
CSE 599: Interplay between Convex Optimization and Geometry Winter 2018

Lecture 6: Geometric Descent
Lecturer: Yin Tat Lee

Disclaimer: Please tell me any mistake you noticed.

This lecture is controversial and should be taken with a grain of salt. This lecture is mainly based on
[37, 39].

6.1 Geometric Descent

6.1.1 Anecdote

In the past few lectures, we discussed various cutting plane methods, their amazing theoretical guarantees for
general convex optimizations and some geometry stories behind them. However, these methods currently
are not as popular as first-order methods or interior point methods due to their practical performance.
Especially, ellipsoid method is infamous for its practical performance if implemented as stated.

In the past few years, I have been arguing with various researchers that ellipsoid method would work with
some small changes. The geometric descent paper [37] is a record for such an argument. For me, the purpose
of the geometric descent is not to give another interpretation of accelerated gradient descent, but to revive
the interest of cutting plane methods.

Now, I still naively believe there is a universal algorithm for solving convex problems and hence there
should be connections between all frameworks for convex optimization. Clearly, our current understanding
is lacking and more researches are needed.

Problem 6.1.1. Can we have a natural algorithm for convex problems that gives the best guarantee of
cutting plane methods, interior point methods and first-order methods?

I believe the answer for this problem will be one of the greatest result for optimization for a decade and
that the answer is probably simple in retrospect. Unfortunately, I am both blind and distracted right now.

6.1.2 Problems of Ellipsoid Method

In practice, many convex problems are smooth and strongly convex.

Definition 6.1.2. A function f is α-strongly convex if ∇2f(x) � α for all x, equivalently,

f(y) ≥ f(x) +∇f(x)>(y − x) +
α

2
‖y − x‖22 for all x, y. (6.1)

A function is β-smooth if ∇2f(x) � β for all x, equivalently,

f(y) ≤ f(x) +∇f(x)>(y − x) +
β

2
‖y − x‖22 for all x, y. (6.2)

The key observation is that ellipsoid method is not greedy enough when the function is strongly convex and
smooth. In particular, we know x is contained in a much smaller region than the halfspace. Let x∗ be the
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minimizer of f . Putting y = x∗ in (6.1) shows that

f(x∗) ≥ f(x) +∇f(x)>(x∗ − x) +
α

2
‖x∗ − x‖22 .

Completing the squares, we have that

∥∥x++ − x∗
∥∥2

2
≤
‖∇f(x)‖22

α2
− 2

α
(f(x)− f(x∗)).

Since f(x∗) ≤ f(x), this shows that x∗ lies in a sphere centered at x++ with radius at most
‖∇f(x)‖22

α2 .

To make ellipsoid method greedy, we should

1. Use cutting sphere instead of cutting plane.

2. Maintain a good estimate of f(x∗).

Another issue of ellipsoid method is the n2 cost per each iteration. To make each iteration cheaper, it is
natural to use sphere instead of ellipsoid.

6.1.3 Epigraph Cutting Plane Method

In previous lectures, we discussed cutting plane methods that maintain a region that contains the minimizer
x∗ of f . The proof of such cutting plane method relies on the following inequality

f(x) > f(x∗) ≥ f(x) + 〈∇f(x), x∗ − x〉 . (6.3)

Notice that the left-hand side is a strict inequality (unless we already solved the problem). Therefore, as
the algorithm runs, we will find a new point xnew such that f(xnew) < f(x). To be more greedy, we should
move the halfspace we got before. However, this makes the program complicated.

An easier way to avoid this nightmare is instead maintaining a region that contains (x∗, f(x∗)). Now, we
can think the equation f(y) ≥ f(x) + 〈∇f(x), y − x〉 as a cutting plane of the epigraph of f . Hence, we do
not need to update cutting plane anymore.

6.1.4 How to Make Ellipsoid Method Great Again?

The algorithm is an epigraph cutting plane method. Instead of using cutting sphere, we simply use (6.1) as
the cutting plane. More precisely, it is a cutting spherical parabola. For notation convenience, we define

line search(x, y) = argminz=x+t(x−y) with t∈Rf(z).

The algorithm is the following:

� Input: x0 ∈ Rn and strong convexity α.

� Set Q0 =
{

(y, t) ∈ Rn+1 : t ≥ f(x) +∇f(x)>(y − x) + α
2 ‖y − x‖

2
}

.

� Set x+
0 = line search(x0,∇f(x0)).

� For k = 1, 2, · · · , T
– Let xk = line search(ck−1, x

+
k−1) where ck−1 be the minimizer of Qk−1.

– Let x+
k = line search(xk,∇f(x0)).

– Set Q =
{

(y, t) ∈ Rn+1 : t ≥ f(xk) +∇f(xk)>(y − xk) + α
2 ‖y − xk‖

2
}

.

– Let Qk = min para(Q ∩ Qk−1) where min para(K) is the smallest spherical parabola covering
K.



Lecture 6: Geometric Descent 6-3

The difference between this algorithm and ellipsoid is the following:

1. It is an epigraph cutting plane method.

2. It uses the line search between ck and xk to make the point we evaluate ∇f has small function value.

3. It does a line search from xk on the direction ∇f(xk).

4. It uses smallest spherical parabola instead of smallest ellipsoid.

Except for the last points, all modifications are to make the algorithm more greedy. The last point is to
make the cost per each iteration is O(n). To see this, we note that there is an explicit formula for smallest
spherical parabola.

Lemma 6.1.3 ([39]). Consider Q1 =
{

(y, t) : t ≥ vA + α
2 ‖y − xA‖

2
2

}
and Q2 =

{
(y, t) : t ≥ vB + α

2 ‖y − xB‖
2
2

}
.

Let Q = min para(Q1 ∩Q2). Then, Q =
{

(y, t) : t ≥ v + α
2 ‖y − x‖

2
}

Furthermore, we have that

� If |vA − vB | ≤ α
2 ‖xA − xB‖

2
2, then

v =
α

8
‖xA − xB‖2 +

1

2
(vA + vB) +

1

2α

(
vA − vB
‖xA − xB‖2

)2

,

x = (
1

2
+

vA − vB
α ‖xA − xB‖22

)xA + (
1

2
− vA − vB
α ‖xA − xB‖22

)xA.

� If vA − vB ≥ α
2 ‖xA − xB‖

2
2, then v = vA and x = xA.

� If vB − vA ≥ α
2 ‖xA − xB‖

2
2, then v = vB and x = xB.

However, to highlight the key point of the analysis, we would use the following lemma instead.

Lemma 6.1.4 ([37]). For any vector a ∈ Rn with ‖a‖2 ≥ g and any 0 < ε ≤ 1, the set

{x : ‖x‖22 ≤ R
2 − εg2} ∩ {x : ‖x− a‖22 ≤ g

2 − εg2}

contains in a sphere of radius square (1−
√
ε)R2.

The analysis of this algorithm is basically the same as ellipsoid method; we simply analyze how much the
volume decrease every iteration.

Theorem 6.1.5. Let Vk be the volume of Qk ∩ {(y, t) : t ≤ f(x+
k )}. Then, we have that

volVk+1 ≤
(

1−
√
α

β

)n+1
2

volVk.

Proof. Without loss of generality, α = 1.

Lemma 6.1.3 shows that Qk is always given in the form
{

(y, t) : t ≥ vk + 1
2 ‖y − ck‖

2
}

for some vk ∈ R and

ck ∈ Rn. Let γk = 2(f(x+
k )− vk). Note that γk is the radius square of the base of the truncated parabola

Qk ∩ {(y, t) : t ≤ f(x+
k )}. Therefore, volVk ∝ γ

n+1
2

k . Therefore, it suffices to prove

γk ≤
(

1−
√

1

β

)
γk−1.
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For any spherical parabola P , we define [P ]s be the section of P at {t = s}. It is easy to see (for example
by Lemma 6.1.3) that it suffices to prove that

[Qk−1]f(x+
k ) ∩ [Q]f(x+

k ) ⊂ {y : ‖x− c‖22 ≤ (1−
√

1

β
)γk−1}

for some vector c.

For the sphere [Qk−1]f(x+
k ), we note that

[Qk−1]f(x+
k ) =

{
y : f(x+

k ) ≥ vk−1 +
1

2
‖y − ck−1‖22

}
. (6.4)

The smoothness of f and the line search xk = line search(ck−1, x
+
k−1) shows that

f(x+
k ) ≤ f(xk)− 1

2β
‖∇f(xk)‖22 ≤ f(x+

k−1)− 1

2β
‖∇f(xk)‖22 . (6.5)

Without loss of generality, we can assume ck−1 = 0. Combining this, (6.4) and (6.5), we have that

[Qk−1]f(x+
k ) ⊂

{
y : γk−1 −

1

β
‖∇f(xk)‖22 ≥ ‖y‖

2

}
(6.6)

For the sphere [Q]f(x+
k ), we note that

[Q]f(x+
k ) =

{
y : f(x+

k ) ≥ f(xk) +∇f(xk)>(y − xk) +
1

2
‖y − xk‖22

}
=

{
y : f(x+

k ) ≥ f(xk)− 1

2
‖∇f(xk)‖22 +

1

2
‖y − a‖22

}
where a = xk −∇f(xk). Using (6.5), we have that

[Q]f(x+
k ) ⊂

{
y : (1− 1

β
) ‖∇f(xk)‖22 ≥ ‖y − a‖

2
2

}
. (6.7)

To apply Lemma 6.1.4, we note that ∇f(xk) is perpendicular to ck−1 = 0 and x+
k−1 and hence

∥∥x++
k

∥∥2

2
≥∥∥xk − x++

k

∥∥2

2
= ‖∇f(xk)‖22. Therefore, we have

[Qk−1]f(x+
k ) ∩ [Q]f(x+

k ) ⊂ {y : ‖x− c‖22 ≤ (1−
√

1

β
)γk−1}.

6.1.5 Discussions

The use of line search: Often, convex functions are given in the form
∑
i φ(aTi x), this includes many

problems such as least squares, linear programs, logistic regression and many problems in empirical risk
minimization. When such problem is slightly dense, computing aTi x is the computational bottleneck. If we
reuse the calculations carefully, each iteration of all mentioned methods requires exactly one calculation of
aTi x for some x. Therefore, the cost of exact line searches is negligible compares with the cost of computing
aTi x. For example, if each rows of ai has say ≥ k non-zeros, then the gradient computation costs C while
the line search costs only O(C log(1/ε)/k)� C if implemented correctly.

In general, we believe that one can usually design a specialized fast algorithm for the linear search by
studying the problem closely. If it is not possible, we note that [38] recently generalized this algorithm and
studied how to avoid the exact line search.
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Strongly convex assumption: We note that there is a general reduction from the convex case to the
strongly convex case [35]. Basically, this involves adding a small quadratic term into f , runs the algorithm
for this modified function and gradually removes the quadratic term. Their reduction shows if one obtain
an optimal (up to constant) algorithm for the strongly convex case, then one can recover an optimal (up to
constant) algorithm for non-strongly convex case. Even surprisingly, such reduction algorithm seems to be
pretty efficient compare to a direct algorithm. Due to this, we only consider the strongly convex case here.
Certainly, by incorporating the reduction inside our algorithm, one can obtain a direct algorithm.

Performance: Assuming line search can be implemented efficiently, which requires work. This algorithm
seems to be better than that accelerated gradient descent in general [37, 39, 38] and especially better when
the problem is less smooth. For more difficult problems, there is a memory version [39, 36]. They are
sometimes even better than L-BFGS, a widely used algorithm in industry for unconstrained optimization.
For problems closer to quadratic functions, there are a variant that combined this algorithm with conjugate
gradient [40].

Currently, the main drawback of this algorithm is that it seems difficult to extended to stochastic case,
which is very important of machine learning type problems. For this reason, I currently do not recommend
use this algorithm to minimize convex problems unless the problem is close to non-smooth.

Problem 6.1.6. Can we have a stochastic version of this algorithm similar to stochastic gradient descent?

6.2 Summary

In the past few lectures, we have covered many cutting plane methods. To summarize, given a convex
function f , if we can compute the gradient in time T , then we can minimize the function in O∗(nT + n3)

time. If α � ∇2f � β, then we can do O∗(
√

β
αT ) instead. Note that two running time are not comparable.

One is faster to another depending on if β
α is large or not.

One common belief is that dimension independent algorithm is better when the problem is large. However,
this belief is only grounded if for example, β/α is independent to the dimension. For example, consider the
following problem

f(x) =

n−1∑
k=0

(xk − xk+1)2.

This problem appears everywhere from physical systems, graph problems, signal denoising to statistics.
This problem does not involve any very large or very small number and yet β/α = Θ(n2). Another fun
example is

f(x) = ‖Ax− b‖22
where A is a random n× n matrix with independent Gaussian entries. Again, we have β/α is roughly n2.
For those problems, O∗(nT ) does not sound that terrible given that β/α could be +∞ whenever you have
a tiny non-smooth term like |x| in the function.

In terms of oracle calls, we know that O∗(min(n,
√

β
α )) is optimal. The lower bound

√
β
α simply follows

from the function

−x1 + β

n−1∑
k=0

(xk − xk+1)2 + α

n∑
k=0

x2
k. (6.1)

Imagine you start with the initial point x(0) = (0, 0, 0, · · · , 0). The gradient at x(0) is of the form
(?, 0, 0, 0, · · · ). Note that all cutting plane methods we covered satisfies the invariant

x(k) = span(x(0), g(0), g(1), · · · , g(k−1))
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where g(i) are the gradient given by the oracle. In that case, we would have x(1) = (?, 0, 0, 0, · · · ) and
g(1) = (?, ?, 0, 0, · · · ). By induction, only the first k coordinates of x(k) are non-zero. Using this, it is easy

to prove that we need Ω(
√

β
α ) oracle call to get an approximate solution to the “worst function” (6.1).

Note however that this “worst function” naturally appears in many problems. So, it is a problem we need
to address. In some sense, this points out a common problem of cutting plane methods and first-order
methods is that it can only communicate the information from one vertex to next via gradient. Therefore,
the running time is always lower bounded by the “diameter” of the problem.

For this particular problem (6.1), it is a Laplacian system and we can solve it in nearly linear time. However,
the general question of solving problems of those types faster is still an open problem.
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