pivot with the
least Markowitz cost, among those that are numerically acceptable. Duff and
Reid (1974) compare this method with four others for selecting a pivot dur-
ing a right-looking numeric factorization: minimum local fill-in, and three
a priori column orderings. From their results, they recommend Markowitz’
strategy, which is indeed the dominant method for right-looking methods
that select their pivots during numerical factorization.

Duff and Reid (1979b) use this strategy in MA28, which is probably the
most well-used of all right-looking methods based on dynamic pivoting, along
with its counterpart for complex matrices (Duff 1981b). At first glance, it

may seem that finding the pivot a
[k−1]
ij with minimal Markowitz cost (ri −

1)(cj − 1) requires a search of all the nonzeros in A[k−1]. This would be
impractical. Duff and Reid (1979b) reduce this work via a branch-and-
bound technique. Rows and columns are kept in a set of degree lists. Row
i is placed in the list with all other rows of degree ri, and column j is in
the column list of degree cj . The lists are updated as the factorization
progresses, and thus finding the rows and columns of least degree is simple.
However, finding a pivot requires the least product (ri − 1)(cj − 1) among
all those pivots whose numerical value passes a threshold test (the pivot
aij must have a magnitude of at least, say, 0.1 times the largest magnitude
entry in column j). Their method first looks in the sparsest column and
finds the candidate pivot with best Markowitz cost. It then searches the
sparsest row, then the next sparsest column, and so on. Let r and c be
the row and column degrees of the sparsest rows and columns still being
searched, respectively, and let M be the best Markowitz cost found so far.
If M ≤ (r − 1)(c − 1) then the search can terminate, since no other pivots
can have a lower Markowitz cost than M . It is still possible that the entire
matrix could be searched, but in practice the search terminates quickly.

Zlatev (1980) modifies this method by limiting the search to just a few

50 Davis, Rajamanickam, Sid-Lakhdar

of the sparsest columns (4, say), implementing this in the Y12M software
package (Osterby and Zlatev 1983). Zlatev and Thomsen (1981) considers
a drop tolerance, where entries with small magnitude are deleted during
numerical factorization (thus saving time and space), followed by iterative
refinement (Zlatev 1985).

Kundert (1986) relies on the Markowitz criterion in his right-looking fac-
torization method, but where the diagonal entries are searched first. This
strategy is well-suited to the matrices arising in the SPICE circuit simulation
package for which the method was developed.

The most recent implementation of the dynamic-pivoting, right-looking
method is MA48 by Duff and Reid (1996a). It adds several additional fea-
tures, including a switch to a dense matrix method when the active subma-
trix is sufficiently dense. Pivoting can be restricted to the diagonal, reducing
the time to perform the search and decreasing fill-in for matrices with mostly
symmetric nonzero pattern.

Many LU factorization methods (those discussed here, and supernodal
and multifrontal methods discussed later) rely on a relaxed partial pivot-
ing criterion where the selected pivot need not have the largest magnitude
in its column. Even left-looking methods use it because it allows prefer-
ence for selecting the diagonal entry as pivot, which in practice reduces
fill-in for matrices with symmetric nonzero pattern (Duff 1984c). A re-
laxed partial pivoting strategy allows for freedom to select a sparse pivot
row, thus reducing time and memory requirements, but it can sometimes
lead to numerical inaccuracies. Arioli, Demmel and Duff (1989a) resolve
this problem with an inexpensive algorithm that computes an accurate es-
timate of the sparse backward error. The estimate provides a stopping
criterion for iterative refinement. For most matrices the error estimate is
low, and no iterative refinement is needed at all. In MATLAB, x=A\b uses
this strategy when A is unsymmetric, as implemented in UMFPACK (Davis
and Duff 1997, Davis 2004a).

Parallel right-looking methods with dynamic pivoting

With a dynamic data structure and little or no symbolic pre-analysis, the
right-looking LU factorization method is even more complex to implement
in a parallel algorithm. However, several methods have been developed that
tackle this challenge.

Davis and Davidson (1988) exploit parallelism in both the pivot search and
numerical update. Each task selects two of the sparsest rows whose leftmost
nonzero falls in the same column, and uses one row to eliminate the leftmost
nonzero in the other row (pairwise pivoting). Fill-in is controlled since the
two rows are selected in order of their row degree. Parallelism arises because
there are many such pairs.

Sparse Direct Methods 51

Kruskal, Rudolph and Snir (1989) consider a theoretical EREW model of
parallel computing in a method that operates on a single pivot at a time
(each floating-point update is considered its own task). They do not discuss
an implementation.

Several methods find independent set of pivots during numeric factoriza-
tion (Alaghband 1989, Alaghband and Jordan 1989, Davis and Yew 1990,
Van der Stappen, Bisseling and van de Vorst 1993, Koster and Bisseling
1994). In a single step, a set of pivots is found such that they form a diag-
onal matrix in the upper left corner when permuted to the diagonal. The
updates from these pivots can then be computed in parallel, assuming that
parallel updates to the same entry in the active submatrix are either syn-
chronized, or performed by the same processor. These methods are related
to methods that find such sets prior to factorization, an ordering method
discussed in Section 8.8.

Alaghband (1989) and Alaghband and Jordan (1989) use a binary matrix
to find compatible pivots, which are constrained to the diagonal. Alaghband
(1995) extends this method to allow for sequential unsymmetric pivoting
to enhance numerical stability. Davis and Yew (1990) rely on a parallel
Markowitz search, where each processor searches independently, and pivots
may reside anywhere in the matrix. Two processors may choose two pivots
that are not compatible with each other (causing the submatrix of pivots to
no longer be diagonal). To avoid this, when a candidate pivot is found, it is
added to the pivot set in a critical section that checks this condition. The
downside of Davis and Yew’s (1990) approach is that the pivots are selected
non-deterministically, which results in a different pivot sequence if the same
matrix is factorized again. Both the methods of Alaghband et al. and Davis
et al. rely on a shared-memory model of computing. Van der Stappen et
al. (1993) and Koster and Bisseling (1994) develop a distributed-memory
algorithm for finding and applying these independent sets to factorize a
sparse matrix on a mesh of processors with communication links, and no
shared memory.

An entirely different approach for a parallel right-looking method is to
partition the matrix into independent blocks and to factorize the blocks in
parallel. Duff’ (1989c) method permutes the matrix into bordered block
triangular form, and then factorizes each independent block with MA28.
Geschiere and Wijshoff (1995), Gallivan, Hansen, Ostromsky and Zlatev
(1995), and Gallivan, Marsolf and Wijshoff (1996) also do this in MC-
SPARSE. The diagonal blocks are factorized in parallel, followed by the
factorization of the border, which is a set of rows that connect the blocks.
Duff and Scott (2004) use a similar strategy in MP48, a parallel version of
MA48. They partition the matrix into single-bordered block diagonal form
and then use MA48 in parallel on each block.

52 Davis, Rajamanickam, Sid-Lakhdar

7. QR factorization and least-squares problems

In QR factorization, the matrix A is factorized into the product A = QR,
where Q is orthogonal and R is upper triangular. Sparse QR factorization
is the method of choice for sparse least squares problems, underdetermined
systems, and for solving sparse linear systems when A is very ill-conditioned.

The orthogonal matrix Q has the property that QTQ = I, and thus Q−1 =
QT . This makes it simple to solve Qx = b by just computing x = QT b.
For sparse matrices, Q is typically formed implicitly as a product of a set of
Householder reflections or Givens rotations, although a few papers discussed
below consider the Gram-Schmidt process. In a sparse least squares problem,
the goal is to find x that minimizes ||b− Ax||, and if b is available when A
is factorized, space can be saved by discarding Q as it is computed, by
simply applying the transformations to b as they are computed. After QR
factorization, the least squares problem is solved by solving Qy = b, and
then the sparse triangular system Rx = y. Alternatively, the corrected
semi-normal equations can solve a least squares problem if Q is discarded,
even if b is not available when A is factorized.

Prior to considering the details of the many methods for symbolic analysis
and numeric factorization for sparse QR factorization, it is helpful to take
a quick look at two numeric methods first: a sparse row-oriented method
based on Givens rotations, and a column-oriented method for dense matrices
based on Householder reflections. These two methods motivate the symbolic
analysis for sparse QR factorization discussed in Section 7.1. Further details
of the row-oriented numeric QR factorization based on Givens rotations are
presented in Section 7.2, and a column-oriented sparse QR factorization us-
ing Householder reflections is presented in Section 7.3. The latter is not
often used in practice in its basic form, but the method is related to the
sparse multifrontal QR factorization (Section 11.5). QR is well-suited for
handling rank deficient problems, although care must be taken because col-
umn pivoting destroys sparsity, which we discuss in Section 7.4. Sparse QR
factorization can be costly, and thus several alternatives to QR factorization
have been presented in the literature: the normal equations, solving an aug-
mented system via symmetric indefinite (LDLT) factorization, and relying
on LU factorization. These alternative methods are discussed in Section 7.5.

Sparse row-oriented QR factorization with Givens rotations

George and Heath (1980) present the first row-oriented QR factorization,
based on Givens rotations, and it can be simply described (hereafter referred
to as the Row-Givens method). Row-Givens starts with a symbolic analysis
of the normal equations, since under a few simplifying assumptions, the
nonzero pattern of R is given by the Cholesky factor of ATA. All of the

Sparse Direct Methods 53

methods for Cholesky symbolic analysis in Section 4 can thus be used on
ATA, and the pattern R of R is known prior to numeric factorization.

The numeric factorization starts with an R that is all zero, but with
a known final nonzero pattern. It is stored row-by-row in a static data
structure. The method selects a row of A and finds its leftmost nonzero;
suppose this entry is in column k. This entry is annihilated with a Givens
rotation (a 2-by-2 orthogonal matrix G) that uses the kth row of R to
annihilate the k entry of the selected row of A. Both rows are modified.
The next leftmost entry in this row of A is then found, and the process
continues until the row of A has been annihilated to zero. If the diagonal
rkk is zero, the Givens rotation becomes a swap. This happens if the kth
row of R is all zero, and thus the process stops early.

The MATLAB rowgivens script below illustrates the Row-Givens sparse
QR factorization. To keep it simple, it does not consider the pattern of
R and stores R in dense format. However, it does consider the sparsity of
the rows of A. The function implicitly stops early if it encounters a zero on
the diagonal of R. The matrix Q could be computed, or kept implicitly as a
sequence of Givens rotations, but the script simply discards it.

function R = rowgivens (A)

[m n] = size (A) ;

R = zeros (n) ;

for i = 1:m

s = A (i,:) ; % pick a row of A

k = min (find (s)) ; % find its leftmost nonzero

while (~isempty (k))

G = planerot ([R(k,k) ; s(k)]) ; % G = 2-by-2 Givens rotation

t = G * [R(k,k:n) ; s(k:n)] ; % apply G to kth row of R, and s

R (k,k:n) = t (1,:) ;

s (k:n) = t (2,:) ; % s(k) is now zero

k = min (find (s)) ; % find next leftmost nonzero of s

end

end

Dense column-oriented QR factorization with Householder reflections

A Householder reflection is a symmetric orthogonal matrix of the form H =
I − βvvT , where β is a scalar and v is a column vector. The vector v
and scalar β can be chosen based on a vector x so that Hx is zero except
for the first entry (Hx)1 = ±‖x‖2. Computing the matrix-vector product
Hx takes only O(n) work. The nonzero patterns of v and x are the same.
The MATLAB script qr right householder uses Householder reflections
in a right-looking manner to compute the QR factorization. It represents
Q implicitly as a sequence of Householder reflections (V and Beta) which
could be discarded if they are not needed. Householder reflections can also
be used for a left-looking QR factorization, assuming they are all kept.

54 Davis, Rajamanickam, Sid-Lakhdar

function [V,Beta,R] = qr_right_householder (A)

[m n] = size (A) ;

V = zeros (m,n) ; Beta = zeros (1,n) ; % Q as V and Beta

for k = 1:n

% construct the kth Householder reflection to annihilate A(k+1:m,k)

[v,beta,s] = gallery (’house’, A (k:m,k), 2) ;

V (k:m,k) = v ; Beta (k) = beta ; % save it for later

% apply it to the lower right submatrix of A

A (k:m,k:n) = A (k:m,k:n) - v * (beta * (v’ * A (k:m,k:n))) ;

end

R = triu (A) ;

7.1. Symbolic analysis for QR

The row/column count algorithm for sparse Cholesky factorization was con-
sidered in Section 4.2. The method can also be extended for the QR and
LU factorization of a square or rectangular matrix A. For QR factorization,
the nonzero pattern of R is identical to LT in the Cholesky factorization
LLT = ATA, assuming no numerical cancellation and assuming the matrix
A is strong Hall (that is, it cannot be permuted into block upper triangular
form with more than one block). This same matrix R provides an upper
bound on the nonzero pattern of U for an LU factorization of A. The inter-
relationships of symbolic QR, LU, and Cholesky factorization, and many
other results in this section, are surveyed by Gilbert and Ng (1993), Gilbert
(1994), and Pothen and Toledo (2004).

Forming ATA explicitly can be very expensive, in both time and memory.
Fortunately, Gilbert et al. (2001) show this is not required for finding the
column elimination tree or the row/column counts of R (and thus bounds
on U for LU). Each row i of A defines a clique in the graph of ATA, but not
all of these entries will appear in the skeleton matrix of ATA. The column
elimination tree is the tree for R, and is the same as the Cholesky factor
of ATA. To compute the column elimination tree, each clique is implicitly
replaced with a path amongst its nodes. Each row of A thus lists the nodes
(columns) in a single path, and using this new graph gives the elimination
tree of the Cholesky factor of ATA.

For the row/column counts, Gilbert et al. (2001) form a star matrix with
O(|A|) entries, but whose factorization has the same pattern as that of ATA.
The kth row and column of the star matrix is the union of rows in A whose
leftmost nonzero entry appears in column k. Thus, the row/column counts
for QR and the bounds on LU can be found in nearly O(|A|) time as well.
With this method the original matrix A can be used, taking only O(|A|)
space, which is is much less than O

(
|ATA|

)
.

Tewarson (1968) and Chen and Tewarson (1972a) present the first analysis
of the sparsity of two column-wise right-looking QR factorization methods,
one based on Householder reflections and the other on the Gram-Schmidt

Sparse Direct Methods 55

method. The two methods produce a similar matrix Q. However, Gram-
Schmidt constructs Q explicitly, whereas the Householder reflections im-
plicitly represent Q in a much sparser form. They also considers column
pre-orderings to reduce fill-in in Q and R (Section 8.5).

Coleman, Edenbrandt and Gilbert (1986) characterize the pattern of R
of the Row-Givens QR. They show that the Cholesky factor of ATA is a
loose upper bound on the fill-in of R when A is not strong Hall (that is,
when it can be permuted into block triangular form with more than one
diagonal block). The rowgivens algorithm can be symbolically simulated
using a local Givens rule: both rows that participate in a Givens reduction
take on the nonzero pattern of the union of both of them (except for the one
annihilated entry). They prove that the local Givens rule correctly computes
the fill-in if A is strong Hall, but it may also overestimate the final pattern
of R otherwise. They then show that the local Givens rule gives an exact
prediction if A is first permuted into block triangular form (Section 8.7).

In Row-Givens the matrix R starts out all zero, and only at the end of
factorization does it take on its final nonzero pattern. The column ordering
alone determines this final pattern. However, the order in which the rows
are processed affects the intermediate fill-in, as the pattern of each row of
R grows from the empty set to its final form. Ostrouchov (1993) consid-
ers row and column pre-orderings for Row-Givens, which are discussed in
Section 8.5. He also characterizes the exact structure of the intermediate
fill-in of each row of A in a right-looking QR factorization. His focus is
on Givens rotations but his analysis also holds for the right-looking column-
Householder method. At step k, the nonzero pattern of A(k:m,k) determines
the pattern of the kth Householder vector. It also gives the set of rows that
must take part in a right-looking Row-Givens reduction. His concise data
structure is based on the following observation. After all these entries are
annihilated (except for the diagonal), all these rows take on the nonzero
pattern of the set union of all of them, minus the annihilated k column itself
(which remains only in the kth row of R, as the diagonal).

George and Ng (1987) rely on this same observation for a symbolic right-
looking LU factorization, in which the nonzero patterns of all pivot row
candidates at the kth step are replaced with the set union of all such rows.
They note that this process gives upper bounds L̂ and Û on the structure
of L and U with partial pivoting, and also exactly represents the interme-
diate fill-in for a right-looking QR factorization. It gives a tighter estimate
of the pattern of R than the Cholesky factors of ATA. They describe an

O
(
|L̂|+ |Û |

)
-time symbolic algorithm for constructing the pattern of the

upper bounds, which also gives the pattern of R for QR factorization in
O(|R|) time (Algorithm 6.1: symbolic LU factorization with arbitrary par-
tial pivoting, in Section 6.1). The algorithm also constructs the nonzero

56 Davis, Rajamanickam, Sid-Lakhdar

Figure 7.9. A sparse matrix A, its column elimination tree, and its QR
factorization (R the upper triangular part, and V the Householder vectors in the

lower triangular part). (Davis 2006)

pattern of the Householder vectors, V , which is an upper bound for L. More
precisely, the upper bound Lk is exactly the same as the nonzero pattern of
the kth Householder vector.

Figure 7.9 gives an example QR factorization using Householder vectors.
On the left is the original matrix A. The middle gives its column elimination
tree. On the right is the factor R (in the upper triangular part) and the set of
Householder vectors V (in the lower triangular part) used to annihilate A to
obtain R. These same structures give upper bounds on the pattern of L and
U for LU factorization with arbitrary partial pivoting via row interchanges
during numeric factorization. The nonzero pattern of V is an upper bound
for L, and the pattern of R is an upper bound for U . These upper bounds
are computed by Algorithm 6.1.

For the right-looking Householder method (qr right householder), the
columns of V represent the set of Householder reflections, which provides an
implicit representation of Q. George et al. (1988b) show that the sparsity
pattern of each row of V is given by a path in the column elimination tree.
For row i, the path starts at the node corresponding to the column index of
leftmost nonzero entry, j = minAi. It proceeds up the tree, terminating at
node i if i ≤ n, and at a root of the tree otherwise. The nonzero patterns
of the columns are defined by George and Ng (1987): the pattern Vk is the
union of the pattern Vc of each child c of node k in the column elimination
tree, and also the entries in the lower triangular part of A.

Hare, Johnson, Olesky and Van Den Driessche (1993) provide a tight
characterization of the sparsity pattern of QR factorization when A has
full structural rank (or weak-Hall) but might not be strong-Hall. Matrices
with this property can be permuted so that they have a zero-free diagonal,
and they have a nonzero pattern such that there exists an assignment of

Sparse Direct Methods 57

numerical values so that they have full numeric rank. Their results have a
one-at-a-time property, in that for each predicted nonzero in Q and R, there
exists a matrix with the same pattern of A that makes this entry actually
nonzero. Pothen (1993) shows that the results of Hare et al. (1993) hold in
an all-at-once sense, in that there is a single matrix A that makes all the
predicted nonzeros in Q and R nonzero. Thus, these results are as tight as
possible without considering the values of A.

Ng and Peyton (1992) (1996) extend the results of Hare et al. (1993)
to provide an explicit representation of the rows of Q, based on the row
structure of V . They first generalize the column elimination tree (with n
nodes, one per column, if A is m-by-n) to a new tree with m nodes. The
tree is the same for nodes with parents in the column elimination tree.
The remaining nodes have as their parent the next nonzero row in the first
Householder vector V that modifies them. They show that row i of Q is
given by the path from node k to the root of this generalized tree, where k is
the first Householder vector that modifies row i. They also show that George
and Ng’s (1987) symbolic LU and QR factorization algorithm (Algorithm
6.1 in Section 6.1) provides tight bounds on the pattern of V and R if the
matrix A is first permuted into block upper triangular form.

Oliveira (2001) provides an alternative method that does not require that
the matrix be permuted into this block triangular form, but modifies the
row-merge tree of Algorithm 6.1 instead to obtain the same tight bounds.
Her method prunes edges in the row-merge tree. Each node of the row-merge
tree represents the elimination of a set of rows of A. If the leftmost nonzero
in row i is k, then it starts at node k of the tree. One row is selected as
a pivot, and the remainder are sent to the parent. If the count of rows at
a node goes to zero, then it is given no parent in this modified row-merge
tree. Row k “evaporates” when the set Sk turns out to be empty.

Gilbert, Ng and Peyton (1997) compare and contrast the implicit rep-
resentation of Q (as the set of Householder vectors V), and the explicit
representation of Q (as a matrix). The implicit representation is normally
sparser. They give a theoretical distinction as to when this is the case, based
on the size of vertex separators of the graph of ATA. Vertex separators for
QR factorization are an integral part of the nested dissection method dis-
cussed in Section 8.6.

7.2. Row-oriented Givens-based QR factorization

George and Heath (1980) developed the first QR factorization based on
Givens rotations, as already discussed in the introduction to Section 7, and
as illustrated in the rowgivens function. The method has been extended
and studied in many related papers since then, which we discuss here. Fill-
reducing pre-orderings for this method based solely on the nonzero pattern

58 Davis, Rajamanickam, Sid-Lakhdar

of A are considered in Section 8, but some methods find their pivot orderings
during numeric factorization, for reducing fill-in, improving accuracy, or for
handling rank deficient problems. These pivot strategies are considered here.

Duff (1974b) considers several methods for ordering the rows and columns
when computing the QR factorization via Givens rotations. Different row
orderings give the same upper triangular factor R, but result in different
amounts of intermediate fill-in as the factorization progresses, and different
amounts of total floating-point work that needs to be performed. Each major
step annihilates a single column. In each method, a single pivot row is chosen
at the kth major step, and used to annihilate all nonzeros in column k below
it. Duff considers the natural order (as given in the input matrix), ascending
number of nonzeros in each target row, and a minimum fill-in ordering in
which the next row selected as the target is the one that will cause the least
amount of new fill-in in the pivot row. Five column pre-orderings are also
presented. The simplest is to pre-order the columns by ascending column
count, which does not give good results. Four methods are employed during
the QR factorization, and operate on the updated matrix as it is reduced
to upper triangular form. Let ri denote the number of entries in row i,
and cj the number of entries in column j. The four methods are: (1) the
sparsest column is selected, and then within that column, the sparsest row
is selected, (2) the reverse of method (1), (3) the entry with the smallest
Markowitz cost is selected (ricj), and (4) the entry with the smallest metric
ric

2
j . Method (1) is shown to be the best overall.
Gentleman (1975) presents a variable pivot row strategy. For each Givens

rotation within the kth major step, the two rows chosen are the two sparsest
rows whose leftmost nonzero lies in column k.

Zlatev (1982) considers two pivotal strategies. Both are done during fac-
torization, with no symbolic pre-analysis or ordering phase (this is in con-
trast to George and Heath’s (1980) method, which assumes both steps are
performed). The goal of Zlatev’s (1982) strategies is to reduce intermediate
fill-in. One strategy selects the column of least degree (fewest nonzeros),
and then picks two rows of least degree with leftmost nonzero entry in this
column and applies a Givens rotation to annihilate the leftmost nonzero en-
try in one of the two rows. The next pair of rows can come from a different
column. In his second strategy, a column of least degree is selected and the
sparsest row is selected as the pivot row from the set of rows whose leftmost
nonzero is in this column. This pivot row is used to annihilate the leftmost
nonzero in all the other rows, in increasing order of their degree.

Robey and Sulsky (1994) develops a variable pivot row strategy that ex-
tends Gentleman’s (1975) idea. At each major step, the two pivot rows are
chosen that cause the least amount of fill in both of the two rows. Thus,
two rows with many nonzeros but with the same pattern would be selected
instead of two very sparse rows that have different patterns.

Sparse Direct Methods 59

Some row orderings can result in intermediate fill-in that is not restricted
to the final pattern of R. This can lead to an increase in storage. Gillespie
and Olesky (1995) describe a set of conditions on the row ordering that
ensure the intermediate fill-in is restricted to the nonzero pattern of R.

George, Heath and Plemmons (1981) consider an out-of-core strategy. In
George and Heath’s (1980) method, a single row of A is processed at a time
and it is annihilated until it is all zero or until it lands in an empty row
for R. Since the rows of A in George and Heath’s (1980) method are fully
processed, one at a time, it is well-suited to George et al.’s (1981) out-of-
core strategy where A is held in auxiliary memory. They employ a nested
dissection ordering (George et al. 1978), discussed in Section 8.6, to partition
the problem so that only part of R need reside in main memory at any one
time. A row of A may be processed more than once, since only part of R is
held. In this case, it is written to a file, and read back in again for the next
phase.

Heath (1982) extends the method of George and Heath (1980) to handle
rank deficiency. Modifying the column permutation would be the best strat-
egy, numerically speaking, by selecting the next pivot column as the column
of largest norm. Column pivoting is relied upon for rank deficient dense ma-
trices, and it is very accurate. However, the column ordering for the sparse
case is fixed, prior to factorization. Changing it breaks the symbolic analysis
entirely. The solution is to keep the same column ordering, but to produce
an R with different (and fewer) rows. Consider the Givens rotation G in
rowgivens, which uses the kth row of R to annihilate s(k). Suppose that
R(k,k) is zero and s(k) is already zero or nearly so. The Givens rotation
is skipped, and the kth row of R remains empty. The entry s(k) is set to
zero and the row s proceeds to the next row. If A is found to be rank defi-
cient, the resulting R will have gaps in it, with empty rows. These rows are
deleted to obtained the “squeezed” R. When factorization is complete, the
corresponding columns can be permuted to the end, and R becomes upper
trapezoidal. MATLAB uses this strategy for x=A\b, when it encounters a
sparse rectangular rank deficient matrix (Gilbert et al. 1992, Davis 2011a).

Dense rows of A can cause R to become completely nonzero, destroying
sparsity. Björck (1984) avoids this problem by withholding them from the
sparse QR factorization when solving a least squares problem, and then
adding them back in via non-orthogonal eliminations.

Sparse QR is not limited to solving least squares problems. Suppose A is
m-by-n with m < n. If A has full rank, the system Ax = b is underdeter-
mined and there are many solutions, but a unique solution of minimum norm
exists. George, Heath and Ng (1984a) employ a sparse QR factorization of
AT , giving an LQ factorization A = LQ that is suitable for finding this min-
imum norm solution. If A is rank deficient, then rank deficiency handling
(Heath 1982) and column updating (Björck 1984) (see Section 7.4), along

60 Davis, Rajamanickam, Sid-Lakhdar

with a subsequent sparse LQ factorization of a smaller matrix if necessary,
can find a solution. In each case, arbitrary column pivoting is avoided during
numerical factorization, thus keeping the symbolic pre-analysis valid.

Liu (1986c) generalizes Row-Givens by treating blocks of rows. Each block
becomes a full upper trapezoidal submatrix, and pairs of these are merged
via a Givens-based method that produces a single upper trapezoidal subma-
trix. Since this is a right-looking method that employs dense submatrices, it
is very similar to the Householder-based multifrontal QR factorization (Sec-
tion 11.5), in which each submatrix becomes a frontal matrix, and where
more than two are merged at a time.

Ostrouchov (1993) presents a bipartite graph model for analyzing row
orderings performed in the numerical factorization phase of Row-Givens, in
contrast to row pre-orderings that are computed prior to factorization (the
latter are discussed in Section 8.5).

Several parallel versions of Row-Givens have been implemented. The first
was a shared-memory algorithm by Heath and Sorensen (1986), where mul-
tiple rows of A are eliminated in a pipelined fashion. Each processor has its
own row of A, and synchronization ensures that each processor has exclu-
sive access to one row of R at a time. For a distributed-memory model, Chu
and George (1990) extend the general row-merge method of Liu (1986c).
Subtrees are given to each processor to handle independently, and further
up the tree, the pairwise merge of two upper trapezoidal submatrices is
spread across all processors. Kratzer (1992) uses the row-wise method of
George and Heath (1980) for a SIMD parallel algorithm. Each row can
participate in multiple Givens rotations at one time, via pipelining. This
is contrast to the pipelined method of Heath and Sorensen (1986), which
treats an entire row as a single unit of computation. Kratzer and Cleary
(1993) include this method in their survey of SIMD methods for sparse LU
and QR factorization. Ostromsky, Hansen and Zlatev (1998) permute the
matrix into a staggered block staircase form, by sorting the rows according
to their leftmost nonzero entry. This results in a matrix where the leading
blocks may be rectangular and where the lower left corner is all zero. Each
of the block rows are factorized in parallel. This moves the staircase towards
becoming upper triangular, but does not necessarily result in an upper tri-
angular matrix, so the process is repeated until the matrix becomes upper
triangular.

7.3. Column-oriented Householder-based QR factorization

The column-oriented Householder factorization can be implemented via ei-
ther a right-looking (as qr right householder) or left-looking strategy. In
its pure non-multifrontal form discussed here it is not as widely-used as Row-
Givens. However, the right-looking variant forms the basis of the sparse

Sparse Direct Methods 61

multifrontal QR, a widely-used right-looking algorithm discussed in Sec-
tion 11.5. The method has one distinct advantage over Row-Givens: it is
much easier to keep the Householder reflections, which represent Q in prod-
uct form as a collection of Householder vectors (V) and coefficients, than it
is to keep all the Givens rotations.

The method was first considered by Tewarson (1968) and Chen and Tewar-
son (1972a), who analyzed its sparsity properties. George and Ng (1986),
(1987), show that the Householder vectors (V) can be stored in the same
space as the Cholesky factor L for the matrix ATA, assuming A is square
with a zero-free diagonal. This constraint is easy to ensure, since every
full-rank matrix can be permuted into this form via row interchanges (Sec-
tion 8.7). They also define the pattern of V when A is rectangular.

The MATLAB script qr right householder for the right-looking method
appears in the introduction to Section 7. George and Liu (1987) implement
the method as a generalization Liu’s (1986c) version of Row-Givens, which
uses a block-row-merge. The algorithm is the same except that Householder
reflections are used to annihilate each submatrix. The tree is no longer
binary. Additional blocks of rows (either original rows of A or the upper
trapezoidal blocks from prior transformations) are merged as long as they
do not increase the set of column indices that represents the pattern of the
merged block rows. With this modification, their right-looking Householder-
based method becomes even more similar to the multifrontal QR.

The left-looking method is implemented by Davis (2006). In this method,
the kth step applies all prior Householder reflections (stored as the set vec-
tors V1:k−1 and coefficients β1:k−1) and computes the kth column of R and
the kth Householder vector. The only prior Householder vectors that need
to be applied correspond to the nonzero pattern of the kth column of R.
This identical to the kth row of the Cholesky factorization of ATA (assum-
ing A is strong Hall), and is thus given by the kth row subtree, T k. A dense
matrix version is given below as qr left householder.

function [V,Beta,R] = qr_left_householder (A)

[m n] = size (A) ;

V = zeros (m,n) ;

Beta = zeros (1,n) ;

R = zeros (m,n) ;

for k = 1:n

x = A (:,k) ;

for i = 1:k-1

v = V (i:m,i) ;

beta = Beta (i) ;

x (i:m) = x (i:m) - v * (beta * (v’ * x (i:m))) ;

end

[v,beta,s] = gallery (’house’, x (k:m), 2) ;

V (k:m,k) = v ;

62 Davis, Rajamanickam, Sid-Lakhdar

Beta (k) = beta ;

R (1:(k-1),k) = x (1:(k-1)) ;

R (k,k) = s ;

end

In the sparse case, the for i=1:k-1 loop is replaced with an loop across
all rows i for which R(i,k) is nonzero (a traversal of the kth row subtree).
The data structure is very simple since R and V grow by one column k at a
time, and once the kth column is computed for these matrices they do not
change dynamically. The sparse vector x holds the k column of R and V in
scattered format, and the pattern Vk of the kth column of V is computed in
the symbolic factorization phase.

7.4. Rank-deficient least-squares problems

If A is rank deficient, all of the QR factorization methods described so far
(Row-Givens, and the left and right-looking variants of the Householder-
based methods) can employ Heath’s (1982) method for handling this case.
This method is an integral part of Row-Givens, as discussed in Section 7.2.
Additional methods for rank deficient problems are considered here. The
resulting QR factorization is referred to as a rank-revealing QR. It is always
an approximation, but some methods are more approximate than others.
In particular, while it is fast and effective for many matrices in practice,
Heath’s (1982) method is the least accurate of the methods considered here.

A rank-revealing factorization is essential for finding reliable solutions to
ill-posed systems (both pseudo-inverse and basic solutions), constructing
null space bases, and computing the rank. The SVD-based pseudo-inverse
provides the most accurate results, but it is not suitable for sparse matrices
since the singular vectors of a sparse matrix are all nonzero under very mod-
est assumptions. A less accurate method would be to use QR factorization
with column pivoting, in which at the kth step the column with the largest
norm is permuted to become the kth column. This method is commonly
used for dense matrices, but it too destroys sparsity (although not as badly
as the SVD).

Björck (1984) handles rank deficiency in his method for handling dense
rows of A. The dense rows are withheld from the QR factorization, but
the sparse submatrix without these dense rows can become rank deficient.
Björck uses Heath’s (1982) method to handle this case by computing an
upper trapezoidal factor R. He then handles the dense rows of A by non-
orthogonal eliminations and uses them to update the solution to the en-
tire system for all of A. The sparse least squares solver in SPARSPAK-
B by George and Ng (1984a), (1984b), relies on Row-Givens (George and
Heath 1980). It uses Heath’s (1982) method for rank deficient problems and
Björck’s (1984) for handling dense rows.

Sparse Direct Methods 63

Bischof and Hansen (1991) consider a rank-revealing QR factorization
that restricts the column pivoting in a right-looking method so as not to
destroy sparsity. This is followed by a subsequent factorization of the part
of R (in the lower right corner) that may still be rank-deficient.

Ng (1991) starts with the Row-Givens method and Heath’s (1982) method
for handling rank deficiency. In the second phase, the tiny diagonal entries
of R (those that fall below the threshold) are used to construct a full-rank
underdetermined system, which is solved via another QR factorization.

The multifrontal QR discussed in Section 11.5 can use Heath’s (1982)
method. For example, Heath’s method is used in the multifrontal sparse
QR used in MATLAB (Davis 2011a). Pierce and Lewis (1997) were the
first to consider a multifrontal QR factorization method that handles rank
deficient matrices and computes their approximate rank. They start with
a conventional sparse QR (multifrontal in this case), and combine it with a
condition estimator (Bischof, Lewis and Pierce 1990). Columns are removed
if found to be redundant by this estimator. A second phase treats the
columns found to be redundant in the first phase. More details are discussed
in Section 11.5.

In contrast, Foster and Davis (2013) rely on Heath’s simpler method for
the first phase. Columns that are found to be redundant are dropped, but
the method computes the Frobenius norm of the small errors that occur
from this dropping. The dropped columns are permuted to the end of R.
The second phase relies on subspace iteration to obtain an accurate estimate
of the null space of the lower right corner of R (the redundant columns).
Their package includes methods for finding the basic solution, an orthonor-
mal nullspace basis, an approximate pseudoinverse solution, and a complete
orthogonal decomposition.

7.5. Alternatives to QR factorization

QR factorization is the primary method for solving least squares problems,
but not the only one. The methods discussed below can be faster and
take less memory, depending on the sparsity pattern of A and how well-
conditioned it is.

The simplest method is to use the normal equations. Finding x that
minimizes the norm ||r|| of the residual r = b− Ax can be done by solving
the normal equations ATAx = AT b via sparse Cholesky factorization. This
fails if A is rank deficient or ill-conditioned, however. The rank deficient
case is considered in Section 7.4. However, it works well for applications
for which the matrices are well-conditioned. For example, Google uses the
normal equations to solve the least squares problems via CHOLMOD (Chen
et al. 2008) in their non-linear least squares solver, Ceres. The Ceres package

64 Davis, Rajamanickam, Sid-Lakhdar

is used to process all photos in Google StreetView, PhotoTours, and many
other applications.

Duff and Reid (1976) compare and contrast four different methods for
solving full-rank least squares problems: (1) the normal equations, (2) QR
factorization based on Givens rotations or Householder reflections, (3) the
augmented system, and (4) the method of Peters and Wilkinson (1970),
which relies on the LU factorization of the rectangular matrix A. The aug-
mented system [

I A
AT 0

] [
r
x

]
=

[
b
0

]
(7.1)

results in a symmetric indefinite matrix for which the multifrontal LDLT

factorization is suitable (Section 11). It is not as susceptible to the ill-
conditioning of the normal equations. Replacing I with a scaled identity
matrix αI can improve the conditioning. Peters and Wilkinson (1970) con-
sidered only the dense case, but Duff and Reid (1976) adapt their method
to the sparse case. The method starts with the A = LU factorization of
the rectangular matrix, followed by the symmetric indefinite factorization
LTL = L2D2L

T
2 . It is just as stable as the augmented system, and can be

faster than QR factorization of A.
Björck and Duff (1988) extend the method of Peters and Wilkinson (1970)

to the weighted least squares problem, and present an updating approach
for when new rows arrive. The latter is discussed in Section 12.1.

Arioli, Duff and de Rijk (1989b) introduce error estimates for the solution
of the augmented system that are both accurate and inexpensive to com-
pute. Their results show that the augmented system approach with iterative
refinement can be much better, particularly when compared to the normal
equations when A has a dense row. In that case, ATA is completely nonzero,
which is not the case for the LDLT factorization of the augmented matrix
in (7.1). Results and comparisons with the normal equations are presented
by Duff (1990), who shows that the method is stable in practice.

George, Heath and Ng (1983) compare three different methods: (1) the
normal equations, (2) the Peters and Wilkinson (1970) method using MA28
(Duff and Reid 1979b), and (3) the Row-Givens method. They conclude that
the normal equations are superior when A is well-conditioned. The method
is faster and generates results with adequate accuracy. They find the method
of Peters and Wilkinson (1970) to be only slightly more accurate. They note
that the LU factorization of LTL takes about the same space as the Cholesky
factorization of ATA. The Row-Givens method is robust, being able to solve
all of the least squares problems they consider.

Cardenal, Duff and Jiménez (1998) consider both the least squares prob-
lem for solving overdetermined systems of equations, and the minimum 2-
norm problem for undetermined systems. They rely on LU factorization

Sparse Direct Methods 65

of an different augmented system than (7.1). For overdetermined systems,
they solve the system AT

1 0 AT
2

I A1 0
0 A2 I

 r1
x
r2

 =

 0
b1
b2

 (7.2)

via LU factorization, where A1 is a square submatrix of A and A2 is the
rest of A. This is followed by a solution of A1x = b1J

T r2 where J is the
(3,2) block in the factor L of the 3-by-3 block coefficient matrix in (7.2). A
related system with the same coefficient matrix but different right-hand side
is used to find the minimum 2-norm solution for under-determined systems.
Unlike Peters and Wilkinson’s (1970) method, their method does not require
a subsequent factorization of LTL. They that show the method works well
when A is roughly square.

Heath (1984) surveys the many methods for solving sparse linear least
squares problems: normal equations, Björck and Duff’s (1988) method using
LU factorization, Gram-Schmidt, Householder reflections (right-looking),
Givens rotations (Row-Givens), and iterative methods (in particular, LSQR
(Paige and Saunders 1982)). His conclusions are in agreement with the
results summarized above. Namely, the normal equations can work well
if A is well-conditioned, and LU factorization is best when the matrix is
nearly square, and Row-Givens is superior otherwise. Heath concludes that
Givens rotations are superior to a right-looking Householder method, but
he does not consider the successor to right-looking Householder: the mul-
tifrontal QR, which was developed later. Iterative methods such as LSQR
are outside the scope of this survey, but Heath states that they can work
well, although a pre-conditioner must be chosen correctly if the matrix is
ill-conditioned.

8. Fill-reducing orderings

The fill-minimization problem can be stated as follows. Given a matrix A,
find a row and column permutation P and Q (with the added constraint that
Q = P T for a sparse Cholesky factorization) such that the number of nonze-
ros in the factorization of PAQ, or the amount of work required to compute
it, are minimized. While some of these orderings were originally developed
for minimizing fill, there are other variants and usage in different contexts
such as minimizing flops or exposing parallelism for parallel factorizations.

Section 8.1 discusses the difficulty of the fill-minimization problem, and
why heuristics are used. Each following subsection then considers different
variations of the problem and algorithms for solving them. Moving entries
close to the diagonal is the goal of the profile orderings discussed in Sec-
tion 8.2. The Markowitz method for finding pivots during LU factorization

66 Davis, Rajamanickam, Sid-Lakhdar

has already been discussed in Section 6.4, but the method can also be used
as a symbolic pre-ordering, as discussed in Section 8.3. Section 8.4 presents
the symmetric minimum degree method and its variants, including minimum
deficiency, for sparse Cholesky factorization and for other factorizations that
can assume a symmetric nonzero pattern. The unsymmetric analog of min-
imum degree is considered in Section 8.5, which is suitable for QR or LU
factorization with arbitrary partial pivoting. Up to this point, all of the
methods considered are local greedy heuristics. Section 8.6 presents nested
dissection, a completely different approach that uses graph partitioning to
break the problem into subgraphs that are ordered independently, typically
recursively. This method is well-suited to parallel factorizations, particularly
matrices arising from discretizations of 2D and 3D problems. Section 8.7
considers the block triangular form and other special forms. Finally, pre-
orderings based on independent sets, and elimination tree rotations, are
discussed in Section 8.8. These methods take an alternative approach to
finding orderings suitable for parallel factorizations.

8.1. An NP-hard problem

Computing an ordering for the minimum fill is NP-hard, in its many forms.
Rose and Tarjan (1978) showed that computing the minimum elimination
order is NP-complete for directed graphs and described how to compute the
fill-in for any ordering (symbolic analysis). Gilbert (1980) made corrections
to the proofs of Rose and Tarjan (1978). As a result, both of these works
should be considered together while reading. Rose et al. (1976) conjectured
that it is also true that minimum fill is NP-hard for undirected graphs which
was later proved to be correct (Yannakakis 1981). Recently, Luce and Ng
(2014) showed that the minimum flops problem is NP-hard for the sparse
Cholesky factorization and it is different from the minimum fill problem.
Peyton (2001) introduced an approach to begin with any initial ordering
and refine it to a minimal ordering. One implementation of such a method
is described by Heggernes and Peyton (2008). Such approaches are useful
when the initial ordering is not minimal. The rest of this section considers
orderings to reduce the fill and points out other variants or usage when
appropriate.

8.2. Profile, envelope, wavefront, and bandwidth reduction orderings

Given a sparse symmetric matrix A of size n × n with non-zero diagonal
elements we will consider the lower triangular portion of A for the following
definitions. Let fi(A) be the first non-zero entry in the ith row of A or

fi(A) = min{j : 1 ≤ j ≤ i,with aij 6= 0} (8.1)

Sparse Direct Methods 67

The bandwidth of A is

max{i− fi(A), 1 ≤ i ≤ n} (8.2)

The envelope of A is

{(i, j) : 1 ≤ i ≤ n, fi(A) ≤ j < i} (8.3)

The profile of the matrix is the number of entries in the envelope in
addition to the number of entries in the diagonal. In the frontal method
(discussed in Section 10) the matrix A is never fully assembled. Instead the
assembly and elimination phases are interleaved with each other. In order
to get better performance the number of equations active at any stage of
the elimination process needs to be minimized. Equation j is called active if
j ≥ i and there is a non-zero entry in column j with row index k such that
k ≥ i. If wi denotes the number of equations that are active during the ith
step of the elimination the maximum wavefront and mean-square wavefront
are defined, respectively, as

max
1≤i≤n

{wi} (8.4)

1

n

n∑
i=1

|wi|2 (8.5)

In frontal methods, the maximum wavefront affects the storage, and the
root-mean-square wavefront affects the work, as the work in eliminating a
variable is proportional to the square of the active variables. Methods that
reduce the maximum wavefront or mean-square wavefront overlap consid-
erably with methods to reduce the bandwidth, envelope or profile. This
subsection covers these approaches together.

The problem of minimizing the bandwidth is NP-Complete (Papadimitriou
1976). Tewarson (1967b) presents two methods for reducing the lower band-
width only, so that the matrix is permuted into a mostly upper triangular
form. Among the methods described here a variation of the method origi-
nally proposed by Cuthill and McKee (1969) (CM) is one of the more popular
methods even now. Cuthill and McKee (1969) describe a method for mini-
mizing the bandwidth. Their method uses the graph of A and starts with a
vertex of minimum degree and orders it as the first vertex. The nodes adja-
cent to this vertex (called level 1) are numbered next in order of increasing
degree. This procedure is repeated for each node in the current level until all
vertices are numbered. Later, George (1971) proposed reversing the order-
ing obtained from the Cuthill and McKee method, which resulted in better
orderings. This change to the original method is called the reverse Cuthill-
McKee ordering or RCM. King (1970) proposed a method to improve the

68 Davis, Rajamanickam, Sid-Lakhdar

frontal methods with a wavefront reduction algorithm. Levy’s (1971) al-
gorithm for wavefront reduction is similar to King’s algorithm where all
vertices at each stage are considered instead of unlabeled vertices adjacent
to already labeled vertices. Cuthill (1972) compares the original method of
Cuthill and McKee (1969) with this reversed ordering and King’s method
for a number of metrics such as bandwidth, wavefront and profile reduction.
The results showed that the Cuthill-McKee method and its reverse gave
smaller bandwidths; Levy’s algorithm gave smaller wavefronts and profiles.
Other methods that followed used iterations to improve the ordering fur-
ther (Collins 1973) or expensive schemes to find different starting vertices
(Cheng 1973a, Cheng 1973b). The RCM and CM methods both result in
similar bandwidth. However, RCM also results in a smaller envelope (Liu
and Sherman 1976). A linear implementation of the RCM method is possible
by being careful in the sorting step (Chan and George 1980).

A faster algorithm to compute the ordering was proposed by Gibbs, Poole
and Stockmeyer (1976a) for bandwidth and profile reduction. The GPS
algorithm finds pseudo-peripheral vertices iteratively and then tries to im-
prove the width of a level. In addition it uses a reverse numbering scheme.
Later work compared this new method to a number of other algorithms
discussed above (Gibbs, Poole and Stockmeyer 1976b). The results showed
that both RCM and GPS are good bandwidth reduction algorithms and
GPS is substantially faster. King’s algorithm results in a better profile
when it does well, but RCM and GPS are more consistent for profile re-
duction. In terms of profile reduction Snay’s (1969) algorithm resulted in
better profile than RCM. One of the earliest software packages to implement
bandwidth and profile reduction, called REDUCE (Crane, Gibbs, Poole
and Stockmeyer 1976), implements the GPS algorithm (Gibbs et al. 1976a).
Gibbs (1976) also proposed a hybrid algorithm by using the GPS technique
with King’s algorithm to arrive at a profile reduction algorithm that is more
robust than King’s algorithm. This hybrid algorithm arrives at level sets
starting from pseudo-peripheral vertices and uses King’s algorithm for the
numbering within the level.

George (1977b) compares RCM with nested-dissection (discussed in Sec-
tion 8.6 below) based on the operation count and memory usage for the
sparse Cholesky factorization, and the time to compute the orderings. His
results show that the solvers match earlier complexity analysis. George also
proposed in this paper a one-way nested-dissection scheme where the sep-
arators are found in the same dimension. One-way nested dissection gives
a slight advantage in the solve time, but nested-dissection is substantially
better in factorization times. Everstine (1979) compares RCM, GPS, and
Levy’s algorithm on different metrics and established that GPS is good for
both maximum wavefront and profile reduction.

Brown and Wait (1981) present a variation of RCM that accounts for

Sparse Direct Methods 69

irregular structures in the graph, such as holes in a finite-element mesh. In
this case, RCM can oscillate between two sides of a hole in the mesh, first
ordering one side and then the other, and back again. Brown and Wait avoid
this by ordering all of the unordered neighbors of a newly ordered node in
a group, rather than strictly in the order of increasing degree.

Lewis (1982a)(1982b) describes strategies to improve both GPS and the
algorithm of Gibbs (1976) and practical implementation of both these al-
gorithms as a successor of the REDUCE software. Linear-time implemen-
tations of these profile reduction algorithms such as Levy, King and Gibb’s
algorithms are possible by efficient implementation of search sets to minimize
fronts (Marro 1986). While these strategies result in good implementations,
Sloan (1986) presented a simple profile and wavefront reduction algorithm
that is faster than all these other implementations. The method introduces
two changes to finding pseudo-peripheral vertices. First, the focus is on
low degree nodes in the last level. Second, the short circuiting strategy
introduced by George and Liu (1979b) is used as well.

Hager (2002) introduces a sequence of row and column and exchanges to
minimize the profile. These methods are useful for refining other orderings.
An implementation of this approach without big penalties on runtime is also
possible (Reid and Scott 2002).

Spectral methods do not use level structures. Instead, spectral algorithms
for envelope reduction use the eigenvector corresponding to the smallest
positive eigenvalue of the Laplacian matrix corresponding to a given matrix
(Barnard, Pothen and Simon 1995). Analysis of this method shows that
despite the high cost of these methods, they result in better envelope re-
ductions (George and Pothen 1997). These methods have the advantage of
easy vectorization and parallelization. George and Pothen propose the idea
for a multilevel algorithm to compute the eigenvector. Boman and Hen-
drickson (1996) described an implementation of these ideas in a multilevel
framework in the Chaco library (Hendrickson and Leland 1995b), (1995a). A
hybrid algorithm that combines the spectral method for envelope and wave-
front reduction with a refinement step that uses Sloan’s algorithm improves
the wavefront at the cost of time (Kumfert and Pothen 1997). They also
show a time-efficient implementation of Sloan’s algorithm for large problems.
These changes are also considered in the context of the MC60 and MC61
codes (Reid and Scott 1999). Grimes, Pierce and Simon (1990) proposed
finding pseudo-peripheral vertices via a spectral methods for a regular access
pattern in an out-of-the-core implementation.

A number of the ordering schemes for frontal methods need to differentiate
between element numbering and nodal numbering in the finite-element mesh.
Bykat (1977) proposed an RCM-like method to do element numbering by
defining an element graph, where the vertices are elements and the edges
signify adjacent elements that share an edge. The Cuthill-McKee method is

70 Davis, Rajamanickam, Sid-Lakhdar

used on this element graph. Razzaque (1980) discusses an indirect scheme
to reduce the frontwidth or the wavefront for a frontal method. It uses the
band reduction method on the nodes of the mesh and then numbers the
elements based on the ordering of the nodes that the elements correspond
to. Other methods follow this pattern as well by using different algorithms
for nodal numbering (Ong 1987). The direct numbering schemes such as the
one proposed by Pina (1981) attempt to find the best element numbering
to reduce the frontwidth in each step by considering nodes with minimum
degree and the corresponding elements. Fenves and Law (1983) describe a
two step scheme where the elements are ordered with RCM and the nodes
are numbered locally which results in better fill than just doing RCM on the
nodes. Local ordering in this method is based on the number of elements a
node is incident upon and the element graph uses adjacencies in more than
two dimensions.

There are other methods (Hoit and Wilson 1983, Silvester, Auda and
Stone 1984, Webb and Froncioni 1986) that use nodal and/or element num-
berings to minimize the frontwidth. A comparison of these direct and in-
direct methods for wavefront minimization show similar performance (Duff,
Reid and Scott 1989b). In these comparisons Sloan’s ordering is used to
order indirectly and a more aggressive short circuiting than used by George
and Liu (1979b) is used here. De Souza, Keunings, Wolsey and Zone (1994)
approach the frontwidth problem by using a graph partitioning-like approach
that results in better frontwidth. It is also possible to use a hybrid method
of spectral ordering and Sloan’s algorithm for a frontal solver (Scott 1999b).
This approach follows the work of Reid and Scott (1999) and Kumfert and
Pothen (1997). When the matrices are highly unsymmetric the row graph is
used with a modified Sloan’s algorithm for an effective strategy for frontal
solvers (Scott 1999a). Reid and Scott (2001) also analyze the effect of re-
versing the row ordering for frontal solvers. More theoretical approaches
for bandwidth minimization have been considered where they propose exact
solutions for small problems (Del Corso and Manzini 1999).

8.3. Symbolic Markowitz

Right-looking methods for LU factorization using the Markowitz (1957)
method and its variants typically find the pivots during numerical factoriza-
tion. In this section, we discuss methods that use this strategy to pre-order
the matrix prior to numerical factorization.

Markowitz’ method is a local heuristic to choose the pivot at the kth
step. Let rki and ckj be the number of nonzero entries in row i and column
j respectively in the (n − k) × (n − k) submatrix yet to be factored after
the k-th step. The Markowitz algorithm then greedily picks the nonzero
entry akij in the remaining submatrix that has the minimum Markowitz

Sparse Direct Methods 71

count, which is the product of the nonzeros left in the rows and columns
(rki − 1) × (ckj − 1). This strategy has been successfully used in different
factorizations with different variations for quite some time.

The work of Norin and Pottle (1971) is one of the early examples where
they considered a metric with weighted schemes that can be adjusted to
a Markowitz-like metric. The weights can also be adjusted to use other
metrics such as the row or column degree for ordering.

Markowitz ordering has been more recently used for symmetric permu-
tation of unsymmetric matrices, permuting the diagonal entries (Amestoy,
Li and Ng 2007a). Such a method is purely symbolic and allows the use
of the nonsymmetric structure of the matrices without resorting to some
form of symmetrization. Amestoy et al. (2007a) show that this can be done
efficiently in terms of time and memory using techniques such as local sym-
metrization. This work was later extended to consider the numerical values
of the matrix by introducing a hybrid method that uses a combination of
structure and values to pick the pivot (Amestoy, Li and Pralet 2007b). The
new method does not limit the pivot to just the diagonal entries, but it uses
a constraint matrix that uses both structural and numerical information to
control how pivots are chosen.

8.4. Symmetric minimum degree and its variants

The minimum degree algorithm is a widely-used heuristic for finding a per-
mutation P so that PAP T has fewer nonzeros in its factorization than A.
It is a greedy method that selects the sparsest pivot row and column dur-
ing the course of a right-looking sparse Cholesky factorization. Minimum
degree is a local greedy strategy, or a “bottom-up” approach, since it finds
the leaves of the elimination tree first. Tinney and Walker (1967) devel-
oped the first minimum degree method for symmetric matrices. Note that
the word “optimal” in the title of their paper is a misnomer, since mini-
mum degree is a non-optimal yet powerful heuristic for an NP-hard problem
(Yannakakis 1981).

Its basic form is a simple extension of Algorithm 4.2 presented in Sec-
tion 4.3. At each step of an right-looking elimination, one pivot is removed
and its update is applied to the lower right submatrix. This is the same
as removing a node from the graph and adding edges to its neighbors so
that they become a clique. The minimum degree ordering algorithm simply
selects as pivot a node of least degree, rather than eliminating them in their
original order (as is done by Algorithm 4.2).

There are many variants of this local greedy heuristic. Rose (1972) sur-
veyed a wide range of methods and criteria, including minimum degree and
minimum deficiency (in which a node that causes the least amount of new
fill-in edges is selected) and other related methods.

72 Davis, Rajamanickam, Sid-Lakhdar

Minimum degree

In this section, we consider the evolution of the primary variant, which is
the symmetric minimum degree method.

The first reported efficient implementation was by George and McIntyre
(1978), who also adapted the method to exploit the natural cliques that
arise in a finite element discretization. Each finite element is a clique of a
set of nodes, and they distinguish two kinds of nodes: those whose neighbors
lie solely in their own clique/element (interior nodes), and those with some
neighbors in other cliques/elements. Interior nodes cause no fill-in and can
be eliminated as soon as any other node in an element is eliminated.

Huang and Wing (1979) present a variation of minimum degree that also
considers the number of parallel factorizations steps. The node with the
lowest metric is selected, where the metric is a weighted sum of the operation
count (roughly the square of the degree) and the depth. The depth of a
node is the earliest time it can be ready to factorize in a parallel elimination
method.

The use of quotient graphs for symbolic factorization is described in Algo-
rithm 4.3 in Section 4.3. George and Liu (1980a) introduce these graphs to
speed up the minimum degree algorithm. This greatly reduces the storage
requirements. A quotient graph consists of two kinds of nodes: uneliminated
nodes, which correspond to original nodes of the graph of A, and eliminated
nodes, which correspond to the new elements formed during elimination.
The quotient graph is represented in adjacency list form. Each regular node
j has two lists: Aj , the set of nodes adjacent to j, and Ej , the set of elements
adjacent to j. Each element j corresponds to a column of the factor L, and
thus has a single list Lj of regular nodes. As soon as node j is selected as a
pivot, the new element is formed,

Lj = Aj ∪

⋃
e∈Ej

Le

 , (8.6)

and all prior elements in Ej are deleted. This pruning allows the quotient
graph to be represented in-place, in the same memory space as A, even
though it is a dynamically changing graph.

The next node selected is the one of least degree, which is the node with
the smallest set size as given by (8.6). This information is not in the quotient
graph, and thus when node j is eliminated, the degree of all the nodes i
adjacent to j must be recomputed by computing the set union (8.6) for each
node i. This is the most costly step of the method, and a great deal of
subsequent algorithmic development has gone into reducing this work.

George and Liu (1980b) simplify the data structures even further by using
reachable sets instead of the quotient graph to model the graph elimination.
In this method, the graph of the matrix does not change at all. Instead, the

Sparse Direct Methods 73

degrees of the as-yet uneliminated nodes are computing by a wider scan of
the graph, to compute the reach of each node via prior eliminated nodes.
This search is even more costly than the degree update (8.6), however.

One approach to reducing the cost is to reduce the number of times the
degree of a node must be recomputed. Liu (1985) introduces the idea of
multiple minimum degree (MMD, a function in SPARSPAK (George and
Liu 1979a)). In this method, a set of independent nodes is chosen, all
of the same least degree, but none of which are adjacent to each other.
Next, the degrees of all their uneliminated neighbors are computed. If an
uneliminated node is adjacent to multiple eliminated nodes, its degree must
be only computed once, not many times. Other implementations of the
minimum degree algorithm include YSMP (Eisenstat, Gursky, Schultz and
Sherman 1982, Eisenstat, Schultz and Sherman 1981), MA27 (Duff et al.
1986, Duff and Reid 1983a), and AMD (Amestoy et al. 1996a)).

Minimum degree works well for many matrices, but nested dissection of-
ten works better for matrices arising from a 2D or 3D discretizations. Liu
(1989b) shows how to combine the two methods. Nested dissection is used
only partially, to obtain a partial order. This provides constraints for the
minimum degree algorithm; all nodes within a given constraint set are or-
dered before going on to the next set. The CAMD package in SuiteSparse
(see Section 13) provides an implementation of this method.

George and Liu (1989) survey the evolution of the minimum degree al-
gorithm and the techniques used to improve it: the quotient graph, in-
distinguishable nodes, mass elimination, multiple elimination, and external
degree. Two nodes that take on the same adjacency structure will remain
that way until one is eliminated, at which point the other will be a node
of least degree and can be eliminated immediately without causing any fur-
ther fill-in. Thus, these indistinguishable nodes can be merged, and further
merging can be done with more nodes as they are discovered. The edges
between nodes inside a set of indistinguishable nodes do not contribute to
any fill-in (the set is already a clique), and the external degree takes this
into account, to improve the ordering quality. Indistinguishable nodes can
also be found prior to starting the ordering, further reducing the ordering
time and improving ordering quality (Ashcraft 1995). Mass elimination oc-
curs if a node adjacent to the pivot node j has only a single edge to the
new element j; rather than updating its degree, this node can be eliminated
immediately with no fill-in.

Since the graph changes dynamically and often unpredictably during elim-
ination, very little theoretical work has been done on the quality of the min-
imum degree ordering for irregular graphs. Berman and Schnitger (1990)
provide asymptotic bounds for the fill-in with regular graphs (2D toruses),
when a specific tie-breaking strategy is used for the common case that oc-
curs when more than one node has least degree. Even though little is known

74 Davis, Rajamanickam, Sid-Lakhdar

about any guarantee of ordering quality in the general case, the method
works well in practice. Berry, Dahlhaus, Heggernes and Simonet (2008)
relate the minimum degree algorithm to the problem of finding minimal tri-
angulations, and in so doing give a partial theoretical explanation for the
ordering quality of the method.

Since computing the exact degree is costly, Amestoy et al. (1996a) (2004a)
developed an approximate minimum degree ordering (AMD). The idea de-
rives from the rectangular frontal matrices in UMFPACK, and was first
developed in that context (Davis and Duff 1997), discussed in Section 11.4.
Consider the exact degree of node i after node j has been eliminated:

di = |Ai∪(
⋃
e∈Ei

Le)| (8.7)

where j ∈ Ei is the new pivotal element. The time to compute this degree
is the sum of the set sizes, which is higher than O(di). The external degree
is normally used, but equation (8.7) is simpler for the purpose of this dis-
cussion. Note that for both the exact and approximate degrees, when the
metric is computed, Ai is pruned of all nodes in the pattern of the pivot
element, Lj . AMD replaces the exact degree with an upper bound,

di = |Ai|+ |Lj |+
∑

e∈Ei\j

|Le \ Lp|. (8.8)

The set differences are found in a first pass and the bound is computed in a
second pass, and the amortized time to compute (8.8) is only O(|Ai|+ |Ei|).
This is far less than the time required to compute (8.7).

Liu (1989b) created a hybrid between nested dissection and the exact min-
imum degree method (MMD). Pellegrini, Roman and Amestoy (2000) take
this approach one step further by forming a tighter coupling between nested
dissection and a halo approximate minimum degree method. Nested dissec-
tion breaks the graph into subgraphs, which are ordered with a variation of
AMD that takes into account the boundaries (halo) between the subgraphs.

Minimum deficiency

Minimum degree is the dominant local greedy heuristic for sparse direct
methods, but other heuristics have been explored. Selecting a node of min-
imum degree d provides a bound on the number of new edges (fill-in) that
can appear in the graph ((d2 − d)/2). Another approach is to simply pick
the node that causes the least fill-in. This method gives somewhat better
orderings in general, but it is very costly to implement, in terms of run time.

The method was first considered by Berry (1971). Nakhla, Singhal and
Vlach (1974) added a tie-breaking method; if two nodes cause the same fill-
in, then the node of least degree is selected. Both methods are very costly,

Sparse Direct Methods 75

and thus little work was done in this method until Rothberg and Eisenstat’s
(1998) work.

The approximate degree introduced by Amestoy et al. (1996a) spurred
the search for approximations to the deficiency, which are faster to compute
than the exact deficiency and yet which retain some of the ordering qual-
ity of the exact deficiency. Rothberg and Eisenstat (1998) consider three
algorithms: approximate minimum mean local fill (AMMF), approximate
minimum increase in neighbor degree (AMIND), and several variants of ap-
proximate minimum full. Their first method (AMMF) is an enhancement to
the minimum degree method, to obtain a cheap upper bound on the fill-in.
If the degree of node i is d, and if c = |Lj | is the size of the most recently
created pivotal element that contains i, then (d2 − d)/2 − (c2 − c)/2 is an
upper bound on the fill-in, since eliminating i will not create edges inside
the prior clique j. This metric is modified when considering a set of k in-
distinguishable nodes, by dividing the bound by k, to obtain the AMMF
heuristic. The AMIND heuristic modifies the AMMF metric by subtracting
dk, which would be the aggregate change in the degree of all neighboring
nodes if node i is selected as the next pivot. They conclude that the exact
minimum deficiency provides the best quality, although it is prohibitively
expensive to use. Their most practical method (AMMF) cuts flop counts by
about 25% over AMD, at a cost of about the same increase in run time to
compute the ordering.

Ng and Raghavan (1999) present two additional heuristics: a modified
minimum deficiency (MMDF) and a modified multiple minimum degree
(MMMD). MMDF exploits the set differences found by AMD, |Le \ Lp|,
for all prior pivotal elements e ∈ Ei. This set difference defines a subset of
a clique, and if node i is eliminated, no fill-in will occur with these partial
cliques. If the partial cliques are disjoint, their effects can be combined by
subtracting them from the upper bound on fill-in that would occur if i were
to be selected as a pivot. The method adds an approximate correction term
to account for the fact that the partial cliques might not be disjoint. The
MMDF heuristic accounts for all adjacent partial cliques, whereas MMMD
tries to take into account only the largest one. Reiszig (2007) presents a mod-
ification to MMDF that gives a tighter bound on the fill-in, and presents
performance results of his implementation of this method and those of Roth-
berg and Eisenstat (1998), and Ng and Raghavan (1999).

8.5. Unsymmetric minimum degree

The previous section considered the symmetric ordering problem via min-
imum degree and other related local greedy heuristics. In this section, we
consider related heuristics for finding pre-orderings Pr and Pc for an un-
symmetric or rectangular matrix A, so that the fill-in in the LU or QR

76 Davis, Rajamanickam, Sid-Lakhdar

factorization of the permuted matrix PrAPc has less fill-in that that of A.
The two kinds of factorizations are very closely related, as discussed in Sec-
tion 6.1, since the nonzero pattern of the QR factorization provides an upper
bound on the nonzero pattern of the LU factorization, assuming worst-case
pivoting for the latter. As a result, all of the methods in the papers discussed
here apply nearly equally for both QR and LU factorization, since the col-
umn orderings they compute can be directly used for the LU factorization
of PrAPc, where Pr is found via partial pivoting, or for the QR factorization
of APc.

Row and column orderings that are found during the numerical phase
of Row-Givens QR factorization have already been discussed in Section 7.2,
namely, those of Duff (1974b), Gentleman (1975), Zlatev (1982), Ostrouchov
(1993), and Robey and Sulsky (1994). George and Ng (1983) and George,
Liu and Ng (1984b) (1986b) (1986c) consider row pre-orderings based on a
nested dissection approach; these methods are discussed in Section 8.6.

The symmetric and unsymmetric ordering methods are closely related.
Assuming the matrix A is strong-Hall, the nonzero pattern of the Cholesky
factor L of ATA is the same as the factor R for QR factorization, as discussed
in Section 7.1. Thus, finding a symmetric permutation P to reduce fill-in
in the Cholesky factorization of symmetric matrix (AP)TAP will also be a
good method for finding a column permutation P for the QR factorization
of AP . Tewarson (1967c) introduced the graph of ATA for ordering the
columns of A prior to LU factorization, as the column intersection graph of
A.

The difficulty with this approach is that it requires ATA to be formed
first. This matrix can be quite dense. A single dense row causes ATA to
become completely nonzero, for example. If this is the case, the R factor for
QR factorization will be dense if A is strong-Hall, but it can be very sparse
otherwise. Also, the LU factorization of A can have far fewer nonzeros
than ATA, even if A as a dense row. To avoid forming ATA, two related
algorithms, COLMMD (Gilbert et al. 1992) and COLAMD (Davis, Gilbert,
Larimore and Ng 2004b) (2004a) operate on the pattern of A instead, while
implicitly ordering the matrix ATA.

The key observation is that every row of A creates a clique in the graph of
ATA. The matrix product ATA can be written as the sum of outer products,∑
aTi ai, for each row i. Suppose row 1 has nonzeros in columns 5, 7, 11, and

42. In this case, aT1 a1 is a matrix that is nonzero except for entries residing
in rows 5, 7, 11, and 42, and in the same columns. That is, the graph of
aT1 a1 is a clique of these four nodes. As a result, the matrix A can be viewed
as already forming a quotient graph representation of ATA: each row of A
is a single element (clique), and each column of A is a node.

The minimum degree ordering method would then select a pivot node
(column) j with least degree, and eliminate it. After elimination, a new

Sparse Direct Methods 77

element is formed, which is the union of all rows i that contain a nonzero
in column j. Any such rows (either original rows, or prior pivotal elements)
used to form this set union are now subsets of this new element, and can thus
be discarded without losing any information in the pattern of the reduced
submatrix. These rows are merged into the new element.

This elimination process can be used to model either QR factorization,
or LU factorization where the pivot row is assumed to take on the nonzero
pattern of all candidate pivot rows.

Let Ai denote the original row i of A, and let Rk denote the pivotal row
formed at step k. Let Cj represent column j as a list of original row indices
i and new pivotal elements e. This list is analogous to the Ej lists in the
quotient graph used for the symmetric minimum degree algorithm. At the
kth step, Rk is constructed as follows, if we assume no column permutations:

Rk =

 ⋃
e∈Ck

Re

 ∪
⋃

i∈Ck

Ai

 \ {k} (8.9)

AfterRk is constructed, the setsRe and Ai are redundant, and thus deleted.
This deletion can be modeled with the row-merge tree, shown in Figure 8.10,
where these prior rows are merged into the pivotal row.

With column pivoting, a different column j is selected at the kth step,
based on an exact or approximate minimum degree heuristic. The exact de-
gree of a column j is |Rj |, which can be computed after each step using (8.9).
This is very costly to compute, so approximations are often used. COLMMD
uses the sum of the set sizes, as a quick-to-compute upper bound. However,
it does not produce as good an ordering as the exact degree, in terms of
fill-in and flop count for the subsequent LU or QR factorization. COLAMD
relies on the same approximation used in the symmetric AMD algorithm,
as a sum of set differences. The COLMMD and COLAMD approximations
take the same time to compute (asymptotically) but the latter gives as good
an ordering as a method that uses the exact degree. Both COLMMD and
COLAMD are available in MATLAB. The latter is also used for x=A\b, and
for the sparse LU and QR factorizations (UMFPACK and SuiteSparseQR).

8.6. Nested dissection

Symmetric nested dissection

Nested dissection is a fill-reducing ordering well-suited to matrices arising
from the discretization of a problem with 2D or 3D geometry. The goal of
this ordering is the same as the minimum degree ordering; it is a heuristic for
reducing fill-in, not the profile or bandwidth. Consider the undirected graph
of a matrix A with symmetric nonzero pattern. Nested dissection finds a
vertex separator that splits the graph into two or more roughly equal-sized

78 Davis, Rajamanickam, Sid-Lakhdar

Figure 8.10. Example symbolic elimination and row-merge tree, assuming no
column reordering. (Davis et al. 2004)

subgraphs (left and right), when the vertices in the separator (and their
incident edges) are removed from the graph. The subgraphs are then ordered
recursively, via nested dissection for a large subgraph, or minimum degree
for a small one.

With a one-level vertex separator, a matrix is split into the following form,
where rows of A33 correspond to the vertices of the separator, rows of A11

correspond to the vertices in the left subgraph, and rows of A22 correspond
to the vertices in the right subgraph. Since the left subgraph (A11) and right
subgraph (A22) are not joined by any edges, A12 is zero. A11 A13

A22 A23

AT
13 AT

23 A33

 .
There are many methods for finding a good vertex separator. This section

surveys these methods from the perspective of sparse direct factorizations.

Sparse Direct Methods 79

Finding good vertex separators has been traditionally studied in conjunction
with edge separators even when one can directly compute the vertex sepa-
rators. We cover both direct and indirect methods to compute the vertex
separators.

Kernighan and Lin (1970) created a heuristic method that starts with
an initial assignment of vertices to two parts and iteratively swaps vertices
between the two parts of the graph. The method swaps vertices to improve
the gain in cut quality, which is the number of edges in the edge cut. In
an attempt to escape a local minimum, vertices can be swapped even if the
gain is negative. This process continues for many swaps (say, 50), until the
method either finds a better cut (a positive gain) or it gives up and retracts
back to the best cut found so far. The method has been used for a very long
time for partitioning and ordering.

Fiduccia and Mattheyses (1982) proposed several practical improvements
to these methods especially in steps to find the best vertex to move and
update the gain. Like Kernighan-Lin, it continues to make changes for a
certain number of steps even with negative gain to avoid any local min-
ima. Local methods such as these are typically used as a refinement step in
present-day multilevel methods. The basic step in the algorithm is to move
one vertex from one part to the other, in contrast to Kernighan-Lin, which
always swaps two vertices.

The nested dissection method, as it was originally proposed, was used
to partition finite element meshes with n × n elements to reduce the op-
eration count of the factorizations from O

(
n4
)

for the banded orderings

to O
(
n3
)

floating point operations with a standard factorization algorithm
(George 1973). A precursor to this ordering had been used earlier for block
eliminations (George 1972), but the latter method is the more commonly
used approach. This method was later generalized to any grid (Birkhoff and
George 1973). Duff, Erisman and Reid (1976) extend the method to irreg-
ularly shaped grids and recommend how to pick the dissection sets, such
as alternating line cuts in different dimensions. Variations such as incom-
plete nested dissection where nested dissection is stopped earlier for easier
data management has also been studied (George et al. 1978). George (1980)
propose a one-way nested dissection for ordering which computes multiple
cuts in a single dimension or direction and uses the solver from George and
Liu (1978a) for numerical factorization. The algorithm is asymptotically
poor compared to nested dissection, but it results in less memory usage for
smaller problem sizes. A number of papers compare the earlier nested dis-
section approaches with profile reduction or envelope reduction orderings
and the usage in their respective solvers (George 1977b, George 1977a).

Liu (1989a) presents an algorithm to find vertex separators from parti-
tionings obtained using minimum degree algorithms and later improving it

80 Davis, Rajamanickam, Sid-Lakhdar

using an iterative scheme that uses bipartite matching (Liu 1989a). A hy-
brid method using nested dissection and minimum degree orderings with
the constraint that separator nodes be ordered last was considered later
(Liu 1989b). Such an approach is suitable for parallel factorizations. It
also makes the minimum degree method more immune to the troubles with
different natural orderings. One of the recent implementations of such a
method is in the CAMD package of SuiteSparse. Other hybrid orderings in-
clude nested dissection with natural orderings (Bhat, Habashi, Liu, Nguyen
and Peeters 1993), and minimum degree orderings (Raghavan 1997, Hen-
drickson and Rothberg 1998). Hendrickson and Rothberg (1998) address
a number of practical questions such as how to order the separators and
when to stop the recursion. There are a number of options to improve the
quality of the orderings from nested dissection including using multi-section
based approaches instead of bisection (Ashcraft and Liu 1998b) and using
matching algorithms to improve the separators (Ashcraft and Liu 1998a).

The theory behind nested dissection has been carefully studied over the
years. Lipton and Tarjan (1979) show that the size of the separator is O(

√
n)

for planar graphs and introduce a generalized nested dissection algorithm
where nested dissection can be extended to any system of equations with
a planar graph. The theory behind this generalized nested dissection is
presented separately (Lipton, Rose and Tarjan 1979). Gilbert and Tarjan
(1987) analyze a hybrid algorithm of Lipton and Tarjan and the original
nested dissection. Given an n × n matrix they show O(n log n) fill and
O
(
n3/2

)
operation count. Polynomial-time algorithms based on nested dis-

section for near optimal fill exist (Agrawal, Klein and Ravi 1993). It is also
possible to use random linear-time algorithms that use the geometric struc-
ture in the underlying mesh to find provably good partitions as described
in the survey paper by Miller, Teng, Thurston and Vavasis (1993). They
proved separator bounds on graphs that can be embedded in d-dimensional
space and developed randomized algorithms to find these separators. An
efficient implementation of this method with good-quality results was found
later (Gilbert, Miller and Teng 1998).

Parallel ordering strategies were originally based on parallel partitioning
and its induced ordering. Parallel algorithms for finding edge separators with
a Kernighan-Lin algorithm were used (Gilbert and Zmijewski 1987). Parallel
implementation of nested dissection within the ordering phase of a parallel
solver showed some limitations of parallel nested dissection (George et al.
1989a). Parallel nested dissection orderings were often used and described
as part of parallel Cholesky factorizations (Conroy 1990). Parallelism can
also be improved by hybrid methods where a graph can be embedded in a
Euclidean space and a geometric nested dissection algorithm is used to arrive
at the orderings (Heath and Raghavan 1995). Most of these approaches that
use an incomplete nested dissection with a minimum degree ordering provide

Sparse Direct Methods 81

a loose interaction where the minimum degree algorithm does not have the
exact degree values of the vertices in the boundary. However, a tighter
integration in hybrid methods leads to better-quality orderings (Pellegrini
et al. 2000, Schulze 2001). Recent parallel ordering in libraries such as PT-
Scotch (Pellegrini 2012) use the multilevel methods with hybrid orderings
at different levels of nested dissection (Chevalier and Pellegrini 2008).

Another approach uses the second smallest eigenvalue of the Laplacian
matrix associated with the graph, also called the algebraic connectivity,
to find the vertex and edge separators (Fiedler 1973). There is a lot of
overlap with spectral envelope reduction methods discussed above. Al-
gebraic approaches to find vertex separators are in a sense global order-
ing approaches that result in better-quality orderings (Pothen, Simon and
Liou 1990). Pothen et al. use a maximum matching to go from an edge
separator to a vertex separator. Spectral methods such as these have been
implemented within popular graph partitioning and orderings such as Chaco
(Hendrickson and Leland 1995a) in multilevel methods. Expensive methods
such as these are typically used, if at all, at the coarsest level of a multilevel
method when the separator quality is the primary goal. While expensive,
these methods parallelize very well as they depend on linear algebra kernels
that can be parallelized effectively.

Multilevel methods use techniques to coarsen a graph, typically by iden-
tifying vertices to coarsen with a matching algorithm such as a heavy edge
matching. When multiple levels are utilized the problem size becomes
much more manageable in the coarser levels where an expensive partitioning
method can be used. The result of partitioning this graph is used to find
the partitions in an uncoarsening step which is typically combined with a re-
finement step using a local algorithm such as the Kernighan-Lin approach.
The coarsening ideas have also been described as compaction or contrac-
tion methods for improving the fill in bisection (Bui and Jones 1993) or for
parallel ordering (Raghavan 1997). Hendrickson and Leland (1995c) and
Karypis and Kumar (1998c) (1998a) implement this multilevel method for
partitionings and orderings in the Chaco and METIS libraries, respectively.
It is possible to improve the quality of the orderings even further by mul-
tiple multilevel recursive bisections (Gupta 1996a), which can also be quite
competitive in runtime (Gupta 1996b).

In contrast to multilevel approaches, two-level approaches find multi-
sectors and use a block Kernighan-Lin type algorithm to find the bisectors
(Ashcraft and Liu 1997). Pothen (1996) presents a survey of these earlier
methods including spectral methods.

Unsymmetric nested dissection

The nested dissection algorithm requires a symmetric matrix or a graph.
The simplest way to order an unsymmetric matrix A relies on a traditional

82 Davis, Rajamanickam, Sid-Lakhdar

nested dissection ordering with G(A+AT). This method works reasonably
well on problems that are nearly symmetric. For highly unsymmetric prob-
lems, the ordering methods (and the factorizations that use these orderings)
need to rely on the fact that the fill patterns of the LU factors of PA, where
P is a row permutation from say partial pivoting, are contained in the fill
pattern of the Cholesky factorization of ATA (George and Ng 1988). Tra-
ditionally local methods such as the unsymmetric versions of the minimum
degree orderings are used to find a column ordering Q that minimizes the
fill in the Cholesky factorization of ATA (without forming ATA) to find
the ordering. It has been shown that a wide separator or edge separator of
G(A+AT) is a narrow separator or vertex separator in G(ATA) (Brainman
and Toledo 2002). Brainman and Toledo (2002) compute the wide separa-
tor by expanding the narrow separator and then use a constrained column
ordering. CCOLAMD in the SuiteSparse package has this functionality for
constrained column ordering.

A more commonly used option to partition unsymmetric matrices is to
use hypergraph partitioning. A hypergraph H = (V,E) consists of a set of
vertices V and a set of hyperedges (or nets) E. A hyperedge is a subset of V .
Unsymmetric matrices can be naturally expressed with their columns (rows)
as vertices and their rows (columns) as their hyperedges. Hyper-graphs are
general enough to model various communication costs accurately for parti-
tioning problems (Çatalyürek and Aykanat 1999). There have been a num-
ber of improvements on hypergraph based methods from multilevel parti-
tioning methods (Karypis, Aggarwal, Kumar and Shekhar 1999, Çatalyürek
and Aykanat 2011), parallel partitioning methods (Devine, Boman, Hea-
phy, Bisseling and Çatalyürek 2006), two dimensional methods (Vastenhouw
and Bisseling 2005, Çatalyürek and Aykanat 2001) and k-way partitioning
methods (Karypis and Kumar 2000, Aykanat, Cambazoglu and Uçar 2008).
There are high-quality software libraries such as PaToH (Çatalyürek and
Aykanat 2011), Zoltan (Boman, Çatalyürek, Chevalier and Devine 2012),
and hMETIS (Karypis and Kumar 1998b) that implement these algorithms.
However, until recently methods to order hypergraphs were limited. A net
intersection graph hypergraph model, where each net in the original hyper-
graph is represented by a vertex and each vertex of the original hypergraph
is replaced by a hyperedge representing a clique of all the neighbors of the
original vertex, established the relationship between vertex separators and
hypergraph partitioning (Kayaaslan, Pinar, Çatalyürek and Aykanat 2012).
Later, methods based on hypergraph partitioning were used to compute
vertex separators (Çatalyürek, Aykanat and Kayaaslan 2011). Another ap-
proach is to directly compute hypergraph-based unsymmetric nested dissec-
tion (Grigori, Boman, Donfack and Davis 2010). This leads to structures
that are commonly called singly bordered block diagonal form. This last
approach has some relation to factorization of the singly bordered block

Sparse Direct Methods 83

diagonal form (Duff and Scott 2005). The former approach looks at the
problem from a purely ordering point of view. It is also possible to find the
bordered block diagonal forms for rectangular matrices using the hypergraph
or bipartite graph models (Aykanat, Pinar and Çatalyürek 2004).

For QR factorizations of rectangular matrices, especially from problems
involving sparse least squares problems, the ordering methods focus on find-
ing both a good column ordering of ATA (to reduce the fill) and a good
row ordering (to improve the floating point operation count) (George and
Ng 1983). This is mainly due to the fact that even with a given fill reducing
column ordering Q the operation count of the algorithms depend on the row
orderings of AQ. In a series of three papers, George et al. (1984b) analyzed
the row ordering schemes for sparse Givens transformations. The results for
edge separators that resulted in the bound of O

(
n3
)

for computing the R
from an n × n grid (George and Ng 1983) also extend to vertex separators
(George, Liu and Ng 1986c). Using the two models, a bipartite graph model
or an implicit graph model, they show that vertex separators for the column
ordering can induce good row orderings as well (George et al. 1984b, George,
Liu and Ng 1986b).

8.7. Permutations to block-triangular-form, and other special forms

Preassigned Pivot Procedure and variants

Methods used in problems related to linear programming were concerned
with reordering both rows and columns of unsymmetric matrices to pre-
serve sparsity. The Preassigned Pivot Procedure or P 3 is one such method
for reordering rows and columns (Hellerman and Rarick 1971). This is es-
sentially reordering the matrix to a bordered block triangular form (BBTF).
Hellerman and Rarick (1972) later modified the approach to a partitioned
preassigned pivot procedure or P 4. The P 4 algorithm permutes the matrix
to block triangular form and then uses the P 3 algorithm on the irreducible
blocks. While the algorithm was popular in the linear programming commu-
nity it is known to result in intermediate matrices that are structurally sin-
gular. A hierarchical “partitioning” method was later developed to avoid the
problems with zero pivots and improve the robustness of these approaches
(Lin and Mah 1977).

The block triangular form methods were called partitioning during this
time. Rose and Bunch (1972) show that the block triangular form saves
both time and memory when there is more than one strongly connected
component. The reason for the structurally singular intermediate matrices
was studied and resolved later with structural modification (at the cost
of increased work) later as P 5 (Erisman, Grimes, Lewis and Poole 1985).
Incidentally Erisman et al. also give the most accessible description of the
P 3 and P 4 algorithms. When used with an “implicit” method that exploits

84 Davis, Rajamanickam, Sid-Lakhdar

the block triangular form and factorizes the diagonal blocks, the method
becomes competitive. Still the pivoting is restricted to diagonal blocks in
the “implicit” scheme, thus restricting numerical stability. More detailed
comparisons in terms of the ordering (Erisman, Grimes, Lewis, Poole and
Simon 1987) and in terms of a solver (Arioli, Duff, Gould and Reid 1990)
have been considered and there are no significant advantages to the P 5

method over a traditional method.

Maximum transversal

The set of nonzeros in a diagonal, in other words a set of nonzeros no two of
which lie in the same row and column, is typically called the transversal. The
problem is related to the general version of the classical eight rooks problem
which is to arrange eight rooks on a chess board (or n×n board in the general
version) without attacking each other. A maximum transversal is the set
containing the maximum number of nonzeros. Given an m×n matrix A the
corresponding bipartite graph is defined as G = (VR ∪ VC , E), with m row
nodes VR, n column nodes VC , and undirected edges E = {(i, j) | aij 6= 0};
no edge connects pairs of row nodes or pairs of column nodes.

Let Aj denote the nonzeros in column j, or equivalently, the rows adjacent
to j in G. Note that although the edges are undirected, (i, j) and (j, i)
are different edges. A matching is a subset of rows R ∈ VR and columns
C ∈ VC where each row in i ∈ R is paired with a unique j ∈ C, where
(i, j) ∈ E. A row i ∈ R is called a matched row, a column j ∈ C is called
a matched column, and an edge (i, j) where both i ∈ R and j ∈ C is called
a matched edge. All other rows, columns, and edges are unmatched. The
perfect matching, a matching where every vertex is matched, defines a zero-
free diagonal of the permuted matrix. A maximum matching of G has a size
greater than or equal to any other matching in G. A matching is row-perfect
if all rows are matched, and column-perfect if all columns are matched.

A maximum matching (or the maximum transversal) can also be consid-
ered as a permutation of the matrix A so that its kth diagonal is zero-free
and |k| is uniquely minimized (except when A is completely zero). This
permutation determines the structural rank of a matrix, and is one of the
first steps to LU or QR factorization or to the block triangular form and
Dulmage-Mendelsohn decomposition (Dulmage and Mendelsohn 1963) de-
scribed in the following sections. With this maximum matching, a matrix
has structural full rank if and only if k = 0, and is structurally rank deficient
otherwise. The number of entries on this diagonal gives the structural rank
of a matrix A which is an upper bound on the numerical rank of any matrix
with the same nonzero pattern as A.

We limit the discussion here to algorithms based on augmenting paths.
Let M be a matching in G. A path in G is M-alternating if its edges
alternate between edges inM and edges not inM. Such a path is also called

Sparse Direct Methods 85

Figure 8.11. An example augmenting path. (Davis 2006)

M-augmenting if the first and last vertices are unmatched. Algorithms
based on augmenting paths rely on the theorem that M is of maximum
cardinality if and only if there is noM-augmenting path in G (Berge 1957).
Algorithms based on augmenting paths try to find M-augmenting paths in
phases. An M-augmenting path can be used to increase the cardinality
of the matching by one by changing the matched (unmatched) edges to
unmatched (matched) edges. An example augmenting path is shown in
Figure 8.11. The path starts at an unmatched column, k, and ends at an
unmatched row, i4. Matched edges are shown in bold, in the graphs on the
left. Flipping the matching of this augmenting path increases the number
of matched nodes in this path from 3 to 4, adding one more nonzero to the
diagonal of the matrix.

The augmenting path algorithms find the M-augmenting paths using a
depth-first search (DFS) or a breadth-first search (BFS) in phases. Some
versions use a hybrid of BFS and DFS. A simple DFS-based algorithm does
one DFS for each unmatched column (or row) vertices. At each column k
the search path is extended with a row r ∈ Aj that is not visited (in the
current DFS). Similarly, at each row r the search path is extended with
a column matched to r. If no such column exists then r is unmatched
resulting in an alternating augmenting path. It is easy to see that the
depth-first search based algorithm does a lot more work than necessary.
The algorithm can be implemented in O(|A|n) work. The more common

86 Davis, Rajamanickam, Sid-Lakhdar

implementation of the algorithm uses a one-step BFS at each step of the DFS
to short-circuit some work (Duff 1981c). The technique is called lookahead.
This technique has become the standard in DFS-based matching algorithms
(Duff 1981a, Davis 2006). The lookahead method improves the runtime
significantly even when the asymptotic complexity remains at O(|A|n).

One DFS-based variation of the method uses multiple depth-first searches
in a phase by finding multiple vertex-disjoint augmenting paths in each
phase (Pothen and Fan 1990). This limits the vertices visited in each DFS,
but it also requires the use of only the unmatched columns in each phase.
This does not change the overall complexity but it improves the execution
time even further. A recent variation of this algorithm, which visits the
adjacency lists in alternating order in different depth-first searches within
the same phase, improves the robustness of the algorithm to variation in
the input order (Duff, Kaya and Uçar 2011). BFS based implementations
of these algorithms are also possible.

Hopcroft and Karp (1973) also use the idea of phases. Their algorithm
uses a BFS at each phase from all the unmatched columns to find a set of
shortest-length augmenting paths. A DFS algorithm is used to find maximal
disjoint sets of augmenting paths from the original set. The next phase con-
tinues with all the unmatched columns (Hopcroft and Karp 1973). The the-
oretical complexity of the algorithm is O(|A|

√
n). Duff and Wiberg (1988)

have proposed a modification to this algorithm to find the shortest-length
augmenting paths first but continue finding more augmenting paths from
any unmatched rows left at the end of the phase in the original algorithm.
They allow the last DFS to use all the edges in G. This change typically re-
sults in improved execution time. Recent comparisons of all these methods
in serial show that the modified version of the DFS with multiple phases
and the Hopcroft-Karp algorithm with additional searches perform the best
(Duff et al. 2011). Multithreaded parallel versions of these algorithms have
also been introduced recently (Azad, Halappanavar, Rajamanickam, Boman,
Khan and Pothen 2012).

Block triangular form

The block triangular form reordering of a matrix is based on the canonical
decomposition called the Dulmage-Mendelsohn decomposition using maxi-
mum matching on bipartite graphs (Dulmage and Mendelsohn 1963). It
is a useful tool for many sparse matrix algorithms and theorems. It is a
permutation of a matrix A that reduces the work required for LU and QR
factorization and provides a precise characterization of structurally rank
deficient matrices.

We state some of the definitions common in the area (Pothen and Fan
1990). Let M be a maximum matching in the bipartite graph G(A). We
can define the sets:

Sparse Direct Methods 87

• R, the set of all row vertices,
• C, the set of all column vertices,
• V R, the row vertices reachable by some alternating path from some

unmatched row,
• HR, the row vertices reachable by some alternating path from some

unmatched column,
• SR = R \ (V R ∪HR),
• V C, the column vertices reachable by some alternating path from some

unmatched row,
• HC, the column vertices reachable by some alternating path from some

unmatched column, and
• SC = C \ (V C ∪HC).

The matrices Ah, As, and Av are defined by the block diagonals formed by
HR×HC, SR×SC and V R×V C respectively. The coarse decomposition
of the block triangular form is given by Ah · · · ∗

As
...
Av

 , (8.10)

The matrices Ah, As, and Av can be further decomposed into block diag-
onal form. As has the block triangular structure (called the fine decompo-
sition)

PAsQ =

 A11 · · · A1k

. . .
...

Akk

 , (8.11)

where each diagonal block is square with a zero-free diagonal and has the
strong Hall property. It is this fine decomposition that is of most interest in
the past work. The strong Hall property implies full structural rank. The
block triangular form (8.11) is unique, ignoring some trivial permutations
(Duff 1977a). There is often a choice of ordering within the blocks (the
diagonal must remain zero-free). To solve Ax = b with LU factorization,
only the diagonal blocks need to be factorized, followed by a block backsolve
for the off-diagonal blocks. No fill-in occurs in the off-diagonal blocks. Sparse
factorizations with the block triangular form have been in use for some
time (Tewarson 1972, Rose and Bunch 1972). Rose and Bunch (1972) call
this method partitioning the matrix and consider factorizations using the
partitioning.

Permuting a square matrix with a zero-free diagonal into block triangular
form is identical to finding the strongly connected components of a directed
graph, G(A). The directed graph is defined as G(A) = (V,E) where V =

88 Davis, Rajamanickam, Sid-Lakhdar

{1, . . . , n} and E = {(i, j) | aij 6= 0}. That is, the nonzero pattern of A
is the adjacency matrix of the directed graph G(A). A strongly connected
component is a maximal set of nodes such that for any pair of nodes i and
j in the component, the paths i; j and j ; i both exist in the graph.

The strongly connected components of a graph can be found in many
ways. The simplest method uses two depth-first traversals, one of G(A), the
second of the graph G(AT) (Tarjan 1972). However, depth-first traversals
are difficult to parallelize. Slota, Rajamanickam and Madduri (2014) rely
on an approach that uses multiple steps, each of which can be parallelized
effectively, to find the strongly connected components. They find trivial
strongly connected components of size one or two first and then use breadth-
first search to find the largest strongly connected component and an iterative
color propagation approach to find multiple small strongly connected compo-
nents. This algorithm can be parallelized effectively in shared-memory (mul-
ticore) computers (Slota, Rajamanickam and Madduri 2014). An extension
to many-core (GPUs and the Xeon Phi) accelerators requires modifications
to algorithms that parallelize over edges instead of vertices (Slota, Rajaman-
ickam and Madduri 2015). Finding the block triangular form using Tarjan’s
algorithm has been the standard for some time (Gustavson 1976, Duff and
Reid 1978a, Duff and Reid 1978b, Davis 2006). More recently Duff and
Uçar (2010) showed that it is possible to recover symmetry around the anti-
diagonal for the block triangular form of symmetric matrices.

8.8. Independent sets and elimination tree modification

The focus of this section is on pre-orderings for parallel factorizations. See
also Section 6.4, where parallel algorithms for finding independent sets dur-
ing numerical factorization are discussed.

The methods discussed here fall into different categories based on the
dependency graph they use and the factors used to arrive at the parallel
orderings. All the methods use an implicit or explicit directed acyclic graph
which represent the set of operations, pivot sequence or block ordering to
improve the parallel efficiency or completion time along with the considera-
tions for fill.

On circuit matrices, early bandwidth reducing orderings, block triangular
forms, or envelope-based methods were less useful as the matrices are highly
irregular. Fine-grained task graphs were considered where each floating
point operation and its dependency is considered in the task graph along
with a local heuristic to reduce the floating point operation and the length of
the critical path in the task graph (Huang and Wing 1979, Wing and Huang
1980). A level scheduling ordering was used to find the critical path. The
approach of Huang and Wing (1979) is one of the earliest efforts to include
the ordering quality as part of the metric. Earlier heuristics considered just

Sparse Direct Methods 89

finding the independent sets (Calahan 1973). Smart and White (1988) use
the Markowitz counts to find candidate pivots and find the independent sets
within those candidates to reduce the critical path length.

These scheduling strategies are harder for the sparse problems than dense
factorizations as the optimal ordering depends on both the structure of the
problem and the fill (Srinivas 1983). Later algorithms rely on an elimination
tree for scheduling the pivots rather than the operations (Jess and Kees
1982). Jess and Kees use a fill reducing ordering first and then consider
pivots that are independent to be factorized in parallel. There is also another
level of parallelism in factoring a pivot itself, which some of these papers
consider. Combining the method of Jess and Kees (1982) with minimum
degree ordering has been explored as well (Padmini, Madan and Jain 1998).
Padmini et al. avoid using the chordal graph of the filled matrix and use
the graph of A to arrive at the orderings.

In contrast to Jess and Kees (1982), there are other approaches that con-
sider finding the independent sets given a specific pivot sequence (Peters
1984, Peters 1985). Two different implementations of the second stage of
the Jess and Kees method (to find the independent sets) exist (Lewis, Pey-
ton and Pothen 1989, Liu and Mirzaian 1989). The implementation of Liu
and Mirzaian is more expensive than the fill reducing orderings as Lewis et
al. observe. They propose using a clique tree representation of the chordal
graph of the factors, G(L + LT), to find the maximum independent sets,
making this step cheaper than the fill reducing orderings. The primary cost
of Liu and Mirzaian’s method is in maintaining degrees of the nodes as other
nodes get picked in different independent sets. The clique tree representation
simplifies this cost.

There are other approaches such as the tree rotations introduced by Liu
to reduce the height of the elimination trees (Liu 1988a). Tree rotations can
be used for improving the parallelism (Liu 1989d) and work better than the
Liu and Mirzaian method. Duff and Johnsson (1989) compare minimum
degree, nested dissection and minimum height orderings. They introduce
the terminology for inner (single pivot level) and outer (multiple pivots)
parallelism. They also show that nested dissection performs well in expos-
ing parallelism. The superiority of nested dissection to other fill reducing
ordering methods to expose parallelism was studied by Leuze (1989), who
also introduces a greedy heuristic and an algorithm based on vertex cov-
ers to find the independent sets, the latter of which is better than nested
dissection.

Davis and Yew (1990) show that for unsymmetric problems one could do
a nondeterministic parallel pivot search to find groups of compatible pivots
for a rank-k update instead of relying on an etree-based approach that sym-
metrizes the problems. The pivot sets are found in parallel where conflicts
are avoided using critical sections. A somewhat different approach is to

90 Davis, Rajamanickam, Sid-Lakhdar

use a fill reducing ordering first and then use a fill-preserving reordering to
improve parallelism (Kumar, Eswar, Sadayappan and Huang 1994, Kumar
et al. 1994). Once the reordering is done this method maps the pivots to
the processors as well (Kumar et al. 1994). While the height of the elim-
ination tree serves well for exposing the parallelism it assumes a unit cost
for the node elimination and does not model the communication costs. It
is possible to model the communication costs and order the pivots based
on the communication costs (Lin and Chen 1999) or based on a completion
cost metric (Lin and Chen 2005) as well. These extensions allow the re-
ordering algorithm to use more information and as a result come up better
reorderings.

9. Supernodal methods

All of the numerical factorization algorithms discussed so far depend on
gather/scatter operations for all of their operations, on individual sparse
row or column vectors. The sparse matrix data structures, as well, rep-
resent individual rows or columns one at a time, as independent entities.
However, a matrix factorization (LU, Cholesky, or QR) often has columns
and rows with duplicate structure. The supernodal method exploits this to
save time and space. It saves space by storing less integer information, and
it saves time by operating on dense submatrices rather than on individual
rows and columns. Dense matrix operations on the dense submatrices of
the supernodes exploit the memory hierarchy far better than the irregular
gather/scatter operations used in all the factorizations methods discussed
so far in this survey. The frontal and multifrontal methods also exploit
these structural features of the factorization, using a very different strategy
(Sections 10 and 11).

Below, Section 9.1 considers the supernodal method for the symmetric
case: Cholesky and LDLT factorization. The symmetric method precedes
the development of the supernodal LU factorization method discussed in
Section 9.2.

9.1. Supernodal Cholesky factorization

The supernodal Cholesky factorization method exploits the fact that many
columns of the sparse Cholesky factor L have identical nonzero pattern, or
nearly so.

Consider equation (4.3), which states that the nonzero pattern Lj of a
column j is the union of its children, plus the entries in the jth column
of A. A node often has only a single child c in the elimination tree, and
the jth column of A may add no additional entries to the pattern. The
jth column of A would of course contribute to the numerical value of the
jth column of L, but at this point it is only the nonzero structure that

Sparse Direct Methods 91

is of interest, not the values. If the matrix is permuted according to the
elimination tree postordering, this single child of j will be column j − 1.
This case can repeat, resulting in a chain of c > 1 nodes in the elimination
tree. Grouping these c columns of L together results in a single fundamental
supernode (Liu, Ng and Peyton 1993). During numerical factorization, a
supernode with c columns of L is represented as a dense lower trapezoidal
submatrix of size r-by-c, where r is the number of nonzeros in the first, or
leading, column of the supernode. The same nodes can be folded together
in the elimination tree, and represented with a single node per supernode,
resulting in the supernodal elimination tree.

The left-looking supernodal Cholesky factorization is illustrated in the
MATLAB script chol super below. Compare it with chol left in Sec-
tion 5.3. The algorithm starts with a fill-reducing ordering (Section 8), and
then finds the elimination tree and its postordering. The tree is stored as the
parent array, where parent(j) is the parent of node j. The postordering is
combined with the fill-reducing ordering, which places parents and children
close to one another, and thus increases the sizes of the fundamental su-
pernodes. The amount of fill-in and work is not affected by the postordering
(Liu 1990), since the resulting graphs are isomorphic. Next, the MATLAB
script finds column counts and the postordered tree (via symbfact). It re-
computes the tree to keep the script simple, but it can be found from the
original tree computed by the etree function.

function [L,p] = chol_super (A) % returns L*L’ = A(p,p)

n = size (A,1) ;

p = amd (A) ; % fill-reducing ordering

[parent,post] = etree (A (p,p)) ; % find etree and its postordering

p = p (post) ; % combine with fill-reducing ordering

A = A (p,p) ; % permute A via fill-reducing ordering

[count,~,parent] = symbfact (A) ; % count(j) = nnz (L (:,j))

% super(j) = 1 if j and j+1 are in the same supernode

super = [(parent (1:n-1) == (2:n)) , 0] & ...

[(count (1:n-1) == (count (2:n) + 1)) , 0] ;

last = find (~super) ; % last columns in each supernode

first = [1 last(1:end-1)+1] ; % first columns in each supernode

L = sparse (n,n) ;

C = sparse (n,n) ;

for s = 1:length (first) % for each supernode s:

f = first (s) ; % supernode s is L (f:n, f:e)

e = last (s) ;

% left-looking update (akin to computation of vector c in chol_left):

C (f:n, f:e) = A (f:n, f:e) - L (f:n, 1:f-1) * L (f:e, 1:f-1)’ ;

% factorize the diagonal block (akin to sqrt in chol_left):

L (f:e, f:e) = chol (C (f:e, f:e))’ ;

% scale the off-diagonal block (akin to division by scalar in chol_left):

L (e+1:n, f:e) = C (e+1:n, f:e) / L (f:e, f:e)’ ;

end

92 Davis, Rajamanickam, Sid-Lakhdar

The term super(j) is true if column j and j+1 fit into the same supern-
ode, which happens when the parent of j is j+1 and the two columns share
the same nonzero pattern. This is not quite the same as a fundamental
supernode, since the latter would require j to be the only child of j+1, but
it makes for a very simple MATLAB one-liner to find all the supernodes.
To improve performance, supernodes are often extended in size beyond this
test, to put j and j+1 together if their patterns are very similar, not nec-
essarily equal. These are called relaxed supernodes. Note that the test for
similar nonzero patterns does not need the patterns themselves, but just the
column counts, since the pattern of a child is always a subset of the pattern
of its parent. This chol super script does not exploit relaxed supernodes.

The numeric factorization computes one supernodal column of L at a
time. It first computes the update term C, one per descendant supernode.
For simplicity, this is shown as single matrix-matrix multiply in the script.
In practice, this is always done for each descendant supernodal column,
just as the left-looking non-supernodal method (chol left) traverses across
each descendant column (the for j=find(L(k,:)) traversal of the kth row
subtree).

An example supernodal update is shown in Figure 9.12. The descendant d
corresponds to three adjacent columns of L, df to de. Its nonzero pattern is
a subset of the target supernode s, consisting of 4 columns sf to se. In each
supernode, all entries in any given row are either all zero or all nonzero.
The computation of C for this supernode requires a 6-by-3 times 3-by-3
dense matrix multiply, giving a dense 6-by-3 update that is subtracted from
a 6-by-3 submatrix (shown in dark circles) of the 9-by-4 target supernode s.

Sequential supernodal Cholesky factorization

Supernodes in their current form are predated by several related develop-
ments. George (1977a) considered a partitioning for finite-element matrices
in which each block column had a dense triangular part, just like supernodes.
Unlike supernodes, the rows below the triangular part were represented in
an envelope form, which (in current terminology) corresponds to a single
path in the corresponding row subtrees.

George and McIntyre (1978) used a supernodal structure for the sym-
bolic pattern of L for a minimum-degree ordering method for finite-element
problems. George and Liu (1980b) then extended this idea for a gen-
eral minimum-degree ordering method, in which groups of nodes (columns)
with identical structure are merged (referred to as indistinguishable nodes).
George and Liu (1980c) exploited the supernodal structure of L in their
compressed-index scheme for symbolic factorization, which represents the
pattern of L with less than one integer per nonzero on L. These compact
representations (discussed in Section 8) are a precursor to the supernodal
method, which extends this idea into the numeric factorization.

Sparse Direct Methods 93

Figure 9.12. Left-looking update in a supernodal Cholesky factorization. Solid
circles denote entries that take part in the supernodal update of the target

supernode s with descendant supernode d. Grey circles are nonzero but do not
take part in the update of s by its descendant d.

The first supernodal numeric factorization was a left-looking method by
Ashcraft, Grimes, Lewis, Peyton and Simon (1987), based on the observa-
tions in the symbolic methods just discussed. Pothen and Sun (1990) gen-
eralize the supernodal elimination tree (as the clique tree) and also extend

the symbolic skeleton matrix Â used in the row/column count algorithm
(Section 4.2) to the supernodal skeleton matrix.

Rothberg and Gupta (1991), (1993) show that the supernodal method
can also be implemented in a right-looking fashion. With a right-looking
approach, the supernodal method becomes more similar to the multifrontal
method (Section 11), which is also right-looking, and which also exploits
dense submatrices. The supernodes, in fact, correspond exactly to the fully-
assembled columns of a frontal matrix in the multifrontal method. The
difference is that the right-looking supernodal method applies its updates
directly to the target supernodes (to the right), and thus it does not require
the stack of contribution blocks used by the multifrontal method to hold its
pending updates. The supernodal update shown in Figure 9.12 is the same,
except that as soon as the supernode d is computed, its updates are applied

94 Davis, Rajamanickam, Sid-Lakhdar

to all supernodes to the right that require them. The target supernodes
correspond to a subset of the ancestors of d in the supernodal elimination
tree.

Ng and Peyton (1993a) compare the performance of the left-looking (non-
supernodal) method, two variants of the left-looking supernodal method,
and two variants of the multifrontal method. In one supernodal method,
the key kernel is the update of a single target column with a descendant su-
pernode. The second obtains higher performance by relying on a kernel that
updates all the columns in a target supernodal column with a descendant
supernode. This reduces memory traffic. They also consider two methods
for determining the set of descendant supernodes that need to update the
target supernode: a link-list, and a traversal of the kth row subtree.

The supernodal method requires an extension of the symbolic analysis for
the column-wise Cholesky factorization. Liu et al. (1993) show how to find
supernodes efficiently, without having to build the entire pattern of L first,
column-by-column. The resulting algorithm takes nearly O(|A|) time, and
allows the subsequent supernodal symbolic factorization to know ahead of
time what the supernodes are.

Both the supernodal method and the multifrontal method obtain high
performance due to their reliance on dense matrix operations on dense sub-
matrices (the BLAS). These dense kernels are highly efficient because of
their re-use of cache. Rozin and Toledo (2005) compare the cache reuse of
both the supernodal and multifrontal methods, and show that some classes
of matrices are better suited to each method.

For very sparse matrices, the simpler up-looking or left-looking (non-
supernodal) methods can be faster than the supernodal method. If the
dense submatrices are too small, it makes little sense to try to exploit them.
MATLAB relies on CHOLMOD for chol and x=A\b (Chen et al. 2008),
which includes both the left-looking supernodal method (with supernode-
supernode updates), and the up-looking method (Section 5.2). CHOLMOD
finds the computational intensity as a by-product of the symbolic analysis
(the ratio of flop count over |L|). If this is high (over 40), then it uses a
left-looking supernodal method. Otherwise, it uses the up-looking method,
which is faster in this case. Its supernodal symbolic analysis phase deter-
mines the relaxed supernodes based solely on the elimination tree and the
row/column counts of L, an extension of Liu et al.’s (1993) method for
fundamental supernodes.

Parallel supernodal Cholesky factorization

The supernodal method is well-suited to implementations on both a shared-
memory and distributed-memory parallel computers.

Ng and Peyton (1993b) consider the first parallel supernodal Cholesky
factorization method, and its implementation on a shared-memory com-

Sparse Direct Methods 95

puter. It uses a set of lists for pending supernodal updates, much like how
the method of George et al. (1986a) uses them for a parallel column-wise
algorithm.

The symbolic factorization phase is very hard to parallelize, since it re-
quires time that is essentially proportional to the size of its output, a com-
pact representation of the supernodal symbolic pattern, L. However, it is
very useful on a distributed-memory computer, where all of L never resides
in the memory of a single processor. Ng (1993) considers this case, extending
the work of George et al. (1987), (1989a) to the supernodal realm.

Eswar, Sadayappan, Huang and Visvanathan (1993b) present two distributed-
memory supernodal methods (both left and right-looking), using a 1D distri-
bution of supernodal columns. Large supernodes are split and distributed, as
well. Comparing these two methods, they find that the left-looking method
is faster because of the reduction in communication volume. Communi-
cation volume in the right-looking method is reduced by aggregating the
updates, depending upon how much local memory is available to construct
the aggregate updates (Eswar et al. 1994).

Rothberg and Gupta (1994) extend their right-looking supernodal ap-
proach, which differs from the left-looking method in one very important
aspect. The left-looking method described so far uses a 1D distribution of
columns (or supernodes) to processors. Rothberg and Gupta present a 2D
distribution that improves parallelism and enhances scalability. Both rows
and columns are split according to the supernodal partition, and each su-
pernode is spread across many processors. For example, in Figure 9.12, the
block consisting of rows sf through se, and columns df through de would
reside on a single processor. Rothberg (1996) compares the performance
of both 1D and 2D methods, and the multifrontal method, on distributed-
memory computers. Parallel sparse Cholesky factorization places a higher
demand on the communication system of a distributed-memory computer
since it has a lower computation-to-communication ratio as compared with
dense factorization. The method uses a cyclic 2D distribution of blocks;
Rothberg and Schreiber (1994) describe a more balanced distribution for
this method.

Rauber, Rünger and Scholtes (1999) consider shared-memory parallel
implementations of both left-looking and right-looking (non-supernodal)
Cholesky factorization and two variants of right-looking supernodal Cholesky
factorization. The variants rely on different task scheduling and synchro-
nization methods, with dynamic assignments of tasks to processors. Each
variant uses a 1D distribution of columns (or supernodal columns) to pro-
cessors.

Hénon, Ramet and Roman (2002) combine both left and right-looking
approaches in their parallel distributed-memory supernodal factorization
method, in PaStiX. They use a 1D distribution for small supernodes, and

96 Davis, Rajamanickam, Sid-Lakhdar

a 2D distribution for large ones. The latter occur towards the root of the
elimination tree. Updates are aggregated if sufficient memory is available,
and only partially aggregated otherwise.

Lee, Kim, Hong and Lee (2003) extend the method of Rothberg and Gupta
(1994) in their distributed-memory sparse Cholesky factorization. It uses
the same right-looking method with a 2D distribution of the supernodes.
They introduce a task scheduling method based on a directed acyclic graph
(DAG), rather than the elimination tree. They compare four methods: (1)
non-supernodal, with a 1D distribution (George et al. 1988a), (2) supern-
odal, with cyclic 2D distribution (Rothberg and Gupta 1994), (3) supern-
odal, with more balanced 2D distribution (Rothberg and Schreiber 1994),
and (4) their DAG-based method. Task scheduling based on DAGs has also
been used for the multifrontal method (Section 11).

Rotkin and Toledo (2004) combine a left-looking supernodal Cholesky
factorization with a right-looking (non-multifrontal) strategy in their out-
of-core method. Their hybrid method is closely related to Rothberg and
Schreiber’s (1999) out-of-core method, which combines a left-looking su-
pernodal method with a right-looking multifrontal method (their method is
discussed in Section 11). In Rotkin and Toledo’s method, submatrices cor-
responding to subtrees of the elimination tree are factorized in a supernodal
left-looking manner. Some descendants may reside on disk, and these are
brought back in as needed. Once a supernode is computed, it updates its
ancestors in the current subtree, which is in main memory, using a right-
looking supernodal strategy. Meshar, Irony and Toledo (2006) extend this
method to the symmetric indefinite case, in which numerical pivoting must
be considered.

Time and memory are not the only resource an algorithm requires. Power
consumption is another resource that algorithm developers rarely consider.
Chen, Malkowski, Kandemir and Raghavan (2005) present a parallel su-
pernodal Cholesky factorization that addresses this issue via voltage and
frequency scaling. A CPU running at a lower voltage/frequency is slower
but uses much less power. In their method CPUs that perform computa-
tions for supernodes on the critical path run at full speed, whereas CPUs
computing tasks not on the critical path have their voltage/frequency cut
back. Slowing down these CPUs does not increase the overall run time, but
power consumption is reduced.

Hogg, Reid and Scott (2010) presents a DAG-based scheduler for a parallel
shared-memory supernodal Cholesky method, HSL MA87. They also give a
detailed description of many other methods and an extensive performance
comparison with those methods.

Lacoste, Ramet, Faverge, Ichitaro and Dongarra (2012) describe a DAG-
based scheduler for PaStiX, and also present a GPU-accelerated supernodal

Sparse Direct Methods 97

Cholesky factorization. The GPU aspects of PaStiX are discussed in Sec-
tion 12.3.

9.2. Supernodal LU factorization

The supernodal strategy also applies to LU factorization of unsymmetric
and rectangular matrices. Demmel, Eisenstat, Gilbert, Li and Liu (1999a)
introduced the idea of unsymmetric supernodes, and implemented them in
their left-looking method, SuperLU. Its derivation is analogous to the left-
looking LU factorization. Consider equation (6.2). In the supernodal left-
looking LU factorization, the (2,2)-block of A, L, and U becomes a matrix
(one supernode) instead of a scalar.

In a symmetric factorization, the factors L and LT have the same nonzero
pattern, so it suffices to define the supernodes based solely on the pattern
of L. In an unsymmetric factorization (A = LU), L can differ from UT .
Thus, Demmel et al. (1999a) consider many possible types of unsymmetric
supernodes, but rely on only one of them in their method: an unsymmetric
supernode is a contiguous set of columns of L (say f to e), all of which
have the same nonzero pattern, and they include in this supernode the same
columns of U . The diagonal block of a supernode in L is thus a dense lower
triangular matrix. This definition is the same as a supernode in a Cholesky
factor, for L. They show that the nonzero pattern of rows f to e of U has
a special structure; those rows of U can be represented as a dense envelope,
with no extra entries. That is, if uik 6= 0 for some i ∈ {f, ..., e}, then all
utk 6= 0 for all t ∈ {i+1, ...e}. This structure of U is very similar to George’s
(1977a) partitioning of the Cholesky L for finite-element matrices, which
predates supernodal methods. Just as in supernodal Cholesky factorization,
the method relies on relaxed supernodes where the pattern of the columns of
L need not be identical, to reduce memory usage and improve performance.

An example unsymmetric supernode is shown in Figure 9.13. The lower
triangular part of supernode s is the same as Figure 9.12, but the pattern of
U differs. The descendant d has a structure of L(sf : se, df : de) that is the
same as the symmetric supernode, but the transposed part in U , namely,
U(df : de, sf : se) differs. This part of U is in envelope form. The update
of d to s must also operate on the columns in U of the target supernode s
(namely, rows de + 1 to se), and thus a few entries are added there for this
figure.

This definition of an unsymmetric supernode does not permit the exploita-
tion of simple dense matrix-matrix multiplication kernels (GEMM) in the
supernodal update. However, since the blocks of U have a special structure
(a dense envelope), good performance can still be obtained using a sequence
of dense matrix-vector multiplies (GEMV), where the structure of each is
very similar, and the matrix (from the descendant supernode d) is reused for

98 Davis, Rajamanickam, Sid-Lakhdar

Figure 9.13. Left-looking update in a supernodal LU factorization. Solid entries
take part in the update of s by supernode d. Grey entries are nonzero but are not

modified by this update.

each operation. SuperLU is partly right-looking, as it can update more than
one target supernode s with a single updating node d. Up to w individual
columns are updated at a time, where w is selected based on the cache size.

Demmel et al. (1999a) extend the symbolic LU analysis discussed in Sec-
tion 6.1, and determine an upper bound on the patterns L and U , by ac-
counting for worst-case partial pivoting with row interchanges in the numeric
factorization.

Like its Cholesky variant, the supernodal LU factorization method is
amenable to a parallel implementation. Fu, Jiao and Yang (1998) present a
parallel right-looking method called S* for a distributed-memory computer.
They employ a 2D supernode partition, analogous to the 2D supernode par-
titioning of Rothberg and Gupta (1994) and Rothberg and Schreiber (1994)
for sparse Cholesky factorization. The matrix L+U is partitioned symmet-
rically, in the sense that both rows and columns are partitioned identically.
This gives square blocks on the diagonal of L + U , and rectangular off-
diagonal blocks. In Figure 9.13, L(sf : se, df : de) would form a single
4-by-3 block, for example. The method is further developed by Shen, Yang
and Jiao (2000), as the algorithm S+. The method uses a different column

Sparse Direct Methods 99

elimination tree, further analyzed by Oliveira (2001), called the row merge
tree. The trees are very similar. In the row-merge tree, k is the parent of
j if ujk 6= 0 is the first off-diagonal entry in row j, except that j is a root
if there is only one nonzero in the jth column of L. Their parallel task
scheduling and data mapping allocates the 2D blocks of the matrix onto
a 2D processor grid, and relies on the row-merge tree to determine which
supernodal updates can occur simultaneously.

Demmel, Gilbert and Li (1999b) present a shared-memory version of Su-
perLU, called SuperLU MT. It is a left-looking method that exploits two
levels of parallelism. First, supernodes in independent subtrees in the col-
umn elimination tree can be done in parallel. Second, supernodes with an
ancestor/descendant relationship can be pipelined, where an ancestor can
apply updates from other descendant supernodes which have already been
completed.

Schenk, Gärtner, Fichtner and Stricker (2000) (2001) combine left and
right-looking updates in PARDISO, a parallel method for shared-memory
computers. It assumes a symmetric nonzero pattern of A, which allows for
use of the level-3 BLAS (dense matrix-matrix multiply). In contrast to Su-
perLU (which allows for arbitrary numerical pivoting), PARDISO performs
numerical pivoting only within the diagonal blocks of each supernode (static
pivoting). Schenk and Gärtner (2002) improve scalability of PARDISO with
a more dynamic scheduling method. They modify the pivoting strategy by
performing complete pivoting within each supernode, and include a weighted
matching and scaling method as a preprocessing step, which reduces the need
for numerical pivoting (2004).

Li and Demmel (2003) extend SuperLU to the distributed-memory domain
with SuperLU DIST, a right-looking method. This method differs in one
important respect from SuperLU. Like PARDISO, it only allows for static
numerical pivoting. Amestoy, Duff, L’Excellent and Li (2001b) compare
an early version of SuperLU DIST with the distributed-memory version of
MUMPS, a multifrontal method. MUMPS is generally faster and allows for
more general pivoting and can thus obtain a more accurate result, at the cost
of increased fill-in and higher memory requirements than SuperLU DIST.
One step of iterative refinement is usually sufficient for SuperLU DIST to
reach the same accuracy, however. Both methods have the same total com-
munication volume but the multifrontal method requires fewer messages.
In a subsequent paper (2003a), they show how MPI implementations affect
both solvers.

Li (2005) provides an overview of all three SuperLU variants: (1) the
left-looking sequential SuperLU, (2) the left-looking parallel shared-memory
SuperLU MT, and (3) the right-looking parallel distributed-memory Su-
perLU DIST. The last method has the highest level of parallelism for very
large matrices. In a subsequent paper (2008), Li considers the performance

100 Davis, Rajamanickam, Sid-Lakhdar

of these methods when each node of the computer consists of a tightly-
coupled multicore processor. Grigori and Li (2007) present an accurate
simulation-based performance model for SuperLU DIST, which includes the
speed of the processors, memory systems, and the latency and bandwidth
of the interconnect.

10. Frontal methods

The frontal method was introduced by B. M. Irons (1970). It was first
described in the literature in 1970, although its use in the industry predates
this. It originates in the solution of symmetric positive-definite banded linear
systems arising from the finite-element method, but it has been adapted to
the unsymmetric case by Hood (1976) and to the symmetric indefinite case
by Reid (1981). It is based on Gaussian elimination and is presented as an
alternative and improvement over Gaussian band algorithms.

In the finite-element formulation, the stiffness matrix A is expressed as
the sum of finite-element contributions

A =
∑
i

A(i) (10.1)

Each element is associated with a set of few variables and each variable is
related to a small set of elements.

The frontal method relies on the fundamental observation that, given the
linear nature of the Gaussian elimination process, a finite element may start
to be eliminated before being fully assembled. Specifically, the variables to
be eliminated need to be fully-summed but the ones to be updated need
not. Moreover, elements can be summed in any order, and the updates from
eliminated variables can also be done in any order.

The frontal method follows some key steps.
First, it defines and allocates a front: a dense square submatrix, in which

all operations take place. Its minimum storage requirement can be assessed
directly from the ordering in which the elements are assembled, although
its effective size depends on the amount of available core (memory). As the
elimination proceeds, it advances diagonally downwards the stiffness matrix,
one element at a time.

Second, the frontal method alternates between the assembly of finite el-
ements and the elimination and update of variables. The finite elements
are assembled, one after the other, following a predefined ordering, until the
front gets full. A partial factorization is then applied on the front: the fully-
summed variables are eliminated, one after the other, and each elimination
is followed by the update of the other non-eliminated variables in the front.

Third, since the eliminated variables will no longer be used during the
factorization process, they are removed from the frontal matrix and stored
elsewhere, usually on disk, leaving the free space for the next elements to

Sparse Direct Methods 101

be assembled. The frontal process continues until all elements have been
assembled and all variables have been eliminated.

Finally, the solution of the system is obtained using standard forward and
backward substitutions.

From an algebraic point of view, a front is a dense submatrix of the overall
system. It can be written as (

F11 F12

F T
12 F22

)
, (10.2)

where F11 contains the fully-summed rows and columns and is thus factor-
ized. Multipliers are stored over F12 and the Schur complement is formed
as F22 − F T

12F
−1
11 F12 and updates F22.

From a geometric point of view, a front can be seen as a wave that traverses
the finite-element mesh during the elimination process. A variable becomes
“active” on its first appearance in the front and is eliminated immediately
after its last appearance, i.e., it is started to be assembled but is not yet
eliminated. The front is thus the set of active variables that separate the
eliminated variables (behind the front) from the not-yet activated variables
(after the front) in the finite-element mesh.

10.1. Ordering of the finite elements

Ordering techniques (see Section 8) have an impact on the frontal method.
In the frontal method, the order in which the elements (resp. variables) are
assembled is critical in element (resp. non-element) problems. The order-
ing is chosen in such a way as to keep the size of the fronts as small as
possible, similar to the logic of bandwidth minimization, in order to reduce
the arithmetic operations and storage requirements. Reid (1981) cites the
Cuthill-McKee (1969), Cuthill (1972) and improvements by Gibbs, Poole
and Stockmeyer (1976a) as the established reordering techniques for frontal
methods. He also notices that the Reverse Cuthill-McKee technique de-
veloped by George (1971) often yields worthwhile improvements, essentially
because the variables associated with a single or pair of elements in the same
level set become fully-summed, and thus get eliminated early after becoming
active, so they do not contribute to an increase in the front size. Finally,
he notices that the Minimum Degree ordering is remarkably successful in
the case of sparse symmetric matrices. Indeed, this technique has been used
successfully, and is still widely used, as an ordering of choice in the frontal
and multifrontal methods.

10.2. Extensions of the frontal method

Although the same storage area is allocated for all the fronts, the effective
size of the successive fronts may vary during the elimination process, possi-

102 Davis, Rajamanickam, Sid-Lakhdar

bly introducing some sparsity in the front. Thompson and Shimazaki (1980)
proposed the frontal-skyline method, a hybrid method that requires fewer
transfers to/from disk than either the frontal or blocked-skyline methods,
and that requires the same minimum core as the frontal method. It be-
haves identically to the frontal method but uses an efficient compact skyline
storage scheme (column, envelope or profile), similar to the blocked-skyline
method, which circumvents the vacancies that would appear in the front
using the frontal method when the size of the front increases. The method
therefore proves most valuable for problems which have front widths that
vary greatly from one position in the mesh to another.

Moreover, in an in-core context, when using a direct method, it is im-
portant to know whether a given problem can be solved for a given core
size. Amit and Hall (1981) proposed a lower bound on the minimal length
of the front, independent of the ordering of the nodes, as the size of the
causey of maximal length. They define a causey as a path in a graph that
stretches from the boundaries and where the distance of each of its nodes
to the boundary is minimal. They also describe an algorithm for finding a
maximal causey. Their result is an extension of that of George (1973) to the
wider class of simplicial triangulations graphs, and their estimate is not as
sharp on the class of general graphs but is still a lower bound.

Melhem (1988) suggests a window-oriented variation of the frontal tech-
nique combining features from band solvers. The computations are confined
within a sliding window of σ contiguous rows of the stiffness matrix. These
rows are assembled and factorized in sequential order, allowing for an auto-
matic detection (without preprocessing) of the moment when rows become
fully-summed. These rows, which appear at the top of the window, are
factorized and then removed from memory, allowing the window to move
downward. The simplification of data management and bookkeeping comes
at the price of larger memory requirement. Indeed, the optimal width of
the delayed front, σmin, is usually larger than the maximum size of the ac-
tive front, although Melhem proposes different bounds for the optimal value
σmin under different hypotheses, and proves that, for meshes encountered
in practical applications, σmin is smaller than the bandwidth of the stiffness
matrix. Melhem also describes an algorithm allowing the interleaving of the
assembly and factorization of the stiffness matrix and discusses two possible
parallel approaches using the window-oriented assembly scheme.

Duff (1984a) proposes extensions of the frontal method to the general case
of non-element problems and of unsymmetric matrices, together with their
implementation in the MA32 package. In the case of non-element problems,
the rows of the sparse matrix (rather than the usual finite elements) are
assembled one after another in the frontal matrix. A variable is considered
to be fully summed when all the equations it appears in are assembled. In

Sparse Direct Methods 103

the case of unsymmetric matrices, Duff also notes that the frontal matrix is
rectangular.

10.3. Numerical stability

In the case where the matrix is not symmetric positive definite, numerical
stability considerations have to be taken into account. Hood (1976) presents
a variant of the frontal method for unsymmetric matrices. The factorization
process is modified: before each elimination, the largest entry in the pivotal
search space is determined and the corresponding pivotal row is then used
to eliminate the coefficients in the pivotal column. As extending the search
space to the entire stiffness matrix would require too much memory, Hood
restricts the pivot search space to the sub-matrix of fully-summed rows and
columns in the front (F11 in Equation 10.2). Moreover, as a combination of
the already-reduced search space with another pivotal strategy would further
reduce the pivotal choice, he applies a version of restricted total-pivoting
strategy. He performs assemblies until the front size reaches a maximum size
and then performs eliminations until the front size reaches a minimum size.
Any additional core allocated in excess will be taken advantage of as it would
permit more fully-summed variables to be retained in the front, allowing for a
greater pivotal choice. Cliffe, Duff and Scott (1998) and Duff (1984a) suggest
a threshold partial pivoting strategy instead, as implemented in MA32, in
order to find satisfiable pivots while keeping the front much smaller than
with Hood’s approach.

It is possible however that no satisfiable pivot can be found. Hood pro-
posed the delayed pivoting technique, where the fully-summed columns and
rows are left in the front with their elimination being delayed while the
method proceeds with further assemblies. The front gets temporarily bigger
than it would have been without numerical pivoting, in the hope that more
suitable pivots will be found afterwards, although Duff (1984a) notices that
the increase in front size is slight in practice.

In the case where the matrix is symmetric indefinite, it could be treated
as unsymmetric, at the price of doubling the arithmetic and storage. Reid
(1981) suggests instead that the frontal method could be used in conjunction
with the diagonal pivoting strategy by Bunch (1974), which uses 2-by-2
pivots as well as ordinary pivots and which will be stable in this case.

10.4. Improvements through dense linear algebra ideas

Sparse matrix factorizations usually involve, at least, one level of indirect ad-
dressing in their innermost loop, which inhibits vectorization. Duff (1984d)
makes use of the fact that the codes employing direct addressing in the so-
lution of full linear systems can be easily vectorized. Rather than relying

104 Davis, Rajamanickam, Sid-Lakhdar

on sparse SAXPY’s (scaled vector addition) and sparse SDOT’s (dot prod-
ucts) based on gather and scatter operations, Duff considers techniques that
avoid indirect addressing in the innermost loops, which enables them to be
vectorizable.

Moreover, the Gaussian elimination operations in the frontal method cre-
ate non-zeros that makes the front become increasingly dense. Duff (1984d)
obtains significant gains in MA28 by switching to a dense matrix towards
the end of the factorization, and allowing the switch to happen before the
active submatrix becomes fully nonzero. He also observes that the increase
in storage size due to zero entries in the factors treated as non-zeros is mostly
compensated by the absence of storage of integer indexing information on
the non-zeros.

Furthermore, blocking strategies used in dense linear algebra allow for an
overlap of memory accesses with arithmetic operations. Duff (1984d) shows
the advantage of using and optimizing sequences of SAXPY or “multiple-
SAXPY” in dense kernels on the CRAY-1 machine, by using register reuse
techniques and avoiding unnecessary memory transactions. Dave and Duff
(1987) recognize that the outer-product between the pivot column and the
pivot row in the inner loop of a frontal method represents a rank-one update.
They observe gains in performing rank-two updates instead of two succes-
sive rank-one updates on the CRAY2 machine as this keeps its pipeline busy.
They point out the gains obtained by Calahan (1973) on the same machine
when using matrix-vector kernels for selecting pivots and matrix-matrix ker-
nels elsewhere.

Duff and Scott (1996) extend the use of the blocking idea even further.
The MA42 code they developed is a restructuring of MA32 and is designed
to enable maximum use of blocking through Level 2 and 3 BLAS.2 During
the factorization phase, the update of the variables in the front that are not
fully summed is delayed until all the fully-summed variables (except delayed
pivots) have been eliminated, and is then achieved through a TRSM on
F21 (a dense triangular solve) and GEMM on F22 (a dense matrix-matrix
multiply), leading to impressive performance. During the solution phase,
instead of storing the columns of PL and rows of UQ separately and of
using the Level 1 BLAS SDOT and SAXPY routines, as in MA32, the factors
are stored by blocks and the forward- and back-substitutions are performed
using either the Level 2 BLAS GEMV (dense matrix-vector multiply) and
TPSV (dense triangular solve) routines, or the Level 3 GEMM and Level

2 Level 1 BLAS are dense vector operations that do O(n) work, including vector addition
(SAXPY) and dot product (SDOT). Level 2 are dense matrix-vector operations that
do O

(
n2

)
work, such as matrix-vector multiply (GEMV) and triangular solves (TRSM

and TPSV). Level 3 includes the dense matrix-matrix multiply (GEMM), with O
(
n3

)
work (Dongarra, Du Croz, Duff and Hammarling 1990).

Sparse Direct Methods 105

2 TPSV routines, depending upon whether there are one or multiple right-
hand side(s), respectively.

Cliffe et al. (1998) discuss a modified frontal factorization with enriched
Level 3 BLAS at the cost of increased floating-point operations. Their idea
is to delay the elimination and update of the frontal matrix by continuing
the assembly of elements into the frontal matrix, until either the number of
fully-summed variables reaches a prescribed minimum rmin or the storage
allocated for the frontal matrix becomes insufficient. They then eliminate
as many pivots as possible followed by an update of the frontal matrix.
The advantage of delaying the elimination process is reduced, but this ap-
proach enhances the calls to Level 3 BLAS routines, and provides more
fully-summed variables to choose from for potential pivot candidates. How-
ever, the inconvenience of performing additional assemblies before starting
the elimination is an increase in the average and maximum front sizes. The
number of operations in the factorization also increases, with many opera-
tions being performed on zeros.

10.5. From a front to multiple-fronts

The frontal method lacks the scope for parallelism other than that obtained
within blocking. In an effort to parallelize the frontal method, as a premise
of and not to be confused with the multifrontal method, the concept of
substructuring in finite-element meshes, by Speelpenning in 1973, led to
the creation of the multiple-front method by Reid (1981). Conceptually
similar to the multifrontal method, it could be regarded as being only a
special case where the assembly tree has only one level of depth. Based
on the work of Speelpenning, Reid observes that the static condensation
phenomenon (i.e. variables occurring inside one element only may be fully-
summed and eliminated inside that element at a low cost) naturally extends
to groups of elements, where variables inside the group may be eliminated
involving only those elements. From the finite-element mesh perspective,
the physical domain is thus decoupled into independent sub-domains. In-
dependent frontal factorizations may then be applied on each sub-domain
separately and in parallel. Another frontal factorization applied to the inter-
face problem (union of the boundaries of the sub-domains) is then necessary
to complete the factorization. Reid notices that the number of arithmetic
operations in the multiple-front method may be reduced compared to the
frontal method, because the front size within the substructures is smaller
than that of the front used for the whole structure.

Duff and Scott (1996) discuss possible strategies for implementing the
multiple-front method in MA42. They notice that the efficiency of the
multiple-front algorithm increases with the size of the problem.

106 Davis, Rajamanickam, Sid-Lakhdar

Scott (2001a) discusses the algorithms of MP43, which is based on MA42,
and which targets unsymmetric systems that can be preordered to bordered
block diagonal form, this being the form on which the multiple-front method
may be applied. MP43 features a modified local row ordering strategy of
Scott (2001b) as implemented in MC62. She shows the importance of apply-
ing a local row ordering on each submatrix (sub-domain) on the performance
of the multiple-front algorithm. Scott (2003) compares the MP42, MP43,
and MP62 parallel multiple-front codes that target, respectively, unsym-
metric finite-element, symmetric positive definite finite-element and highly
unsymmetric problems. Scott (2006) discusses ways to take advantage of
explicit zero entries in the front.

11. Multifrontal methods

Although multifrontal methods have their origins as an extension of frontal
methods and were originally developed for performing an LLT or LDLT fac-
torization of a symmetric matrix, they offer a far more general framework for
direct factorizations and can be used in the direct factorization of symmetric
indefinite, and unsymmetric systems using LDLT or LU factorizations and
even as the basis for a sparse QR factorization.

In this introductory section, we discuss the origins of this class of methods,
consider how they relate to the elimination tree, and define the terms that
will be used in the later sections.

In Section 11.1, we discuss multifrontal methods for implementing Cholesky
and LDLT factorizations together with the extension to an LU factorization
for pattern symmetric matrices. In Section 11.2, we consider issues related
to pivoting in multifrontal methods including the preprocessing of the ma-
trix to facilitate a more efficient factorization. In Section 11.3, we study the
memory management mechanisms used in the multifrontal method, in both
in-core and out-of-core contexts. In Section 11.4 we discuss the extensions to
the multifrontal method to permit the LU factorization of pattern unsym-
metric matrices. In Section 11.5 we study the use of multifrontal methods
to generate a QR factorization.

As in the other sections of this paper, we discuss both sequential and
parallel approaches.

The multifrontal method was developed by Duff and Reid (1983a) as a
generalization of the frontal method of Irons (1970). The essence of the mul-
tifrontal method is the generalized element method developed by Speelpen-
ning. The use of generalized elements in the element merge model for Gaus-
sian elimination has been suggested by Eisenstat et al. (1976a) (1979) and
(George and Liu 1980b). Duff and Reid, however, present the first formal
and detailed description of the computations and data structures of all of

Sparse Direct Methods 107

the analysis, factorization and solve phases. A very detailed description of
the principles of the multifrontal methods is given by Liu (1992).

Although the method applies to general matrices, the finite-element for-
mulation is convenient in order to understand it. From this perspective,
with matrices of the form

A =
∑
i

A(i),

where each A(i) is the contribution of a finite element, the frontal method
can be interpreted as a sequential bracketing of this sum, while the multi-
frontal method can be regarded as its generalization to any bracketing. The
assembly tree may then be interpreted as the expression of this bracketing,
with each node being a front, where the leaves represent the finite-elements
(A(i) matrices) and the interior nodes represent the generalized elements
(brackets).

The multifrontal method relies on three main phases.
During the analysis phase, the elimination tree is computed. This allows

the factorization of a large sparse matrix to be transformed into the par-
tial factorizations of many smaller dense matrices (or fronts) located at each
node of this tree. The difference between the elimination tree and the assem-
bly tree is that the latter is the supernodal version of the former, although
the term elimination tree is used in the literature to denote both trees.

During the factorization phase, a topological traversal of the tree is oper-
ated, from bottom to top. The only constraint is that the computation of
a parent front must be done after the computation of all its child fronts is
complete. Similarly to the frontal method, a partial factorization of a front
is applied to its fully-summed rows and columns together with an update of
its contribution block, also known as the Schur complement, corresponding
of the block of non-fully-summed rows and columns. The difference with the
frontal method is that the contribution blocks of all children are assembled
in the parent front (instead of only one child), together with the original
variables of this front, through an extend-add operation.

During the solve phase, a forward- and back-substitutions are applied by
traversing the elimination tree, from bottom to top and then from top to
bottom. A triangular solve is then applied to each front to compute the
solution of the system.

Although the multifrontal method originally targeted symmetric indefinite
matrices, Duff and Reid (1984) extended it to unsymmetric matrices which
are structurally symmetric or nearly so. They do so through the analyses
of the pattern of the matrix AT + A instead of that of the matrix A. They
also store the fronts as square matrices instead of triangular matrices, as the
upper triangular factors are no longer the transpose of the lower triangular
factors.

108 Davis, Rajamanickam, Sid-Lakhdar

Figure 11.14. Multifrontal example

Duff and Reid (1983a) implemented the first multifrontal code in MA27
and Duff (2004) improved it and added new features in MA57, including
restart facilities, matrix modification, partial solution for matrix factors, so-
lution of multiple right-hand sides, and iterative refinement and error anal-
ysis. Moreover, Duff and Reid (1984) implemented these ideas in MA37.

11.1. Multifrontal Cholesky, LDL, and symmetric-structure LU
factorization

We introduce the multifrontal method with a simple example. Consider the
symmetric matrix (or an unsymmetric matrix with symmetric structure)
shown in Figure 11.14, with the L and U factors shown as a single matrix.
Suppose no numerical pivoting occurs. Each node in the elimination tree
corresponds to one frontal matrix, which holds the results of one rank-1
outer product. The frontal matrix for node k is a |Lk|-by-|Lk| dense matrix.
If the parent p and its single child c have the same nonzero pattern (Lp =
Lc \ {c}), they can be combined (amalgamated) into a larger frontal matrix
that represents both of them.

The frontal matrices are related to one another via the assembly tree,
which is a coarser version of the elimination tree (some nodes having been
merged together via amalgamation). To factorize a frontal matrix, the orig-
inal entries of A are added, along with a summation of the contribution
blocks of its children (called the assembly). One or more steps of dense LU
factorization are performed within the frontal matrix, leaving behind its
contribution block (the Schur complement of its pivot rows and columns).

Sparse Direct Methods 109

A high level of performance can be obtained using dense matrix kernels (the
BLAS). The contribution block is placed on a stack, and deleted when it is
assembled into its parent.

An example assembly tree is shown in Figure 11.14. Black circles rep-
resent the original entries of A. Circled x’s represent fill-in entries. White
circles represent entries in the contribution block of each frontal matrix. The
arrows between the frontal matrices represent both the data flow and the
parent/child relationship of the assembly tree.

A symbolic analysis phase determines the elimination tree and the amal-
gamated assembly tree. During numerical factorization, numerical pivoting
may be required. In this case it may be possible to pivot within the fully-
assembled rows and columns of the frontal matrix. For example, consider
the frontal matrix holding diagonal elements a77 and a99 in Figure 11.14.
If a77 is numerically unacceptable, it may be possible to select a79 and a97
instead, as the next two pivot entries. If this is not possible, the contribution
block of frontal matrix 7 will be larger than expected. This larger frontal
matrix is assembled into its parent, causing the parent frontal matrix to be
larger than expected. Within the parent, all pivots originally assigned to
the parent and all failed pivots from the children (or any descendants) com-
prise the set of pivot candidates. If all of these are numerically acceptable,
the parent contribution block is the same size as expected by the symbolic
analysis.

The ordering has an important effect on the performance of the multi-
frontal method. Duff, Gould, Lescrenier and Reid (1990) have studied the
impact of minimum-degree and nested dissection. They concluded that min-
imum degree induces very tall and thin trees while nested dissection induces
short and large trees which thus express more parallelism. They also pre-
sented variants of the minimum degree ordering that aims at grouping the
variables by similarity of their sparse structure to introduce more parallelism
in the resulting elimination trees.

Exploiting dense matrix kernels

One of the key features of the multifrontal method is that it performs most
of its computations inside dense submatrices. This allows for the use of
efficient dense matrix kernels, such as dense matrix-matrix multiply (such
as GEMM) and dense triangular solves (such as TRSM). Several studies
have been made on how best to exploit these dense matrix kernels inside the
multifrontal method.

Duff (1986b) discusses the inner parallelism arising in the computation of
each individual front, known as node parallelism, together with the potential
ways of exploiting it.

A first improvement to the efficiency of the multifrontal method is to avoid

110 Davis, Rajamanickam, Sid-Lakhdar

using the indirect addressing that usually arises in sparse matrix computa-
tions, as it is a bottleneck to efficiency, especially on vectorized computers.

Duff and Reid (1982) study three codes that use, in the innermost loop of
the partial factorizations, full matrix kernels to avoid this indirect addressing
of data and that exploit the vectorization feature of the Cray-1 computer.
The three codes are: frontal unsymmetric (MA32), multi-frontal symmetric
(MA27), and a multifrontal out-of-core code for symmetric positive definite
matrices.

Ashcraft (1987) and Ashcraft et al. (1987) also propose ways of improving
the efficiency of the multifrontal Cholesky method, particularly on vector-
ized supercomputers. Instead of relying solely on global indices to find the
links between the variables of the sparse matrix and their location in the
fronts, they propose the use of local indices in each front. An efficient
assembly phase is then achieved through indexed vector operations, sim-
ilar to the indexing scheme of Schreiber (1982) which allows for the use
of vectorization. He describes a symmetric partial factorization of fronts
using increased levels of vectorization. Instead of relying on single loops
(vector-vector operations), he shows significant improvements when using
supernode-node updates (multiple vector-vector operations) through un-
rolled double-loops, particularly when using supernode-supernode updates
(multiple vector-multiple vector operations) through triple-loop kernels.

Ashcraft et al. (1987) rely on these ideas in studying and comparing
highly vectorized supernodal implementations of both general sparse and
multifrontal methods. They recognize that the uniform sparsity pattern of
the nodes of a supernode provides a basis for vectorization, since all the
columns in a supernode can be eliminated as a block. They conclude that
these enhanced general sparse or multifrontal solvers are superior to band or
envelope solvers in terms of execution time and storage requirements by or-
ders of magnitude, and that the multifrontal method is more efficient than
the general sparse method, at the price of extra storage for the stack of
contribution blocks and extra floating point operations for assembly.

A second improvement to the efficiency of the multifrontal method is to
use ideas from dense linear algebra, such as blocking strategies or use of
BLAS or even of dense kernels, for the factorization of the (dense) fronts.

Rothberg and Gupta (1993) show the effects of blocking strategies and
the impact of cache characteristics on the performance of the left-looking,
right-looking, and multifrontal approaches. They observe that: (i) column-
column primitives (via level 1 BLAS) yield low performance because of little
data reuse; (ii) supernode-column and column-supernode primitives (via
level 2 BLAS) can be unrolled which allows data to be kept in registers
and reused; and (iii) supernode-pair, supernode-supernode and supernode-
matrix primitives (via level 3 BLAS) allow the computations to be blocked,
each one exploiting increasing amounts of data reuse until near saturation.

Sparse Direct Methods 111

In sequential environments, Amestoy and Duff (1989) present an approach
where they capitalize on the advances achieved in dense linear algebra, which
are based on the use of block algorithms or on the use of BLAS, and im-
plement their ideas as a modified version of MA37. In the assembly phase,
they notice that when building the local indices, the index-searching oper-
ations for finding the position of a variable of a child in a parent can be
very time-consuming. They thus introduce a working array that maps each
variable of the child with either zero or the position of the corresponding
variable in the parent front. During the factorization phase, to adapt the
ideas of full matrix factorizations to partial front factorization, they try
to maximize the use of Level 3 BLAS by dividing the computations into
three steps. The fully-summed rows are eliminated first, followed by an up-
date of the non-fully-summed part of the fully-summed columns, through a
blocked triangular solve, ending with an update of the Schur complement,
using a matrix-matrix multiplication. The blocking strategy is further ex-
tended to the elimination of the fully-summed rows by subdividing them
into blocks, or panels, and applying vector operations inside the panels to
eliminate their rows and blocked operations outside them to update the re-
maining fully-summed rows. When pivots cannot be found inside a panel,
it is merged with the next panel to increase the chance of finding a suit-
able pivot. They apply partial pivoting with column interchanges, which
is allowed only within the pivot block. Such a restriction is leveraged by
choosing a larger block size in case of failure to find a suitable pivot.

In parallel environments, Amestoy, Daydé and Duff (1989) extended these
blocking ideas by proposing an approach where, instead of implementing a
customized parallel LU factorization for each machine, which can be very
efficient but not portable, they instead rely on a sequential blocked variant
of the LU factorization that solely relies on parallel multithreaded BLAS
(tuned for every machine) to exploit the parallelism of the machine. They
show that this approach is portable and competitive in terms of efficiency,
and adapted it to the partial factorization of frontal matrices.

Daydé and Duff (1997) extend this approach of using off-the-shelf portable
and efficient serial and parallel numerical libraries as building blocks for
simplifying software development and improving reliability. They present
the design and implementation of blocked algorithms in BLAS, used in dense
factorizations and, in turn, in direct and iterative methods for sparse linear
systems.

Duff (1996) also emphasizes the use of dense kernels, and particularly the
use of BLAS, as portable and efficient solutions. He offers a review of the
frontal and multifrontal methods.

Conroy, Kratzer, Lucas and Naiman (1998) present a multifrontal LU
factorization targeting large sparse problems on parallel machines with two-
dimensional grids of processors. The method exploits a fine-grain parallelism

112 Davis, Rajamanickam, Sid-Lakhdar

solely within each dense frontal matrix, by eliminating each supernode, one
at a time, using the entire processor grid. Parallel front assembly and factor-
ization use low-level languages and minimize interprocessor communication.

It is possible to take even more advantage of dense matrix kernels by relax-
ing the fundamental supernode partition by means of node amalgamation.
The idea is then to find a trade-off between obtaining larger supernodes and
tolerating more fill-in, due to the introduction of logical zeros which increase
the operation count and the storage requirement.

Duff and Reid (1983a) introduce this concept in their construction of a
minimum degree ordering, to enhance the vectorization, by amalgamating
variables corresponding to identical rows into a “supervariable”, in the same
way as the indistinguishable nodes of George and Liu (1981). During a
post-order traversal of the assembly tree, their heuristic consists in merging
a supernode with the next one if the resulting supernode would be smaller
than a user-defined amalgamation parameter.

Ashcraft and Grimes (1989) revisit the amalgamation approach to reduce
the time spent in assembly as Ashcraft (1987) noticed that it takes a high
percentage of the total factorization time. Their algorithm traverses, in a
post-order, the assembly tree associated with the fundamental supernode
partition (with no logical zeros). For each parent supernode, the largest
children that add the fewest zeros are merged, one after another. The al-
gorithm is controlled by a relaxation parameter that limits the additional
fill-in. This approach leads to a reduction in the number of matrix assem-
bly operations that were being performed in scalar mode, while increasing
the number of matrix factorization operations that were being performed in
vector mode, with only a slight reported increase in the total storage of the
factors.

Parallelism via the elimination tree

Besides the parallelism offered by the Gaussian elimination process within
each front, another source of parallelism is available in the multifrontal
method.

Duff (1986a) describes the use of the elimination tree as an expression
of the inner parallelism (now known as tree parallelism) arising in the mul-
tifrontal method. He considers a coarse grain parallelism only when each
task, consisting in the whole partial factorization of a front, can be treated
by a single processor. The fundamental result he proves is that different
branches or subtrees in the elimination tree can be treated independently
and in parallel. The elimination tree can be interpreted as a partial order on
the tasks. Leaves can be processed immediately and sibling fronts or sub-
trees can be treated in any order and in parallel; whereas parent tasks may
be activated only after all their child tasks complete. He then shows how

Sparse Direct Methods 113

to schedule and synchronize tasks among processors accordingly, in parallel
shared- and distributed-memory environments.

Duff (1986b) extends this study by showing how to interleave both tree
and node parallelism during the multifrontal factorization. He starts from
the observation of Duff and Johnsson (1989) that the shape of the elim-
ination tree provides fronts that are abundant and small near the leaves,
but that decrease in number and grow in size towards the root. He thus
proposes to benefit from the natural advantages of each kind of parallelism
wherever available, that is: to use tree parallelism near the leaves and then
progressively move towards node parallelism near the root.

Both node and tree parallelism may be exploited in both shared- and
distributed-memory environments. This will be the subject of the two fol-
lowing sections.

Shared-memory parallelism

Benner, Montry and Weigand (1987) propose a parallel approach that relies
on the use of nested dissection, for its inherent separation of finite-element
dependencies, to reduce communication and synchronization, thus improv-
ing parallel and sequential performance. Their algorithm and implemen-
tation use distributed-memory paradigms while targeting shared-memory
machines.

Duff (1989b) presents the approach of designing and implementing a paral-
lel solver from a serial one, through a modified version of MA37 on shared-
memory systems. He uses node parallelism, over blocks of rows on large
enough fronts, in addition to tree parallelism. He defines static tasks on
the tree level, corresponding to assembly, pivoting, storage of factors and
stacking of contribution blocks, together with dynamic tasks, correspond-
ing to the elimination operations. He manages the computations using a
single work queue of tasks and explains how these tasks are identified and
put in or pulled from the queue. He then shows the effect of synchroniza-
tion and implementation on efficiency. He also presents a precursor use of a
runtime system (the SCHEDULE package by Dongarra and Sorensen) in a
multifrontal solver. He highlights that the natural overhead of such general
systems incurs performance penalties over a direct implementation of the
code.

Kratzer and Cleary (1993) target the communication overhead and load
balancing issues arising in the factorization of matrices with unstructured
non-regular sparsity patterns. They implement a dataflow paradigm on
MIMD and SIMD machines relying relying on supernodes and elimination
trees.

Irony, Shklarski and Toledo (2004) design and implement a recursive mul-
tifrontal Cholesky factorization in shared-memory. Their approach relies on
an aggressive use of recursion and the simultaneous use of recursive data

114 Davis, Rajamanickam, Sid-Lakhdar

structures, automatic kernel generation, and parallel recursive algorithms.
Frontal matrices are laid down in memory based on a two-dimensional re-
cursive block partitioning. Block operations are performed using novel op-
timized BLAS and LAPACK kernels (Anderson, Bai, Bischof, Blackford,
Demmel, Dongarra, Du Croz, Greenbaum, Hammarling, McKenney and
Sorensen 1999), which are produced through automatic kernel generators.
The use of recursion allows them to use Cilk as a parallelization paradigm.
They apply a sequential post-order traversal of the elimination tree where
Cilk subroutines are spawned and synchronized on the factorization and
assembly of each front.

L’Excellent and Sid-Lakhdar (2014) adapt a multifrontal distributed-memory
solver to hybrid shared- and distributed-memory machines. Instead of re-
lying solely on multithreaded BLAS to take advantage from the shared-
memory parallelism, they introduce a layer in the tree under which subtrees
are treated by different threads, while all threads collaborate on the treat-
ments above the layer. They propose a memory management scheme that
takes advantage of NUMA architectures. To leverage the heavy synchro-
nization incurred by the separating layer, they propose an alternative to
work-stealing that allows idle processors to be reused by active threads.

Distributed-memory parallel Cholesky

We now discuss techniques developed for the multifrontal Cholesky method,
where the exact structure of the tree and the exact amounts of computations
are known in advance, prior to the factorization phase.

The communication characteristics and behavior of the Cholesky multi-
frontal method in distributed-memory environments have been thoroughly
studied.

Ashcraft et al. (1990b) compare the distributed fan-out, fan-in, and multi-
frontal algorithms for the solution of large sparse symmetric positive-definite
matrices. They highlight the communication requirements and relative per-
formance of the different schemes in a unified framework abstracting from
any implementation. Then, using their implementations, they conclude that
the multifrontal method is more efficient than the fan-in schemes (which are
more efficient than the domain fan-out scheme) although it requires more
communication.

Eswar et al. (1993a) present a similar study with similar results. They
show the impact of the mapping of columns of a matrix to processors and
show significant reduction of communication in the multifrontal method on
networks with broadcast capabilities.

Lin and Chen (2000) have the same objective but target the lack of the-
oretical evaluations of the performance of the multifrontal method that is
due to the irregular structure involved in its computations. They thus com-
pare column-Cholesky, row-Cholesky, submatrix-Cholesky and multifrontal

Sparse Direct Methods 115

methods from a theoretical standpoint by relying on the elimination tree
model, and conclude the superiority of the last one.

The ordering that is chosen and the resulting shape of the elimination
tree has an important impact on parallelism.

For instance, Lucas, Blank and Tiemann (1987) present a processor map-
ping for a distributed multifrontal method, precursor to the subtree-to-
subcube mapping by George et al. (1989a). Their mapping is designed with
the minimization of communications overhead in mind. In a top-down phase,
they create the elimination tree at the same time as they map the processors
by partitioning the sparse matrix using the nested dissection ordering and
by assigning processors of separate sub-networks to different subdomains
or sub-trees of the elimination tree, until a subdomain is isolated for ev-
ery processor. Each processor may then apply local orderings, assemblies
and eliminations on its sparse submatrix, without communicating with other
processors. Then, in a bottom-up phase, the processors of the same subcube
collaborate for the elimination of their common separator, limiting the com-
munications to the subcube, Lucas et al. (1987) show a significant reduction
of communication compared to previous approaches.

Similarly, Geng, Oden and van de Geijn (1997) show the effectiveness of
the use of the nested dissection ordering in the multifrontal method while
leveraging the implementation issues related to such an approach. They
also present performance results on two dimensional and three dimensional
finite-element and difference problems.

Heath and Raghavan (1997) present the design and development of CAPSS
for sparse symmetric positive-definite systems on distributed-memory com-
puters. Their main idea is to break each phase into a distributed phase,
where processors communicate and cooperate, and a local phase, where pro-
cessors operate on an independent portion of the problem.

Besides the shape of the tree, an appropriate mapping of the elimination
tree on the processes is a key to efficiency.

Gilbert and Schreiber (1992) present a highly-parallel multifrontal Cholesky
algorithm. A bin-packing mapping strategy is used to map a two-dimensional
grid of processors (of the Connection Machine) on several simultaneous
fronts factorizations. They rely on an efficient fine-grained parallel dense
partial factorization algorithm.

Gupta et al. (1997) present a scalable multifrontal Cholesky algorithm.
It relies on the subtree-to-subcube assignment strategy, and in particular,
on a 2D block cyclic distribution of the frontal matrices that helps main-
tain a good load-balancing and reduces the assembly communications. An
implementation of this algorithm is presented by Joshi, Karypis, Kumar,
Gupta and Gustavson (1999) in the PSPASES package. They incorporated
the parallel ordering algorithm they use in the ParMetis library.

Such subtree-to-subcube-like mappings are adequate on regular problems

116 Davis, Rajamanickam, Sid-Lakhdar

but not on irregular problems, where the elimination tree is unbalanced.
Pothen and Sun (1993) present the proportional mapping in a distributed
multifrontal method. It may be viewed as a generalization of the subtree-to-
subcube mapping of George et al. (1989a) in which both the structure and
the workload are taken into account. The objective of Pothen and Sun is to
achieve a good load balance and a low communication cost while targeting
irregular sparse problems. Inspired by the work of Gilbert and Schreiber
(1992) and of Geist and Ng (1989), they traverse the elimination tree in a
top-down manner, using a first-fit-decreasing bin-packing heuristic on the
subtrees to assign them to the processors, replacing the heaviest subtree
by its children and repeating the process until a good balance between the
processors is obtained.

Distributed-memory parallel LDLT and LU factorization

We now discuss the techniques targeting distributed-memory multifrontal
LDLT and LU factorizations, where the unpredictability of the numerical
pivoting has an influence on the load balance of the computations, and thus
involve different sets of strategies.

Amestoy, Duff and L’Excellent (2000) and Amestoy, Duff, L’Excellent
and Koster (2001a) present a fully asynchronous approach with distributed
dynamic scheduling. They based their resulting distributed-memory code
MUMPS on the shared-memory code MA41. They target symmetric positive
definite, symmetric indefinite, unsymmetric, and rank-deficient matrices.

Asynchronous communications are chosen to enable overlapping between
communication and computation. The message transmission and reception
mechanisms are carefully used to avoid the related distributed synchroniza-
tion issues. In the main loop of their algorithm, processes treat untreated
messages if any and otherwise activate tasks from a pool.

In contrast to other approaches relying on static pivoting and iterative
refinement to deal with numerical difficulties, the numerical strategy they
propose is based on partial threshold pivoting together with delayed pivot-
ing in distributed-memory. The Schur complements thus become dynami-
cally larger than anticipated, as they contain the numerically unstable fully-
summed rows and columns. Dynamic scheduling was initially used to ac-
commodate this unpredictability of numerical pivoting in the factorizations.
However, guided by static decisions during the analysis phase, it has been
further taken advantage of for the improvement of computation and memory
load balancing.

Both tree parallelism and node parallelism are exploited through three
types of parallelism. In type 1 parallelism, fronts are processed by a single
processor. The factorization kernels use right-looking blocked algorithms
that rely heavily on Level 3 BLAS kernels. In type 2, a 1D block partitioning
of the rows of the fronts is applied. The fully-summed rows are assigned to

Sparse Direct Methods 117

a master process that handles their elimination and numerical pivoting, and
the contribution block rows are partitioned over slave processes that handle
their updates. In type 3, a 2D block-cyclic partitioning is applied to the
root front through the use of ScaLAPACK (Blackford et al. (1997)). A
static mapping of the assembly tree to the processors is determined using a
variant of the proportional mapping and the Geist and Ng (1989) algorithm
that balances both computation and memory requirements of the processors.

Amestoy, Duff, Pralet and Vömel (2003b) revisit both their static and
dynamic scheduling algorithms to address clusters of shared-memory ma-
chines. Their first strategy relies on taking into account the non-uniform
cost of communications on such heterogeneous architectures. To prevent
the master process (of type 2 fronts) from doing expensive communications,
their architecture-aware algorithm penalizes the current workload of pro-
cesses which are not on the same SMP node as the master, during its dy-
namical determination of the number and choice of slave processes. Their
second strategy relies on a hybrid parallelization, mixing the use of MPI
processes (distributed-memory) with the use of OpenMP threads (shared-
memory) inside each process. The scalability limitations of the 1D block
partitioning among processes is traded over a pseudo 2D block partitioning
among threads. This allows for a decrease in the communication volume
and the use of multithreaded BLAS.

Amestoy, Duff and Vömel (2004b) further address scalability issues using
the candidate-based scheduling idea, an intermediate step between full-static
and full-dynamic scheduling. Where the master (of type-2 front) was previ-
ously free to choose slaves dynamically among all (less loaded) processors,
it now chooses them solely from a limited set of candidate processors. The
choice of this list of candidates is guided by static decisions during the anal-
ysis phase that accounts for global information on the assembly tree. This
leads to localized communications, through a more subtree-to-subcube-like
mapping, and to more realistic predictions than the previous overestimates
for memory requirement of processes’ workspaces.

Amestoy, Guermouche, L’Excellent and Pralet (2006) improve their schedul-
ing strategy for better memory estimates, lower memory usage, and better
factorization times. Their previous strategy resulted in an improved memory
behavior but at the cost of an increase in the factorization time. Their new
idea is to modify their original static mapping to separate the elimination
tree into four zones, where they apply: a relaxed proportional mapping in
zone 1 (near the root); strict proportional mapping in zone 2; fully dynamic
mapping in zone 3; and (unmodified) subtree-to-process mapping in zone 4
(near the leaves).

Amestoy, L’Excellent, Rouet and Sid-Lakhdar (2014b) propose improve-
ments to the 1D asynchronous distributed-memory dense kernels algorithms
to improve the scalability of their multifrontal solver. They notice that,

118 Davis, Rajamanickam, Sid-Lakhdar

in a left-looking approach, the master process produces factorized panels
faster at the beginning than at the end of its factorization, thus resulting in
improved scheduling between master and slaves. This contrasts with a right-
looking approach, which prohibits the slave processes from being starved at
the beginning and overwhelmed at the end of their update operations. They
also notice that the communication scheme is a major bottleneck to the scal-
ability of their distributed-memory factorizations. They then proposed an
asynchronous tree-based broadcast of the panels from the master to the
slaves.

Amestoy, L’Excellent and Sid-Lakhdar (2014a) further notice that, al-
though greatly improving the communication performance, this broadcast
scheme breaks the fundamental properties upon which they were relying to
ensure deadlock-free factorizations. They then propose adaptations of dead-
lock prevention and avoidance algorithms to the context of asynchronous
distributed-memory environments. Relying on these deadlock-free solutions,
they further characterize the shape of the broadcast trees for enhanced per-
formance.

Amestoy et al. (2001b) compare their two distributed-memory approaches
and software: SuperLU DIST, which relies on a synchronous supernodal
method with static pivoting and iterative refinement (discussed in Sec-
tion 9.2), and MUMPS, which relies on an asynchronous multifrontal method
with partial threshold and delayed pivoting.

Amestoy, Duff, L’Excellent and Li (2003a) report their experience of using
MPI point-to-point communications on the performance of their respective
solvers. They present challenges and solutions on the use of buffered asyn-
chronous message transmission and reception in MPI.

Finally, Kim and Eijkhout (2014) present a multifrontal LU factorization
over a DAG-based runtime system. They rely on a hierarchical represen-
tation of the DAG that contains the scheduling dependencies of both the
fronts factorization (dense level) and the elimination tree (sparse level).

11.2. Numerical pivoting for LDL and symmetric-structure LU
factorization

The main problem with multifrontal methods when numerical pivoting is
required is that it might not be possible to find a suitable pivot within
the fully summed block of the frontal matrix. If this is the case then the
elimination at that node of the tree cannot be completed and a larger Schur
complement (or contribution block) must be passed to the parent node in
the elimination tree. This means that the data structures will change from
that determined by the analysis and dynamic structures will be required.

This phenomenon is introduced by Duff and Reid (1983a) and is termed
delayed pivoting. It will normally result in more storage and work for the

Sparse Direct Methods 119

factorization. The need for dynamic pivoting also greatly complicates the
situation particularly for parallel computation.

Liu (1988b) highlights the importance of delayed pivoting in the multi-
frontal method. He provides a quantitative upper-bound on the increase of
fill-in it induces in the resulting triangular factors. He also observes that
delayed pivoting occurring within a subtree does not affect parts of the
elimination tree outside of this subtree.

2-by-2 pivoting for indefinite matrices
The methods we discuss now target sparse symmetric indefinite matrices
and consider sparsity and numerical stability.

Duff, Reid, Munksgaard and Nielsen (1979) adapt ideas used in the dense
case to the case of sparse symmetric matrices. They consider the use of 2
x 2 pivots in addition to the standard 1 x 1 pivots. They show that this
strategy permits a stable factorization in the indefinite case and incurs only
a small performance loss, even in the positive-definite case. They propose
a numerical stability condition for 2 x 2 pivots and extend the Markowitz
strategy to the indefinite case, defining a generalized Markowitz cost (spar-
sity cost) for 2 x 2 pivots. Potential 2 x 2 pivots are chosen over potential 1
x 1 pivots if their sparsity cost is less than twice that of the best 1 x 1 pivot,
although 1 x 1 pivots are favored in the absence of stability problems.

Liu (1987e) explores the use of a variant of threshold partial pivoting
strategy in the multifrontal method. His algorithm restricts the search space
for stable 1 x 1 and 2 x 2 pivots to the submatrix of fully-summed rows and
columns of the front. It compares however the largest off-diagonal entry
in the fully-summed part of a front with the largest off-diagonal entry in
the whole candidate row of the front. If no suitable pivot can be found, a
delayed pivoting strategy is applied instead. Liu shows that this strategy is
as effective as the one originally used by Duff and Reid.

Liu (1987d) further proposes a relaxation of the original threshold condi-
tion of Duff and Reid which is nearly as stable. Instead of using the same
threshold parameter u for both the 1 x 1 and 2 x 2 pivot conditions, he de-
fines a different parameter for each pivot condition, with a smaller threshold
for 2 x 2 than for 1 x 1 pivots. He then extends the range of permissi-
ble threshold values for 2 x 2 pivots from [0, 12) to [0, u), with u defined as

(1 +
√

17)/8 (≈ 0.6404), allowing for a broader choice of block 2 x 2 pivots.
Instead of using pivoting strategies to avoid zero diagonal entries, Duff,

Gould, Reid, Scott and Turner (1991) introduced pivoting strategies that
take advantage of them. They introduce oxo and tile pivots, which are new
kinds of 2 x 2 pivots with a structure that contains zeros on their diagonals.
The advantage is that their elimination involves fewer operations than the
usual full pivots as it preserves a whole block of zeros. Duff et al. study
strategies to use such 2 x 2 pivots not only during the factorization phase,

120 Davis, Rajamanickam, Sid-Lakhdar

but also during the analysis phase, and apply their ideas in a modification of
MA27. After trying to extend the minimum degree ordering to the inclusion
of such pivots, they prefer to consider the use of 1 x 1 and oxo pivots in a
variant of the strategy of Markowitz (1957) as an alternative. The algorithms
developed have been implemented and their results discussed by Duff and
Reid (1996b).

Ashcraft, Grimes and Lewis (1998) present algorithms for the accurate
solution of symmetric indefinite systems. Their main objective is to bound
the entries in the factor L. To this effect, they propose two algorithms for
the dense case, namely, the bounded Bunch-Kaufman and the fast Bunch-
Parlett algorithms, and show that the cost for bounding |L| is minimal in
this case. They then propose strategies in the sparse case to find large 2 x 2
pivots, based on the strategies of Duff and Reid (1983a) and of Liu (1987e),
resulting in faster and more accurate strategies.

Duff and Pralet (2005) present a scaling algorithm together with strate-
gies to predefine 1 x 1 and 2 x 2 pivots through approximate symmetric
weighted matchings and before the ordering phase. They further use the
resulting information to design the classes of (relaxed) constrained orderings
that then use two distinct graphs to get structural and numerical informa-
tion respectively. Weighted matching and scaling is an important topic in
its own right, and is considered in more detail below.

Schenk and Gärtner (2006) combine the use of numerical pivoting and
weighted matching. To avoid delayed pivoting in the presence of numerical
difficulties, to keep the data structures static, they use a variant of the
Bunch and Kaufman (1977) pivoting strategy that restricts the choice of 1
x 1 and 2 x 2 pivots to the supernodes. To reduce the impact on numerical
accuracy imposed by this pivoting restriction, they supplement their method
with pivot perturbation techniques and introduce two strategies, based on
maximum weighted matchings, to identify and permute large entries of the
coefficient matrix close to the diagonal, for an increased potential of suitable
2 x 2 pivots.

Duff and Pralet (2007) present pivoting strategies for both sequential and
parallel factorizations. For sequential factorizations, they describe a pivot-
ing strategy that combines numerical pivoting with perturbation techniques
followed by a few steps of iterative refinement, and compare it with the
approach by Schenk and Gärtner (2006). They also show that perturba-
tion techniques may be beneficial when combined with static pivoting but
dangerous when combined with delayed pivoting as the influence of diago-
nal perturbations on rounding errors may contaminate pivots postponed to
ancestor nodes instead of being localized to the contribution block of the
current front. For parallel distributed-memory factorizations, they propose
an approach that allows the process that takes the numerical pivoting de-
cisions on a parent front to have an approximation of the maximum entry

Sparse Direct Methods 121

in each fully-summed column, by sending to it the maximum entries of the
contribution blocks of the child fronts.

Duff (2009) targets the special case of sparse skew symmetric matrices,
where A = −AT . He considers an LDLT factorization of such matrices, tak-
ing advantage of their specific characteristics to simplify the usual pivoting
strategies. He then shows the potential of this factorization as an efficient
preconditioner for matrices containing skew components.

In the context of an out-of-core multifrontal method, delayed pivoting
causes additional fill-in to occur in the factors, leading to an increase of
input/output operations. Scott (2010) targets this issue by examining the
impact of different scaling and pivoting strategies on the additional fill-in.
After considering threshold partial pivoting, threshold rook pivoting, and
static pivoting, she concludes on the importance of scaling and the potential
benefits of rook pivoting over partial pivoting for factorization time and
memory requirements.

When the problem is numerically challenging, Hogg and Scott (2013d)
target a reduction in the significant amount of delayed pivoting arising from
the factorization. To this aim, they propose a review of different pivoting
strategies and give recommendations on their use. They also present con-
strained and matching-based orderings, during the analysis phase, for the
pre-selection of potentially stable 2 x 2 pivot candidates.

Weighted-matching and scaling

It is possible to help the pivoting strategies by increasing their chances of
finding satisfiable pivots on or near the diagonal. This is the main purpose
of the weighted matching and scaling techniques. This family of techniques
is similar but differs from the techniques presented in Section 8.7, in that
techniques presented in that section consider only the nonzero structure of
the sparse matrix while the weighted matchings also consider the numerical
values of the entries. A survey of the work that has been achieved on scaling
and matching algorithms for sparse matrices is presented by Duff (2007).

Duff and Koster (1999) introduce the concept of weighted matching on
sparse matrices inspired by the work of Olschowka and Neumaier (1996) on
dense unsymmetric matrices. A maximal weighted matching is a permuta-
tion of a matrix that leads to large absolute entries on the diagonal of the
permuted matrix. To find such matchings, Duff and Koster present the bot-
tleneck transversals algorithm. It aims at maximizing the smallest value on
the diagonal of the permuted matrix, and relies on the repeated application
of the depth-first search algorithm MC21, which operates on unweighted
bipartite graphs to put as many entries as possible onto the diagonal. They
also present the maximum product transversals that they further extend and
explain in a subsequent paper (2001) and which is based on the strategy of
Olschowka and Neumaier (1996). This algorithm consists in maximizing the

122 Davis, Rajamanickam, Sid-Lakhdar

product of the moduli of the entries on the diagonal. It is based on obtaining
a minimum weighted bipartite matching of a graph through a sequence of
augmented (shortest) paths used to extend a partial matching. Duff and
Koster (2001) show the influence and importance of scaling, and propose a
variant of the algorithm by Olschowka and Neumaier (1996) that scales so
that the diagonal entries have a value of 1.0 and smaller off-diagonal entries.
They also show the benefits of the scaling and matching pre-processings for
numerical stability and efficiency of direct solvers and preconditioners for
iterative methods.

Based on this work and the work of Duff and Pralet (2005), Hogg and
Scott (2013c) introduce an algorithm for optimal weighted matchings of
rank-deficient matrices. They apply a preprocessing on the matrix that
aims at retaining the symmetry of the matrix before modifying it to handle
its potential structural rank deficiency. They show that their algorithm
has some overhead, but it improves the quality of the matchings on some
matrices.

11.3. Memory management

Duff and Reid (1983a) present a memory management scheme for the mul-
tifrontal method in the sequential context. The main difference between the
multifrontal and frontal methods is that in the multifrontal method, con-
tribution blocks are generated but not consumed immediately by the next
front, which requires them to be stored temporarily for future consumption.
Given the relative freedom in the traversal of the elimination tree, Duff and
Reid propose the use of a postorder. The stack storage mechanism is then
an adapted data structure for holding the contribution blocks, as its first-
in/last-out scheme fits the order of generation and consumption obtained.
After each front factorization, the resulting contribution blocks are stacked,
and during the assembly of each front, the contribution blocks it needs to
consume are then located on top of the stack from which they are popped
out.

The multifrontal memory management in a sequential context relies one
main large workspace, organized as follows: A stack is used to store the
factors, starting at the left of the workspace and growing to the right. A
region is used to store the original rows of the sparse matrix (in element,
arrowhead, or other format), at the right of the workspace. Another stack
stores the contribution blocks at the left of the region containing the original
rows and growing to the left towards the stack of factors. An active area is
used to hold the frontal matrices, whose location differs depending on the
front allocation strategy.

Two main front allocation strategies exist. The fixed-front approach allo-
cates one area of the size of the largest front, to hold all the frontal matrices.

Sparse Direct Methods 123

It is similar to the approach of Irons (1970) in the frontal method. The dy-
namically allocated front approach allocates a fresh area for each front. It
is adopted by Duff and Reid (1983a) as they observe that the size of the
different fronts varies greatly in the multifrontal method. They also propose
a variant known as the in-place strategy. It consists in overlapping the al-
location of a parent front with its child’s contribution that is on top of the
contribution stack.

Duff (1989b) shows that the data management scheme in the sequential
case is not suitable for parallel execution. He discusses different schemes for
the parallel context, emphasizing on synchronization issues, waste of free
space and garbage collection, fragmentation and locality of data. He then
selects the buddy system (i.e. blocks of size 2i) and fixed blocks allocation
strategies.

Following this work, Amestoy and Duff (1993) propose an adaptation and
extension of the sequential memory management to the (shared-memory)
parallel context. They favor the (static) fixed-front allocation scheme, as
the large active area they allocate may then accommodate the storage of
several active frontal matrices that are factorized in parallel. Due to the
varying number and size of these fronts, the allocation strategy they adopt
for this area is a mixture of the fixed blocks and buddy system strategies,
as advised by Duff (1989b). Moreover, since the traversal of the elimina-
tion tree in parallel is no longer a postorder, the stack of contributions
grows more than in the sequential case and free spaces appear inside it, due
to the unpredictable consumption of the contributions. They thus use a
garbage collection mechanism for the stack, known as compress. The com-
press consists in compressing the contribution blocks to the bottom (right)
of the stack to reuse the free spaces it contains. This idea is also present
in the work of Ashcraft (1987), as an alternative to the systematic stacking
of the contribution blocks, where the contributions are left unstacked after
each front factorization, and where a compress is applied only when the
workspace is filled. Amestoy and Duff also propose a strategy to keep some
contributions inside the active area if their stacking would require such a
garbage collection.

In-core methods

In an in-core context, the factors, contribution blocks and fronts are all held
in core memory during the factorization phase.

Sparse direct methods are known to require more memory than their
iterative counterparts. The multifrontal method is also known to consume
more memory than its frontal or supernodal counterparts, mainly due to the
storage of contribution blocks. However, Duff and Reid (1983a) notice that
the storage and arithmetic requirements of the multifrontal factorization can
be predicted, in the absence of numerical pivoting considerations. The order

124 Davis, Rajamanickam, Sid-Lakhdar

of the traversal of the elimination tree has a deep impact on the average and
maximum memory used during the factorization phase.

In the sequential case, the choice of the postorder traversal by Duff and
Reid (1983a) helps to reduce the memory usage. They attempted to improve
it by ordering the children of a parent node by increasing order of their
size from the left to the right. Their hope was that the large rightmost
contributions will be consumed sooner, reducing the growth of the stack.
They found this strategy ineffective, however.

Liu (1986d) proposes a solution to this problem with his child reordering
variant, with respect to the maximum in-core storage required (factors and
stack). He determines a simple and optimal order of the children, based not
only on their size but also on the memory required for treating the subtrees
for which they are the root. This strategy is extended by Ashcraft (1987) to
the case of the supernode elimination tree, where many pivots are eliminated
at each node, who also notices the impact of the in-place strategy (called
sliding) on the reduction in memory. Liu also proposes a variant of the in-
place strategy, where the parent is pre-allocated before the factorization of
its children begin, so that their contribution blocks are directly assembled
in it, without being stacked. Although the strategy was disappointing in
the general case, he highlighted its potential for particular cases.

Indeed, instead of relying on this pre-allocation or on the standard post-
allocation, Guermouche and L’Excellent (2006) propose an intermediate
strategy where the parent may be allocated after any number of children
have already been factorized. Child contributions are stored in the stack
before its allocation, while they are directly assembled in it after its allo-
cation. Guermouche and L’Excellent then propose two tree traversals that
take advantage of this allocation flexibility and that target, respectively, the
in-core and out-of-core contexts.

Guermouche, L’Excellent and Utard (2003) show the effect of reordering
techniques on stack memory usage. They observe that nested-dissection
based orderings yield wide balanced elimination trees, that increase the stack
usage, while local orderings yield deep unbalanced trees, that help decrease
the stack usage. They also propose two variants of the algorithm by Liu
(1986d) that target the minimization of the global memory (both stack and
factors) and average stack size respectively. They then show that, in the
parallel distributed-memory case, the stack memory does not scale ideally,
and they present ideas to target this issue.

Out-of-core methods

In an out-of-core context, to target larger problems whose factorization
would require more core memory than available, secondary storage (like
disks) are taken advantage of by allowing the factors and/or contribution
blocks to be stored on them during the factorization phase. Contribution

Sparse Direct Methods 125

blocks, if ever stored, are retrieved back into core memory for their assembly,
while factors are retrieved back only during the solution phase.

Ashcraft et al. (1987) study out-of-core schemes in the frontal and multi-
frontal methods based on the algorithm of Liu (1987a) on sparse Cholesky
factorizations. The main idea of Liu is that, once a variable has been elim-
inated (and used for updating the remainder of the system), its factors are
no longer used during the factorization process. It may then be stored on
disk for future use during the solution phase. Ashcraft et al. also factorize
and store supernodes instead of single variables.

Liu (1989c) shows the advantage of the multifrontal method over the
sparse column-Cholesky method in terms of memory traffic on a paged vir-
tual memory system. He then extends the idea of switching from sparse to
dense kernels. He introduces a hybrid factorization scheme that switches
back and forth from multifrontal to sparse column-Cholesky schemes. More
specifically, this method uses a multifrontal scheme for its reduced memory
traffic and a sparse scheme when constraints arise on the amount of available
core memory.

Rothberg and Schreiber (1999) synthesize the multifrontal and supern-
odal methods into a hybrid method for their out-of-core sparse Cholesky
factorization. The matrix splits into panels; each panel is a supernode or
part of a supernode, where no panel is larger than 1/2 of available mem-
ory. The multifrontal method requires less I/O to disk than the left-looking
supernodal method, but it requires more in-core memory. Thus, it is used
for subtrees, for which the contribution stack can be held in core. The re-
mainder of the matrix (towards the top of the assembly tree) is factorized
with a left-looking method. Rothberg and Schreiber consider two variants
of this hybrid method. In the first, the contribution block of the root of
each subtree remains in core; in the second, it is written to disk.

Cozette, Guermouche and Utard (2004) present a way of modifying an in-
core solver into an out-of-core solver seamlessly. They rely on a modification
of the low-level paging mechanisms of the system to make the I/O operations
become transparent. They make two observations: factors are not read back
during the factorization and can thus be written to disk whenever possible;
contribution blocks at the bottom of the stack are more likely to stay in it
longer, making their memory pages better candidates for eviction to disk in
case of memory difficulties. They then rely on these observations to design
an appropriate memory paging policy.

Agullo, Guermouche and L’Excellent (2008) show the improvements in ef-
ficiency of an out-of-core solver when short-cutting the buffered system level
I/O mechanisms, by use of direct disk accesses to store the factors. Based
on an out-of-core solver that stores only the factors on disk, they study the
additional benefits of storing the contribution blocks as well. They present
different storage schemes of the contribution blocks and their corresponding

126 Davis, Rajamanickam, Sid-Lakhdar

memory reductions. They conclude that the best strategy is to allow the
flexibility of storing all the contribution blocks on disk, if needed.

Agullo, Guermouche and L’Excellent (2010) further show that the reduc-
tion in the available in-core memory induces increases in the volume of I/O.
Thus, they present a postorder traversal of the tree that aims at reducing
the volume of I/O (MinIO) instead of the amount of memory (MinMEM).
Then, to reduce the memory requirements, they revisit different variants
of the flexible parent allocation scheme by Guermouche and L’Excellent
(2006), namely, the classical, last-in-place and max-in-place variants, and
present their impact on both memory and I/O.

Reid and Scott (2009a) (2009b) discuss the design and implementation
of the MA77 and MA78 packages for the out-of-core solution of symmetric
and unsymmetric matrices, respectively. They rely on the use of a custom
virtual-memory system that allows the data to be spread over many disks.
This enables them to solve large sparse systems.

The availability of the out-of-core feature in a solver may be taken ad-
vantage of for performing different numerical tasks than solving a system.
Indeed, Amestoy, Duff, L’Excellent, Robert, Rouet and Uçar (2012) propose
heuristics to efficiently compute entries of the inverse of a sparse matrix,
in an out-of-core environment. Their algorithms are based on similar tech-
niques than that used in the solution phase of the multifrontal method when
the right hand sides are sparse. To access only parts of the factors, and thus,
to minimize the amount of accesses to the disks, they show that it is possi-
ble to: (i) prune the elimination tree to select only specific paths between
nodes and the root; and (ii) partition the requested inverse entries into
blocks based on the set of factors they require in common. Amestoy, Duff,
L’Excellent and Rouet (2015b) extend this work further to a distributed-
memory context, showing that parallelism and computation throughput are
different criteria for this kind of computation.

11.4. Unsymmetric-structure multifrontal LU factorization

If the nonzero pattern of A is unsymmetric, the frontal matrices become
rectangular. They are related either by the column elimination tree (the
elimination tree of ATA) or by a directed acyclic graph (DAG), depending
on the method. An example is shown in Figure 11.15.

This is the same matrix used for the QR factorization example in Fig-
ure 7.9. Using a column elimination tree, arbitrary partial pivoting can be
accommodated without any change to the tree. The size of each frontal ma-
trix is bounded by the size of the Householder update for the QR factoriza-
tion of A (the kth frontal matrix is at most |Vk|-by-|Rk∗| in size), regardless
of any partial pivoting. In the LU factors in Figure 11.15, original entries of
A are shown as black circles. Fill-in entries when no partial pivoting occurs

Sparse Direct Methods 127

Figure 11.15. Unsymmetric-pattern multifrontal example (Davis 2006)

are shown as circled x’s. White circles represent entries that could become
fill-in because of partial pivoting. In this small example, they all happen to
be in U , but in general they can appear in both L and U . Amalgamation
can be done, just as in the symmetric-pattern case; in Figure 11.15, nodes
5 and 6, and nodes 7 and 8, have been merged together. The upper bound
on the size of each frontal matrix is large enough to hold all candidate pivot
rows, but this space does not normally need to be allocated.

In Figure 11.15, the assembly tree has been expanded to illustrate each
frontal matrix. The tree represents the relationship between the frontal ma-
trices, but not the data flow. The assembly of contribution blocks can occur
not just between parent and child, but between ancestor and descendant.
For example, the contribution to a77 made by frontal matrix 2 could be
included into its parent 3, but this would require one additional column to
be added to frontal matrix 3. The upper bound of the size of this frontal
matrix is 2-by-4, but only a 2-by-2 frontal matrix needs to be allocated if no
partial pivoting occurs. Instead of augmenting frontal matrix 3 to include
the a77 entry, the entry is assembled into the ancestor frontal matrix 4. The
data flow between frontal matrices is thus represented by a directed acyclic
graph.

One advantage of the right-looking method over left-looking sparse LU fac-
torization is that it can select a sparse pivot row. The left-looking method
does not keep track of the nonzero pattern of the A[k] submatrix, and thus
cannot determine the number of nonzeros in its pivot rows. The disadvan-
tage of the right-looking method is that it is significantly more difficult to
implement.

The first unsymmetric-pattern multifrontal method (UMFPACK) was by

128 Davis, Rajamanickam, Sid-Lakhdar

Davis and Duff (1997). The method keeps track of approximate degrees of
the rows and columns of the active submatrix, a symmetric variant of which
was later incorporated into the AMD minimum degree ordering algorithm
(Amestoy et al. 1996a, Amestoy, Davis and Duff 2004a). The active sub-
matrix is represented as a set of rectangular submatrices (the unassembled
contribution blocks of factorized frontal matrices), and the original entries
of A that have yet to be assembled into a frontal matrix. Each row and
column consists of two lists: original entries of A, and a list of contribution
blocks that contain contributions to that row or column. The approximate
degrees are updated after a frontal matrix is factorized by scanning these
lists twice. The first scan provides the set differences. For example, suppose
a prior contribution block is 10 by 15, and it appears in 3 rows of the con-
tribution block C of the current frontal matrix. This is found by scanning
all the row lists of C. There are thus seven rows in the set difference. In
the second scan, this set difference is used for computing the approximate
column degrees. If this contribution block C appears in a column list, then
it contributes 7 to the approximate degree of that column.

Although its factorization can be viewed as a DAG, this first version of
UMFPACK did not actually explicitly create the assembly DAG. Hadfield
and Davis (1994) (1995) created a parallel version of UMFPACK that in-
troduced and explicitly constructs the assembly DAG. The method relies
on the set of frontal matrices constructed by a prior symbolic and numeric
factorization, to factorize a sequence of matrices with identical pattern. The
DAG is factorized in parallel on a distributed-memory computer. Numer-
ical considerations for subsequent matrices may require pivoting, which is
handled by delaying failed pivots to a subsequent frontal matrix. Unlike the
symmetric-pattern multifrontal method, the immediate parent may not be
suitable to recover from this pivot failure. Instead, the pivot can be accom-
modated by the first LU parent in the DAG. This is the first ancestor whose
row and column nonzero pattern is a superset of the frontal matrix with the
failed pivot. This pattern inclusion occurs if there is both an L-path and
a U-path from the descendant to the LU-parent ancestor. An L-path is a
path in the DAG consisting only of edges from the L factor, and a U-path
consists of edges only in U .

The sparse multifrontal QR factorization method discussed in the next
section (Section 11.5) can also provide a framework for sparse LU factor-
ization, as shown by Raghavan (1995). The rectangular frontal matrices
for QR factorization of A can be directly used for the LU factorization of
the same matrix. Arbitrary numerical pivoting with row interchanges can
be accommodated without changing the frontal matrices found in the sym-
bolic QR pre-ordering and analysis. Raghavan (1995) used this approach
in a parallel distributed algorithm that can compute either the QR or LU
factorization. The method is a multifrontal adaptation of George and Ng’s

Sparse Direct Methods 129

(1990) method for LU factorization, which introduced the QR upper bound
for LU factorization.

Davis and Duff (1999) extended the method by incorporating a technique
used to reduce data movement in the frontal method. The frontal matrix
currently being factorized acts like a queue. As pivot rows and columns
are factorized, their updates are applied to the contribution block and then
removed and placed in the permanent data structure for L and U . This
frees up space for new rows and columns. The factorization continues in
this manner until the next frontal matrix would be too large or too different
in structure to accommodate the new rows and columns, at which point the
contribution block is updated and placed on the contribution block stack.
In this manner, the factorization of a parent frontal matrix can be done in
the space of the oldest child, thus reducing data movement and memory
usage. In the extreme case, if UMFPACK is given a banded matrix that is
all nonzero within the band, and assuming no pivoting, then only a single
frontal matrix is allocated for the entire factorization, and no contribution
block is ever placed on the contribution block stack.

This first version of UMFPACK performed all of its fill-reducing ordering
during factorization. Davis (2004b) (2004a) then incorporated a symbolic
pre-ordering and analysis, using the COLAMD fill-reducing ordering. The
frontal matrices are now known prior to factorization. The upper bound on
their sizes is found by a symbolic QR analysis, assuming worst-case numer-
ical pivoting, but this bound might not be reached during numerical factor-
ization. A frontal matrix is first allocated space less than this upper bound,
to save space, and the space is increased as needed. Because UMFPACK is a
right-looking method, and because maintains the row and column (approx-
imate) degrees, it is still able to search for sparse pivot rows and columns.
Thus, the column preordering can be modified during factorization to reduce
fill-in. Column pivoting is restricted to within the pivotal column candidates
in any one frontal matrix, however, so that the pre-analysis is not broken.

MATLAB relies on the unsymmetric-pattern multifrontal method (UMF-
PACK) in x=A\b when A is sparse and either unsymmetric, or symmet-
ric but not positive definite. It is also used in [L,U,P,Q]=lu(A). For the
[L,U,P]=lu(A) syntax when A is sparse, MATLAB uses GPLU, a left-
looking sparse LU factorization (Gilbert and Peierls 1988), discussed in
Section 6.2.

Amestoy and Puglisi (2002) introduced an unsymmetric version of the
multifrontal method that is an intermediate between the unsymmetric-pattern
multifrontal method (UMFPACK) and the symmetric-pattern multifrontal
method (Section 11.1). Like UMFPACK, their frontal matrices can be ei-
ther square or rectangular. Unlike UMFPACK, they rely on the assembly
tree rather than a DAG. The assembly tree is the same as that used for the
symmetric-pattern multifrontal method, so that all the contributions of a

130 Davis, Rajamanickam, Sid-Lakhdar

child go directly to its single parent. However, rectangular frontal matrices
are exploited, where the parent’s column pattern is the union of the column
patterns of its children, and (separately) the same for its rows. This change
has the effect of dropping fully-zero rows and/or columns from the square
frontal matrices that arise in the symmetric-pattern multifrontal method
when the latter is employed on the symmetrized nonzero pattern A+AT of
an unsymmetric matrix A.

Gupta (2002a) (2002b) presents two assembly DAGs for the unsymmetric-
pattern multifrontal method that can be constructed prior to symbolic fac-
torization. The first one is minimal, and does not allow for partial pivoting
during numerical factorization. The second one adds extra edges to accom-
modate such pivoting. These two DAGs are incorporated into the WSMP
package, which includes an implementation of the unsymmetric-pattern mul-
tifrontal method. Since the DAGs are known prior to numerical factor-
ization, WSMP can factorize the matrix in parallel on a shared-memory
computer. Gupta (2007) extends this method to a distributed-memory al-
gorithm.

The assembly DAG for the unsymmetric-pattern multifrontal method
can be cumbersome, with many more edges than the assembly tree of the
symmetric-pattern multifrontal method. Eisenstat and Liu (2005b) explore
the use of a tree instead, to model the assembly of updates from contribu-
tion blocks to their ancestors. In this modified tree, the parent of a node is
the first node for which there is both an L-path and U-path from child to
parent. The assembly DAG adds extra edges to this tree. A bordered-block
triangular structure is imposed on the factorization, and then structure is
relied on to prune the assembly DAG.

Pothen and Toledo (2004) survey the use of symbolic structures (trees,
DAGs, and graphs) for representing and predicting fill-in, and for the data
flow in multifrontal methods. They include a discussion of these symbolic
structures for the unsymmetric-pattern multifrontal method.

Avron, Shklarski and Toledo (2008) present a shared-memory parallel im-
plementation of the method used in UMFPACK, with a symbolic analysis
phase based on the QR and allowing for regular partial pivoting. Unlike
UMFPACK, they do not allow for column pivoting during numerical fac-
torization. This algorithmic choice simplifies the method and allows for a
better parallel implementation.

11.5. Multifrontal QR factorization

A solution method for sparse linear least-square systems

min
x
||Ax− b||2 (11.1)

Sparse Direct Methods 131

is to solve the augmented system(
αI A
AT 0

)(
α−1r
x

)
=

(
b
0

)
(11.2)

through a sparse Cholesky factorization. The drawback of this approach,
however, is that its accuracy depends on the parameter α, whose optimal
value is only approximated through heuristics. QR factorization is an ef-
fective alternative. Non-multifrontal sparse QR methods are discussed in
Section 7; here we present the multifrontal QR method.

The formulation of the elimination tree for the QR factorization relies
on the observation by George and Heath (1980) of the strong connection
between the QR factor R and the Cholesky factor of ATA, through the
equality

ATA = RT (QTQ)R = RTR (11.3)

If A has the strong Hall property, then the nonzero pattern of the QR
factor R is the same as the pattern of the Cholesky factorization of ATA.
Otherwise, the pattern of the Cholesky factor of ATA is an upper bound, and
sometimes it can be quite loose. In this case, however, A can be permuted
into block upper triangular form (discussed in Section 8.7), and then each
diagonal block is a submatrix that is strong-Hall. Many QR factorization
methods thus rely on a permutation to block triangular form.

The row merge tree proposed by Liu (1986c) allows the derivation of the
elimination tree of ATA without ever building this matrix explicitly.

Matstoms (1994) proposes a derivation of the multifrontal method for
the QR factorization of sparse matrices. He explains the significance of the
multifrontal concepts in the context of QR factorization, such as the front,
fully-summed variables and Schur complement, assembly and factorization
operations. He also presents the use of supernodes for efficiency considera-
tions and presents a node amalgamation algorithm to that effect. He then
derives a multifrontal QR algorithm on the supernode elimination tree. He
finally compares the accuracy and efficiency of the augmented systems, nor-
mal equations and multifrontal QR methods.

Matstoms (1995) extends his work by discussing a parallel multifrontal
QR method on shared-memory environments, with a special emphasis on
the memory allocation and deallocation mechanisms. The multifrontal al-
gorithm he uses relies on a hybrid parallelism strategy which consists in
switching from the use of tree parallelism, in the bottom of the tree, to the
use of node parallelism, in the top of the tree. Fronts of different sizes are
then allocated and deallocated in an irregular order. In order to avoid costly
memory fragmentation, he proposes a dynamic memory allocation and deal-
location mechanism, based on a buddy system using blocks whose sizes are
Fibonacci numbers, similar to the one proposed by Duff (1989b) and used

132 Davis, Rajamanickam, Sid-Lakhdar

by Amestoy and Duff (1993) which is based on 2i blocks. He also shows
the importance to memory usage of allocating frontal matrices as late as
possible.

Raghavan (1995) presents a unified distributed-memory multifrontal ap-
proach for both LU and QR. She parallelizes both analysis and factorization
phases and uses a parallel extension of the Cartesian nested dissection or-
dering.

Amestoy, Duff and Puglisi (1996b) present a parallel multifrontal QR
method (MA49) for a shared-memory context. A specific characteristic of
the multifrontal QR method is that a row in the contribution block of a
child front is not present in any other child. This offers a degree of freedom
on eliminating it either in the parent, as in other multifrontal methods, or in
the child. Amestoy et al. study three different front factorization strategies,
ranging from standard partial front factorization to full factorization of the
whole front (including the contribution block), together with their efficiency
and impact on the reduction in the transient fill-in and the storage of the
Householder vectors. They also show the impact of relaxed node amalgama-
tion and use of Level 3 BLAS on improving the efficiency of the factorization
and solve phases.

Sun (1996) proposes a distributed-memory multifrontal QR method. He
uses the proportional mapping by Pothen and Sun (1993) to map the su-
pernodal elimination tree on the processors. His parallel factorization kernel
merges two upper triangular matrices, through Givens rotations, to obtain
another upper triangular matrix. Moreover, he relies on a 1D block cyclic
distribution of the frontal matrices on the processors. He proposes the equal-
row and equal-volume partitioning scheme for partitioning the two upper
triangular matrices, the latter partitioning being intended to fix the load
imbalance of the former, which is due to the trapezoidal shape of the matri-
ces. Furthermore, he shows that a column-oriented layout is more efficient
than a row-oriented one, for reasonably large numbers of rows. He also
proposes a parallel assembly algorithm.

Lu and Barlow (1996) propose a multifrontal QR method based on House-
holder transformations. Their idea is to store the Householder matrices of
each front instead of computing and storing the whole Q matrix directly,
which would include an excessive amount of fill-in. This implicit multi-
frontal way of storing the Q matrix allows for the computation of QT b for
the solve phase. Moreover, instead of forming the frontal Householder ma-
trices explicitly, they rely on an implicit lower trapezoidal representation
in which each column is a Householder vector of the front. This YTY (or
storage-efficient WY) representation allows them to use efficient Level 2
BLAS in the solve phase. They develop upper bounds on the storage re-
quirement of this storage scheme in the multifrontal QR method for a model
problem and for the

√
n-separator problem. They also show that this repre-

Sparse Direct Methods 133

sentation requires less storage than the WY representation, with a penalty
on efficiency.

Pierce and Lewis (1997) introduce an approximate rank-revealing multi-
frontal QR method (RRQR). It aims at expressing the factors of the QR
factorization as (

R S
0 T

)
(11.4)

where [S T]T corresponds to the rank deficient columns. Their method con-
sists of two phases. In the first phase, the multifrontal QR factorization
is applied. Given the largest Euclidean norm of a column of A, as an ap-
proximation to the largest singular value of A, and, given the approximated
smallest singular value of the submatrix related to the subtree rooted at the
current front, which is obtained through the SPICE algorithm of Bischof et
al. (1990), the ratio of these two values is compared to a threshold value in
order to determine the rank deficiency of the current front. During the fac-
torization of such fronts, rank deficient fully-summed columns are detected
and prohibited from elimination, in the current front and any ancestor in
the tree. These columns then correspond to the [S T]T matrix. Pierce and
Lewis show that the bound on the Frobenius norm of T there obtained is
O(2k + 1), where k is the order of T . The heart of their method is the sec-
ond phase. Whenever ||T ||F >

√
(nk)(k + 1), a dense RRQR factorization

is applied on T, which orders the columns of the reduced matrix by norm.
A first set of columns of this reduced matrix may then be included back in
R, and the other set, the largest trailing principal submatrix, then has a
Frobenius norm less than than ((nk)(k + 1))1/2.

Davis (2011a) provides an implementation of the multifrontal QR factor-
ization for the sparse QR factorization method that is built into MATLAB,
called SuiteSparseQR. It is based on the method of Amestoy et al. (1996b),
and also extends that method by adapting Heath’s (1982) method for han-
dling rank-deficient matrices. It exploits shared memory parallelism via
Intel’s Threaded Building Blocks library. It does not exploit the block tri-
angular form in its fullest extent, because that form is not compatible with
its method for handling rank-deficiency. However, it does exploit singletons,
which are 1-by-1 blocks in the block triangular form. These arise very fre-
quently in problems from a wide range of applications. SuiteSparseQR is
used for x=A\b in MATLAB when A is rectangular, and for qr(A) when A

is sparse. The GPU-accelerated version of SuiteSparseQR is discussed in
Section 12.3.

Edlund (2002) presents a multifrontal LQ factorization. He presents the
design of an updating and downdating algorithm together with the dynamic
representation of the L matrix that he uses. This representation is more suit-
able than the usual static representations for handling the dynamic transfor-

134 Davis, Rajamanickam, Sid-Lakhdar

mations of its sparsity pattern induced by the updating and downdating. He
also presents the technique that he uses to permute reducible matrix to block
triangular form, with irreducible square diagonal blocks. He introduces a
variant of the approximate minimum degree similar to the COLAMD order-
ing by Davis, Gilbert, Larimore and Ng (2004a). As he is interested only in
the structure of L, his algorithm only considers the structure of A instead
of the structure of AAT . The symbolic factorization algorithms he presents
is derived from this variant to build the elimination tree. He shows that the
use of element counters during this phase allows one to find a correct pre-
diction of the fill-in after the block triangularization. Finally, He presents
his multifrontal approach which is based on that of Matstoms (1994).

Buttari (2013) proposes a multifrontal QR method for shared-memory
environments. His approach is based on the observation that the traditional
combined use of node and tree parallelism is restricted by the coarse-grain
granularity of parallelism as defined by the elimination tree. He thus pro-
poses a fine-grain partitioning of data where the expression of the dependen-
cies on tree parallelism, expressed by the elimination tree, is combined with
the dependencies on node parallelism, expressed by the dense factorization
dataflow within each front, through the use of a Directed Acyclic Graph
(DAG). This model allows a smoother expression of the dependencies be-
tween computations, and removes the restrictive synchronization between
the activation of a parent front and the completion of its children. Buttari
then proposes a dynamic scheduling of the computational tasks. He relies
on dataflow parallel programming model where the schedulable tasks are
broken down to sequential tasks and where sequential BLAS is used instead
of multithreaded BLAS. He pays a particular attention to data locality and
minimization of memory bank conflicts between different processors. The
dataflow model he chooses allows a natural extension of the solver to the use
of runtime systems by Agullo, Buttari, Guermouche and Lopez (2014) for
the scheduling of the tasks. The method of Agullo et al. (2014) can exploit
heterogeneous systems with GPUs, and is discussed in Section 12.3.

12. Other topics

In this section, we consider several topics that have been postponed until
now, primarily because they rely on all of the prior material that has been
discussed so far. Section 12.1 presents the update/downdate problem, in
which a matrix factorization is to be recomputed after the matrix A under-
goes a low-rank change. It can be computed faster than a forward/backsolve
to solve Ax = b with the resulting factors. Section 12.2 presents a survey
of parallel methods for the forward/backward triangular solve. Algorithms
for sparse direct methods on GPUs are the topic of Section 12.3 for both
supernodal and multifrontal methods. Section 12.4 presents the use of low-

Sparse Direct Methods 135

rank approximations in sparse direct methods. The off-diagonal blocks of a
matrix factorization, whether sparse or dense, can have low numerical rank.
This property can be exploited to reduce both time and memory require-
ments to compute the factorization, while at same time maintaining the
same level of accuracy that sparse direct methods are known for.

12.1. Updating/downdating a factorization

Once a matrix A is factorized, some applications require the solution of a
closely-related matrix, A = A±W , where the matrix W has low rank. Com-
puting the factorization of the matrix A by modifying the existing factor-
ization of A can often be done much faster than factorizing A from scratch,
both in practice and in an asymptotic, big-O sense. Constructing the factor-
ization of A = A+W is referred to as an update, and factorizing A = A−W
is a downdate. The problem arises in many applications. For example, when
the basis set changes in optimization, columns of A come and go. In the
simultaneous localization and mapping problem (SLAM) in robotics, new
observations are taken, which introduce new rows in a least squares prob-
lem. In the finite element method, cracks can propagate through a physical
structure, and as the crack propagates, only a small local refinement is
required to solve the new problem. In the circuit simulation domain, short-
circuit analysis requires the solution of a linear system after successive pairs
of contacts are shorted together, resulting in a very small change to a matrix
that was already just factorized.

Constructing the updated/downdated factorization is far faster than com-
puting the original factorization. The total time is often less than the trian-
gular solves (forward/backsolve) with the resulting factors. That is, it can
take less time to modify the factorization than it takes to solve the resulting
system with the factorized matrix.

Modifying an LU factorization

The very first sparse update/downdate methods were motivated by the sim-
plex method in linear programming. The goal is to find the optimal solu-
tion to an underdetermined system of equations Ax = b where A has more
columns than rows. The simplex method constructs a sequence of basis ma-
trices, which are composed of a subset of the columns of A. As the method
progresses, columns come and go in the basis, resulting in an update and
downdate, respectively. Since A is unsymmetric, an LU factorization is used,
along with methods to update/downdate the LU factors when columns come
and go.

The first method appeared in a 1970 IBM technical report by Brayton
et al., which formed the basis of the method of Tomlin (1972) and Forrest
and Tomlin (1972). To modify a column, the method deletes a column k

136 Davis, Rajamanickam, Sid-Lakhdar

of U and shifts the remaining columns to the left. The incoming column is
added at the end, resulting in a sparse upper Hessenberg matrix. Next, the
k row is moved to the end of the matrix, resulting in matrix that is upper
triangular except for the last row. Pairwise (non-orthogonal) eliminations
between rows k and n, then k+ 1 and n, and so on, reduce the matrix back
to upper triangular form. Pivots are taken from the diagonal, and thus fill-in
is limited to the last row and column in the new factorization. No numerical
pivoting is performed, and thus the method can be unstable if the diagonal
entries are small relative to the entries in the last row n.

Reid (1982) presents a similar method, a sparse variant of Bartel and
Golub’s method. The new column is placed not at the end, but in the column
r if its last nonzero entry resides in row r. It does not permute the row k to
the end, but operates on the upper Hessenberg matrix instead, where only
rows k through r are upper Hessenberg and the remainder starts as already
upper triangular. The method uses pairwise pivoting between rows k and
k + 1, then k + 1 and k + 2, and so on, to reduce the matrix back to upper
triangular form. Pivots can thus be chosen via relaxed pairwise pivoting,
where the sparser row of the two is selected if its pivotal leftmost nonzero
entry is large enough. Row and column singletons within the submatrix
A(k : r, k : r) are exploited to reduce the size of the upper Hessenberg
submatrix via row and column swaps. The method reduces fill-in from
compared to Forrest and Tomlin’s method and also improves stability.

Reid’s (1982) method is complex, and Suhl and Suhl (1990) (1993) con-
sider a simpler variant based on a modification of Tomlin’s approach. Start-
ing with the upper Hessenberg submatrix A(k : r, k : r) of Reid’s method,
they reduce the matrix to upper triangular form by relying on diagonal piv-
ots, just like Forrest and Tomlin. Note that the term “fast” in the title
of Suhl and Suhl’s paper is meant in a practical sense, not in a theoreti-
cal, asymptotic sense. In particular, no LU update/downdate method takes
time proportional to the number of entries in L and U that need to be mod-
ified, which is a lower asymptotic bound on any update/downdate method.
This bound is reached for updating/downdating a Cholesky factorization,
as discussed below.

Modifying a Cholesky factorization

Given the sparse Cholesky factorization LLT = A, computing the factoriza-

tion LL
T

= A+WW T , where W is n-by-k with k � n, is a rank-k update,

and computing LL
T

= A−WW T is a rank-k downdate.
Law (1985) and Law and Fenves (1986) present a method that updates the

numerical values of L but not its nonzero pattern after a rank-k change. The
first pass takes O(n) time to determine which columns need to change, and
the second pass relies on partial refactorization to compute those columns.

Sparse Direct Methods 137

The time taken is proportional to the sum of squares of the column counts
of the columns that change. That is, if X denotes the columns of L that
change, the method takes

O

n+
∑
j∈X
|Lj |2

time. Law (1989) extends this method to allow for a change in the nonzero
pattern of L, and shows that the columns that change are governed by paths
in the elimination tree. The method updates the tree as the pattern of L
changes.

Davis and Hager (1999) present the first asymptotically optimal rank-1
update/downdate method, taking

O

∑
j∈X
|Lj |

time. They show that a rank-1 update modifies all columns along the path
from p to the root of the elimination tree, where p is the first nonzero in
the column vector w. If the pattern changes, the path in the new tree
is followed. The entire algorithm (finding the path, modifying both the
pattern and values of L, and modifying the tree) takes time proportional
to the number of entries in L that change. An example rank-1 update is
shown in Figure 12.16. The key observation is that the columns that change
correspond to the nonzero pattern of the lower triangular system Lx = w,
with a sparse right-hand side w (Section 3.2).

Davis and Hager (2001) extend this to an asymptotically optimal rank-k
update, which modifies a set of k paths in the tree. They also show how to
add/delete rows and columns of the matrix (Davis and Hager 2005), and how
to exploit supernodes for increased performance (Davis and Hager 2009).
Supernodes can both split or merge together during both an update or
downdate. The methods are implemented in CHOLMOD (Chen et al. 2008).
A simpler rank-1 update/downdate that does not change the pattern of L
appears in CSparse (Davis 2006).

Downdating A − wwT can lead to symbolic cancellation of entries in L;
Davis and Hager track this by replacing each set Lj with a multiset that
keeps track of the multiplicity of each entry. When the multiplicity drops
to zero, the entry can be removed. Keeping this doubles the integer space
required for L, and thus CHOLMOD does not include the multiplicities.
Dropping these entries is optional, and to do so requires a reconstruction of
the symbolic factorization, taking time O(|L|).

138 Davis, Rajamanickam, Sid-Lakhdar

Figure 12.16. Rank-1 update A+ wwT that changes the pattern of L. The old
elimination tree is T and the new tree is T . Nonzeros that do not change are

shown solid circles; nonzeros that change are shown as circled x’s. The columns
that are modified (4, 6, 7, and 8) become a path in T . (Davis 2006)

Modifying a QR factorization

Since the Cholesky factorization of ATA results in the QR factor R (assum-
ing A is strong-Hall), the update/downdate of a QR factorization is very
similar to the Cholesky update/downdate. A new row w appended to A has
the same structure of computation as a rank-1 Cholesky update A+ wwT .

Björck (1988) shows that adding a row to R can be done via a series of
Givens rotations with the new row w and rows of the existing R. Exploiting
the assumption that the nonzero patterns of the rows to be added to A
are known in advance allows for a static nonzero pattern of R and a static
data structure to hold it. This assumption holds for active set methods in
optimization, and many other applications.

Edlund (2002) extends Davis and Hager’s method for a multifrontal LQ
factorization (an LQ factorization is essentially the QR factorization of AT).
He considers the important case when A is not strong-Hall, an issue that
does not arise in the Cholesky update/downdate problem.

12.2. Parallel triangular solve

Solving a sparse linear system requires a fill-reducing ordering, a symbolic
analysis (or at least most methods do), a numerical factorization, and finally,
the solution of the triangular system or systems. Basic methods for solving a
triangular system with both a dense and sparse right-hand side have already
been discussed in Section 3. We now consider how to do this step in parallel.

Sparse Direct Methods 139

Rather than including this discussion in Section 3, we present it now because
many of the methods depend on the supernodal or multifrontal factorizations
presented in Sections 9 and 11.

Solving the lower triangular system Lx = b is difficult to parallelize be-
cause the computational complexity (ratio of flops over bytes, or overO(|L|))
is so low. If b is a vector, the ratio is just 2, regardless of L. The nu-
meric factorization has a much higher computational complexity, namely
O
(∑
|Lj |2/

∑
|Lj |

)
, which in practice can be as high as O

(
n2/3

)
for a ma-

trix arising from a 3D mesh. As a result, often the goal of a parallel triangu-
lar solve for a distributed-memory solver is to leave the matrix L distributed
across the processor memories that contain it, and not to experience a par-
allel slowdown.

The method used can depend on whether L arises from a Cholesky or QR
factorization (in which case the elimination tree describes the parallelism),
or if L arises from LU factorization, in which case L can be arbitrary. In the
former case, the special structure of L allows for more efficient algorithms.

Two classes of methods are considered below. The first methods are based
on the triangular solve discussed in Section 3, with both dense (Section 3.1)
and sparse (Section 3.2) right-hand sides. The second class of methods is
based on computing explicit inverses of submatrices of L.

Methods based on the conventional triangular solve

Wing and Huang (1980) consider a fine-grain model of computation, where
each division or multiply-add becomes its own task, and give a method for
constructing a task schedule on a theoretical machine model. Consider the
problem of solving Lx = b where L is lower triangular. The nonzero entry
lij means that xj must be computed prior to the update xi = xi − lijxj ,
just as discussed in the topological ordering for the sparse triangular solve in
Section 3.2. This gives a task dependency graph, which is directed acyclic (a
DAG), as shown in Figure 3.2, with an edge (j, i) for each nonzero lij . Wing
and Huang (1980) discuss a level scheduling method, via a breadth-first
traversal where the first level consists of all nodes j for which the corre-
sponding row j is all zero except for the diagonal (nodes with no incoming
edges). When solving Ux = b the edges go in the opposite direction, from
high numbered nodes to lower numbered nodes. Ho and Lee (1990) propose
a modification to this method that changes with additional eliminations that
increases the nonzeros in L but also increases the available parallelism.

The first practical algorithm and software for solving this problem in
parallel was by Arnold, Parr and Dewe (1983). They rely on semaphores in
a shared-memory computer to ensure that two updates (xi = xi − li,j1xj1
and xi = xi − li,j2xj2) to the same xi do not conflict. The updates from xj
can start as soon as all updates from incoming incident nodes are completed.
Each task is the same as that of Wing and Huang (1980).

140 Davis, Rajamanickam, Sid-Lakhdar

George et al. (1986a) use a medium-grain computation where each task
corresponds to a column of L. The backsolve (LTx = b) is thus done by rows,
and task (row) j waits for each k to be completed first, for each nonzero
lkj . No critical section is required. In the forward solve, multiple tasks can
update the same entries, so synchronization is used just as in Arnold et al.
(1983)’s method, with a critical section for each entry in x. They extend
their method to a distributed-memory computer where the columns of L
are distributed across the processors (George et al. 1989a). Kumar, Kumar
and Basu (1993) extend this method by exploiting the dependency structure
with the elimination tree, rather than using the larger structure of the graph
of L.

Operating on submatrices rather than individual entries (Wing and Huang
1980) or rows or columns (George et al. 1986a) can improve performance be-
cause it reduces the scheduling and synchronization overhead. Saltz (1990)
demonstrates this in his scheduling method that reduces the size of the DAG
of a general matrix L by merging together sets of nodes that correspond to
sub-paths in the DAG. When L arises from a supernodal Cholesky factor-
ization, the supernodal structure provides a natural partition for improving
performance (Rothberg 1995), by allowing each processor to use the level-2
BLAS and by reducing parallel scheduling overhead. Each diagonal block of
a supernode is a dense lower triangular matrix, allowing use of the level-2
BLAS. The method also extends to the triangular solves from a multifrontal
QR factorization (Sun 1997). Mayer (2009) introduces an alternative 2D
mapping of the parallel computation, where each block anti-diagonal can be
computed in parallel.

Totoni, Heath and Kale (2014) also distribute larger submatrices to each
processor. They pipeline the computation between dependent processors to
send more critical messages early, which correspond to data dependencies
on the critical path. The matrix is distributed mostly by blocks of columns,
except that dense submatrices are also distributed to increase parallelism.
The method scales up to 64 cores for many matrices, and beyond that for a
few. It can obtain super-linear speedup because of local cache effects.

All of the methods described so far assume that the matrix L resides in
the single shared-memory space of a shared-memory computer, or that it is
distributed across the memory spaces of a distributed-memory computer. In
out-of-core methods, the matrix L is too large for this, and must be held in
disk, with only parts of L held in main memory at any one time. Amestoy,
Duff, Guermouche and Slavova (2010) consider the out-of-core, distributed-
memory solve phase for a parallel multifrontal method. The parallelism is
governed by the elimination tree (the assembly tree to be precise) since the
factors are assumed to have a symmetric structure.

Sparse Direct Methods 141

Methods based on explicit inversion of submatrices

Matrix multiplication provides more scope for parallelism than a triangular
solve. Solving a linear system by multiplying by the inverse of an entire non-
triangular sparse matrix is not a good idea since the inverse of a strong-Hall
matrix is completely nonzero. However, a triangular matrix is not strong
Hall. Anderson and Saad (1989) exploit this fact by explicitly inverting
small diagonal submatrices of L. Suppose the L11 block below is small but
not a scalar. [

L11

L21 L22

] [
x1
x2

]
=

[
b1
b2

]
, (12.1)

Then x can be computed with x1 = L−111 b1, followed by the solution to the
smaller system L22x2 = b2 − L21x1, which can be further subdivided and
the same method applied. If L11 is diagonal, it is easy to invert. In general
L−111 has more nonzeros than L11, but it always remains lower triangular.
Anderson and Saad (1989) consider several methods for solving Lx = b in
parallel, including one that only inverts diagonal submatrices, and another
that requires extra fill-in. In the latter method, they partition L into fixed-
size diagonal blocks and invert each block. Their method is intended for
shared-memory parallel computers; González, Cabaleiro and Pena (2000)
adapt this method for the distributed-memory domain.

Law and Mackay (1993) rely on inverting dense diagonal submatrices so
that no extra fill-in occurs. The partitions are the same as those used by
George (1977a), where the diagonal blocks are dense and the subdiagonal
blocks can be represented in an envelope form with no extra fill-in. These
partitions are larger than the diagonal blocks of fundamental supernodes.

Alvarado, Yu and Betancourt (1990) go beyond the idea of exploiting
inverses of diagonal submatrices to construct a partitioned inverse represen-
tation of L. The matrix L can be viewed as the product of n elementary
lower triangular matrices, each of which is diagonal except for a single col-
umn. The inverse of each of these matrices is easy to represent with no extra
fill-in. This gives a simple partitioned inverse with n partitions of a single
column each. They show that larger partitions can be formed instead, and
when each one is explicitly inverted, no fill-in occurs. Larger partitions can
be formed but they result in extra fill-in. Alvarado and Schreiber (1993)
prove that this method constructs optimal partitions, assuming that each
partition consists of adjacent columns of L (with no permutations allowed),
and also present another method that finds optimal partitions when permu-
tations are allowed. This results in larger partitions, but the method is very
costly, taking O(n|L|) time in the worst case to find the partitions. Pothen
and Alvarado (1992) cut the time drastictly by assuming L arises from a
Cholesky factorization. They exploit the chordal property of the graph of
L+LT to find optimal partitions in only O(n) time, allowing for a restricted

142 Davis, Rajamanickam, Sid-Lakhdar

set of permutations. Alvarado, Pothen and Schreiber (1993) survey all of
these variations of the partitioned inverse method.

Peyton, Pothen and Yuan (1993) further develop this method by allowing
for a wider range of possible permutations. These permutation differ in
that they must be applied to A prior to its Cholesky factorization, but they
result in fewer, larger partitions, and thus increase the amount of available
parallelism in the triangular solve. Their method takes O(n+ |L|) time,
which is higher than Pothen and Alvarado’s (1992) method but still very
practical. Peyton, Pothen and Yuan (1995) present an alternative algorithm
for this problem that cuts the time to O(n+ q) where q is size of the clique
tree (Section 9.1) which is typically far less than O(|L|) in size.

Raghavan (1998) takes an alternative approach, which is more closely
related to Anderson and Saad’s (1989) method. Rather than inverting the
entire partition, the inversion is limited to the diagonal blocks of supernodes
(which are already dense) that are spread across multiple processors.

12.3. GPU-based methods

Recently, a new kind of computer architecture has begun to have an impact
on computational science, and on sparse direct methods in particular. Mod-
ern CPU cores rely on complex instruction execution hardware that allows
for out-of-order execution and superscalar performance. They require a high
clock rate to obtain high performance. The downside to this approach is the
power consumption and size of the cores. An alternative approach is to use
a large number of simpler processors, and to share the instruction execution
unit and/or the memory interconnect. Graphics Processing Units (GPUs)
are on one end of this spectrum, where groups of cores share a single execu-
tion unit and an interface to memory. All threads in a group thus execute
the same instructions, just on different data. These GPUs are no longer
targeted just for graphics processing, but for general computing (examples
include GPUs from NVIDIA and AMD). The Intel Xeon Phi takes a different
approach, packing many simpler processors on a single chip in a design that
trades high clock speed and core complexity for many simpler cores running
at a lower clock speed, each with their own instruction fetch/decode/execute
unit. The result in both cases is a high-throughput computational engine,
at a much lower power consumption. Either of these approaches results in
a parallel computational environment with many closely-coupled threads.

The architectures work well for regular parallelism, but pose a challenge
for sparse direct methods because of the irregular nature of the algorithms.
For example, the elimination tree is often unbalanced. Dense submatrices
exist in the factors and can be exploited by supernodal, frontal, and mul-
tifrontal methods, but they vary greatly in size, even between two nodes

Sparse Direct Methods 143

at the same level of the elimination tree. Gather/scatter leads to a very
irregular memory access.

In the GPU computing model, independent tasks are bundled together in
a kernel launch. The GPU has a dozen or so instruction execution units,
each of which controls a set of cores (32, say). In NVIDIA terminology,
these are called Streaming Multiprocessors, or SMs. Each SM executes
a larger number of threads (a few hundred), called a thread block. The
hardware scheduler on the GPU assigns the tasks in a kernel launch to a
thread block. At a high-level view, the threads in a thread block can be
thought of as working in lock step. However, they are actually broken into
subgroups of threads (called warps). Each warp is executed one at a time
on the instruction unit. When the threads in one warp place a request for
global memory, the warp is paused and another warp, one whose memory
reference is ready, is executed instead. The switch between warps happens
in hardware, with no scheduling delay. If the threads in a warp encounter an
if-then-else conditional statement, then all threads for which the condition
is true are executed, and the rest remain idle, and then the opposite is done
for the threads for which the condition is false. In most GPUs, the GPU
and CPU memories are distinct, and data must be transferred explicitly
between them, although this is changing with some CPU cores containing
GPUs on-chip.

Pierce, Hung, Liu, Tsai, Wang and Yu (2009) off-load large frontal ma-
trices to the GPU in their multifrontal Cholesky factorization method. A
frontal matrix is sent to the GPU, factorized, and brought back. Small
frontal matrices remain on the CPU. Krawezik and Poole (2009) take a sim-
ilar approach, except that their method shares the work for large frontal
matrices between the CPU and GPU. The factorization of each diagonal
block in the frontal matrix is done on the CPU and transferred to the GPU,
which is responsible for the subsequent update of the lower-right subma-
trix, a large dense matrix-matrix multiply. Lucas, Wagenbreth, Davis and
Grimes (2010) and George, Saxena, Gupta, Singh and Choudhury (2011)
develop this method further by exploiting the parallelism of the CPU cores
of the host. The many smaller frontal matrices at the lower levels of the
tree provide ample parallelism for the CPU cores. Towards the root of the
tree, where the frontal matrices are larger, the GPU is used. George et al.
(2011) also exploit multiple GPUs.

Yu, Wang and Pierce (2011) extend GPU acceleration to the unsymmetric-
pattern multifrontal method. They perform the dense matrix updates for
a frontal matrix on the GPU. Pivoting, and the dense triangular solves
required for computing the pivot row and column, are computed on the
CPU. Assembly operations between child and parent frontal matrices are
done on the CPU, while updates within large frontal matrices are computed
and assembled on the GPU.

144 Davis, Rajamanickam, Sid-Lakhdar

The software engineering required to create GPU-accelerated algorithms
is a complex task. Lacoste et al. (2012) alleviate this by relying on run-
time scheduling frameworks in their right-looking supernodal factorization
(Cholesky, LDLT , and LU with static pivoting). Their method can exploit
multiple CPUs and multiple GPUs. Large supernodal updates are off-loaded
to the GPU.

In all of the multifrontal methods discussed so far, the contribution blocks
from child frontal matrices are assembled into their parents on the CPU.
Large frontal matrices are transferred to the GPU, factorized there one at a
time, and then brought back to the CPU. The GPU factorizes a single frontal
matrix at a time. Likewise, in the GPU-accelerated supernodal methods
described so far, each GPU works on a single supernodal update at a time.

Rennich, Stosic and Davis (2014) break this barrier by allowing each GPU
to work on many supernodes at the same time. Their method batches to-
gether many small dense matrix updates in their supernodal Cholesky fac-
torization. They use this strategy for subtrees that are small enough to fit
on the GPU. Once all subtrees are factorized, their method works on the
larger supernodes towards the root of the tree, one at a time. The work
for large supernodes is split between the CPU and the GPU, with the CPU
performing the updates from smaller descendants and the GPU performing
the updates for the larger descendants.

Hogg, Ovtchinnikov and Scott (2016) present a GPU-accelerated multi-
frontal solver for symmetric indefinite matrices, which require pivoting; prior
methods did not accommodate any pivoting. They use the GPU to factorize
many frontal matrices at the same time. Frontal matrices are assembled on
the GPU, rather than bringing them back to the CPU for assembly. This
allows the GPU to handle small frontal matrices effectively.

Sao, Vuduc and Li (2014) present a GPU-accelerated algorithm based
on SuperLU DIST, which is a parallel distributed-memory LU factoriza-
tion based on a right-looking supernodal method. It can exploit multiple
CPUs and GPUs. The GPUs are used to accelerate the right-looking Schur
complement update, which is the dominant computation. Factorizing the
supernodes is left to the CPUs. Small dense matrix updates on the GPU are
aggregated into larger updates. Multiple such updates are pipelined with
each other and with the transfer of their results back to their corresponding
CPU host, which holds the supernodes. The CPU then applies the results
of the update to the target supernodes (the scatter step). They extend this
work to the Intel Xeon Phi (Sao, Liu, Vuduc and Li 2015). In this method,
the work for the Schur complement update for large supernodes is shared
between the CPU host and the GPU. Furthermore, the scatter step of as-
sembling the results of the dense submatrix updates back into the target
supernodes is done on the GPU.

Yeralan, Davis, Ranka and Sid-Lakhdar (2016) present a multifrontal

Sparse Direct Methods 145

sparse QR factorization in which all floating-point work is done on the GPU.
They break the factorization of each frontal matrix into a set of tiles, and
individual SMs operate in parallel on different parts of a frontal matrix.
At each kernel launch, the GPU can be factorizing many frontal matrices at
various stages of completion, while at the same time assembling contribution
blocks of children into their parents. Scheduling occurs at a finer granular-
ity than levels in the elimination tree; the GPU does not have to wait until
all frontal matrices in a level of the tree are finished before factorizing the
parents of these frontal matrices. Frontal matrices are created, assembled,
and factorized on the GPU. The only data transferred to the GPU is the
input matrix, and the only data that comes back is the factor R.

Agullo et al. (2014) show how a runtime system can be used to effectively
implement the multifrontal sparse QR factorization method on a heteroge-
neous system. Their method relies on both the CPUs and the GPUs to
perform the numerical factorization. A runtime system provides a mech-
anism for scheduling the tasks in a parallel algorithm based on the task
dependency DAG of the algorithm. It ensures the data dependencies are
satisfied. The runtime system may run any given task on either a multicore
CPU or on a GPU, which raises a potential problem: the data required
by the GPU may reside on the CPU, and where each task is executed is
not known a priori. To resolve this, they rely on a new scheduling mecha-
nism. The first scheduling queue is prioritized, where the smaller tasks are
given preference on the CPU and the larger tasks are given preference on
the GPU. Each computational resource also has its own (very short) queue;
once a task is added to that queue, it place of execution is fixed. When a
task enters such a queue, the data is moved to the proper location, just in
time for it to be performed on that computational resource.

The GPU is well-suited to a multifrontal or supernodal factorization since
those methods rely on the regular computations within dense submatrices.
However, GPUs can also accelerate the left-looking sparse LU factorization
without the need to rely on dense matrix computations. Chen, Ren, Wang
and Yang (2015) extend their NICSLU method to the GPU. It differs from
their prior method for a multicore CPU (Chen et al. 2013), in that it assumes
no numerical pivoting is required. This assumption works well for their
target circuit simulation application, where a sequence of matrices are to be
factorized. Each task in NICSLU executes on a single warp on the GPU. He,
Tan, Wang and Shi (2015) present a right-looking variant for the GPU. Like
the first phase of NICSLU, their method operates on the column elimination
tree level by level. All the columns at a given level are first scaled by the
diagonal of U , obtaining the corresponding columns of L. Next, all warps
cooperate to update the remainder of the matrix, to the right. Each warp
updates an independent subset of these target columns from the columns of
L computed in this level.

146 Davis, Rajamanickam, Sid-Lakhdar

12.4. Low-rank approximations

The use of low-rank approximations in sparse direct methods is an ongoing
work. We present some of the articles that discuss this topic.

A simple way to explain the idea behind low-rank approximation methods
is to consider a physical n-body problem, where interactions between stars
and galaxies are considered. Stars that are close have an strong interaction,
while stars that are distant have a weak interaction. From the point of view
of a star far from a galaxy, all the stars in this galaxy appear as only one
unified star. Thus instead of computing all the relations between this star
and all the stars in the galaxy, only one interaction has to be computed.

This physical interpretation translates in a matrix point of view as: sub-
matrices close to the diagonal contain a high amount of numerical infor-
mation (their mathematical rank is high), while submatrices distant from
the diagonal contain less numerical information (their mathematical rank is
low). In practice, when applying Gaussian eliminations, the Schur comple-
ment induced appears to exhibit this low-rank property in several physical
applications, especially those arising from elliptic partial differential equa-
tions. This property on the low rank of submatrices may then be exploited.
Indeed, only the important information they contain is synthesized. One
way of extracting these information is through the use of a truncated SVD
on the submatrices. The eigenvalues of small moduli are then discarded
together with their corresponding eigenvectors. This process results in an
approximation of the submatrix into a compact product of smaller matri-
ces. A threshold is chosen to determine which eigenvalues to discard. The
accuracy on the representation of the submatrix is thus traded with smaller
storage requirements and fewer computations when applying operations on
the submatrix.

One way of exploiting low-rank approximations on sparse matrices is to
combine this technique with sparse direct methods. Indeed, the elimination
trees produced by adequate orderings, like a nested dissection, already em-
bed a structuring of the physical problem. Each supernode or front may
then be expressed in a low-rank approximation representation.

Xia, Chandrasekaran, Gu and Li (2009) and Xia, Chandrasekaran, Gu
and Li (2010) rely on a hierarchically semi-separable (HSS) representation
of the fronts in a multifrontal method. In HSS, the front is dissected into
four blocks. The two off-diagonal blocks are compressed through a truncated
SVD while the diagonal blocks are recursively partitioned.

Xia (2013a) extends this work by applying an improved ULV partial fac-
torization scheme on the front. This allows him to replace large HSS matrices
by a compact representation.

Xia (2013b) reduces the complexity of the computation of the HSS repre-
sentation using randomized sampling compression techniques. He introduces

Sparse Direct Methods 147

techniques to replace the HSS operations by skinny matrix-vector products,
both in the assembly phase and for the factorization phase.

Wang, Li, Rouet, Xia and De Hoop (2015) further show how to take advan-
tage of the parallelism offered by the tree representing the hierarchy in the
HSS representation together with the parallelism offered by the elimination
tree. The rely on information about the geometry of the problem in their
nested dissection during the analysis phase. Rouet, Li, Ghysels and Napov
(2015) extend this approach in the design of their distributed-memory HSS
solver.

Pouransari, Coulier and Darve (2015) describe a fast algorithm for general
hierarchical matrices, specifically, H2 with a nested low rank basis, and
HODLR, similar to HSS, resulting in H-tree structures. Their method is
fully algebraic and can be considered as an extension to the ILU method,
as it conserves the sparsity of the original matrix.

Amestoy, Ashcraft, Boiteau, Buttari, L’Excellent and Weisbecker (2015a)
rely on a block low-rank (BLR) representation of the fronts in their distributed-
memory multifrontal method. Instead of hierarchically partitioning the
front, they cut the whole front into many small blocks of given equal size
that are compressed using a truncated SVD. Compared to the other ap-
proaches, this approach does not require any knowledge of the geometry of
the problem and the rank of the different blocks is discovered on the fly.

Finally, solvers that exploit this low-rank property may be used either as
accurate direct solvers or as powerful preconditioners for iterative methods,
depending on how much information is kept.

13. Available Software

Well-designed mathematical software has long been considered a cornerstone
of scholarly contributions in computational science. Forsythe, founder of
Computer Science at Stanford and regarded by Knuth as the “Martin Luther
of the Computer Reformation,” is credited with inaugurating the refereeing
and editing of algorithms not just for their theoretical content, but also for
the design, robustness, and usability of the software artifact itself (Knuth
1972). Forsythe’s vision extends to the current day.

For example, the MATLAB statement x=A\b for a sparse matrix A is a
simple one-character interface to perhaps over 120,000 lines of high-quality
software for sparse direct methods; it would take over two full reams of pa-
per to print it out in its entirety. The MATLAB backslash operator relies
on almost all of the methods discussed in this survey. It uses a triangular
solve if A is triangular (Section 3). If A is a row and/or column permutation
of a triangular matrix, then a permuted triangular solver is used, without
requiring a matrix factorization (Gilbert et al. 1992). A tridiagonal solver
is used if A is tridiagonal, and a banded solver from LAPACK is used if A

148 Davis, Rajamanickam, Sid-Lakhdar

is banded and over 50% nonzero within the band. If the matrix is sym-
metric and positive definite, it uses either the up-looking sparse Cholesky
or the supernodal method (both via CHOLMOD) (Chen et al. 2008). Su-
pernodal Cholesky is used if the ratio of flops over the nonzeros in L is high
enough. If this ratio is low, the up-looking method is faster in practice. If
the matrix is symmetric and indefinite, x=A\b uses a multifrontal method
(MA57) (Duff 2004). The unsymmetric-pattern multifrontal LU factoriza-
tion (UMFPACK) is used for square unsymmetric matrices (Davis 2004a),
and a multifrontal sparse QR factorization (SuiteSparseQR) (Davis 2011a)
is used if it is rectangular. The numerical factorization is preceded by a
fill-reducing ordering (AMD or COLAMD) (Amestoy et al. 2004a), (Davis
et al. 2004a). These codes also rely upon nearly all of the symbolic analysis
methods and papers discussed in Section 4, which are too numerous to cite
again here. The forward/backsolve when using LU factorization relies on
the sparse backward error analysis with iterative refinement, by Arioli et
al. (1989a). A large fraction of this entire lengthy survey paper and the
software and algorithmic work of numerous authors over the span of several
decades is thus encapsulated in the seemingly simple MATLAB statement:

x=A\b

Even the mere sparse matrix-matrix multiply, C=A*B, takes yet another 5000
lines of code (Section 2.4). Most of these software packages appear as Col-
lected Algorithms of the ACM, where they undergo peer review of not only
the algorithm and underlying theory, but of the software itself. Considering
the complexity of software for sparse direct methods and the many appli-
cations that rely on these solvers, most application authors would find it
impossible to write their own sparse solvers. Furthermore, a sparse direct
method has far too many details for the author(s) to discuss in their papers.
You have to look at the code to understand all the techniques used in the
method.

The purpose behind this emphasis on software quality is not just to pro-
duce the next commercial product, but for for scholarly reasons as well. A
mathematical theorem requires the publication of a rigorous proof; otherwise
it remains a conjecture. Subsequent mathematics is built upon this robust
theorem/proof framework. Likewise, an algorithm for solving a mathemat-
ical problem requires a robust implementation on which subsequent work
can be built. In this domain, mathematical software is considered a schol-
arly work, just as much as a paper presenting a new theorem and its proof,
or a new algorithm or data structure. No survey on sparse direct methods
would thus be complete without a discussion of available software, which we
summarize in Table 13.1.

The first column in Table 13.1 lists the name of the package. The next four
columns describe what kinds of factorizations are available: LU, Cholesky,

Sparse Direct Methods 149

LDLT for symmetric indefinite matrices, and QR. If the LDLT factorization
uses 2-by-2 block pivoting a “2” is listed; a “1” is listed otherwise. The next
column states if complex matrices (unsymmetric, symmetric, and/or Hermi-
tian) are supported. The ordering methods available are listed in the next
four columns: minimum degree and its variants (minimum fill, column mini-
mum degree, Markowitz, and related methods), nested or one-way dissection
(including all graph-based partitionings), permutation to block triangular
form, and profile/bandwidth reduction (or related) methods. The next two
columns indicate if the package is parallel (“s” for shared-memory, “d” for
distributed-memory, and “g” for a GPU-accelerated method), and whether
or not the package includes an out-of-core option (where most of the factors
remain on disk). Most distributed-memory packages can also be used in a
shared-memory environment, since most message-passing libraries (MPI in
particular) are ported to shared-memory environments. A code is listed as
“sd” if it includes two versions, one for shared-memory and the other for
distributed-memory. The next column indicates if a MATLAB interface is
available. The primary method(s) used in the package are listed in the final
column. Table 13.2 lists the authors of the packages, relevant papers, and
where to get the code. The two tables do not include packages that have
been superseded by later versions, which do appear in the list. For example,
the widely-used package MA28 (Duff and Reid 1979b) has been superseded
by a more recent implementation, MA48 (Duff and Reid 1996a).

Dongarra maintains an up-to-date list of freely available software at
http://www.netlib.org/utk/people/JackDongarra/la-sw.html, which includes
a section on sparse direct solvers. Li’s (2013) technical report focuses solely
on sparse direct solvers and is also frequently updated.

Prior software surveys include those of Duff (1984b) (1984e), and Section
8.6 of Davis (2006). Performance comparisons appear in many articles, but
they are the sole focus of several studies, including Duff (1979), Gould and
Scott (2004), and Gould, Scott and Hu (2007). Software engineering issues
in the design of sparse direct solvers, including object-oriented techniques,
have been studied by Ashcraft and Grimes (1999), Dobrian et al. (2000),
Scott and Hu (2007), Sala, Stanley and Heroux (2008), and Davis (2013).

Acknowledgments

We would like to thank Iain Duff for his comments on a draft of this paper.
Portions of this work were supported by the National Science Foundation,
Texas A&M University, and Sandia, a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the U.S. Department
of Energy under contract DE-AC04-94-AL85000. We would like to thank
SIAM for their permission to use material for this paper from Davis’ book,
Direct Methods for Sparse Linear Systems, SIAM, 2006.

150 Davis, Rajamanickam, Sid-Lakhdar

Table 13.1. Package features

package L
U

C
h
o
le

sk
y

L
D
L

T

Q
R

c
o
m

p
le

x

m
in

im
u
m

d
e
g
re

e

n
e
st

e
d

d
is

se
c
ti

o
n

b
lo

ck
tr

ia
n
g
u
la

r

p
ro

fi
le

p
a
ra

ll
e
l

o
u
t-

o
f-

c
o
re

M
A

T
L

A
B

method

BCSLIB-EXT X X 2 X X X X - - s X - multifrontal
BSMP X - - - - - - - - - - - up-looking
CHOLMOD - X 1 - X X X - - sg - X left-looking supernodal
CSparse X X - X X X - X - - - X various
DSCPACK - X 1 - - X X - - d - - multifrontal w/ selected inversion
Elemental - - 1 - X - - - - d - - supernodal
ESSL X X - - - X - - - - - - various
GPLU X - - - X - - - - - - X left-looking
IMSL X X - - - X - - - - - - various
KLU X - - - X X - X - - - X left-looking
LDL - X 1 - - - - - - - - X up-looking
MA38 X - - - X X - X - - - - unsymmetric multifrontal
MA41 X - - - - X - - - s - - multifrontal
MA42, MA43 X - - - X - - - X - X - frontal
HSL MP42, HSL MP43 X - - - X - - - X sd X - frontal (multiple fronts)
MA46 X - - - - X - - - - - - finite-element multifrontal
MA47 - X 2 - X X - - - - - - multifrontal
MA48, HSL MA48 X - - - X X - X - - - X right-looking Markowitz
HSL MP48 X - - - - X - X - d X - parallel right-looking Markowitz
MA49 - - - X - X - X - s - - multifrontal
MA57, HSL MA57 - X 2 - X X X - - - - X multifrontal
MA62, HSL MP62 - X - - X - - - X d X - frontal
MA67 - X 2 - - X - - - - - - right-looking Markowitz
HSL MA77 - X 2 - - - - - - - X - finite-element multifrontal
HSL MA78 X - - - - - - - - - X - finite-element multifrontal
HSL MA86, HSL MA87 - X 2 - X - - - - s - X supernodal
HSL MA97 - X 2 - X X X - - s - X multifrontal
Mathematica X X - - X X X X - - - - various
MATLAB X X X X X X - X X - - X various
Meschach X X 2 - - X - - - - - - right-looking
MUMPS X X 2 - X X X - - d - X multifrontal
NAG X X - - X X - - - - - - various
NSPIV X - - - - - - - - - - - up-looking
Oblio - X 2 - X X X - - - X - left, right, multifrontal
PARDISO X X 2 - X X X - - sd X X left/right supernodal
PaStiX X X 1 - X X X - - d - - left-looking supernodal
PSPASES - X - - - - X - - d - - multifrontal
QR MUMPS - - - X X X X - - sg - - multifrontal
Quern - - - X - - - - X - - X row-Givens
S+ X - - - - - - - - d - - right-looking supernodal
Sparse 1.4 X - - - X X - - - - - - right-looking Markowitz
SPARSPAK X X - X - X X - X - - - left-looking
SPOOLES X X 2 X X X X - - sd - - left-looking, multifrontal
SPRAL SSIDS - X 2 - - - X - - g - - multifrontal
SuiteSparseQR - - - X X X X - - sg - X multifrontal
SuperLLT - X - - - X - - - - - - left-looking supernodal
SuperLU X - - - X X - - - - - X left-looking supernodal
SuperLU DIST X - - - X X - - - d - - right-looking supernodal
SuperLU MT X - - - - X - - - s - - left-looking supernodal
TAUCS X X 1 - X X X - - s X - left-looking, multifrontal
UMFPACK X - - - X X - - - - - X multifrontal
WSMP X X 1 - X X X X - sd - - multifrontal
Y12M X - - - - X - - - - - - right-looking Markowitz
YSMP X X - - - X - - - - - - left-looking (transposed)

Sparse Direct Methods 151

Table 13.2. Package authors, references, and availability

package references and source

BCSLIB-EXT Ashcraft (1995), Ashcraft et al. (1998),
Pierce and Lewis (1997), aanalytics.com

BSMP Bank and Smith (1987), www.netlib.org/linalg/bsmp.f
CHOLMOD Chen et al. (2008), suitesparse.com
CSparse Davis (2006), suitesparse.com
DSCPACK Heath and Raghavan (1995) (1997),

Raghavan (2002), www.cse.psu.edu/∼raghavan. Also CAPSS.
Elemental Poulson, libelemental.org
ESSL www.ibm.com
GPLU Gilbert and Peierls (1988), www.mathworks.com
IMSL www.roguewave.com
KLU Davis and Palamadai Natarajan (2010), suitesparse.com
LDL Davis (2005), suitesparse.com
MA38 Davis and Duff (1997), www.hsl.rl.ac.uk
MA41 Amestoy and Duff (1989), www.hsl.rl.ac.uk
MA42, MA43 Duff and Scott (1996), www.hsl.rl.ac.uk. Successor to MA32.
HSL MP42, HSL MP43 Scott (2001a) (2001b) (2003), www.hsl.rl.ac.uk. Also MA52 and MA72.
MA46 Damhaug and Reid (1996), www.hsl.rl.ac.uk
MA47 Duff and Reid (1996b), www.hsl.rl.ac.uk
MA48, HSL MA48 Duff and Reid (1996a), www.hsl.rl.ac.uk. Successor to MA28.
HSL MP48 Duff and Scott (2004), www.hsl.rl.ac.uk
MA49 Amestoy et al. (1996b), www.hsl.rl.ac.uk
MA57, HSL MA57 Duff (2004), www.hsl.rl.ac.uk
MA62, HSL MP62 Duff and Scott (1999), Scott (2003), www.hsl.rl.ac.uk
MA67 Duff et al. (1991), www.hsl.rl.ac.uk
HSL MA77 Reid and Scott (2009b), www.hsl.rl.ac.uk
HSL MA78 Reid and Scott (2009a), www.hsl.rl.ac.uk
HSL MA86, HSL MA87 Hogg et al. (2010) Hogg and Scott (2013b), www.hsl.rl.ac.uk
HSL MA97 Hogg and Scott (2013b), www.hsl.rl.ac.uk
Mathematica Wolfram, Inc., www.wolfram.com
MATLAB Gilbert et al. (1992), www.mathworks.com
Meschach Steward and Leyk, www.netlib.org/c/meschach
MUMPS Amestoy et al. (2000), Amestoy et al. (2001a), Amestoy et al. (2006),

www.enseeiht.fr/apo/MUMPS
NAG www.nag.com
NSPIV Sherman (1978b) (1978a), www.netlib.org/toms/533
Oblio Dobrian, Kumfert and Pothen (2000), Dobrian and Pothen (2005),

www.cs.purdue.edu/homes/apothen
PARDISO Schenk and Gärtner (2004), Schenk, Gärtner and Fichtner (2000),

www.pardiso-project.org
PaStiX Hénon et al. (2002), www.labri.fr/∼ramet/pastix
QR MUMPS Buttari (2013), buttari.perso.enseeiht.fr/qr mumps
PSPASES Gupta et al. (1997), www.cs.umn.edu/∼mjoshi/pspases
Quern Bridson, www.cs.ubc.ca/∼rbridson/quern
S+ Fu et al. (1998), Shen et al. (2000),

www.cs.ucsb.edu/projects/s+
Sparse 1.4 Kundert (1986), sparse.sourceforge.net
SPARSPAK Chu et al. (1984), George and Liu (1979a) (1981) (1999),

www.cs.uwaterloo.ca/∼jageorge
SPOOLES Ashcraft and Grimes (1999), www.netlib.org/linalg/spooles
SPRAL SSIDS Hogg et al. (2016), www.numerical.rl.ac.uk/spral
SuiteSparseQR Yeralan et al. (2016), Foster and Davis (2013),

suitesparse.com
SuperLLT Ng and Peyton (1993a), http://crd.lbl.gov/∼EGNg
SuperLU Demmel et al. (1999a),

crd.lbl.gov/∼xiaoye/SuperLU
SuperLU DIST Li and Demmel (2003), crd.lbl.gov/∼xiaoye/SuperLU
SuperLU MT Demmel et al. (1999b), crd.lbl.gov/∼xiaoye/SuperLU
TAUCS Rotkin and Toledo (2004), www.tau.ac.il/∼stoledo/taucs
UMFPACK Davis (2004b) Davis and Duff (1997) (1999), suitesparse.com
WSMP Gupta (2002a), Gupta et al. (1997), www.cs.umn.edu/∼agupta/wsmp
Y12M Zlatev, Wasniewski and Schaumburg (1981), www.netlib.org/y12m
YSMP Eisenstat et al. (1977) (1982),

Yale Librarian, New Haven, CT

152 Davis, Rajamanickam, Sid-Lakhdar

Affiliations: Timothy A. Davis is on faculty at Texas A&M University
(davis@tamu.edu). Sivasankaran Rajamanickam is a research staff mem-
ber at the Center for Computing Research, Sandia National Laboratories
(srajama@sandia.gov), and Wissam M. Sid-Lakhdar is a post-doctoral re-
searcher at Texas A&M University (wissam@tamu.edu).

REFERENCES

A. Agrawal, P. Klein and R. Ravi (1993), Cutting down on fill using nested dissec-
tion: provably good elimination orderings, in Graph Theory and Sparse Matrix
Computation (A. George, J. R. Gilbert and J. W. H. Liu, eds), Vol. 56 of IMA
Volumes in Applied Mathematics, Springer-Verlag, New York, pp. 31–55.

E. Agullo, A. Buttari, A. Guermouche and F. Lopez (2014), Implementing mul-
tifrontal sparse solvers for multicore architectures with sequential task flow
runtime systems, Technical Report IRI/RT2014-03FR, Institut de Recherche
en Informatique de Toulouse (IRIT). to appear in ACM Transactions on
Mathematical Software.

E. Agullo, A. Guermouche and J.-Y. L’Excellent (2008), ‘A parallel out-of-core
multifrontal method: storage of factors on disk and analysis of models for an
out-of-core active memory’, Parallel Computing 34(6-8), 296–317.

E. Agullo, A. Guermouche and J.-Y. L’Excellent (2010), ‘Reducing the I/O vol-
ume in sparse out-of-core multifrontal methods’, SIAM J. Sci. Comput.
31(6), 4774–4794.

G. Alaghband (1989), ‘Parallel pivoting combined with parallel reduction and fill-in
control’, Parallel Computing 11, 201–221.

G. Alaghband (1995), ‘Parallel sparse matrix solution and performance’, Parallel
Computing 21(9), 1407–1430.

G. Alaghband and H. F. Jordan (1989), ‘Sparse Gaussian elimination with con-
trolled fill-in on a shared memory multiprocessor’, IEEE Trans. Comput.
38, 1539–1557.

F. L. Alvarado and R. Schreiber (1993), ‘Optimal parallel solution of sparse trian-
gular systems’, SIAM J. Sci. Comput. 14(2), 446–460.

F. L. Alvarado, A. Pothen and R. Schreiber (1993), Highly parallel sparse trian-
gular solution, in Graph Theory and Sparse Matrix Computation (A. George,
J. R. Gilbert and J. W. H. Liu, eds), Vol. 56 of IMA Volumes in Applied
Mathematics, Springer-Verlag, New York, pp. 141–158.

F. L. Alvarado, D. C. Yu and R. Betancourt (1990), ‘Partitioned sparse a−1 meth-
ods’, IEEE Trans. Power Systems 5(2), 452–459.

P. R. Amestoy and I. S. Duff (1989), ‘Vectorization of a multiprocessor multifrontal
code’, Intl. J. Supercomp. Appl. 3(3), 41–59.

P. R. Amestoy and I. S. Duff (1993), ‘Memory management issues in sparse multi-
frontal methods on multiprocessors’, Intl. J. Supercomp. Appl. 7(1), 64–82.

P. R. Amestoy and C. Puglisi (2002), ‘An unsymmetrized multifrontal LU factor-
ization’, SIAM J. Matrix Anal. Appl. 24, 553–569.

P. R. Amestoy, C. C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent and
C. Weisbecker (2015a), ‘Improving multifrontal methods by means of block
low-rank representations’, SIAM J. Sci. Comput. 37(3), A1451–A1474.

Sparse Direct Methods 153

P. R. Amestoy, T. A. Davis and I. S. Duff (1996a), ‘An approximate minimum
degree ordering algorithm’, SIAM J. Matrix Anal. Appl. 17(4), 886–905.

P. R. Amestoy, T. A. Davis and I. S. Duff (2004a), ‘Algorithm 837: AMD, an
approximate minimum degree ordering algorithm’, ACM Trans. Math. Softw.
30(3), 381–388.

P. R. Amestoy, M. J. Daydé and I. S. Duff (1989), Use of level-3 blas kernels in the
solution of full and sparse linear equations, in High Performance Computing
(J.-L. Delhaye and E. Gelenbe, eds), North-Holland, Amsterdam, pp. 19–31.

P. R. Amestoy, I. S. Duff and J.-Y. L’Excellent (2000), ‘Multifrontal parallel dis-
tributed symmetric and unsymmetric solvers’, Computer Methods Appl. Mech.
Eng. 184, 501–520.

P. R. Amestoy, I. S. Duff and C. Puglisi (1996b), ‘Multifrontal QR factorization in
a multiprocessor environment’, Numer. Linear Algebra Appl. 3(4), 275–300.

P. R. Amestoy, I. S. Duff and C. Vömel (2004b), ‘Task scheduling in an asyn-
chronous distributed memory multifrontal solver’, SIAM J. Matrix Anal.
Appl. 26(2), 544–565.

P. R. Amestoy, I. S. Duff, A. Guermouche and T. Slavova (2010), ‘Analysis of the
solution phase of a parallel multifrontal solver’, Parallel Computing 36, 3–15.

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and J. Koster (2001a), ‘A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling’, SIAM J.
Matrix Anal. Appl. 23(1), 15–41.

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and X. S. Li (2001b), ‘Analysis and
comparison of two general sparse solvers for distributed memory computers’,
ACM Trans. Math. Softw. 27(4), 388–421.

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and X. S. Li (2003a), ‘Impact of the
implementation of MPI point-to-point communications on the performance of
two general sparse solvers’, Parallel Computing 29(7), 833–947.

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and F. H. Rouet (2015b), ‘Parallel
computation of entries of A−1’, SIAM J. Sci. Comput. 37(2), C268–C284.

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, Y. Robert, F. H. Rouet and B. Uçar
(2012), ‘On computing inverse entries of a sparse matrix in an out-of-core
environment’, SIAM J. Sci. Comput. 34(4), 1975–1999.

P. R. Amestoy, I. S. Duff, S. Pralet and C. Vömel (2003b), ‘Adapting a parallel
sparse direct solver to architectures with clusters of SMPs’, Parallel Comput-
ing 29(11–12), 1645 – 1668.

P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent and S. Pralet (2006), ‘Hybrid
scheduling for the parallel solution of linear systems’, Parallel Computing
32(2), 136 – 156.

P. R. Amestoy, J.-Y. L’Excellent and W. M. Sid-Lakhdar (2014a), Characterizing
asynchronous broadcast trees for multifrontal factorizations, in Proc. SIAM
Workshop on Combinatorial Scientific Computing (CSC14), Lyon, France,
pp. 51–53.

P. R. Amestoy, J.-Y. L’Excellent, F.-H. Rouet and W. M. Sid-Lakhdar (2014b),
Modeling 1D distributed-memory dense kernels for an asynchronous multi-
frontal sparse solver, in Proc. High-Performance Computing for Computa-
tional Science, VECPAR 2014, Eugene, Oregon, USA.

154 Davis, Rajamanickam, Sid-Lakhdar

P. R. Amestoy, X. S. Li and E. Ng (2007a), ‘Diagonal Markowitz scheme with local
symmetrization’, SIAM J. Matrix Anal. Appl. 29(1), 228–244.

P. R. Amestoy, X. S. Li and S. Pralet (2007b), ‘Unsymmetric ordering using a
constrained Markowitz scheme’, SIAM J. Matrix Anal. Appl. 29(1), 302–327.

R. Amit and C. Hall (1981), ‘Storage requirements for profile and frontal elimina-
tion’, SIAM J. Numer. Anal. 19(1), 205–218.

E. Anderson and Y. Saad (1989), ‘Solving sparse triangular linear systems on par-
allel computers’, Intl. J. High Speed Computing 01(01), 73–95.

E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney and D. C.
Sorensen (1999), LAPACK Users’ Guide, 3rd edn, SIAM, Philadelphia, PA.
http://www.netlib.org/lapack/lug/.

M. Arioli, J. W. Demmel and I. S. Duff (1989a), ‘Solving sparse linear systems with
sparse backward error’, SIAM J. Matrix Anal. Appl. 10(2), 165–190.

M. Arioli, I. S. Duff and P. P. M. de Rijk (1989b), ‘On the augmented systems
approach to sparse least-squares problems’, Numer. Math. 55, 667–684.

M. Arioli, I. S. Duff, N. I. M. Gould and J. K. Reid (1990), ‘Use of the P4 and P5
algorithms for in-core factorization of sparse matrices’, SIAM J. Sci. Comput.
11, 913–927.

C. P. Arnold, M. I. Parr and M. B. Dewe (1983), ‘An efficient parallel algorithm for
the solution of large sparse linear matrix equations’, IEEE Trans. Comput.
C-32(3), 265–272.

C. C. Ashcraft (1987), A vector implementation of the multifrontal method for
large sparse, symmetric positive definite systems, Technical Report ETA-TR-
51, Boeing Computer Services, Seattle, WA.

C. C. Ashcraft (1993), The fan-both family of column-based distributed Cholesky
factorization algorithms, in Graph Theory and Sparse Matrix Computation
(A. George, J. R. Gilbert and J. W. H. Liu, eds), Vol. 56 of IMA Volumes in
Applied Mathematics, Springer-Verlag, New York, pp. 159–190.

C. C. Ashcraft (1995), ‘Compressed graphs and the minimum degree algorithm’,
SIAM J. Sci. Comput. 16, 1404–1411.

C. C. Ashcraft and R. G. Grimes (1989), ‘The influence of relaxed supernode parti-
tions on the multifrontal method’, ACM Trans. Math. Softw. 15(4), 291–309.

C. C. Ashcraft and R. G. Grimes (1999), SPOOLES: an object-oriented sparse
matrix library, in Proc. 1999 SIAM Conf. Parallel Processing for Scientific
Computing. http://www.netlib.org/linalg/spooles.

C. C. Ashcraft and J. W. H. Liu (1997), ‘Using domain decomposition to find graph
bisectors’, BIT Numer. Math. 37, 506–534.

C. C. Ashcraft and J. W. H. Liu (1998a), ‘Applications of the Dulmage-Mendelsohn
decomposition and network flow to graph bisection improvement’, SIAM J.
Matrix Anal. Appl. 19(2), 325–354.

C. C. Ashcraft and J. W. H. Liu (1998b), ‘Robust ordering of sparse matrices using
multisection’, SIAM J. Matrix Anal. Appl. 19(3), 816–832.

C. C. Ashcraft, S. C. Eisenstat and J. W. H. Liu (1990a), ‘A fan-in algorithm for
distributed sparse numerical factorization’, SIAM J. Sci. Comput. 11(3), 593–
599.

Sparse Direct Methods 155

C. C. Ashcraft, S. C. Eisenstat, J. W. H. Liu and A. H. Sherman (1990b), A
comparison of three column-based distributed sparse factorization schemes,
Technical Report YALEU/DCS/RR-810, Yale University, New Haven, CT.

C. C. Ashcraft, R. G. Grimes and J. G. Lewis (1998), ‘Accurate symmetric indefinite
linear equation solvers’, SIAM J. Matrix Anal. Appl. 20(2), 513–561.

C. C. Ashcraft, R. G. Grimes, J. G. Lewis, B. W. Peyton and H. D. Simon (1987),
‘Progress in sparse matrix methods for large linear systems on vector super-
computers’, Intl. J. Supercomp. Appl. 1(4), 10–30.

H. Avron, G. Shklarski and S. Toledo (2008), ‘Parallel unsymmetric-pattern mul-
tifrontal sparse LU with column preordering’, ACM Trans. Math. Softw.
34(2), 1–31.

C. Aykanat, B. B. Cambazoglu and B. Uçar (2008), ‘Multi-level direct k-way hy-
pergraph partitioning with multiple constraints and fixed vertices’, J. Parallel
Distrib. Comput. 68(5), 609–625.

C. Aykanat, A. Pinar and U. V. Çatalyürek (2004), ‘Permuting sparse rectangular
matrices into block-diagonal form’, SIAM J. Sci. Comput. 25(6), 1860–1879.

A. Azad, M. Halappanavar, S. Rajamanickam, E. Boman, A. Khan and A. Pothen
(2012), Multithreaded algorithms for maximum matching in bipartite graphs,
in Proc. of 26th IPDPS, pp. 860–872.

R. E. Bank and D. J. Rose (1990), ‘On the complexity of sparse Gaussian elimina-
tion via bordering’, SIAM J. Sci. Comput. 11(1), 145–160.

R. E. Bank and R. K. Smith (1987), ‘General sparse elimination requires no per-
manent integer storage’, SIAM J. Sci. Comput. 8(4), 574–584.

S. T. Barnard, A. Pothen and H. D. Simon (1995), ‘A spectral algorithm for enve-
lope reduction of sparse matrices’, Numer. Linear Algebra Appl. 2, 317–334.

R. E. Benner, G. R. Montry and G. G. Weigand (1987), ‘Concurrent multifrontal
methods: shared memory, cache, and frontwidth issues’, Intl. J. Supercomp.
Appl. 1(3), 26–44.

C. Berge (1957), ‘Two theorems in graph theory’, Proceedings of the National
Academy of Sciences of the United States of America 43(9), 842.

P. Berman and G. Schnitger (1990), ‘On the performance of the minimum degree
ordering for Gaussian elimination’, SIAM J. Matrix Anal. Appl. 11(1), 83–88.

A. Berry, E. Dahlhaus, P. Heggernes and G. Simonet (2008), ‘Sequential and par-
allel triangulating algorithms for elimination game and new insights on mini-
mum degree’, Theoretical Comp. Sci. 409(3), 601–616.

R. D. Berry (1971), ‘An optimal ordering of electronic circuit equations for a sparse
matrix solution’, IEEE Trans. Circuit Theory CT-19(1), 40–50.

M. V. Bhat, W. G. Habashi, J. W. H. Liu, V. N. Nguyen and M. F. Peeters (1993),
‘A note on nested dissection for rectangular grids’, SIAM J. Matrix Anal.
Appl. 14(1), 253–258.

G. Birkhoff and A. George (1973), Elimination by nested dissection, in Complexity
of Sequential and Parallel Numerical Algorithms (J. F. Traub, ed.), New York:
Academic Press, pp. 221–269.

C. H. Bischof and P. C. Hansen (1991), ‘Structure-preserving and rank-revealing
QR-factorizations’, SIAM J. Sci. Comput. 12(6), 1332–1350.

C. H. Bischof, J. G. Lewis and D. J. Pierce (1990), ‘Incremental condition estima-
tion for sparse matrices’, SIAM J. Matrix Anal. Appl. 11, 644–659.

156 Davis, Rajamanickam, Sid-Lakhdar

A. Björck (1984), ‘A general updating algorithm for constrained linear least squares
problems’, SIAM J. Sci. Comput. 5(2), 394–402.

A. Björck (1988), ‘A direct method for sparse least squares problems with lower
and upper bounds’, Numer. Math. 54, 19–32.

A. Björck (1996), Numerical methods for least squares problems, SIAM, Philadel-
phia, PA.

A. Björck and I. S. Duff (1988), ‘A direct method for sparse linear least squares
problems’, Linear Algebra Appl. 34, 43–67.

P. E. Bjorstad (1987), ‘A large scale, sparse, secondary storage, direct linear equa-
tion solver for structural analysis and its implementation on vector and par-
allel architectures’, Parallel Computing 5, 3–12.

L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker and R. Whaley
(1997), ScaLAPACK Users’ Guide, Society for Industrial and Applied Math-
ematics.

E. G. Boman and B. Hendrickson (1996), A multilevel algorithm for reducing the
envelope of sparse matrices, Technical Report SCCM-96-14, Stanford Univer-
sity, Stanford, CA.

E. G. Boman, Ü. V. Çatalyürek, C. Chevalier and K. D. Devine (2012), ‘The
zoltan and isorropia parallel toolkits for combinatorial scientific computing:
Partitioning, ordering and coloring’, Scientific Programming 20(2), 129–150.

I. Brainman and S. Toledo (2002), ‘Nested-dissection orderings for sparse LU with
partial pivoting’, SIAM J. Matrix Anal. Appl. 23, 998–1012.

R. K. Brayton, F. G. Gustavson and R. A. Willoughby (1970), ‘Some results on
sparse matrices’, Math. Comp. 24(112), 937–954.

N. G. Brown and R. Wait (1981), A branching envelope reducing algorithm for
finite element meshes, in Sparse Matrices and Their Uses (I. S. Duff, ed.),
New York: Academic Press, pp. 315–324.

T. Bui and C. Jones (1993), A heuristic for reducing fill in sparse matrix factoriza-
tion, in Proc. 6th SIAM Conf. Parallel Processing for Scientific Computation,
SIAM, pp. 445–452.

J. R. Bunch (1973), Complexity of sparse elimination, in Complexity of Sequential
and Parallel Numerical Algorithms (J. F. Traub, ed.), New York: Academic
Press, pp. 197–220.

J. R. Bunch (1974), ‘Partial pivoting strategies for symmetric matrices’, SIAM J.
Numer. Anal. 11, 521–528.

J. R. Bunch and L. Kaufman (1977), ‘Some stable methods for calculating inertia
and solving symmetric linear systems’, Math. Comp. 31, 163–179.

A. Buttari (2013), ‘Fine-grained multithreading for the multifrontal QR factoriza-
tion of sparse matrices’, SIAM J. Sci. Comput. 35(4), C323–C345.

A. Bykat (1977), ‘A note on an element ordering scheme’, Intl. J. Numer. Methods
Eng. 11(1), 194–198.

D. A. Calahan (1973), Parallel solution of sparse simultaneous linear equations, in
Proceedings of the 11th Annual Allerton Conference on Circuits and System
Theory, pp. 729–735.

Sparse Direct Methods 157

J. Cardenal, I. S. Duff and J. Jiménez (1998), ‘Solution of sparse quasi-square rect-
angular systems by gaussian elimination’, IMA J. Numer. Anal. 18(2), 165–
177.

U. V. Çatalyürek and C. Aykanat (1999), ‘Hypergraph-partitioning-based decom-
position for parallel sparse-matrix vector multiplication’, IEEE Trans. Parallel
Distributed Systems 10(7), 673–693.

U. V. Çatalyürek and C. Aykanat (2001), A fine-grain hypergraph model for 2D de-
composition of sparse matrices, in Proc. 15th IEEE Intl. Parallel and Distrib.
Proc. Symp: IPDPS ’01, IEEE, pp. 1199–1204.

U. V. Çatalyürek and C. Aykanat (2011), ‘PaToH: Partitioning tool for hyper-
graphs’, http://bmi.osu.edu/umit/software.html.

U. V. Çatalyürek, C. Aykanat and E. Kayaaslan (2011), ‘Hypergraph partitioning-
based fill-reducing ordering for symmetric matrices’, SIAM J. Sci. Comput.
33(4), 1996–2023.

W. M. Chan and A. George (1980), ‘A linear time implementation of the reverse
Cuthill-Mckee algorithm’, BIT Numer. Math. 20, 8–14.

G. Chen, K. Malkowski, M. Kandemir and P. Raghavan (2005), Reducing power
with performance constraints for parallel sparse applications, in Proc. 19th
IEEE Parallel and Distributed Processing Symposium.

X. Chen, L. Ren, Y. Wang and H. Yang (2015), ‘GPU-accelerated sparse LU fac-
torization for circuit simulation with performance modeling’, IEEE Trans.
Parallel Distributed Systems 26(3), 786–795.

X. Chen, Y. Wang and H. Yang (2013), ‘NICSLU: an adaptive sparse matrix solver
for parallel circuit simulation’, IEEE Trans. Computer-Aided Design Integ.
Circ. Sys. 32(2), 261–274.

Y. Chen, T. A. Davis, W. W. Hager and S. Rajamanickam (2008), ‘Algo-
rithm 887: CHOLMOD, supernodal sparse Cholesky factorization and up-
date/downdate’, ACM Trans. Math. Softw. 35(3), 1–14.

Y. T. Chen and R. P. Tewarson (1972a), ‘On the fill-in when sparse vectors are
orthonormalized’, Computing 9(1), 53–56.

Y. T. Chen and R. P. Tewarson (1972b), ‘On the optimal choice of pivots for the
gaussian elimination’, Computing 9(3), 245–250.

K. Y. Cheng (1973a), ‘Minimizing the bandwidth of sparse symmetric matrices’,
Computing 11(2), 103–110.

K. Y. Cheng (1973b), ‘Note on minimizing the bandwidth of sparse, symmetric
matrices’, Computing 11(1), 27–30.

C. Chevalier and F. Pellegrini (2008), ‘PT-SCOTCH: a tool for efficient parallel
graph ordering’, Parallel Computing 34(6-8), 318–331.

E. Chu and A. George (1990), ‘Sparse orthogonal decomposition on a hypercube
multiprocessor’, SIAM J. Matrix Anal. Appl. 11(3), 453–465.

E. Chu, A. George, J. W. H. Liu and E. G. Ng (1984), SPARSPAK: Water-
loo sparse matrix package, user’s guide for SPARSPAK-A, Technical Report
CS-84-36, Univ. of Waterloo Dept. of Computer Science, Waterloo, Ontario.
https://cs.uwaterloo.ca/research/tr/1984/CS-84-36.pdf.

K. A. Cliffe, I. S. Duff and J. A. Scott (1998), ‘Performance issues for frontal
schemes on a cache-based high-performance computer’, Intl. J. Numer. Meth-
ods Eng. 42(1), 127–143.

158 Davis, Rajamanickam, Sid-Lakhdar

T. F. Coleman, A. Edenbrandt and J. R. Gilbert (1986), ‘Predicting fill for sparse
orthogonal factorization’, J. ACM 33, 517–532.

R. J. Collins (1973), ‘Bandwidth reduction by automatic renumbering’, Intl. J.
Numer. Methods Eng. 6(3), 345–356.

J. M. Conroy (1990), ‘Parallel nested dissection’, Parallel Computing 16, 139–156.
J. M. Conroy, S. G. Kratzer, R. F. Lucas and A. E. Naiman (1998), ‘Data-parallel

sparse LU factorization’, SIAM J. Sci. Comput. 19(2), 584–604.
T. H. Cormen, C. E. Leiserson and R. L. Rivest (1990), Introduction to Algorithms,

MIT Press, Cambridge, MA.
O. Cozette, A. Guermouche and G. Utard (2004), Adaptive paging for a mul-

tifrontal solver, in Proc. 18th Intl. Conf. on Supercomputing, ACM Press,
pp. 267–276.

H. L. Crane, N. E. Gibbs, W. G. Poole and P. K. Stockmeyer (1976), ‘Algorithm
508: Matrix bandwidth and profile reduction’, ACM Trans. Math. Softw.
2(4), 375–377.

A. R. Curtis and J. K. Reid (1971), ‘The solution of large sparse unsymmetric
systems of linear equations’, IMA J. Appl. Math. 8(3), 344–353.

E. Cuthill (1972), Several strategies for reducing the bandwidth of matrices, in
Sparse Matrices and Their Applications (D. J. Rose and R. A. Willoughby,
eds), New York: Plenum Press, New York, pp. 157–166.

E. Cuthill and J. McKee (1969), Reducing the bandwidth of sparse symmetric ma-
trices, in Proc. 24th Conf. of the ACM, Brandon Press, New Jersey, pp. 157–
172.

A. C. Damhaug and J. R. Reid (1996), MA46: a Fortran code for direct solution
of sparse unsymmetric linear systems of equations from finite-element appli-
cations, Technical Report RAL-TR-96-010, Rutherford Appleton Lab, Oxon,
England.

A. K. Dave and I. S. Duff (1987), ‘Sparse matrix calculations on the CRAY-2’,
Parallel Computing 5, 55–64.

T. A. Davis (2004a), ‘Algorithm 832: UMFPACK V4.3, an unsymmetric-pattern
multifrontal method’, ACM Trans. Math. Softw. 30(2), 196–199.

T. A. Davis (2004b), ‘A column pre-ordering strategy for the unsymmetric-pattern
multifrontal method’, ACM Trans. Math. Softw. 30(2), 165–195.

T. A. Davis (2005), ‘Algorithm 849: A concise sparse Cholesky factorization pack-
age’, ACM Trans. Math. Softw. 31(4), 587–591.

T. A. Davis (2006), Direct Methods for Sparse Linear Systems, SIAM, Philadelphia,
PA.

T. A. Davis (2011a), ‘Algorithm 915: SuiteSparseQR, multifrontal multi-
threaded rank-revealinng sparse QR factorization’, ACM Trans. Math. Softw.
38(1), 8:1–8:22.

T. A. Davis (2011b), MATLAB Primer, 8th edn, Chapman & Hall/CRC Press,
Boca Raton.

T. A. Davis (2013), ‘Algorithm 930: FACTORIZE, an object-oriented linear system
solver for MATLAB’, ACM Trans. Math. Softw. 39(4), 28:1–28:18.

T. A. Davis and E. S. Davidson (1988), ‘Pairwise reduction for the direct, parallel
solution of sparse unsymmetric sets of linear equations’, IEEE Trans. Comput.
37(12), 1648–1654.

Sparse Direct Methods 159

T. A. Davis and I. S. Duff (1997), ‘An unsymmetric-pattern multifrontal method
for sparse LU factorization’, SIAM J. Matrix Anal. Appl. 18(1), 140–158.

T. A. Davis and I. S. Duff (1999), ‘A combined unifrontal/multifrontal method for
unsymmetric sparse matrices’, ACM Trans. Math. Softw. 25(1), 1–20.

T. A. Davis and W. W. Hager (1999), ‘Modifying a sparse Cholesky factorization’,
SIAM J. Matrix Anal. Appl. 20(3), 606–627.

T. A. Davis and W. W. Hager (2001), ‘Multiple-rank modifications of a sparse
Cholesky factorization’, SIAM J. Matrix Anal. Appl. 22, 997–1013.

T. A. Davis and W. W. Hager (2005), ‘Row modifications of a sparse Cholesky
factorization’, SIAM J. Matrix Anal. Appl. 26(3), 621–639.

T. A. Davis and W. W. Hager (2009), ‘Dynamic supernodes in sparse Cholesky
update/downdate and triangular solves’, ACM Trans. Math. Softw. 35(4), 1–
23.

T. A. Davis and Y. Hu (2011), ‘The University of Florida sparse matrix collection’,
ACM Trans. Math. Softw. 38(1), 1:1–1:25.

T. A. Davis and E. Palamadai Natarajan (2010), ‘Algorithm 907: KLU, a di-
rect sparse solver for circuit simulation problems’, ACM Trans. Math. Softw.
37(3), 36:1–36:17.

T. A. Davis and P. C. Yew (1990), ‘A nondeterministic parallel algorithm for
general unsymmetric sparse LU factorization’, SIAM J. Matrix Anal. Appl.
11(3), 383–402.

T. A. Davis, J. R. Gilbert, S. I. Larimore and E. G. Ng (2004a), ‘Algorithm 836:
COLAMD, a column approximate minimum degree ordering algorithm’, ACM
Trans. Math. Softw. 30(3), 377–380.

T. A. Davis, J. R. Gilbert, S. I. Larimore and E. G. Ng (2004b), ‘A column ap-
proximate minimum degree ordering algorithm’, ACM Trans. Math. Softw.
30(3), 353–376.

M. J. Daydé and I. S. Duff (1997), The use of computational kernels in full and
sparse linear solvers, efficient code design on high-performance RISC proces-
sors, in Vector and Parallel Processing - VECPAR’96 (J. M. L. M. Palma and
J. Dongarra, eds), Vol. 1215 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, pp. 108–139.

C. De Souza, R. Keunings, L. A. Wolsey and O. Zone (1994), ‘A new approach to
minimising the frontwidth in finite element calculations’, Computer Methods
Appl. Mech. Eng. 111(3-4), 323–334.

G. M. Del Corso and G. Manzini (1999), ‘Finding exact solutions to the bandwidth
minimization problem’, Computing 62(3), 189–203.

B. Dembart and K. W. Neves (1977), Sparse triangular factorization on vector
computers, in Exploring Applications of Parallel Processing to Power Sys-
tems Applications (P. M. Anderson, ed.), Electric Power Research Institute,
California, pp. 57–101.

J. W. Demmel (1997), Applied Numerical Linear Algebra, SIAM, Philadelphia.
J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li and J. W. H. Liu (1999a), ‘A

supernodal approach to sparse partial pivoting’, SIAM J. Matrix Anal. Appl.
20(3), 720–755.

J. W. Demmel, J. R. Gilbert and X. S. Li (1999b), ‘An asynchronous parallel

160 Davis, Rajamanickam, Sid-Lakhdar

supernodal algorithm for sparse Gaussian elimination’, SIAM J. Matrix Anal.
Appl. 20(4), 915–952.

K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling and U. V.
Çatalyürek (2006), Parallel hypergraph partitioning for scientific computing,
in Proc. of 20th International Parallel and Distributed Processing Symposium
(IPDPS’06), IEEE.

F. Dobrian and A. Pothen (2005), Oblio: design and performance, in State of the
Art in Scientific Computing, Lecture Notes in Computer Science (J. Dongarra,
K. Madsen and J. Wasniewski, eds), Vol. 3732, Springer-Verlag, pp. 758–767.

F. Dobrian, G. K. Kumfert and A. Pothen (2000), The design of sparse direct
solvers using object oriented techniques, in Adv. in Software Tools in Sci.
Computing (A. M. Bruaset, H. P. Langtangen and E. Quak, eds), Springer-
Verlag, pp. 89–131.

J. J. Dongarra, J. Du Croz, I. S. Duff and S. Hammarling (1990), ‘A set of level-3
basic linear algebra subprograms’, ACM Trans. Math. Softw. 16(1), 1–17.

J. J. Dongarra, I. S. Duff, D. C. Sorensen and H. A. Van der Vorst (1998), Numerical
Linear Algebra for High-Performance Computers, SIAM, Philadelphia.

I. S. Duff (1974a), ‘On the number of nonzeros added when Gaussian elimination
is performed on sparse random matrices’, Math. Comp. 28, 219–230.

I. S. Duff (1974b), ‘Pivot selection and row ordering in Givens reductions on sparse
matrices’, Computing 13, 239–248.

I. S. Duff (1977a), ‘On permutations to block triangular form’, IMA J. Appl. Math.
19(3), 339–342.

I. S. Duff (1977b), ‘A survey of sparse matrix research’, Proc. IEEE 65(4), 500–535.
I. S. Duff (1979), Practical comparisons of codes for the solution of sparse linear

systems, in Sparse Matrix Proceedings (I. S. Duff and G. W. Stewart, eds),
SIAM, Philadelphia, pp. 107–134.

I. S. Duff (1981a), ‘Algorithm 575: Permutations for a zero-free diagonal’, ACM
Trans. Math. Softw. 7(1), 387–390.

I. S. Duff (1981b), ‘ME28: A sparse unsymmetric linear equation solver for complex
equations’, ACM Trans. Math. Softw. 7(4), 505–511.

I. S. Duff (1981c), ‘On algorithms for obtaining a maximum transversal’, ACM
Trans. Math. Softw. 7(1), 315–330.

I. S. Duff (1981d), A sparse future, in Sparse Matrices and Their Uses (I. S. Duff,
ed.), New York: Academic Press, pp. 1–29.

I. S. Duff (1981e), Sparse Matrices and Their Uses, Academic Press, New York and
London.

I. S. Duff (1984a), ‘Design features of a frontal code for solving sparse unsymmetric
linear systems out-of-core’, SIAM J. Sci. Comput. 5, 270–280.

I. S. Duff (1984b), ‘Direct methods for solving sparse systems of linear equations’,
SIAM J. Sci. Comput. 5(3), 605–619.

I. S. Duff (1984c), The solution of nearly symmetric sparse linear systems, in Com-
puting Methods in Applied Sciences and Engineering, VI: Proc. 6th Intl. Sym-
posium (R. Glowinski and J.-L. Lions, eds), North-Holland, Amsterdam, New
York, and London, pp. 57–74.

I. S. Duff (1984d), The solution of sparse linear systems on the CRAY-1, in High-
Speed Computation (J. S. Kowalik, ed.), Berlin: Springer-Verlag, pp. 293–309.

Sparse Direct Methods 161

I. S. Duff (1984e), A survey of sparse matrix software, in Sources and Development
of Mathematical Software (W. R. Cowell, ed.), Englewood Cliffs, NJ: Prentice-
Hall, pp. 165–199.

I. S. Duff (1985), Data structures, algorithms and software for sparse matrices, in
Sparsity and Its Applications (D. J. Evans, ed.), Cambridge, United Kingdom:
Cambridge University Press, pp. 1–29.

I. S. Duff (1986a), ‘Parallel implementation of multifrontal schemes’, Parallel Com-
puting 3, 193–204.

I. S. Duff (1986b), The parallel solution of sparse linear equations, in CONPAR
86, Proc. Conf. on Algorithms and Hardware for Parallel Processing, Lecture
Notes in Computer Science 237 (W. Handler, D. Haupt, R. Jeltsch, W. Juling
and O. Lange, eds), Berlin: Springer-Verlag, pp. 18–24.

I. S. Duff (1989a), ‘Direct solvers’, Computer Physics Reports 11, 1–20.
I. S. Duff (1989b), ‘Multiprocessing a sparse matrix code on the Alliant FX/8’, J.

Comput. Appl. Math. 27, 229–239.
I. S. Duff (1989c), Parallel algorithms for sparse matrix solution, in Parallel com-

puting. Methods, algorithms, and applications (D. J. Evans and C. Sutti, eds),
Adam Hilger Ltd., Bristol, pp. 73–82.

I. S. Duff (1990), ‘The solution of large-scale least-squares problems on supercom-
puters’, Annals of Oper. Res. 22(1), 241–252.

I. S. Duff (1991), Parallel algorithms for general sparse systems, in Computer Al-
gorithms for Solving Linear Algebraic Equations (E. Spedicato, ed.), Vol. 77
of NATO ASI Series, Springer Berlin Heidelberg, pp. 277–297.

I. S. Duff (1996), ‘A review of frontal methods for solving linear systems’, Computer
Physics Comm. 97, 45–52.

I. S. Duff (2000), ‘The impact of high-performance computing in the solution of
linear systems: trends and problems’, J. Comput. Appl. Math. 123(1-2), 515–
530.

I. S. Duff (2004), ‘MA57—a code for the solution of sparse symmetric definite and
indefinite systems’, ACM Trans. Math. Softw. 30(2), 118–144.

I. S. Duff (2007), ‘Developments in matching and scaling algorithms’, Proc. Applied
Math. Mech. 7(1), 1010801–1010802.

I. S. Duff (2009), ‘The design and use of a sparse direct solver for skew symmetric
matrices’, J. Comput. Appl. Math. 226, 50–54.

I. S. Duff and L. S. Johnsson (1989), Node orderings and concurrency in
structurally-symmetric sparse problems, in Parallel Supercomputing: Meth-
ods, Algorithms, and Applications (G. F. Carey, ed.), John Wiley and Sons
Ltd., New York, NY, chapter 12, pp. 177–189.

I. S. Duff and J. Koster (1999), ‘The design and use of algorithms for permuting
large entries to the diagonal of sparse matrices’, SIAM J. Matrix Anal. Appl.
20(4), 889–901.

I. S. Duff and J. Koster (2001), ‘On algorithms for permuting large entries to the
diagonal of a sparse matrix’, SIAM J. Matrix Anal. Appl. 22(4), 973–996.

I. S. Duff and S. Pralet (2005), ‘Strategies for scaling and pivoting for sparse sym-
metric indefinite problems’, SIAM J. Matrix Anal. Appl. 27(2), 313–340.

I. S. Duff and S. Pralet (2007), ‘Towards stable mixed pivoting strategies for the

162 Davis, Rajamanickam, Sid-Lakhdar

sequential and parallel solution of sparse symmetric indefinite systems’, SIAM
J. Matrix Anal. Appl. 29(3), 1007–1024.

I. S. Duff and J. K. Reid (1974), ‘A comparison of sparsity orderings for obtaining
a pivotal sequence in Gaussian elimination’, IMA J. Appl. Math. 14(3), 281–
291.

I. S. Duff and J. K. Reid (1976), ‘A comparison of some methods for the solution
of sparse overdetermined systems of linear equations’, IMA J. Appl. Math.
17(3), 267–280.

I. S. Duff and J. K. Reid (1978a), ‘Algorithm 529: Permutations to block triangular
form’, ACM Trans. Math. Softw. 4(2), 189–192.

I. S. Duff and J. K. Reid (1978b), ‘An implementation of Tarjan’s algorithm for the
block triangularization of a matrix’, ACM Trans. Math. Softw. 4(2), 137–147.

I. S. Duff and J. K. Reid (1979a), Performance evaluation of codes for sparse matrix
problems, in Performance Evaluation of Numerical Software; Proc. IFIP TC
2.5 Working Conf. (L. D. Fosdick, ed.), New York: North-Holland, New York,
pp. 121–135.

I. S. Duff and J. K. Reid (1979b), ‘Some design features of a sparse matrix code’,
ACM Trans. Math. Softw. 5(1), 18–35.

I. S. Duff and J. K. Reid (1982), ‘Experience of sparse matrix codes on the CRAY-1’,
Computer Physics Comm. 26, 293–302.

I. S. Duff and J. K. Reid (1983a), ‘The multifrontal solution of indefinite sparse
symmetric linear equations’, ACM Trans. Math. Softw. 9(3), 302–325.

I. S. Duff and J. K. Reid (1983b), ‘A note on the work involved in no-fill sparse
matrix factorization’, IMA J. Numer. Anal. 3(1), 37–40.

I. S. Duff and J. K. Reid (1984), ‘The multifrontal solution of unsymmetric sets of
linear equations’, SIAM J. Sci. Comput. 5(3), 633–641.

I. S. Duff and J. K. Reid (1996a), ‘The design of MA48: a code for the direct solution
of sparse unsymmetric linear systems of equations’, ACM Trans. Math. Softw.
22(2), 187–226.

I. S. Duff and J. K. Reid (1996b), ‘Exploiting zeros on the diagonal in the direct
solution of indefinite sparse symmetric linear systems’, ACM Trans. Math.
Softw. 22(2), 227–257.

I. S. Duff and J. A. Scott (1996), ‘The design of a new frontal code for solving
sparse, unsymmetric systems’, ACM Trans. Math. Softw. 22(1), 30–45.

I. S. Duff and J. A. Scott (1999), ‘A frontal code for the solution of sparse positive-
definite symmetric systems arising from finite-element applications’, ACM
Trans. Math. Softw. 25(4), 404–424.

I. S. Duff and J. A. Scott (2004), ‘A parallel direct solver for large sparse highly
unsymmetric linear systems’, ACM Trans. Math. Softw. 30(2), 95–117.

I. S. Duff and J. A. Scott (2005), ‘Stabilized bordered block diagonal forms for
parallel sparse solvers’, Parallel Computing 31, 275–289.

I. S. Duff and B. Uçar (2010), ‘On the block triangular form of symmetric matrices’,
SIAM Review 52(3), 455–470.

I. S. Duff and B. Uçar (2012), Combinatorial problems in solving linear sys-
tems, in Combinatorial Scientific Computing (O. Schenk, ed.), Chapman and
Hall/CRC Computational Science, chapter 2, pp. 21–68.

Sparse Direct Methods 163

I. S. Duff and H. A. Van der Vorst (1999), ‘Developments and trends in the parallel
solution of linear systems’, Parallel Computing 25, 1931–1970.

I. S. Duff and T. Wiberg (1988), ‘Implementations of O(
√
nt) assignment algo-

rithms’, ACM Trans. Math. Softw. 14(3), 267–287.
I. S. Duff, A. M. Erisman and J. K. Reid (1976), ‘On George’s nested dissection

method’, SIAM J. Numer. Anal. 13(5), 686–695.
I. S. Duff, A. M. Erisman and J. K. Reid (1986), Direct Methods for Sparse Matrices,

London: Oxford Univ. Press.
I. S. Duff, A. M. Erisman, C. W. Gear and J. K. Reid (1988), ‘Sparsity structure

and Gaussian elimination’, ACM SIGNUM Newsletter 23, 2–8.
I. S. Duff, N. I. M. Gould, M. Lescrenier and J. K. Reid (1990), The multifrontal

method in a parallel environment, in Reliable Numerical Computation (M. G.
Cox and S. Hammarling, eds), Oxford University Press, London, pp. 93–111.

I. S. Duff, N. I. M. Gould, J. K. Reid, J. A. Scott and K. Turner (1991), ‘The
factorization of sparse symmetric indefinite matrices’, IMA J. Numer. Anal.
11(2), 181–204.

I. S. Duff, R. G. Grimes and J. G. Lewis (1989a), ‘Sparse matrix test problems’,
ACM Trans. Math. Softw. 15(1), 1–14.

I. S. Duff, K. Kaya and B. Uçar (2011), ‘Design, implementation, and analysis
of maximum transversal algorithms’, ACM Trans. Math. Softw. 38(2), 13:1–
13:31.

I. S. Duff, J. K. Reid and J. A. Scott (1989b), ‘The use of profile reduction algo-
rithms with a frontal code’, Intl. J. Numer. Methods Eng. 28(11), 2555–2568.

I. S. Duff, J. K. Reid, J. K. Munksgaard and H. B. Nielsen (1979), ‘Direct solution
of sets of linear equations whose matrix is sparse, symmetric and indefinite’,
IMA J. Appl. Math. 23(2), 235–250.

A. L. Dulmage and N. S. Mendelsohn (1963), ‘Two algorithms for bipartite graphs’,
J. SIAM 11, 183–194.

O. Edlund (2002), ‘A software package for sparse orthogonal factorization and
updating’, ACM Trans. Math. Softw. 28(4), 448–482.

S. C. Eisenstat and J. W. H. Liu (1992), ‘Exploiting structural symmetry in unsym-
metric sparse symbolic factorization’, SIAM J. Matrix Anal. Appl. 13(1), 202–
211.

S. C. Eisenstat and J. W. H. Liu (1993a), ‘Exploiting structural symmetry in a
sparse partial pivoting code’, SIAM J. Sci. Comput. 14(1), 253–257.

S. C. Eisenstat and J. W. H. Liu (1993b), Structural representations of Schur com-
plements in sparse matrices, in Graph Theory and Sparse Matrix Computation
(A. George, J. R. Gilbert and J. W. H. Liu, eds), Vol. 56 of IMA Volumes in
Applied Mathematics, Springer-Verlag, New York, pp. 85–100.

S. C. Eisenstat and J. W. H. Liu (2005a), ‘The theory of elimination trees for sparse
unsymmetric matrices’, SIAM J. Matrix Anal. Appl. 26(3), 686–705.

S. C. Eisenstat and J. W. H. Liu (2005b), ‘A tree based dataflow model for the
unsymmetric multifrontal method’, Electronic Trans. on Numerical Analysis
21, 1–19.

S. C. Eisenstat and J. W. H. Liu (2008), ‘Algorithmic aspects of elimination trees
for sparse unsymmetric matrices’, SIAM J. Matrix Anal. Appl. 29(4), 1363–
1381.

164 Davis, Rajamanickam, Sid-Lakhdar

S. C. Eisenstat, M. C. Gursky, M. H. Schultz and A. H. Sherman (1977), The Yale
sparse matrix package, II: The non-symmetric codes, Technical Report 114,
Yale Univ. Dept. of Computer Science, New Haven, CT.

S. C. Eisenstat, M. C. Gursky, M. H. Schultz and A. H. Sherman (1982), ‘Yale
sparse matrix package, I: The symmetric codes’, Intl. J. Numer. Methods
Eng. 18(8), 1145–1151.

S. C. Eisenstat, M. H. Schultz and A. H. Sherman (1975), ‘Efficient implementation
of sparse symmetric Gaussian elimination’, Advances in Computer Methods
for Partial Differential Equations pp. 33–39.

S. C. Eisenstat, M. H. Schultz and A. H. Sherman (1976a), Applications of an
element model for Gaussian elimination, in Sparse Matrix Computations (J. R.
Bunch and D. J. Rose, eds), New York: Academic Press, pp. 85–96.

S. C. Eisenstat, M. H. Schultz and A. H. Sherman (1976b), Considerations in the
design of software for sparse Gaussian elimination, in Sparse Matrix Com-
putations (J. R. Bunch and D. J. Rose, eds), New York: Academic Press,
pp. 263–273.

S. C. Eisenstat, M. H. Schultz and A. H. Sherman (1979), Software for sparse
Gaussian elimination with limited core storage, in Sparse Matrix Proceedings
(I. S. Duff and G. W. Stewart, eds), SIAM, Philadelphia, pp. 135–153.

S. C. Eisenstat, M. H. Schultz and A. H. Sherman (1981), ‘Algorithms and data
structures for sparse symmetric Gaussian elimination’, SIAM J. Sci. Comput.
2(2), 225–237.

A. M. Erisman, R. G. Grimes, J. G. Lewis and W. G. Poole (1985), ‘A struc-
turally stable modification of Hellerman-Rarick’s P4 algorithm for reordering
unsymmetric sparse matrices’, SIAM J. Numer. Anal. 22(2), 369–385.

A. M. Erisman, R. G. Grimes, J. G. Lewis, W. G. Poole and H. D. Simon (1987),
‘Evaluation of orderings for unsymmetric sparse matrices’, SIAM J. Sci. Com-
put. 8(4), 600–624.

K. Eswar, C.-H. Huang and P. Sadayappan (1994), Memory-adaptive parallel sparse
Cholesky factorization, in Scalable High-Performance Computing Conference,
1994., Proceedings of the, pp. 317–323.

K. Eswar, C.-H. Huang and P. Sadayappan (1995), On mapping data and compu-
tation for parallel sparse Cholesky factorization, in Proc. 5th Symp. Frontiers
of Massively Parallel Computation, pp. 171–178.

K. Eswar, P. Sadayappan and V. Visvanathan (1993a), Parallel direct solution of
sparse linear systems, in Parallel Computing on Distributed Memory Multi-
processors (F. Özgüner and F. Erçal, eds), Vol. 103 of NATO ASI Series,
Springer Berlin Heidelberg, pp. 119–142.

K. Eswar, P. Sadayappan, C.-H. Huang and V. Visvanathan (1993b), Supernodal
sparse Cholesky factorization on distributed-memory multiprocessors, in Proc.
Intl. Conf. Parallel Processing (ICPP93), Vol. 3, pp. 18–22.

D. J. Evans, ed. (1985), Sparsity and Its Applications, Cambridge, United Kingdom:
Cambridge University Press.

G. C. Everstine (1979), ‘A comparison of three resequencing algorithms for the
reduction of matrix profile and wavefront’, Intl. J. Numer. Methods Eng.
14(6), 837–853.

Sparse Direct Methods 165

C. A. Felippa (1975), ‘Solution of linear equations with skyline-stored symmetric
matrix’, Computers and Structures 5, 13–29.

S. J. Fenves and K. H. Law (1983), ‘A two-step approach to finite element ordering’,
Intl. J. Numer. Methods Eng. 19(6), 891–911.

C. M. Fiduccia and R. M. Mattheyses (1982), A linear-time heuristic for improving
network partition, in Proc. 19th Design Automation Conf., Las Vegas, NV,
pp. 175–181.

M. Fiedler (1973), ‘Algebraic connectivity of graphs’, Czechoslovak Math J.
23, 298–305.

J. J. H. Forrest and J. A. Tomlin (1972), ‘Updated triangular factors of the basis
to maintain sparsity in the product form simplex method’, Math. Program.
2(1), 263–278.

L. V. Foster and T. A. Davis (2013), ‘Algorithm 933: Reliable calculation of numer-
ical rank, null space bases, pseudoinverse solutions and basic solutions using
SuiteSparseQR’, ACM Trans. Math. Softw. 40(1), 7:1–7:23.

C. Fu, X. Jiao and T. Yang (1998), ‘Efficient sparse LU factorization with par-
tial pivoting on distributed memory architectures’, IEEE Trans. Parallel Dis-
tributed Systems 9(2), 109–125.

K. A. Gallivan, P. C. Hansen, T. Ostromsky and Z. Zlatev (1995), ‘A locally op-
timized reordering algorithm and its application to a parallel sparse linear
system solver’, Computing 54(1), 39–67.

K. A. Gallivan, B. A. Marsolf and H. A. G. Wijshoff (1996), ‘Solving large
nonsymmetric sparse linear systems using MCSPARSE’, Parallel Computing
22(10), 1291–1333.

F. Gao and B. N. Parlett (1990), ‘A note on communication analysis of parallel
sparse cholesky factorization on a hypercube’, Parallel Computing 16(1), 59–
60.

D. M. Gay (1991), ‘Massive memory buys little speed for complete, in-core sparse
Cholesky factorizations on some scalar computers’, Linear Algebra Appl.
152, 291–314.

G. A. Geist and E. G. Ng (1989), ‘Task scheduling for parallel sparse Cholesky
factorization’, Intl. J. Parallel Programming 18(4), 291–314.

P. Geng, J. T. Oden and R. A. van de Geijn (1997), ‘A parallel multifrontal algo-
rithm and its implementation’, Computer Methods Appl. Mech. Eng. 149(1-
4), 289 – 301.

W. M. Gentleman (1975), ‘Row elimination for solving sparse linear systems and
least squares problems’, Lecture Notes in Mathematics 506, 122–133.

A. George (1971), Computer implementation of the finite element method, Techni-
cal Report STAN-CS-71-208, Stanford University, Department of Computer
Science.

A. George (1972), Block elimination on finite element systems of equations, in
Sparse Matrices and Their Applications (D. J. Rose and R. A. Willoughby,
eds), New York: Plenum Press, New York, pp. 101–114.

A. George (1973), ‘Nested dissection of a regular finite element mesh’, SIAM J.
Numer. Anal. 10(2), 345–363.

A. George (1974), ‘On block elimination for sparse linear systems’, SIAM J. Numer.
Anal. 11(3), 585–603.

166 Davis, Rajamanickam, Sid-Lakhdar

A. George (1977a), ‘Numerical experiments using dissection methods to solve n-
by-n grid problems’, SIAM J. Numer. Anal. 14(2), 161–179.

A. George (1977b), Solution of linear systems of equations: Direct methods for
finite-element problems, in Sparse Matrix Techniques, Lecture Notes in Math-
ematics 572 (V. A. Barker, ed.), Berlin: Springer-Verlag, pp. 52–101.

A. George (1980), ‘An automatic one-way dissection algorithm for irregular finite-
element problems’, SIAM J. Numer. Anal. 17(6), 740–751.

A. George (1981), Direct solution of sparse positive definite systems: Some basic
ideas and open problems, in Sparse Matrices and Their Uses (I. S. Duff, ed.),
New York: Academic Press, pp. 283–306.

A. George and M. T. Heath (1980), ‘Solution of sparse linear least squares problems
using Givens rotations’, Linear Algebra Appl. 34, 69–83.

A. George and J. W. H. Liu (1975), ‘A note on fill for sparse matrices’, SIAM J.
Numer. Anal. 12(3), 452–454.

A. George and J. W. H. Liu (1978a), ‘Algorithms for matrix partitioning and the nu-
merical solution of finite element systems’, SIAM J. Numer. Anal. 15(2), 297–
327.

A. George and J. W. H. Liu (1978b), ‘An automatic nested dissection algorithm for
irregular finite element problems’, SIAM J. Numer. Anal. 15(5), 1053–1069.

A. George and J. W. H. Liu (1979a), ‘The design of a user interface for a sparse
matrix package’, ACM Trans. Math. Softw. 5(2), 139–162.

A. George and J. W. H. Liu (1979b), ‘An implementation of a pseudo-peripheral
node finder’, ACM Trans. Math. Softw. 5, 284–295.

A. George and J. W. H. Liu (1980a), ‘A fast implementation of the minimum degree
algorithm using quotient graphs’, ACM Trans. Math. Softw. 6(3), 337–358.

A. George and J. W. H. Liu (1980b), ‘A minimal storage implementation of the
minimum degree algorithm’, SIAM J. Numer. Anal. 17(2), 282–299.

A. George and J. W. H. Liu (1980c), ‘An optimal algorithm for symbolic factoriza-
tion of symmetric matrices’, SIAM J. Comput. 9(3), 583–593.

A. George and J. W. H. Liu (1981), Computer Solution of Large Sparse Positive
Definite Systems, Prentice-Hall, Englewood Cliffs, NJ.

A. George and J. W. H. Liu (1987), ‘Householder reflections versus Givens rotations
in sparse orthogonal decomposition’, Linear Algebra Appl. 88, 223–238.

A. George and J. W. H. Liu (1989), ‘The evolution of the minimum degree ordering
algorithm’, SIAM Review 31(1), 1–19.

A. George and J. W. H. Liu (1999), ‘An object-oriented approach to the design
of a user interface for a sparse matrix package’, SIAM J. Matrix Anal. Appl.
20(4), 953–969.

A. George and D. R. McIntyre (1978), ‘On the application of the minimum degree
algorithm to finite element systems’, SIAM J. Numer. Anal. 15(1), 90–112.

A. George and E. G. Ng (1983), ‘On row and column orderings for sparse least
square problems’, SIAM J. Numer. Anal. 20(2), 326–344.

A. George and E. G. Ng (1984a), ‘A new release of SPARSPAK - the Waterloo
sparse matrix package’, ACM SIGNUM Newsletter 19(4), 9–13.

A. George and E. G. Ng (1984b), SPARSPAK: Waterloo sparse ma-
trix package, user’s guide for SPARSPAK-B, Technical Report CS-84-
37, Univ. of Waterloo Dept. of Computer Science, Waterloo, Ontario.
https://cs.uwaterloo.ca/research/tr/1984/CS-84-37.pdf.

Sparse Direct Methods 167

A. George and E. G. Ng (1985a), ‘A brief description of SPARSPAK - Waterloo
sparse linear equations package’, ACM SIGNUM Newsletter 16(2), 17–19.

A. George and E. G. Ng (1985b), ‘An implementation of Gaussian elimination with
partial pivoting for sparse systems’, SIAM J. Sci. Comput. 6(2), 390–409.

A. George and E. G. Ng (1986), ‘Orthogonal reduction of sparse matrices to upper
triangular form using Householder transformations’, SIAM J. Sci. Comput.
7(2), 460–472.

A. George and E. G. Ng (1987), ‘Symbolic factorization for sparse Gaussian elimi-
nation with partial pivoting’, SIAM J. Sci. Comput. 8(6), 877–898.

A. George and E. G. Ng (1988), ‘On the complexity of sparse QR and LU factor-
ization of finite-element matrices’, SIAM J. Sci. Comput. 9, 849–861.

A. George and E. G. Ng (1990), ‘Parallel sparse Gaussian elimination with partial
pivoting’, Annals of Oper. Res. 22(1), 219–240.

A. George and A. Pothen (1997), ‘An analysis of spectral envelope-reduction via
quadratic assignment problems’, SIAM J. Matrix Anal. Appl. 18(3), 706–732.

A. George and H. Rashwan (1980), ‘On symbolic factorization of partitioned sparse
symmetric matrices’, Linear Algebra Appl. 34, 145–157.

A. George and H. Rashwan (1985), ‘Auxiliary storage methods for solving finite
element systems’, SIAM J. Sci. Comput. 6(4), 882–910.

A. George, M. T. Heath and E. G. Ng (1983), ‘A comparison of some methods for
solving sparse linear least-squares problems’, SIAM J. Sci. Comput. 4(2), 177–
187.

A. George, M. T. Heath and E. G. Ng (1984a), ‘Solution of sparse underdetermined
systems of linear equations’, SIAM J. Sci. Comput. 5(4), 988–997.

A. George, M. T. Heath and R. J. Plemmons (1981), ‘Solution of large-scale
sparse least squares problems using auxiliary storage’, SIAM J. Sci. Com-
put. 2(4), 416–429.

A. George, M. T. Heath, J. W. H. Liu and E. G. Ng (1986a), ‘Solution of sparse
positive definite systems on a shared-memory multiprocessor’, Intl. J. Parallel
Programming 15(4), 309–325.

A. George, M. T. Heath, J. W. H. Liu and E. G. Ng (1988a), ‘Sparse Cholesky
factorization on a local-memory multiprocessor’, SIAM J. Sci. Comput.
9(2), 327–340.

A. George, M. T. Heath, J. W. H. Liu and E. G. Ng (1989a), ‘Solution of sparse
positive definite systems on a hypercube’, J. Comput. Appl. Math. 27, 129–
156.

A. George, M. T. Heath, E. G. Ng and J. W. H. Liu (1987), ‘Symbolic Cholesky fac-
torization on a local-memory multiprocessor’, Parallel Computing 5(1-2), 85
– 95.

A. George, J. W. H. Liu and E. G. Ng (1984b), ‘Row ordering schemes for sparse
Givens transformations: I. Bipartite graph model’, Linear Algebra Appl.
61, 55–81.

A. George, J. W. H. Liu and E. G. Ng (1986b), ‘Row ordering schemes for sparse
Givens transformations: II. Implicit graph model’, Linear Algebra Appl.
75, 203–223.

A. George, J. W. H. Liu and E. G. Ng (1986c), ‘Row ordering schemes for sparse

168 Davis, Rajamanickam, Sid-Lakhdar

Givens transformations: III. Analysis for a model problem’, Linear Algebra
Appl. 75, 225–240.

A. George, J. W. H. Liu and E. G. Ng (1988b), ‘A data structure for sparse QR
and LU factorizations’, SIAM J. Sci. Comput. 9(1), 100–121.

A. George, J. W. H. Liu and E. G. Ng (1989b), ‘Communication results for parallel
sparse Cholesky factorization on a hypercube’, Parallel Computing 10(3), 287
– 298.

A. George, W. G. Poole and R. G. Voigt (1978), ‘Incomplete nested dissection for
solving n-by-n grid problems’, SIAM J. Numer. Anal. 15(4), 662–673.

T. George, V. Saxena, A. Gupta, A. Singh and A. R. Choudhury (2011), Multi-
frontal factorization of sparse SPD matrices on GPUs, in Parallel Distributed
Processing Symposium (IPDPS), 2011 IEEE International, pp. 372–383.

J. P. Geschiere and H. A. G. Wijshoff (1995), ‘Exploiting large grain parallelism in
a sparse direct linear system solver’, Parallel Computing 21(8), 1339–1364.

N. E. Gibbs (1976), ‘Algorithm 509: A hybrid profile reduction algorithm’, ACM
Trans. Math. Softw. 2(4), 378–387.

N. E. Gibbs, W. G. Poole and P. K. Stockmeyer (1976a), ‘An algorithm for re-
ducing the bandwidth and profile of a sparse matrix’, SIAM J. Numer. Anal.
13(2), 236–250.

N. E. Gibbs, W. G. Poole and P. K. Stockmeyer (1976b), ‘A comparison of several
bandwidth and reduction algorithms’, ACM Trans. Math. Softw. 2(4), 322–
330.

J. R. Gilbert (1980), ‘A note on the NP-completeness of vertex elimination on
directed graphs’, SIAM J. Alg. Disc. Meth. 1(3), 292–294.

J. R. Gilbert (1994), ‘Predicting structure in sparse matrix computations’, SIAM
J. Matrix Anal. Appl. 15(1), 62–79.

J. R. Gilbert and L. Grigori (2003), ‘A note on the column elimination tree’, SIAM
J. Matrix Anal. Appl. 25(1), 143–151.

J. R. Gilbert and H. Hafsteinsson (1990), ‘Parallel symbolic factorization of sparse
linear systems’, Parallel Computing 14(2), 151 – 162.

J. R. Gilbert and J. W. H. Liu (1993), ‘Elimination structures for unsymmetric
sparse LU factors’, SIAM J. Matrix Anal. Appl. 14(2), 334–354.

J. R. Gilbert and E. G. Ng (1993), Predicting structure in nonsymmetric sparse
matrix factorizations, in Graph Theory and Sparse Matrix Computation
(A. George, J. R. Gilbert and J. W. H. Liu, eds), Vol. 56 of IMA Volumes in
Applied Mathematics, Springer-Verlag, New York, pp. 107–139.

J. R. Gilbert and T. Peierls (1988), ‘Sparse partial pivoting in time proportional
to arithmetic operations’, SIAM J. Sci. Comput. 9(5), 862–874.

J. R. Gilbert and R. Schreiber (1992), ‘Highly parallel sparse Cholesky factoriza-
tion’, SIAM J. Sci. Comput. 13(5), 1151–1172.

J. R. Gilbert and R. E. Tarjan (1987), ‘The analysis of a nested dissection algo-
rithm’, Numer. Math. 50(4), 377–404.

J. R. Gilbert and E. Zmijewski (1987), ‘A parallel graph partitioning algorithm for
a message-passing multiprocessor’, Intl. J. Parallel Programming 16(6), 427–
449.

J. R. Gilbert, X. S. Li, E. G. Ng and B. W. Peyton (2001), ‘Computing row

Sparse Direct Methods 169

and column counts for sparse QR and LU factorization’, BIT Numer. Math.
41(4), 693–710.

J. R. Gilbert, G. L. Miller and S. H. Teng (1998), ‘Geometric mesh partitioning:
Implementation and experiments’, SIAM J. Sci. Comput. 19(6), 2091–2110.

J. R. Gilbert, C. Moler and R. Schreiber (1992), ‘Sparse matrices in MATLAB:
design and implementation’, SIAM J. Matrix Anal. Appl. 13(1), 333–356.

J. R. Gilbert, E. G. Ng and B. W. Peyton (1994), ‘An efficient algorithm to compute
row and column counts for sparse Cholesky factorization’, SIAM J. Matrix
Anal. Appl. 15(4), 1075–1091.

J. R. Gilbert, E. G. Ng and B. W. Peyton (1997), ‘Separators and structure pre-
diction in sparse orthogonal factorization’, Linear Algebra Appl. 262, 83–97.

M. I. Gillespie and D. D. Olesky (1995), ‘Ordering Givens rotations for sparse QR
factorization’, SIAM J. Matrix Anal. Appl. 16(3), 1024–1041.

G. H. Golub and C. F. Van Loan (2012), Matrix Computations, Johns Hopkins
Studies in the Mathematical Sciences, 4th edn, The Johns Hopkins University
Press, Baltimore, London.

P. González, J. C. Cabaleiro and T. F. Pena (2000), ‘On parallel solvers for sparse
triangular systems’, J. Systems Architecture 46(8), 675 – 685.

K. Goto and R. van de Geijn (2008), ‘High performance implementation of the
level-3 BLAS’, ACM Trans. Math. Softw. 35(1), 14:1–14:14.

N. I. M. Gould and J. A. Scott (2004), ‘A numerical evaluation of HSL packages
for the direct solution of large sparse, symmetric linear systems of equations’,
ACM Trans. Math. Softw. 30(3), 300–325.

N. I. M. Gould, J. A. Scott and Y. Hu (2007), ‘A numerical evaluation of sparse
solvers for symmetric systems’, ACM Trans. Math. Softw. 33(2), 10:1–10:32.

L. Grigori and X. S. Li (2007), ‘Towards an accurate performance modelling of
parallel sparse factorization’, Applic. Algebra in Eng. Comm. and Comput.
18(3), 241–261.

L. Grigori, E. Boman, S. Donfack and T. A. Davis (2010), ‘Hypergraph-based
unsymmetric nested dissection ordering for sparse LU factorization’, SIAM J.
Sci. Comput. 32(6), 3426–3446.

L. Grigori, M. Cosnard and E. G. Ng (2007a), ‘On the row merge tree for sparse
LU factorization with partial pivoting’, BIT Numer. Math. 47(1), 45–76.

L. Grigori, J. W. Demmel and X. S. Li (2007b), ‘Parallel symbolic factorization for
sparse LU with static pivoting’, SIAM J. Sci. Comput. 29(3), 1289–1314.

L. Grigori, J. R. Gilbert and M. Cosnard (2009), ‘Symbolic and exact structure
prediction for sparse Gaussian elimination with partial pivoting’, SIAM J.
Matrix Anal. Appl. 30(4), 1520–1545.

R. G. Grimes, D. J. Pierce and H. D. Simon (1990), ‘A new algorithm for finding a
pseudoperipheral node in a graph’, SIAM J. Matrix Anal. Appl. 11(2), 323–
334.

A. Guermouche and J.-Y. L’Excellent (2006), ‘Constructing memory-minimizing
schedules for multifrontal methods’, ACM Trans. Math. Softw. 32(1), 17–32.

A. Guermouche, J.-Y. L’Excellent and G. Utard (2003), ‘Impact of reordering on
the memory of a multifrontal solver’, Parallel Computing 29(9), 1191 – 1218.

J. A. Gunnels, F. G. Gustavson, G. M. Henry and R. A. van de Geijn (2001),

170 Davis, Rajamanickam, Sid-Lakhdar

‘Flame: Formal linear algebra methods environment’, ACM Trans. Math.
Softw. 27(4), 422–455.

A. Gupta (1996a), Fast and effective algorithms for graph partitioning and sparse
matrix ordering, Technical Report RC 20496 (90799), IBM Research Division,
Yorktown Heights, NY.

A. Gupta (1996b), WGPP: Watson graph partitioning, Technical Report RC 20453
(90427), IBM Research Division, Yorktown Heights, NY.

A. Gupta (2002a), ‘Improved symbolic and numerical factorization algorithms for
unsymmetric sparse matrices’, SIAM J. Matrix Anal. Appl. 24, 529–552.

A. Gupta (2002b), ‘Recent advances in direct methods for solving unsymmetric
sparse systems of linear equations’, ACM Trans. Math. Softw. 28(3), 301–
324.

A. Gupta (2007), ‘A shared- and distributed-memory parallel general sparse direct
solver’, Applic. Algebra in Eng. Comm. and Comput. 18(3), 263–277.

A. Gupta, G. Karypis and V. Kumar (1997), ‘Highly scalable parallel algorithms
for sparse matrix factorization’, IEEE Trans. Parallel Distributed Systems
8(5), 502–520.

F. G. Gustavson (1972), Some basic techniques for solving sparse systems of linear
equations, in Sparse Matrices and Their Applications (D. J. Rose and R. A.
Willoughby, eds), New York: Plenum Press, New York, pp. 41–52.

F. G. Gustavson (1976), Finding the block lower triangular form of a sparse matrix,
in Sparse Matrix Computations (J. R. Bunch and D. J. Rose, eds), Academic
Press, New York, pp. 275–290.

F. G. Gustavson (1978), ‘Two fast algorithms for sparse matrices: Multiplication
and permuted transposition’, ACM Trans. Math. Softw. 4(3), 250–269.

F. G. Gustavson, W. M. Liniger and R. A. Willoughby (1970), ‘Symbolic generation
of an optimal Crout algorithm for sparse systems of linear equations’, J. ACM
17, 87–109.

G. Hachtel, R. Brayton and F. Gustavson (1971), ‘The sparse tableau approach to
network analysis and design’, IEEE Trans. Circuit Theory 18(1), 101–113.

S. M. Hadfield and T. A. Davis (1994), Potential and achievable parallelism in the
unsymmetric-pattern multifrontal LU factorization method for sparse matri-
ces, in Proceedings of the Fifth SIAM Conf. on Applied Linear Algebra, SIAM,
Snowbird, Utah, pp. 387–391.

S. M. Hadfield and T. A. Davis (1995), ‘The use of graph theory in a parallel
multifrontal method for sequences of unsymmetric pattern sparse matrices’,
Cong. Numer. 108, 43–52.

W. W. Hager (2002), ‘Minimizing the profile of a symmetric matrix’, SIAM J. Sci.
Comput. 23(5), 1799–1816.

D. R. Hare, C. R. Johnson, D. D. Olesky and P. Van Den Driessche (1993), ‘Sparsity
analysis of the QR factorization’, SIAM J. Matrix Anal. Appl. 14(3), 665–669.

K. He, S. X.-D. Tan, H. Wang and G. Shi (2015), ‘GPU-accelerated parallel sparse
LU factorization method for fast circuit analysis’, IEEE Trans. VLSI Sys.

M. T. Heath (1982), ‘Some extensions of an algorithm for sparse linear least squares
problems’, SIAM J. Sci. Comput. 3(2), 223–237.

M. T. Heath (1984), ‘Numerical methods for large sparse linear least squares prob-
lems’, SIAM J. Sci. Comput. 5(3), 497–513.

Sparse Direct Methods 171

M. T. Heath and P. Raghavan (1995), ‘A Cartesian parallel nested dissection algo-
rithm’, SIAM J. Matrix Anal. Appl. 16(1), 235–253.

M. T. Heath and P. Raghavan (1997), ‘Performance of a fully parallel sparse solver’,
Intl. J. Supercomp. Appl. High Perf. Comput. 11(1), 49–64.

M. T. Heath and D. C. Sorensen (1986), ‘A pipelined Givens method for computing
the QR factorization of a sparse matrix’, Linear Algebra Appl. 77, 189–203.

M. T. Heath, E. G. Ng and B. W. Peyton (1991), ‘Parallel algorithms for sparse
linear systems’, SIAM Review 33(3), 420–460.

P. Heggernes and B. W. Peyton (2008), ‘Fast computation of minimal fill inside a
given elimination ordering’, SIAM J. Matrix Anal. Appl. 30(4), 1424–1444.

E. Hellerman and D. C. Rarick (1971), ‘Reinversion with the preassigned pivot
procedure’, Math. Program. 1(1), 195–216.

E. Hellerman and D. C. Rarick (1972), The partitioned preassigned pivot proce-
dure (P4), in Sparse Matrices and Their Applications (D. J. Rose and R. A.
Willoughby, eds), New York: Plenum Press, New York, pp. 67–76.

B. Hendrickson and R. Leland (1995a), The Chaco users guide: Version 2.0, Tech-
nical report, Technical Report SAND95-2344, Sandia National Laboratories.

B. Hendrickson and R. Leland (1995b), ‘An improved spectral graph partition-
ing algorithm for mapping parallel computations’, SIAM J. Sci. Comput.
16(2), 452–469.

B. Hendrickson and R. Leland (1995c), ‘A multi-level algorithm for partitioning
graphs’, Supercomputing ’95: Proc. 1995 ACM/IEEE Conf. on Supercomput-
ing p. 28.

B. Hendrickson and E. Rothberg (1998), ‘Improving the runtime and quality of
nested dissection ordering’, SIAM J. Sci. Comput. 20(2), 468–489.

P. Hénon, P. Ramet and J. Roman (2002), ‘PaStiX: A high-performance paral-
lel direct solver for sparse symmetric definite systems’, Parallel Computing
28(2), 301–321.

C.-W. Ho and R. C. T. Lee (1990), ‘A parallel algorithm for solving sparse triangular
systems’, IEEE Trans. Comput. 39(6), 848–852.

J. D. Hogg and J. A. Scott (2013a), ‘An efficient analyse phase for element prob-
lems’, Numer. Linear Algebra Appl. 20(3), 397–412.

J. D. Hogg and J. A. Scott (2013b), ‘New parallel sparse direct solvers for multicore
architectures’, Algorithms 6(4), 702–725.

J. D. Hogg and J. A. Scott (2013c), ‘Optimal weighted matchings for rank-deficient
sparse matrices’, SIAM J. Matrix Anal. Appl. 34(4), 1431–1447.

J. D. Hogg and J. A. Scott (2013d), ‘Pivoting strategies for tough sparse indefinite
systems’, ACM Trans. Math. Softw. 40(1), 4:1–4:19.

J. D. Hogg, E. Ovtchinnikov and J. A. Scott (2016), ‘A sparse symmetric indefinite
direct solver for GPU architectures’, ACM Trans. Math. Softw. 42, 1:1–1:25.

J. D. Hogg, J. K. Reid and J. A. Scott (2010), ‘Design of a multicore sparse Cholesky
factorization using DAGs’, SIAM J. Sci. Comput. 32(6), 3627–3649.

M. Hoit and E. L. Wilson (1983), ‘An equation numbering algorithm based on a
minimum front criteria’, Computers and Structures 16(1-4), 225–239.

P. Hood (1976), ‘Frontal solution program for unsymmetric matrices’, Intl. J. Nu-
mer. Methods Eng. 10(2), 379–400.

172 Davis, Rajamanickam, Sid-Lakhdar

J. E. Hopcroft and R. M. Karp (1973), ‘An n5/2 algorithm for maximum matchings
in bipartite graphs’, SIAM J. Comput. 2, 225–231.

J. W. Huang and O. Wing (1979), ‘Optimal parallel triangulation of a sparse ma-
trix’, IEEE Trans. Circuits and Systems CAS-26(9), 726–732.

L. Hulbert and E. Zmijewski (1991), ‘Limiting communication in parallel sparse
Cholesky factorization’, SIAM J. Sci. Comput. 12(5), 1184–1197.

F. D. Igual, E. Chan, E. S. Quintana-Ort, G. Quintana-Ort, R. A. van de Geijn and
F. G. Van Zee (2012), ‘The FLAME approach: From dense linear algebra al-
gorithms to high-performance multi-accelerator implementations’, J. Parallel
Distrib. Comput. 72(9), 1134 – 1143.

B. M. Irons (1970), ‘A frontal solution program for finite element analysis’, Intl. J.
Numer. Methods Eng. 2, 5–32.

D. Irony, G. Shklarski and S. Toledo (2004), ‘Parallel and fully recursive multifrontal
sparse Cholesky’, Future Generation Comp. Sys. 20(3), 425–440.

A. Jennings (1966), ‘A compact storage scheme for the solution of symmetric linear
simultaneous equations’, The Computer Journal 9(3), 281–285.

J. A. G. Jess and H. G. M. Kees (1982), ‘A data structure for parallel LU decom-
position’, IEEE Trans. Comput. C-31(3), 231–239.

M. Joshi, G. Karypis, V. Kumar, A. Gupta and F. Gustavson (1999), PSPASES:
an efficient and scalable parallel sparse direct solver, in Kluwer Intl. Series in
Engineering and Science (T. Yang, ed.), Vol. 515, Kluwer.

G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar (1999), ‘Multilevel hypergraph
partitioning: applications in VLSI domain’, IEEE Trans. VLSI Sys. 7(1), 69–
79.

G. Karypis and V. Kumar (1998a), ‘A fast and high quality multilevel scheme for
partitioning irregular graphs’, SIAM J. Sci. Comput. 20, 359–392.

G. Karypis and V. Kumar (1998b), hMETIS 1.5: A hypergraph partitioning pack-
age, Technical report. Department of Computer Science, University of Min-
nesota.

G. Karypis and V. Kumar (1998c), ‘A parallel algorithm for multilevel graph parti-
tioning and sparse matrix ordering’, J. Parallel Distrib. Comput. 48(1), 71–95.

G. Karypis and V. Kumar (2000), ‘Multilevel k-way hypergraph partitioning’, VLSI
Design 11, 285–300.

E. Kayaaslan, A. Pinar, U. V. Çatalyürek and C. Aykanat (2012), ‘Partitioning
hypergraphs in scientific computing applications through vertex separators
on graphs’, SIAM J. Sci. Comput. 34(2), A970–A992.

B. W. Kernighan and S. Lin (1970), ‘An efficient heuristic procedure for partitioning
graphs’, Bell System Tech. J. 49(2), 291–307.

K. Kim and V. Eijkhout (2014), ‘A parallel sparse direct solver via hierarchical
DAG scheduling’, ACM Trans. Math. Softw. 41(1), 3:1–3:27.

I. P. King (1970), ‘An automatic reordering scheme for simultaneous equations
derived from network systems’, Intl. J. Numer. Methods Eng. 2, 523–533.

D. E. Knuth (1972), ‘George Forsythe and the development of computer science’,
Commun. ACM 15(8), 721–726.

J. Koster and R. H. Bisseling (1994), An improved algorithm for parallel sparse LU
decomposition on a distributed-memory multiprocessor, in Proc. Fifth SIAM
Conference on Applied Linear Algebra, SIAM, Snowbird, Utah, pp. 397–401.

Sparse Direct Methods 173

S. G. Kratzer (1992), ‘Sparse QR factorization on a massively parallel computer’,
J. Supercomputing 6(3-4), 237–255.

S. G. Kratzer and A. J. Cleary (1993), Sparse matrix factorization on SIMD parallel
computers, in Graph Theory and Sparse Matrix Computation (A. George,
J. R. Gilbert and J. W. H. Liu, eds), Vol. 56 of IMA Volumes in Applied
Mathematics, Springer-Verlag, New York, pp. 211–228.

G. Krawezik and G. Poole (2009), Accelerating the ANSYS direct sparse solver with
GPUs, in Proc. Symposium on Application Accelerators in High Performance
Computing (SAAHPC), NCSA, Urbana-Champaign, IL.

C. P. Kruskal, L. Rudolph and M. Snir (1989), ‘Techniques for parallel manipulation
of sparse matrices’, Theoretical Comp. Sci. 64(2), 135–157.

B. Kumar, K. Eswar, P. Sadayappan and C.-H. Huang (1994), A reordering and
mapping algorithm for parallel sparse Cholesky factorization, in Scalable High-
Performance Computing Conference, 1994., Proceedings of the, pp. 803–810.

P. S. Kumar, M. K. Kumar and A. Basu (1992), ‘A parallel algorithm for elimination
tree computation and symbolic factorization’, Parallel Computing 18(8), 849
– 856.

P. S. Kumar, M. K. Kumar and A. Basu (1993), ‘Parallel algorithms for sparse
triangular system solution’, Parallel Computing 19(2), 187–196.

G. K. Kumfert and A. Pothen (1997), ‘Two improved algorithms for reducing the
envelope and wavefront’, BIT Numer. Math. 37(3), 559–590.

K. S. Kundert (1986), Sparse matrix techniques and their applications to circuit
simulation, in Circuit Analysis, Simulation and Design (A. E. Ruehli, ed.),
New York: North-Holland.

X. Lacoste, P. Ramet, M. Faverge, Y. Ichitaro and J. Dongarra (2012), Sparse
direct solvers with accelerators over DAG runtimes, Technical Report RR-
7972, INRIA, Bordeaux, France.

K. H. Law (1985), ‘Sparse matrix factor modification in structural reanalysis’, Intl.
J. Numer. Methods Eng. 21(1), 37–63.

K. H. Law (1989), ‘On updating the structure of sparse matrix factors’, Intl. J.
Numer. Methods Eng. 28(10), 2339–2360.

K. H. Law and S. J. Fenves (1986), ‘A node-addition model for symbolic factoriza-
tion’, ACM Trans. Math. Softw. 12(1), 37–50.

K. H. Law and D. R. Mackay (1993), ‘A parallel row-oriented sparse solution
method for finite element structural analysis’, Intl. J. Numer. Methods Eng.
36(17), 2895–2919.

H. Lee, J. Kim, S. J. Hong and S. Lee (2003), ‘Task scheduling using a block
dependency DAG for block-oriented sparse Cholesky factorization’, Parallel
Computing 29(1), 135 – 159.

M. Leuze (1989), ‘Independent set orderings for parallel matrix factorization by
Gaussian elimination’, Parallel Computing 10(2), 177–191.

R. Levy (1971), ‘Resequencing of the structural stiffness matrix to improve com-
putational efficiency’, Quarterly Technical Review 1(2), 61–70.

J. G. Lewis (1982a), ‘Algorithm 582: The Gibbs-Poole-Stockmeyer and Gibbs-
King algorithms for reordering sparse matrices’, ACM Trans. Math. Softw.
8(2), 190–194.

174 Davis, Rajamanickam, Sid-Lakhdar

J. G. Lewis (1982b), ‘Implementation of the Gibbs-Poole-Stockmeyer and Gibbs-
King algorithms’, ACM Trans. Math. Softw. 8(2), 180–189.

J. G. Lewis and H. D. Simon (1988), ‘The impact of hardware gather/scatter on
sparse Gaussian elimination’, SIAM J. Sci. Comput. 9(2), 304–311.

J. G. Lewis, B. W. Peyton and A. Pothen (1989), ‘A fast algorithm for reordering
sparse matrices for parallel factorization’, SIAM J. Sci. Comput. 10(6), 1146–
1173.

J.-Y. L’Excellent and W. M. Sid-Lakhdar (2014), ‘Introduction of shared-memory
parallelism in a distributed-memory multifrontal solver’, Parallel Computing
40(3-4), 34–46.

X. S. Li (2005), ‘An overview of SuperLU: Algorithms, implementation, and user
interface’, ACM Trans. Math. Softw. 31(3), 302–325.

X. S. Li (2008), ‘Evaluation of SuperLU on multicore architectures’, J. Physics:
Conference Series.

X. S. Li (2013), Direct solvers for sparse matrices, Technical report, Lawrence
Berkeley National Lab, Berkeley, CA.
http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/SparseDirectSurvey.pdf.

X. S. Li and J. W. Demmel (2003), ‘SuperLU DIST: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems’, ACM Trans. Math.
Softw. 29(2), 110–140.

T. D. Lin and R. S. H. Mah (1977), ‘Hierarchical partition - a new optimal pivoting
algorithm’, Math. Program. 12(1), 260–278.

W.-Y. Lin and C.-L. Chen (1999), ‘Minimum communication cost reordering for
parallel sparse Cholesky factorization’, Parallel Computing 25(8), 943 – 967.

W.-Y. Lin and C.-L. Chen (2000), ‘On evaluating elimination tree based parallel
sparse Cholesky factorizations’, Intl. J. Computer Mathematics 74(3), 361–
377.

W.-Y. Lin and C.-L. Chen (2005), ‘On optimal reorderings of sparse matrices for
parallel Cholesky factorizations’, SIAM J. Matrix Anal. Appl. 27(1), 24–45.

R. J. Lipton and R. E. Tarjan (1979), ‘A separator theorem for planar graphs’,
SIAM J. Appl. Math. 36(2), 177–189.

R. J. Lipton, D. J. Rose and R. E. Tarjan (1979), ‘Generalized nested dissection’,
SIAM J. Numer. Anal. 16(2), 346–358.

J. W. H. Liu (1985), ‘Modification of the minimum-degree algorithm by multiple
elimination’, ACM Trans. Math. Softw. 11(2), 141–153.

J. W. H. Liu (1986a), ‘A compact row storage scheme for Cholesky factors using
elimination trees’, ACM Trans. Math. Softw. 12(2), 127–148.

J. W. H. Liu (1986b), ‘Computational models and task scheduling for parallel sparse
Cholesky factorization’, Parallel Computing 3(4), 327–342.

J. W. H. Liu (1986c), ‘On general row merging schemes for sparse Givens transfor-
mations’, SIAM J. Sci. Comput. 7(4), 1190–1211.

J. W. H. Liu (1986d), ‘On the storage requirement in the out-of-core multifrontal
method for sparse factorization’, ACM Trans. Math. Softw. 12(3), 249–264.

J. W. H. Liu (1987a), ‘An adaptive general sparse out-of-core Cholesky factorization
scheme’, SIAM J. Sci. Comput. 8(4), 585–599.

J. W. H. Liu (1987b), ‘An application of generalized tree pebbling to sparse matrix
factorization’, SIAM J. Alg. Disc. Meth. 8(3), 375–395.

Sparse Direct Methods 175

J. W. H. Liu (1987c), ‘A note on sparse factorization in a paging environment’,
SIAM J. Sci. Comput. 8(6), 1085–1088.

J. W. H. Liu (1987d), ‘On threshold pivoting in the multifrontal method for sparse
indefinite systems’, ACM Trans. Math. Softw. 13(3), 250–261.

J. W. H. Liu (1987e), ‘A partial pivoting strategy for sparse symmetric matrix
decomposition’, ACM Trans. Math. Softw. 13(2), 173–182.

J. W. H. Liu (1988a), ‘Equivalent sparse matrix reordering by elimination tree
rotations’, SIAM J. Sci. Comput. 9(3), 424–444.

J. W. H. Liu (1988b), ‘A tree model for sparse symmetric indefinite matrix factor-
ization’, SIAM J. Matrix Anal. Appl. 9, 26–39.

J. W. H. Liu (1989a), ‘A graph partitioning algorithm by node separators’, ACM
Trans. Math. Softw. 15(3), 198–219.

J. W. H. Liu (1989b), ‘The minimum degree ordering with constraints’, SIAM J.
Sci. Comput. 10(6), 1136–1145.

J. W. H. Liu (1989c), ‘The multifrontal method and paging in sparse Cholesky
factorization’, ACM Trans. Math. Softw. 15(4), 310–325.

J. W. H. Liu (1989d), ‘Reordering sparse matrices for parallel elimination’, Parallel
Computing 11(1), 73–91.

J. W. H. Liu (1990), ‘The role of elimination trees in sparse factorization’, SIAM
J. Matrix Anal. Appl. 11(1), 134–172.

J. W. H. Liu (1991), ‘A generalized envelope method for sparse factorization by
rows’, ACM Trans. Math. Softw. 17(1), 112–129.

J. W. H. Liu (1992), ‘The multifrontal method for sparse matrix solution: theory
and practice’, SIAM Review 34(1), 82–109.

J. W. H. Liu and A. Mirzaian (1989), ‘A linear reordering algorithm for parallel
pivoting of chordal graphs’, SIAM J. Disc. Math. 2, 100–107.

J. W. H. Liu and A. H. Sherman (1976), ‘Comparative analysis of the Cuthill-
McKee and the reverse Cuthill-McKee ordering algorithms for sparse matri-
ces’, SIAM J. Numer. Anal. 13(2), 198–213.

J. W. H. Liu, E. G. Ng and B. W. Peyton (1993), ‘On finding supernodes for sparse
matrix computations’, SIAM J. Matrix Anal. Appl. 14(1), 242–252.

S. M. Lu and J. L. Barlow (1996), ‘Multifrontal computation with the orthogonal
factors of sparse matrices’, SIAM J. Matrix Anal. Appl. 17(3), 658–679.

R. F. Lucas, T. Blank and J. J. Tiemann (1987), ‘A parallel solution method
for large sparse systems of equations’, IEEE Trans. Computer-Aided Design
Integ. Circ. Sys. 6(6), 981–991.

R. F. Lucas, G. Wagenbreth, D. Davis and R. G. Grimes (2010), Multifrontal
computations on GPUs and their multi-core hosts, in VECPAR’10: Proc. 9th
Intl. Meeting for High Performance Computing for Computational Science.
http://vecpar.fe.up.pt/2010/papers/5.php.

R. Luce and E. G. Ng (2014), ‘On the minimum FLOPs problem in the sparse
Cholesky factorization’, SIAM J. Matrix Anal. Appl. 35(1), 1–21.

F. Manne and H. Haffsteinsson (1995), ‘Efficient sparse Cholesky factorization on
a massively parallel SIMD computer’, SIAM J. Sci. Comput. 16(4), 934–950.

H. M. Markowitz (1957), ‘The elimination form of the inverse and its application
to linear programming’, Management Sci. 3(3), 255–269.

176 Davis, Rajamanickam, Sid-Lakhdar

L. Marro (1986), ‘A linear time implementation of profile reduction algorithms for
sparse matrices’, SIAM J. Sci. Comput. 7(4), 1212–1231.

P. Matstoms (1994), ‘Sparse QR factorization in MATLAB’, ACM Trans. Math.
Softw. 20(1), 136–159.

P. Matstoms (1995), ‘Parallel sparse QR factorization on shared memory architec-
tures’, Parallel Computing 21(3), 473–486.

J. Mayer (2009), ‘Parallel algorithms for solving linear systems with sparse trian-
gular matrices’, Computing 86(4), 291–312.

J. M. McNamee (1971), ‘ACM Algorithm 408: A sparse matrix package (part I)’,
Commun. ACM 14(4), 265–273.

J. M. McNamee (1983a), ‘Algorithm 601: A sparse-matrix package – part II: Special
cases’, ACM Trans. Math. Softw. 9(3), 344–345.

J. M. McNamee (1983b), ‘A sparse matrix package – part II: Special cases’, ACM
Trans. Math. Softw. 9(3), 340–343.

R. G. Melhem (1988), ‘A modified frontal technique suitable for parallel systems’,
SIAM J. Sci. Comput. 9(2), 289–303.

O. Meshar, D. Irony and S. Toledo (2006), ‘An out-of-core sparse symmetric-
indefinite factorization method’, ACM Trans. Math. Softw. 32(3), 445–471.

G. L. Miller, S. H. Teng, W. Thurston and S. A. Vavasis (1993), Automatic mesh
partitioning, in Graph Theory and Sparse Matrix Computation (A. George,
J. R. Gilbert and J. W. H. Liu, eds), Vol. 56 of IMA Volumes in Applied
Mathematics, Springer-Verlag, New York, pp. 57–84.

M. Nakhla, K. Singhal and J. Vlach (1974), ‘An optimal pivoting order for the
solution of sparse systems of equations’, IEEE Trans. Circuits and Systems
CAS-21(2), 222–225.

E. G. Ng (1991), ‘A scheme for handling rank-deficiency in the solution of sparse
linear least squares problems’, SIAM J. Sci. Comput. 12(5), 1173–1183.

E. G. Ng (1993), ‘Supernodal symbolic Cholesky factorization on a local-memory
multiprocessor’, Parallel Computing 19(2), 153 – 162.

E. G. Ng (2013), Sparse matrix methods, in Handbook of Linear Algebra, Second
Edition, Chapman and Hall/CRC, chapter 53, pp. 931–951.

E. G. Ng and B. W. Peyton (1992), ‘A tight and explicit representation of Q in
sparse QR factorization’, IMA Preprint Series.

E. G. Ng and B. W. Peyton (1993a), ‘Block sparse Cholesky algorithms on advanced
uniprocessor computers’, SIAM J. Sci. Comput. 14(5), 1034–1056.

E. G. Ng and B. W. Peyton (1993b), ‘A supernodal Cholesky factorization algorithm
for shared-memory multiprocessors’, SIAM J. Sci. Comput. 14, 761–769.

E. G. Ng and B. W. Peyton (1996), ‘Some results on structure prediction in sparse
QR factorization’, SIAM J. Matrix Anal. Appl. 17(2), 443–459.

E. G. Ng and P. Raghavan (1999), ‘Performance of greedy ordering heuristics for
sparse Cholesky factorization’, SIAM J. Matrix Anal. Appl. 20(4), 902–914.

R. S. Norin and C. Pottle (1971), ‘Effective ordering of sparse matrices arising from
nonlinear electrical networks’, IEEE Trans. Circuit Theory CT-18, 139–145.

S. Oliveira (2001), ‘Exact prediction of QR fill-in by row-merge trees’, SIAM J.
Sci. Comput. 22(6), 1962–1973.

M. Olschowka and A. Neumaier (1996), ‘A new pivoting strategy for Gaussian
elimination’, Linear Algebra Appl. 240, 131–151.

Sparse Direct Methods 177

J. H. Ong (1987), ‘An algorithm for frontwidth reduction’, J. of Scientific Com-
puting 2(2), 159–173.

O. Osterby and Z. Zlatev (1983), Direct Methods for Sparse Matrices, Lecture Notes
in Computer Science 157, Berlin: Springer-Verlag. Review by Eisenstat at
http://dx.doi.org/10.1137/1028128.

T. Ostromsky, P. C. Hansen and Z. Zlatev (1998), ‘A coarse-grained parallel QR-
factorization algorithm for sparse least squares problems’, Parallel Computing
24(5-6), 937–964.

G. Ostrouchov (1993), ‘Symbolic Givens reduction and row-ordering in large sparse
least squares problems’, SIAM J. Matrix Anal. Appl. 8(3), 248–264.

M. V. Padmini, B. B. Madan and B. N. Jain (1998), ‘Reordering for parallelism’,
Intl. J. Computer Mathematics 67(3-4), 373–390.

C. C. Paige and M. A. Saunders (1982), ‘LSQR: an algorithm for sparse linear
equations and sparse least squares’, ACM Trans. Math. Softw. 8, 43–71.

C. H. Papadimitriou (1976), ‘The NP-completeness of the bandwidth minimization
problem’, Computing 16(3), 263–270.

S. V. Parter (1961), ‘The use of linear graphs in Gauss elimination’, SIAM Review
3, 119–130.

F. Pellegrini (2012), Scotch and PT-Scotch graph partitioning software, in Com-
binatorial Scientific Computing (O. Schenk, ed.), Chapman and Hall/CRC
Computational Science, chapter 14, pp. 373–406.

F. Pellegrini, J. Roman and P. R. Amestoy (2000), ‘Hybridizing nested dissection
and halo approximate minimum degree for efficient sparse matrix ordering’,
Concurrency: Pract. Exp. 12(2-3), 68–84.

F. J. Peters (1984), ‘Parallel pivoting algorithms for sparse symmetric matrices’,
Parallel Computing 1(1), 99–110.

F. J. Peters (1985), Parallelism and sparse linear equations, in Sparsity and Its
Applications (D. J. Evans, ed.), Cambridge, United Kingdom: Cambridge
University Press, pp. 285–301.

G. Peters and J. H. Wilkinson (1970), ‘The least squares problem and pseudo-
inverses’, The Computer Journal 13, 309–316.

B. W. Peyton (2001), ‘Minimal orderings revisited’, SIAM J. Matrix Anal. Appl.
23(1), 271–294.

B. W. Peyton, A. Pothen and X. Yuan (1993), ‘Partitioning a chordal graph into
transitive subgraphs for parallel sparse triangular solution’, Linear Algebra
Appl. 192, 329–354.

B. W. Peyton, A. Pothen and X. Yuan (1995), ‘A clique tree algorithm for par-
titioning a chordal graph into transitive subgraphs’, Linear Algebra Appl.
223/224, 553–588.

D. J. Pierce and J. G. Lewis (1997), ‘Sparse multifrontal rank revealing QR factor-
ization’, SIAM J. Matrix Anal. Appl. 18(1), 159–180.

D. J. Pierce, Y. Hung, C.-C. Liu, Y.-H. Tsai, W. Wang and D. Yu
(2009), Sparse multifrontal performance gains via NVIDIA GPU, in
Workshop on GPU Supercomputing, National Taiwan University, Taipei.
http://cqse.ntu.edu.tw/cqse/gpu2009.html.

H. L. G. Pina (1981), ‘An algorithm for frontwidth reduction’, Intl. J. Numer.
Methods Eng. 17(10), 1539–1546.

178 Davis, Rajamanickam, Sid-Lakhdar

S. Pissanetsky (1984), Sparse Matrix Technology, New York: Academic Press, Lon-
don.

A. Pothen (1993), ‘Predicting the structure of sparse orthogonal factors’, Linear
Algebra Appl. 194, 183–204.

A. Pothen (1996), Graph partitioning algorithms with applications to scientific
computing, in Parallel Numerical Algorithms (D. E. Keyes, A. H. Sameh and
V. Venkatakrishan, eds), Kluwer Academic Press, pp. 323–368.

A. Pothen and F. L. Alvarado (1992), ‘A fast reordering algorithm for parallel
sparse triangular solution’, SIAM J. Sci. Comput. 13(2), 645–653.

A. Pothen and C. Fan (1990), ‘Computing the block triangular form of a sparse
matrix’, ACM Trans. Math. Softw. 16(4), 303–324.

A. Pothen and C. Sun (1990), Compact clique tree data structures in sparse matrix
factorizations, in Large Scale Numerical Optimization (T. F. Coleman and
Y. Li, eds), SIAM, chapter 12.

A. Pothen and C. Sun (1993), ‘A mapping algorithm for parallel sparse Cholesky
factorization’, SIAM J. Sci. Comput. 14(5), 1253–1257.

A. Pothen and S. Toledo (2004), Elimination structures in scientific computing, in
Handbook on Data Structures and Applications (D. Mehta and S. Sahni, eds),
Chapman and Hall /CRC, chapter 59.

A. Pothen, H. D. Simon and K. Liou (1990), ‘Partitioning sparse matrices with
eigenvectors of graphs’, SIAM J. Matrix Anal. Appl. 11(3), 430–452.

H. Pouransari, P. Coulier and E. Darve (2015), Fast hierarchical solvers for sparse
matrices, Technical Report arXiv:1510.07363, Dept. of Mechanical Engineer-
ing, Stanford University, and Dept. of Civil Engineering, KU Leuven.

P. Raghavan (1995), ‘Distributed sparse Gaussian elimination and orthogonal fac-
torization’, SIAM J. Sci. Comput. 16(6), 1462–1477.

P. Raghavan (1997), ‘Parallel ordering using edge contraction’, Parallel Computing
23(8), 1045 – 1067.

P. Raghavan (1998), ‘Efficient parallel sparse triangular solution using selective
inversion’, Parallel Processing Letters 08(01), 29–40.

P. Raghavan (2002), DSCPACK: Domain-separator codes for the parallel solution
of sparse linear systems, Technical Report CSE-02-004, Penn State University,
State College, PA. http://www.cse.psu.edu/∼pxr3/software.html.

T. Rauber, G. Rünger and C. Scholtes (1999), ‘Scalability of sparse Cholesky fac-
torization’, Intl. J. High Speed Computing 10(1), 19–52.

A. Razzaque (1980), ‘Automatic reduction of frontwidth for finite element analysis’,
Intl. J. Numer. Methods Eng. 25(9), 1315–1324.

J. K. Reid, ed. (1971), Large Sparse Sets of Linear Equations, New York: Academic
Press. Proc. Oxford Conf. Organized by the Inst. of Mathematics and its
Applications (April 1970).

J. K. Reid (1974), Direct methods for sparse matrices, in Software for Numerical
Mathematics (D. J. Evans, ed.), New York: Academic Press, pp. 29–48.

J. K. Reid (1977a), Solution of linear systems of equations: Direct methods (gen-
eral), in Sparse Matrix Techniques, Lecture Notes in Mathematics 572 (V. A.
Barker, ed.), Berlin: Springer-Verlag, pp. 102–129.

J. K. Reid (1977b), Sparse matrices, in The State of the Art in Numerical Analysis
(D. A. H. Jacobs, ed.), New York: Academic Press, pp. 85–146.

Sparse Direct Methods 179

J. K. Reid (1981), Frontal methods for solving finite-element systems of linear
equations, in Sparse Matrices and Their Uses (I. S. Duff, ed.), New York:
Academic Press, pp. 265–281.

J. K. Reid (1982), ‘A sparsity-exploiting variant of the Bartels-Golub decomposition
for linear programming bases’, Math. Program. 24(1), 55–69.

J. K. Reid and J. A. Scott (1999), ‘Ordering symmetric sparse matrices for small
profile and wavefront’, Intl. J. Numer. Methods Eng. 45(12), 1737–1755.

J. K. Reid and J. A. Scott (2001), ‘Reversing the row order for the row-by-row
frontal method’, Numer. Linear Algebra Appl. 8(1), 1–6.

J. K. Reid and J. A. Scott (2002), ‘Implementing Hager’s exchange methods for
matrix profile reduction’, ACM Trans. Math. Softw. 28(4), 377–391.

J. K. Reid and J. A. Scott (2009a), ‘An efficient out-of-core multifrontal solver
for large-scale unsymmetric element problems’, Intl. J. Numer. Methods Eng.
77(7), 901–921.

J. K. Reid and J. A. Scott (2009b), ‘An out-of-core sparse Cholesky solver’, ACM
Trans. Math. Softw. 36(2), 9:1–9:33.

G. Reiszig (2007), ‘Local fill reduction techniques for sparse symmetric linear sys-
tems’, Electr. Eng. 89(8), 639–652.

S. C. Rennich, D. Stosic and T. A. Davis (2014), Accelerating sparse Cholesky
factorization on GPUs, in Proc. IA3 Workshop on Irregular Applications:
Architectures and Algorithms, (held in conjunction with SC14), New Orleans,
LA, pp. 9–16.

T. H. Robey and D. L. Sulsky (1994), ‘Row orderings for a sparse QR decomposi-
tion’, SIAM J. Matrix Anal. Appl. 15(4), 1208–1225.

D. J. Rose (1972), A graph-theoretic study of the numerical solution of sparse
positive definite systems of linear equations, in Graph Theory and Computing
(R. C. Read, ed.), New York: Academic Press, pp. 183–217.

D. J. Rose and J. R. Bunch (1972), The role of partitioning in the numerical solution
of sparse systems, in Sparse Matrices and Their Applications (D. J. Rose and
R. A. Willoughby, eds), New York: Plenum Press, New York, pp. 177–187.

D. J. Rose and R. E. Tarjan (1978), ‘Algorithmic aspects of vertex elimination on
directed graphs’, SIAM J. Appl. Math. 34(1), 176–197.

D. J. Rose and R. A. Willoughby, eds (1972), Sparse Matrices and Their Applica-
tions, New York: Plenum Press, New York.

D. J. Rose, R. E. Tarjan and G. S. Lueker (1976), ‘Algorithmic aspects of vertex
elimination on graphs’, SIAM J. Comput. 5, 266–283.

D. J. Rose, G. G. Whitten, A. H. Sherman and R. E. Tarjan (1980), ‘Algorithms
and software for in-core factorization of sparse symmetric positive definite
matrices’, Computers and Structures 11(6), 597–608.

E. Rothberg (1995), ‘Alternatives for solving sparse triangular systems on
distributed-memory computers’, Parallel Computing 21, 1121–1136.

E. Rothberg (1996), ‘Performance of panel and block approaches to sparse Cholesky
factorization on the iPSC/860 and Paragon multicomputers’, SIAM J. Sci.
Comput. 17(3), 699–713.

E. Rothberg and S. C. Eisenstat (1998), ‘Node selection strategies for bottom-up
sparse matrix orderings’, SIAM J. Matrix Anal. Appl. 19(3), 682–695.

180 Davis, Rajamanickam, Sid-Lakhdar

E. Rothberg and A. Gupta (1991), ‘Efficient sparse matrix factorization on high-
performance workstations - exploiting the memory hierarchy’, ACM Trans.
Math. Softw. 17(3), 313–334.

E. Rothberg and A. Gupta (1993), ‘An evaluation of left-looking, right-looking,
and multifrontal approaches to sparse Cholesky factorization on hierarchical-
memory machines’, Intl. J. High Speed Computing 5(4), 537–593.

E. Rothberg and A. Gupta (1994), ‘An efficient block-oriented approach to parallel
sparse Cholesky factorization’, SIAM J. Sci. Comput. 15(6), 1413–1439.

E. Rothberg and R. Schreiber (1994), Improved load distribution in parallel sparse
Cholesky factorization, in Proc. Supercomputing ’94, IEEE, pp. 783–792.

E. Rothberg and R. Schreiber (1999), ‘Efficient methods for out-of-core sparse
Cholesky factorization’, SIAM J. Sci. Comput. 21(1), 129–144.

V. Rotkin and S. Toledo (2004), ‘The design and implementation of a new out-
of-core sparse Cholesky factorization method’, ACM Trans. Math. Softw.
30(1), 19–46.

F.-H. Rouet, X. S. Li, P. Ghysels and A. Napov (2015), A distributed-memory
package for dense hierarchically semi-separable matrix computations using
randomization, Technical Report arXiv:1503.05464, Lawrence Berkeley Na-
tional Laboratory, Berkeley.

E. Rozin and S. Toledo (2005), ‘Locality of reference in sparse Cholesky methods’,
Electronic Trans. on Numerical Analysis 21, 81–106.

P. Sadayappan and V. Visvanathan (1988), ‘Circuit simulation on shared-memory
multiprocessors’, IEEE Trans. Comput. 37(12), 1634–1642.

P. Sadayappan and V. Visvanathan (1989), ‘Efficient sparse matrix factorization for
circuit simulation on vector supercomputers’, IEEE Trans. Computer-Aided
Design Integ. Circ. Sys. 8(12), 1276–1285.

M. Sala, K. S. Stanley and M. A. Heroux (2008), ‘On the design of interfaces to
sparse direct solvers’, ACM Trans. Math. Softw. 34(2), 9:1–9:22.

J. H. Saltz (1990), ‘Aggregation methods for solving sparse triangular systems on
multiprocessors’, SIAM J. Sci. Comput. 11(1), 123–144.

P. Sao, X. Liu, R. Vuduc and X. S. Li (2015), A sparse direct solver for distributed
memory Xeon Phi-accelerated systems, in 29th IEEE Intl. Parallel & Dis-
tributed Processing Symposium (IPDPS), Hyderabad, India.

P. Sao, R. Vuduc and X. S. Li (2014), A distributed CPU-GPU sparse direct solver,
in Proc. Euro-Par 2014 Parallel Processing (F. Silva, I. Dutra and V. San-
tos Costa, eds), Vol. 8632 of Lecture Notes in Computer Science, Springer
International Publishing, Porto, Portugal, pp. 487–498.

N. Sato and W. F. Tinney (1963), ‘Techniques for exploiting the sparsity of the
network admittance matrix’, IEEE Trans. Power Apparatus and Systems
82(69), 944–949.

O. Schenk and K. Gärtner (2002), ‘Two-level dynamic scheduling in PARDISO: Im-
proved scalability on shared memory multiprocessing systems’, Parallel Com-
puting 28(2), 187–197.

O. Schenk and K. Gärtner (2004), ‘Solving unsymmetric sparse systems of linear
equations with PARDISO’, Future Generation Comp. Sys. 20(3), 475–487.

O. Schenk and K. Gärtner (2006), ‘On fast factorization pivoting methods for

Sparse Direct Methods 181

sparse symmetric indefinite systems’, Electronic Trans. on Numerical Analysis
23, 158–179.

O. Schenk, K. Gärtner and W. Fichtner (2000), ‘Efficient sparse LU factorization
with left-right looking strategy on shared memory multiprocessors’, BIT Nu-
mer. Math. 40(1), 158–176.

O. Schenk, K. Gärtner, W. Fichtner and A. Stricker (2001), ‘PARDISO: A high-
performance serial and parallel sparse linear solver in semiconductor device
simulation’, Future Generation Comp. Sys. 18(1), 69–78.

R. Schreiber (1982), ‘A new implementation of sparse Gaussian elimination’, ACM
Trans. Math. Softw. 8(3), 256–276.

R. Schreiber (1993), Scalability of sparse direct solvers, in Graph Theory and Sparse
Matrix Computation (A. George, J. R. Gilbert and J. W. H. Liu, eds), Vol. 56
of IMA Volumes in Applied Mathematics, Springer-Verlag, New York, pp. 191–
209.

J. Schulze (2001), ‘Towards a tighter coupling of bottom-up and top-down sparse
matrix ordering methods’, BIT Numer. Math. 41(4), 800–841.

J. A. Scott (1999a), ‘A new row ordering strategy for frontal solvers’, Numer. Linear
Algebra Appl. 6(3), 189–211.

J. A. Scott (1999b), ‘On ordering elements for a frontal solver’, Comm. Numer.
Methods Eng. 15(5), 309–324.

J. A. Scott (2001a), ‘The design of a portable parallel frontal solver for chemical
process engineering problems’, Computers in Chem. Eng. 25, 1699–1709.

J. A. Scott (2001b), ‘A parallel frontal solver for finite element applications’, Intl.
J. Numer. Methods Eng. 50(5), 1131–1144.

J. A. Scott (2003), ‘Parallel frontal solvers for large sparse linear systems’, ACM
Trans. Math. Softw. 29(4), 395–417.

J. A. Scott (2006), ‘A frontal solver for the 21st century’, Comm. Numer. Methods
Eng. 22(10), 1015–1029.

J. A. Scott (2010), ‘Scaling and pivoting in an out-of-core sparse direct solver’,
ACM Trans. Math. Softw. 37(2), 19:1–19:23.

J. A. Scott and Y. Hu (2007), ‘Experiences of sparse direct symmetric solvers’,
ACM Trans. Math. Softw. 33(3), 18:1–18:28.

K. Shen, T. Yang and X. Jiao (2000), ‘S+: efficient 2D sparse LU factorization on
parallel machines’, SIAM J. Matrix Anal. Appl. 22(1), 282–305.

A. H. Sherman (1978a), ‘Algorithm 533: NSPIV, a Fortran subroutine for
sparse Gaussian elimination with partial pivoting’, ACM Trans. Math. Softw.
4(4), 391–398.

A. H. Sherman (1978b), ‘Algorithms for sparse Gaussian elimination with partial
pivoting’, ACM Trans. Math. Softw. 4(4), 330–338.

P. P. Silvester, H. A. Auda and G. D. Stone (1984), ‘A memory-economic frontwidth
reduction algorithm’, Intl. J. Numer. Methods Eng. 20(4), 733–743.

S. W. Sloan (1986), ‘An algorithm for profile and wavefront reduction of sparse
matrices’, Intl. J. Numer. Methods Eng. 23(2), 239–251.

G. M. Slota, S. Rajamanickam and K. Madduri (2014), BFS and coloring-based
parallel algorithms for strongly connected components and related problems,
in Parallel and Distributed Processing Symposium, 2014 IEEE 28th Interna-
tional, pp. 550–559.

182 Davis, Rajamanickam, Sid-Lakhdar

G. M. Slota, S. Rajamanickam and K. Madduri (2015), High-performance graph
analytics on manycore processors, in Parallel and Distributed Processing Sym-
posium (IPDPS), 2015 IEEE International, pp. 17–27.

D. Smart and J. White (1988), Reducing the parallel solution time of sparse circuit
matrices using reordered Gaussian elimination and relaxation, in Proceedings
of the IEEE International Symposium Circuits and Systems.

R. A. Snay (1969), Reducing the profile of sparse symmetric matrices, Techni-
cal Report NOS NGS-4, National Oceanic and Atmospheric Administration,
Washington, DC.

B. Speelpenning (1978), The generalized element method, Technical Report UIUC-
DCS-R-78-946, Dept. of Computer Science, Univ. of Illinois, Urbana, Illinois.

M. Srinivas (1983), ‘Optimal parallel scheduling of gaussian elimination DAG’s’,
IEEE Trans. Comput. C-32(12), 1109–1117.

L. M. Suhl and U. H. Suhl (1993), ‘A fast LU update for linear programming’,
Annals of Oper. Res. 43(1), 33–47.

U. H. Suhl and L. M. Suhl (1990), ‘Computing sparse LU factorizations for large-
scale linear programming bases’, ORSA J. on Computing 2(4), 325–335.

C. Sun (1996), ‘Parallel sparse orthogonal factorization on distributed-memory mul-
tiprocessors’, SIAM J. Sci. Comput. 17(3), 666–685.

C. Sun (1997), ‘Parallel solution of sparse linear least squares problems on
distributed-memory multiprocessors’, Parallel Computing 23(13), 2075 –
2093.

R. E. Tarjan (1972), ‘Depth first search and linear graph algorithms’, SIAM J.
Comput. 1, 146–160.

R. E. Tarjan (1975), ‘Efficiency of a good but not linear set union algorithm’, J.
ACM 22, 215–225.

R. E. Tarjan (1976), Graph theory and Gaussian elimination, in Sparse Matrix
Computations (J. R. Bunch and D. J. Rose, eds), New York: Academic Press,
pp. 3–22.

R. P. Tewarson (1966), ‘On the product form of inverses of sparse matrices’, SIAM
Review 8(3), 336–342.

R. P. Tewarson (1967a), ‘The product form of inverses of sparse matrices and graph
theory’, SIAM Review 9(1), 91–99.

R. P. Tewarson (1967b), ‘Row-column permutation of sparse matrices’, The Com-
puter Journal 10(3), 300–305.

R. P. Tewarson (1967c), ‘Solution of a system of simultaneous linear equations
with a sparse coefficient matrix by elimination methods’, BIT Numer. Math.
7, 226–239.

R. P. Tewarson (1968), ‘On the orthonormalization of sparse vectors’, Computing
3(4), 268–279.

R. P. Tewarson (1970), ‘Computations with sparse matrices’, SIAM Review
12(4), 527–544.

R. P. Tewarson (1972), ‘On the Gaussian elimination method for inverting sparse
matrices’, Computing 9(1), 1–7.

R. P. Tewarson, ed. (1973), Sparse Matrices, Vol. 99 of Mathematics in Science and
Engineering, New York: Academic Press. TAMU Evans library QA188 .T48.

Sparse Direct Methods 183

E. Thompson and Y. Shimazaki (1980), ‘A frontal procedure using skyline storage’,
Intl. J. Numer. Methods Eng. 15, 889–910.

W. F. Tinney and J. W. Walker (1967), ‘Direct solutions of sparse network equa-
tions by optimally ordered triangular factorization’, Proc. IEEE 55(1), 1801–
1809.

J. A. Tomlin (1972), Modifying triangular factors of the basis in the Simplex
method, in Sparse Matrices and Their Applications (D. J. Rose and R. A.
Willoughby, eds), New York: Plenum Press, New York, pp. 77–85.

E. Totoni, M. T. Heath and L. V. Kale (2014), ‘Structure-adaptive parallel solution
of sparse triangular linear systems’, Parallel Computing 40(9), 454 – 470.

A. F. Van der Stappen, R. H. Bisseling and J. G. G. van de Vorst (1993), ‘Parallel
sparse LU decomposition on a mesh network of transputers’, SIAM J. Matrix
Anal. Appl. 14(3), 853–879.

B. Vastenhouw and R. H. Bisseling (2005), ‘A two-dimensional data distribu-
tion method for parallel sparse matrix-vector multiplication’, SIAM Review
47(1), 67–95.

S. Wang, X. S. Li, F.-H. Rouet, J. Xia and M. V. De Hoop (2015), ‘A parallel geo-
metric multifrontal solver using hierarchically semiseparable structure’, ACM
Trans. Math. Softw. to appear.

J. P. Webb and A. Froncioni (1986), ‘A time-memory trade-off frontwidth re-
duction algorithm for finite element analysis’, Intl. J. Numer. Methods Eng.
23(10), 1905–1914.

J. H. Wilkinson and C. Reinsch, eds (1971), Handbook for Automatic Computation,
Volume II: Linear Algebra, Springer-Verlag.

O. Wing and J. W. Huang (1980), ‘A computation model of parallel solution of
linear equations’, IEEE Trans. Comput. C-29(7), 632–638.

J. Xia (2013a), ‘Efficient structured multifrontal factorization for general large
sparse matrices’, SIAM J. Sci. Comput. 35(2), A832–A860.

J. Xia (2013b), ‘Randomized sparse direct solvers’, SIAM J. Matrix Anal. Appl.
34(1), 197–227.

J. Xia, S. Chandrasekaran, M. Gu and X. S. Li (2009), ‘Superfast multifrontal
method for structured linear systems of equations’, SIAM J. Matrix Anal.
Appl. 31(3), 1382–1411.

J. Xia, S. Chandrasekaran, M. Gu and X. S. Li (2010), ‘Fast algorithms for hierar-
chically semiseparable matrices’, Numer. Linear Algebra Appl. 17(6), 953–976.

M. Yannakakis (1981), ‘Computing the minimum fill-in is NP-complete’, SIAM J.
Alg. Disc. Meth. 2, 77–79.

S. N. Yeralan, T. A. Davis, S. Ranka and W. M. Sid-Lakhdar (2016), Sparse
QR factorization on the GPU, Technical report, Texas A&M University.
http://faculty.cse.tamu.edu/davis/publications.html.

C. D. Yu, W. Wang and D. Pierce (2011), ‘A CPU-GPU hybrid approach for
the unsymmetric multifrontal method’, Parallel Computing 37(12), 759–770.
6th International Workshop on Parallel Matrix Algorithms and Applications
(PMAA’10).

G. Zhang and H. C. Elman (1992), ‘Parallel sparse Cholesky factorization on a
shared memory multiprocessor’, Parallel Computing 18(9), 1009–1022.

184 Davis, Rajamanickam, Sid-Lakhdar

Z. Zlatev (1980), ‘On some pivotal strategies in Gaussian elimination by sparse
technique’, SIAM J. Numer. Anal. 17(1), 18–30.

Z. Zlatev (1982), ‘Comparison of two pivotal strategies in sparse plane rotations’,
Computers and Mathematics with Applications 8, 119–135.

Z. Zlatev (1985), Sparse matrix techniques for general matrices with real elements:
Pivotal strategies, decompositions and applications in ODE software, in Spar-
sity and Its Applications (D. J. Evans, ed.), Cambridge, United Kingdom:
Cambridge University Press, pp. 185–228.

Z. Zlatev (1987), ‘A survey of the advances in the exploitation of the sparsity in
the solution of large problems’, J. Comput. Appl. Math. 20, 83–105.

Z. Zlatev (1991), Computational Methods for General Sparse Matrices, Kluwer Aca-
demic Publishers, Dordrecht, Boston, London.

Z. Zlatev and P. G. Thomsen (1981), Sparse matrices - efficient decompositions and
applications, in Sparse Matrices and Their Uses (I. S. Duff, ed.), New York:
Academic Press, pp. 367–375.

Z. Zlatev, J. Wasniewski and K. Schaumburg (1981), Y12M: Solution of Large and
Sparse Systems of Linear Algebraic Equations, Lecture Notes in Computer
Science 121, Berlin: Springer-Verlag.

E. Zmijewski and J. R. Gilbert (1988), ‘A parallel algorithm for sparse symbolic
Cholesky factorization on a multiprocessor’, Parallel Computing 7(2), 199–
210.

